meh, better architecture of the cells, but worse behavior

This commit is contained in:
WanderingPenwing 2024-11-30 02:47:04 +01:00
parent 2f0dbb727d
commit d901ea441d
3 changed files with 555 additions and 262 deletions

132
src/cell.rs Normal file
View file

@ -0,0 +1,132 @@
use std::fmt;
use std::collections::HashSet;
use rand::thread_rng;
use rand::Rng;
const STATE_DISPLAY: &str = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
pub enum CellError {
StateNotAllowed,
NoAllowedState,
StateAlreadySet,
}
pub enum CollapseOption {
Random,
First,
Set(usize),
}
pub enum RemoveResult {
NumAllowed(usize),
Collapsed(usize),
Filled,
}
impl fmt::Display for CellError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CellError::StateNotAllowed => write!(f, "Cell Error : Tried to set a state not allowed."),
CellError::NoAllowedState => write!(f, "Cell Error : The cell has no allowed states."),
CellError::StateAlreadySet => write!(f, "Cell Error : Tried to overwrite an existing state"),
}
}
}
#[derive(Clone)]
pub struct Cell {
state: Option<usize>,
all_states: Vec<usize>,
allowed_states: Vec<usize>,
}
impl Cell {
pub fn new(states: Vec<usize>) -> Self {
Self {
state: None,
all_states: states.clone(),
allowed_states: states,
}
}
pub fn get(&self) -> Option<usize> {
return self.state
}
pub fn get_allowed(&self) -> Vec<usize> {
return self.allowed_states.clone()
}
pub fn get_num_allowed(&self) -> usize {
return self.allowed_states.len()
}
pub fn is_none(&self) -> bool {
return self.state.is_none()
}
pub fn collapse(&mut self, option: &CollapseOption) -> Result<usize, CellError> {
if !self.state.is_none() {
return Err(CellError::StateAlreadySet)
}
if self.allowed_states.len() == 0 {
return Err(CellError::NoAllowedState)
}
if let CollapseOption::Set(state) = option {
if !self.allowed_states.contains(&state) {
return Err(CellError::StateNotAllowed)
}
self.state = Some(*state);
return Ok(*state)
}
let choice: usize = if let CollapseOption::Random = option {
thread_rng().gen_range(0..self.allowed_states.len())
} else {
0
};
self.state = Some(self.allowed_states[choice]);
return Ok(self.allowed_states[choice])
}
pub fn remove_allowed(&mut self, states: &HashSet<usize>) -> Result<RemoveResult, CellError> {
if !self.state.is_none() {
return Ok(RemoveResult::Filled)
}
self.allowed_states.retain(|&x| !states.contains(&x));
if self.allowed_states.len() == 0 {
return Err(CellError::NoAllowedState)
}
if self.allowed_states.len() == 1 {
self.state = Some(self.allowed_states[0]);
return Ok(RemoveResult::Collapsed(self.allowed_states[0]))
}
return Ok(RemoveResult::NumAllowed(self.allowed_states.len()))
}
pub fn reset_allowed(&mut self) {
self.allowed_states = self.all_states.clone();
}
pub fn reset(&mut self) {
self.state = None;
self.reset_allowed();
}
}
impl fmt::Display for Cell {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Some(state) = self.state else {
return write!(f, " ")
};
let display_state = match STATE_DISPLAY.chars().nth(state) {
Some(state) => state.to_string(),
None => "#".to_string(),
};
write!(f, "{}", display_state)
}
}

View file

@ -1,24 +1,18 @@
use std::fmt;
use std::collections::HashSet;
use rand::seq::SliceRandom;
use std::time::Instant;
use std::env;
use std::process;
use text_io::read;
use std::cmp::min;
const CHAR_SET: &str = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
mod cell;
use cell::Cell;
use cell::CollapseOption;
enum LineType {
Top,
Middle,
Bottom,
}
mod ui;
use ui::DisplayMode;
enum WaveError {
Contradiction,
NoEmptyCell,
NoPossibility,
NoHistory,
}
@ -26,135 +20,43 @@ impl fmt::Display for WaveError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
WaveError::Contradiction => write!(f, "Error: The puzzle contradicts itself."),
WaveError::NoEmptyCell => write!(f, "Error: No empty cells left to fill."),
WaveError::NoPossibility => write!(f, "Error: The cell has no possibility."),
WaveError::NoHistory => write!(f, "Error: Tried to backtrack but the History is empty."),
}
}
}
enum DisplayMode {
Full,
Focus(usize),
}
#[derive(Clone)]
struct Cell {
value: Option<usize>,
max: usize,
possibilities: Vec<usize>
}
impl Cell {
fn set(&mut self, value: usize) {
self.value = if value > 0 && value <= self.max {
Some(value)
} else {
None
};
}
fn reset_possibilities(&mut self) {
self.possibilities = (1..=self.max).collect();
}
fn remove_possibilities(&mut self, possibilities: &HashSet<usize>) {
self.possibilities.retain(|&x| !possibilities.contains(&x))
}
fn new(max: usize) -> Self {
Self {
value: None,
max,
possibilities: (1..=max).collect(),
}
}
}
impl fmt::Display for Cell {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Some(value) = self.value else {
return write!(f, " ")
};
let display_value = match CHAR_SET.chars().nth(value) {
Some(value) => value.to_string(),
None => "#".to_string(),
};
write!(f, "{}", display_value)
}
}
struct Choice {
struct Step {
cell_selected: [usize; 2],
possibilities: Vec<usize>,
selected_value: usize,
state_selected: usize,
num_allowed_states: usize,
}
struct Sudoku {
grid: Vec<Vec<Cell>>,
rng: rand::rngs::ThreadRng,
history: Vec<Choice>,
history: Vec<Step>,
last_history: usize,
size: usize,
square_size: usize,
debug_display: bool,
collapse_option: CollapseOption,
}
impl Sudoku {
fn new(order: usize) -> Self {
let size = order*order;
let sudoku_grid: Vec<Vec<Cell>> = vec![vec![Cell::new(size); size]; size];
let states = (1..=size).collect();
let sudoku_grid: Vec<Vec<Cell>> = vec![vec![Cell::new(states); size]; size];
Self {
grid: sudoku_grid,
rng: rand::thread_rng(),
history: vec![],
last_history: 0,
size,
square_size: order,
debug_display: false,
collapse_option: CollapseOption::Random,
}
}
fn display(&self, display_mode: DisplayMode) {
self.draw_line(LineType::Top);
for (row_index, row) in self.grid.iter().enumerate() {
if row_index % self.square_size == 0 && row_index != 0 {
self.draw_line(LineType::Middle);
}
let mut line: String = "".to_string();
for (cell_index, cell) in row.iter().enumerate() {
line += &format!("{} ",cell);
if cell_index % self.square_size == self.square_size - 1 {
line+= "";
}
}
if let DisplayMode::Focus(focus_row) = display_mode {
if row_index == focus_row {
line += "<";
}
}
println!("{}",line);
}
self.draw_line(LineType::Bottom);
}
fn draw_line(&self, line_type: LineType) {
let (left_corner, intersection, right_corner) = match line_type {
LineType::Top => ("", "", ""),
LineType::Middle => ("", "", ""),
LineType::Bottom => ("", "", ""),
};
let mut line = left_corner.to_string();
for i in 0..(self.square_size) {
line += &"".repeat(self.square_size*2+1);
if i < self.square_size - 1 {
line += intersection;
}
}
println!("{}{}", line, right_corner);
}
fn update_possibilities(&mut self) -> Result<(), WaveError> {
let mut row_used_values: Vec<HashSet<usize>> = vec![HashSet::new(); self.size];
let mut column_used_values: Vec<HashSet<usize>> = vec![HashSet::new(); self.size];
@ -162,7 +64,7 @@ impl Sudoku {
for row_index in 0..self.size {
for column_index in 0..self.size {
let Some(value) = self.grid[row_index][column_index].value else {
let Some(value) = self.grid[row_index][column_index].get() else {
continue
};
if row_used_values[row_index].contains(&value) || column_used_values[column_index].contains(&value) || column_used_values[column_index].contains(&value) {
@ -173,53 +75,128 @@ impl Sudoku {
square_used_values[row_index/self.square_size][column_index/self.square_size].insert(value);
}
}
for row_index in 0..self.size {
for column_index in 0..self.size {
let mut used_values = row_used_values[row_index].clone();
used_values.extend(&column_used_values[column_index]);
used_values.extend(&square_used_values[row_index/self.square_size][column_index/self.square_size]);
self.grid[row_index][column_index].remove_possibilities(&used_values);
self.remove_allowed(row_index, column_index, &used_values)?;
}
}
Ok(())
}
fn propagate_collapse(&mut self, _debug_display: bool) -> Result<(), WaveError> {
let Some(last_choice) = self.history.last() else {
return self.update_possibilities()
};
let collapsed_row = last_choice.cell_selected[0];
let collapsed_column = last_choice.cell_selected[1];
let Some(collapsed_value) = self.grid[collapsed_row][collapsed_column].value else {
fn propagate_collapse(&mut self) -> Result<(), WaveError> {
if self.last_history >= self.history.len() {
if self.debug_display {
println!("x nothing to propagate")
}
return Ok(())
};
}
let collapsed_row = self.history[self.last_history].cell_selected[0];
let collapsed_column = self.history[self.last_history].cell_selected[1];
let collapsed_state = self.history[self.last_history].state_selected;
self.last_history += 1;
let mut collapsed_possibility = HashSet::new();
collapsed_possibility.insert(collapsed_value);
for column_index in 0..self.size {
self.grid[collapsed_row][column_index].remove_possibilities(&collapsed_possibility);
if self.debug_display {
println!("- propagating {}", collapsed_state);
}
let mut collapsed_possibility = HashSet::new();
collapsed_possibility.insert(collapsed_state);
for column_index in 0..self.size {
if column_index == collapsed_column {
continue;
}
if self.grid[collapsed_row][column_index].get() == Some(collapsed_state) {
return Err(WaveError::Contradiction)
}
self.remove_allowed(collapsed_row, column_index, &collapsed_possibility)?;
}
for row_index in 0..self.size {
self.grid[row_index][collapsed_column].remove_possibilities(&collapsed_possibility);
if row_index == collapsed_row {
continue;
}
if self.grid[row_index][collapsed_column].get() == Some(collapsed_state) {
return Err(WaveError::Contradiction)
}
self.remove_allowed(row_index, collapsed_column, &collapsed_possibility)?;
}
for row_index in 0..self.square_size {
for column_index in 0..self.square_size {
let row = (collapsed_row/self.square_size)*self.square_size + row_index;
let column = (collapsed_column/self.square_size)*self.square_size + column_index;
self.grid[row][column].remove_possibilities(&collapsed_possibility);
if row == collapsed_row && column == collapsed_column {
continue;
}
if self.grid[row][column].get() == Some(collapsed_state) {
return Err(WaveError::Contradiction)
}
self.remove_allowed(row, column, &collapsed_possibility)?;
}
}
Ok(())
}
fn collapse(&mut self, debug_display: bool) -> Result<(), WaveError> {
let mut missing_states: HashSet<usize> = (1..=self.size).collect();
for column_index in 0..self.size {
if let Some(state) = self.grid[collapsed_row][column_index].get() {
missing_states.remove(&state);
continue
}
for allowed_state in self.grid[collapsed_row][column_index].get_allowed() {
missing_states.remove(&allowed_state);
}
}
if !missing_states.is_empty() {
if self.debug_display {
println!("xxxxxxxx missing row state : {:?}", missing_states);
}
return Err(WaveError::Contradiction)
}
missing_states = (1..=self.size).collect();
for row_index in 0..self.size {
if let Some(state) = self.grid[row_index][collapsed_column].get() {
missing_states.remove(&state);
continue
}
for allowed_state in self.grid[row_index][collapsed_column].get_allowed() {
missing_states.remove(&allowed_state);
}
}
if !missing_states.is_empty() {
if self.debug_display {
println!("xxxxxxxxx missing column state");
}
return Err(WaveError::Contradiction)
}
missing_states = (1..=self.size).collect();
for row_index in 0..self.square_size {
for column_index in 0..self.square_size {
let row = (collapsed_row/self.square_size)*self.square_size + row_index;
let column = (collapsed_column/self.square_size)*self.square_size + column_index;
if let Some(state) = self.grid[row][column].get() {
missing_states.remove(&state);
continue
}
for allowed_state in self.grid[row][column].get_allowed() {
missing_states.remove(&allowed_state);
}
}
}
if !missing_states.is_empty() {
if self.debug_display {
println!("xxxxxxxxxx missing square state");
}
return Err(WaveError::Contradiction)
}
Ok(())
}
fn collapse(&mut self) -> Result<(), WaveError> {
let mut min_row_index: usize = 0;
let mut min_column_index: usize = 0;
let mut min_len: usize = self.size;
@ -228,11 +205,11 @@ impl Sudoku {
for row_index in 0..self.size {
for column_index in 0..self.size {
if !self.grid[row_index][column_index].value.is_none() {
if !self.grid[row_index][column_index].is_none() {
continue;
}
grid_has_empty_cell = true;
let possibilities_len = self.grid[row_index][column_index].possibilities.len();
let possibilities_len = self.grid[row_index][column_index].get_num_allowed();
if possibilities_len < min_len {
min_row_index = row_index;
min_column_index = column_index;
@ -242,169 +219,252 @@ impl Sudoku {
}
if !grid_has_empty_cell {
if debug_display {
if self.debug_display {
println!("x no empty cells");
}
return Err(WaveError::NoEmptyCell)
}
let Err(reason) = self.collapse_cell(min_row_index, min_column_index, debug_display) else {
return Ok(())
};
if let WaveError::NoPossibility = reason {
return self.backtrack(debug_display)
} else {
return Err(reason)
}
}
fn backtrack(&mut self, debug_display: bool) -> Result<(), WaveError> {
let mut fork: Option<Choice> = None;
return self.collapse_cell(min_row_index, min_column_index)
// let Err(reason) = self.collapse_cell(min_row_index, min_column_index) else {
// return Ok(())
// };
//
// if let WaveError::Contradiction = reason {
// return self.backtrack()
// } else {
// return Err(reason)
// }
}
//
fn backtrack(&mut self) -> Result<(), WaveError> {
let mut fork: Option<Step> = None;
while let Some(choice) = self.history.pop() {
if debug_display {
println!("* backtracking");
}
self.grid[choice.cell_selected[0]][choice.cell_selected[1]].value = None;
if choice.possibilities.len() > 1 {
fork = Some(choice);
while let Some(step) = self.history.pop() {
self.last_history -= 1;
self.grid[step.cell_selected[0]][step.cell_selected[1]].reset();
if step.num_allowed_states > 1 {
fork = Some(step);
break;
}
if self.debug_display {
println!("* backtracking [{}][{}] : {}", step.cell_selected[0], step.cell_selected[1], step.state_selected);
}
}
let Some(choice) = fork else {
if debug_display {
let Some(step) = fork else {
if self.debug_display {
println!("x backtracked to start");
}
return Err(WaveError::NoHistory)
};
if self.debug_display {
println!("* fork [{}][{}] : {}", step.cell_selected[0], step.cell_selected[1], step.state_selected);
}
self.reset_possibilities()?;
self.reset_allowed();
let mut selected_value = HashSet::new();
selected_value.insert(choice.selected_value);
self.grid[choice.cell_selected[0]][choice.cell_selected[1]].remove_possibilities(&selected_value);
return self.collapse_cell(choice.cell_selected[0], choice.cell_selected[1], debug_display)
let mut state_selected_set = HashSet::new();
state_selected_set.insert(step.state_selected);
self.remove_allowed(step.cell_selected[0], step.cell_selected[1], &state_selected_set)?;
Ok(())
}
fn reset_possibilities(&mut self) -> Result<(), WaveError> {
fn reset_allowed(&mut self) {
for row in &mut self.grid {
for cell in row {
cell.reset_possibilities();
cell.reset_allowed();
}
}
return self.update_possibilities();
}
fn collapse_cell(&mut self, row_index: usize, column_index: usize, debug_display: bool) -> Result<(), WaveError> {
let Some(&selected_value) = self.grid[row_index][column_index].possibilities.choose(&mut self.rng) else {
if debug_display {
println!("x no possibilities for [{}][{}]", row_index, column_index);
}
return Err(WaveError::NoPossibility)
};
self.history.push(Choice {
cell_selected: [row_index, column_index],
possibilities: self.grid[row_index][column_index].possibilities.clone(),
selected_value,
});
self.grid[row_index][column_index].set(selected_value);
if debug_display {
println!("# collapsing [{}][{}] ({:?}) to {}", row_index, column_index, self.grid[row_index][column_index].possibilities, selected_value);
fn remove_allowed(&mut self, row_index: usize, column_index: usize, set_to_remove: &HashSet<usize>) -> Result<(), WaveError> {
match self.grid[row_index][column_index].remove_allowed(set_to_remove) {
Ok(result) => {
let cell::RemoveResult::Collapsed(state) = result else {
return Ok(())
};
if self.debug_display {
println!("* collapsed by removal [{}][{}] to {}", row_index, column_index, state)
}
self.history.push(Step {
cell_selected: [row_index, column_index],
state_selected: state,
num_allowed_states: 1,
});
return Ok(())
}
Err(reason) => {
if self.debug_display {
println!("x failed to update states allowed of [{}][{}] : {}", row_index, column_index, reason);
}
return Err(WaveError::Contradiction)
}
}
}
fn collapse_cell(&mut self, row_index: usize, column_index: usize) -> Result<(), WaveError> {
match self.grid[row_index][column_index].collapse(&self.collapse_option) {
Ok(state_selected) => {
let num_allowed_states = self.grid[row_index][column_index].get_num_allowed();
if self.debug_display {
println!("# collapsing [{}][{}] ({}) to {}", row_index, column_index, num_allowed_states, state_selected);
}
self.history.push(Step {
cell_selected: [row_index, column_index],
state_selected,
num_allowed_states,
});
return Ok(())
}
Err(reason) => {
if self.debug_display {
println!("x could not collapse [{}][{}] : {}", row_index, column_index, reason);
}
return Err(WaveError::Contradiction)
}
}
Ok(())
}
//
// fn solve(&mut self) -> Result<(), WaveError> {
// let now = Instant::now();
//
// self.display(DisplayMode::Full);
// if self.debug_display {
// println!("--------");
// }
//
//
// let initial_grid = self.grid.clone();
//
// println!("# started");
//
// self.update_possibilities()?;
//
// let mut step_counter: usize = 0;
// let mut reset_counter: usize = 0;
//
// loop {
// match self.collapse() {
// Ok(()) => {}
// Err(reason) => {
// if let WaveError::NoEmptyCell = reason {
// break;
// } else {
// return Err(reason)
// }
// }
// }
// self.propagate_collapse()?;
//
//
// if step_counter%(2*self.size*self.size) == 0 {
// self.grid = initial_grid.clone();
// self.reset_allowed();
// self.history = vec![];
// self.update_possibilities()?;
// reset_counter += 1;
// }
//
// if !self.debug_display {
// let bar_size = (self.size + self.square_size - 1)*2 + 1;
// let progress = self.history.len()*bar_size/(self.size*self.size - filled_cells_number);
// let to_do = bar_size - progress;
// print!("\r[{}{}]", "#".repeat(progress), "-".repeat(to_do));
// }
// step_counter += 1;
// }
//
// println!();
//
// if reset_counter > 0 {
// println!("# {} resets", reset_counter);
// }
// self.display(DisplayMode::Full);
//
// Ok(())
// }
fn solve(&mut self, debug_display: bool) -> Result<(), WaveError> {
fn solve(&mut self) -> Result<(), WaveError> {
let now = Instant::now();
self.display(DisplayMode::Full);
if debug_display {
println!("--------");
}
let mut filled_cells_number: usize = 0;
let mut n_start_cells: usize = 0;
for row in &self.grid {
for cell in row {
if !cell.value.is_none() {
filled_cells_number += 1;
if !cell.is_none() {
n_start_cells += 1;
}
}
}
let initial_grid = self.grid.clone();
let mut propagation_counter: usize = 0;
let mut collapse_counter: usize = 0;
println!("# started");
self.update_possibilities()?;
let mut step_counter: usize = 0;
let mut reset_counter: usize = 0;
while let Ok(_) = self.collapse(debug_display) {
//self.update_possibilities();
self.propagate_collapse(debug_display)?;
step_counter += 1;
if self.debug_display {
println!("--------");
}
self.update_possibilities()?;
if step_counter%(2*self.size*self.size) == 0 {
self.grid = initial_grid.clone();
self.update_possibilities()?;
self.history = vec![];
reset_counter += 1;
}
while n_start_cells + self.history.len() < self.size * self.size {
if self.debug_display {
println!("## while, h={}/{}", self.last_history, self.history.len());
}
while self.last_history < self.history.len() && n_start_cells + self.history.len() < self.size * self.size {
let mut backtrack = 0;
match self.propagate_collapse() {
Ok(_) => {},
Err(reason) => {
if let WaveError::Contradiction = reason {
backtrack = 1;
} else {
return Err(reason)
}
}
};
while backtrack > 0 {
backtrack -=1;
self.backtrack()?;
match self.update_possibilities() {
Ok(_) => {},
Err(reason) => {
if let WaveError::Contradiction = reason {
backtrack += 1;
} else {
return Err(reason)
}
}
};
}
propagation_counter += 1;
}
self.collapse()?;
collapse_counter += 1;
if !debug_display {
if !self.debug_display {
let bar_size = (self.size + self.square_size - 1)*2 + 1;
let progress = self.history.len()*bar_size/(self.size*self.size - filled_cells_number);
let progress = self.history.len()*bar_size/(self.size*self.size - n_start_cells);
let to_do = bar_size - progress;
print!("\r[{}{}]", "#".repeat(progress), "-".repeat(to_do));
}
}
println!();
}
println!();
let elapsed = now.elapsed();
if debug_display {
if self.debug_display {
println!("--------");
}
println!("# finished in {} steps, {:.2?} ({:.2?}/step)", step_counter, elapsed, elapsed/(step_counter as u32));
if reset_counter > 0 {
println!("# {} resets", reset_counter);
}
self.display(DisplayMode::Full);
Ok(())
let elapsed = now.elapsed();
println!("# finished in {} propagations ({} forced collapse), {:.2?} ({:.2?}/propagation)", propagation_counter, collapse_counter, elapsed, elapsed/(propagation_counter as u32));
self.display(DisplayMode::Full);
Ok(())
}
fn ask(&mut self) {
for row_index in 0..self.size {
self.display(DisplayMode::Focus(row_index));
print!("> ");
let line: String = read!("{}\n");
for (column_index, c) in line.chars().enumerate() {
match CHAR_SET.find(c) {
Some(value) => {
if value <= self.size {
self.grid[row_index][column_index].set(value);
}
}
None => {}
}
}
let height = self.size + self.square_size + 2;
print!("\x1b[{}A", height);
for _ in 0..height {
println!("{}"," ".repeat((self.size + self.square_size - 1)*2 + 5));
}
print!("\x1b[{}A", height);
fn random_mode(&mut self, collapse_random: bool) {
if collapse_random {
self.collapse_option = CollapseOption::Random;
} else {
self.collapse_option = CollapseOption::First
}
}
}
}
fn main() {
@ -419,13 +479,24 @@ fn main() {
process::exit(1);
});
let mut sudoku = Sudoku::new(min(size, 5));
let mut sudoku = Sudoku::new(size);
if args.contains(&"--ask".to_string()) {
sudoku.ask();
if let Err(reason) = sudoku.ask() {
println!("{}",reason);
}
}
if args.contains(&"--debug".to_string()) {
sudoku.debug_mode(true);
}
if args.contains(&"--norand".to_string()) {
sudoku.random_mode(false);
}
if let Err(reason) = sudoku.solve(args.contains(&"--debug".to_string())) {
if let Err(reason) = sudoku.solve() {
println!("{}",reason);
sudoku.display(DisplayMode::Full);
}
}

90
src/ui.rs Normal file
View file

@ -0,0 +1,90 @@
use text_io::read;
use crate::Sudoku;
use crate::cell;
const CHAR_SET: &str = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
enum LineType {
Top,
Middle,
Bottom,
}
pub enum DisplayMode {
Full,
Focus(usize),
}
impl Sudoku {
pub fn display(&self, display_mode: DisplayMode) {
self.draw_line(LineType::Top);
for (row_index, row) in self.grid.iter().enumerate() {
if row_index % self.square_size == 0 && row_index != 0 {
self.draw_line(LineType::Middle);
}
let mut line: String = "".to_string();
for (cell_index, cell) in row.iter().enumerate() {
line += &format!("{} ",cell);
if cell_index % self.square_size == self.square_size - 1 {
line+= "";
}
}
if let DisplayMode::Focus(focus_row) = display_mode {
if row_index == focus_row {
line += "<";
}
}
println!("{}",line);
}
self.draw_line(LineType::Bottom);
}
fn draw_line(&self, line_type: LineType) {
let (left_corner, intersection, right_corner) = match line_type {
LineType::Top => ("", "", ""),
LineType::Middle => ("", "", ""),
LineType::Bottom => ("", "", ""),
};
let mut line = left_corner.to_string();
for i in 0..(self.square_size) {
line += &"".repeat(self.square_size*2+1);
if i < self.square_size - 1 {
line += intersection;
}
}
println!("{}{}", line, right_corner);
}
pub fn ask(&mut self) -> Result<(), cell::CellError> {
for row_index in 0..self.size {
self.display(DisplayMode::Focus(row_index));
print!("> ");
let line: String = read!("{}\n");
for (column_index, c) in line.chars().enumerate() {
match CHAR_SET.find(c) {
Some(value) => {
if value <= self.size {
self.grid[row_index][column_index].collapse(&cell::CollapseOption::Set(value))?;
}
}
None => {}
}
}
let height = self.size + self.square_size + 2;
print!("\x1b[{}A", height);
for _ in 0..height {
println!("{}"," ".repeat((self.size + self.square_size - 1)*2 + 5));
}
print!("\x1b[{}A", height);
}
Ok(())
}
pub fn debug_mode(&mut self, debug_display: bool) {
self.debug_display = debug_display;
}
}