Compare commits

..

No commits in common. "bf4fc416b4eeb61ab8a3c940ec3382eec12ebf0b" and "4870c897872b52e3d94174560447206e32a5476e" have entirely different histories.

20 changed files with 242 additions and 27 deletions

1
.gitignore vendored
View file

@ -1 +0,0 @@
.trash/

View file

@ -1,11 +0,0 @@
{
"app:toggle-left-sidebar": [
{
"modifiers": [
"Mod",
"Shift"
],
"key": "D"
}
]
}

17
.trash/17-09.md Normal file
View file

@ -0,0 +1,17 @@
# Hysteresis
[ref](https://en.wikipedia.org/wiki/Hysteresis)
the dependence of the state of a system on its history.
# Hertz law
[ref](https://www.sciencedirect.com/topics/engineering/hertz-theory)
contact between two elastic solids
# Newmark time integration
[ref](https://www.sciencedirect.com/topics/engineering/newmark-method)
a method of numerical integration used to solve certain differential equations.

0
.trash/2024-09-25.md Normal file
View file

View file

@ -0,0 +1,33 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBWbQAGGjoghH0EDihmbgBtcDBQMBKIEm4IACUACQA1ADMASX04AFlifQB1ABEARSMAdjYB4kaBzVSSyFhECtxSUjYqflLM
bmcAZgAWOIH4lcgYdYBGJOPtAZ3jgA49g4gKEnVuHgA2AE57yQRCZWkX/aFSDWZTBbhJe7MKCLADWCAAwmx8GxSBUAMTHBCYzGTUqaXDYGHKRZCDjERHI1ESaHWZhweZZKC4yD1Qj4fAAZVgYIkgg8zIgUNhCE6T0kL0h0LYcK5MB56D55XuJL+HHCuTQx3ubHp2DUR01SQhQIgxOEcEaxA1qDyAF17vVyJlLdwOEJ2fdCGSsHMUsrhGS1cxrcUp
tB4OJeECAL6QhAIYjcLaXd4Dd7xDafE2MFjsLiarXZpisTgAOU4Ym4x2r8XiA2rGw2nuY3XSUAT3HqBDC900AeIAFFgplsta3R6TUI4MRcO3E5qBjx6+9Xscl8c7iaiBwYa73fh7sjCR20F38D2TXA2F6cvkgWAClMSsan2Akvf7ffH0+3lnX84eHiD8gU/MN8FCKBEX0fQ1DnAAFa9sj3CcwyheYoAAIS9RwOGUZCDxNLJiCwskvTwtBxwI1Col
IKAAEEFiWb5cHnVBKPuIiGMWChmNYiB5m4gUgj7CgT1QM8wkKWNClDSBygkAANABNeIYGOepNAAMQAVUIDYziEegAH0AHF6jgoR3gFGZIwwdlCDkJB7jWNBnGOLYLkBMMDVQNz3g8y4eBuTcw0eYhnjQDZ4j4E1vl+f40CXAZ7hBeUX1KIVpQRJEUXRbEsSck18UJM1SXJHKqXQGkODpBkkIdNlOW5WzFUTSVhVFcLxUS9qstleVBSRJUTRVSQg2
tQswx1Al9SrI17lKi0rXyUDSkdXBnVY9iTWwn0JFwY4BRJQN1W4WTpgjF4YzjMT3OuHYNgGJI/1KHMS3zVAbnuN683LDhK01DZ3IGV5theuSWzbMSJIQXt+yHDJGTHfd7inGc5yrRdl1XHhbnmrcvV3CiUa3Nhj1YmGpJWWSyj494oBMzSjOUTB3mweo2DYBSAC19GuOCACskkqZYTRsipHA2zg2pNFzUHeOJAPuHy3NeRJAuCrzSjCiLPtOL4fj
+JlNQ+FLcLS3q4QpXKJAxAqcV7AkiWO8rKQqarasCeqTVZdl+paoaZeojqxQlE1MplZqKlao7hFVU7NW1XVZsNdLIEWy1rTtB0nQQF1iZQ0pdrl/ieFjsrxrO+9w1mRLrvD+NWOOd5gq2KKN2+4s8yrJsi1zMsK0jaskke/yBkzZtW2CDHT27WGivh4ckfw1Hp1nW6seb1d9OTLXIG3Im2JJsCybhCm56k8BQP4uA4C5deq9KdREYqIgjdxBhCAQ
CgMKd0qyWtpVCAaJ6igLAR/bAIgvZQEaO2fQXJhSALyvbQqpRIELEZLAjIv8SouyQdScgNV6TQIgVAzBcDNKNX9tHQOpCMHZCwfAqUcJOq6ximgshDC4EIL6lHXktCVgQHQdAxhlQ45jQTp9QRwjyEZAAPLJ1gHNdKQjOEwIoZwKAmkNpsh8lrVR9D1EZE0pojkhAjCRh4ComRXCMgABUsD0Tfh9CAwR6hMmkWoxh99aJcSYiELax9IA2KMfoAcZ
I/E8QCXMRiosOGGMYZEuxl0JAuw/swbAix2QKW4NcY4iQlaFEFJkpE+AlJJj2NoQCAw8mFNKEYTm+hH6vQIEIIeVMikhNEf2SuqT+wf2JCQMxFiXgqMGcQLkCA4DcH0eM1obBiAIHCbgTQwRz7nnnqUcZ+DUA0wwkiPipBlD4gABRBWSrwDulyLlJASAASgFJUBAyh3TzAqEc05PB9LUF4N835EJUC3PiA8jp8ToE8LhAoqAeZkaFwgOtTITzvSk
DIs0yAWQVlrO4NCNp9xsBEGmWgHFmzSgcA2pGYl2ohBQG3BS0gbTQWQDsALBA2AcgcjJW0BZSyyWrOhnPQRBJoWMDsZzfAaKa4tXSGy7ueKhBQgMMk2uR9C771PvyjZh4IJ0RlSKsV+FL5gGkiyNk4QzrRhANGIAA===
```
%%

0
.trash/Untitled 1.canvas Normal file
View file

1
.trash/Untitled.canvas Normal file
View file

@ -0,0 +1 @@
{}

0
.trash/[[PCLD.md]].md Normal file
View file

0
.trash/[[PCLD]].md Normal file
View file

0
.trash/[passive.md Normal file
View file

BIN
.trash/accelerance.pdf Normal file

Binary file not shown.

7
.trash/impact models.md Normal file
View file

@ -0,0 +1,7 @@
[ref](https://doi.org/10.1016/S0263-8223(00)00138-0)
There are 3 types of impact models :
(1) energy-balance models, assume a quasi-static behavior of the structure;
(2) spring-mass models, account for the dynamics of the structure in a simplified manner;
(3) complete models, the dynamic behavior of the structure is fully modeled.

183
.trash/knowledge.md Normal file
View file

@ -0,0 +1,183 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
study of shocks on composite laminate
with an inserted viscoelastic layer ^WYlXieac
Composite laminate models ^FH2DKKBS
Impact Models ^hqaLafJy
Layerwise ^8HpKHQA5
Neo Hookean Behavior Law ^lh4BSpFy
PCLD ^Bh7yIISX
Viscoelasticity ^kBPOTOMw
Zig-Zag ^YkLZ05BJ
ESL ^GhrCORbU
Continuum Mechanics ^zKTSPR69
Accelerance ^ItclqVnw
Finite element method ^OTn2g0f6
Hertz Law ^m02F0WjR
## Element Links
WYlXieac: [[Article_Taylor_and_Francis_vfinal.pdf]]
FH2DKKBS: [[Composite laminate models]]
hqaLafJy: [[Impact Models]]
8HpKHQA5: [[Layerwise Theories]]
lh4BSpFy: [[Neo Hookean Behavior Law]]
Bh7yIISX: [[PCLD]]
kBPOTOMw: [[Viscoelasticity]]
YkLZ05BJ: [[Zig-Zag Theories]]
GhrCORbU: [[Equivalent Single Layer Theories]]
zKTSPR69: [[Continuum Mechanics]]
ItclqVnw: [[Accelerance]]
OTn2g0f6: [[Finite element method]]
m02F0WjR: [[Hertz Law]]
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBWbQAGGjoghH0EDihmbgBtcDBQMBLoeHF0KCwoVJLIRhZ2LjR4pKT+UobWTgA5TjFuHgBGABYANjGhsYBmAE4RjshCDmIs
bghcFMWIQmYAEXSq4m4AMwIw7ZJ1gHUATXwADUIQ7FrSk8J8fABlWGD1yS4bAaQJvARQUhsADWCGuJHU3CG22YEOhCF+MH+EkEHjBEEhfkkHHCuTQSMKkDYcCBahgiLa22syixqHaFIgmG4ziGQ0SvLGAA5pm0BQB2MVJMZ8dl0tA8JJDbSzMZJAVJeITSYC1oC5GomEAYTY+DYpHWAGIhggrVa8ZogVDlASVkaTWaJBDrMxqYFsniKPDJINZklt
DweALI0MhfFZtNRfFtpIEIRlNJuNMBWG42MRpGxsqo9NkQgEMc0PHpsX2U7hHAAJLEUmoAp1SDXPRwEZ+E4AQWwzgAsgAJADiFA4AH1NMpe5OIBSALrbE7kTKN7gcIRfbbO4jE5jNrc79maYQrACiwUy2WbeWX7KEcGIuCOiNFPEF4yr0xGooW7JEBwULrHkeS9qQUDmMEk4ACq4JipqTtYxCTgAYuQHDYLsk70B8HAENoz4nIui54ia2AwuWqBn
PgFzsicnBQN8hBGBUvLaNMQz/rG8R/mK8Q8IJK5MWhuD6J8sqoIm7JVJgNTYlAQjEDAqBsCcqDMJIbCUcwakcKgej6HAbCsFUqD4OJyyvggAA6HABuoqDWKgyxhJBZaoGYzB6EEoRQdgFkIUweLkBQsHVOsKLKap6madpun6YZBgmWZCBBRJBFVPZjmSM5BluUwRxebsvmWSi5hBTAIXbHJUC9kQyjNOgYjZDV7INAFBANamzXQFSeJ6NkuDLEwG
5oMe+DbKaqbWfgEXyVFSkqWpGlaTpUJ6ZwyXGaZajpZZmU2Tlah5S5hUecQJU+WwfkVYFlnVWajJCFAbAAErhKxFQQkICDbEBCDDimaYKagipCYUAC+HTFKUsCIOsQREHISDbF0TTcCMIzknUDBMN0HB9FhFTynG/6ZgK0p48sqychIuBDHiuwHMEb5oLR9E09RECigA0gAMu9YwAELEAA8rBPDOAKpAUAACpOkjXD0ABW8t4h8XwYiyEA4lceqQ
jCcLEAicqG2iOsVHrxoG+yBJpgeza46UVI0rA9JsnjTIsl7pT06g3IjHEszxGHoeRp+wkyu+cQfvG8oCqMozY7MFuGsapoWja1po6eDq1kILqZ+6lSYd6uC+jU2wBqbQYViMswJEmIPpmgIZKpMCfyvKEySiWZbcMqwqilKv7bIXDZNvkFLtp23bKH2A4juOU4znOC51A+eOruJCDjagk27ue+4ktwcPw+UgwUjDp4n1eGRZDkM9thfpRXBIABqP
Q9JgPRQqKAAUsQSQg5cCq3wALEWswehJAAIq9jBJfRGDNSCQioLPW+r9Z5LB5gALUkJ/W48RVZ8zgWwEYABVesDwRbDmwJQwcg5eyaCQZABG1tK7oM3nULBdQ364PWEkW4sF5ZCAvIQV6sx5ZGHoCLPmhBPqjkIPORYyDOFoLYBgtsfCSgCJ2DzKE3wTh7DgZoMY1wACOaEjCaEwDAUgn8khGHFng74bCygoPQFwrRPCSi6KKDggx6wLxoR6LBQg
Yw2A8GIHsKAfNsDTEAZgKx8RvgPA8Rw9YPjtG8KXNsJ8L52bgw/F+GYEZMyigBssECE1txTUAhtQeHNzgIGhrDWSV9UHcPRgTTGaAxiijTh1PpvR+iky4tjOYoxLgrDWAzHgzN9iHGaTRVplwebf1/v/IBICwEQKgTA+BiCVyfB+H8a2+tjjp1hIGQYNyrZRVttc+2whHZnzJNNak2EPZkgZOyH2FQ/aQADkMaYYxtBCjGHxHgIY2gFnDNsKS3ER
hKjFBGJIUdKyjxua6LOEhLS51tNse0lFC7FzdOsT0HAK5V39HclocQhizCptMXif4dTahbqmNuqAqbaEbuqdFVNIw4xknjMIqztSzB4DjJI4wJ4Einnebe7w1z72okfV5RdT6HnPrPTxpMb4kvvteJ+KqCnPhstRbin4BTfgqWKapwFNz1IBk06inN/rshRJXKAItabLGUPqtsGAzXZAPrzQWwsxaS2lrLBWSsVbqyQRARi2AhDNlDCMTMBZI7Yz
7pikY4q8bKFwHAbgooBVTGGD3JIcY1QAVDR8TAZZ5ZsGWGDSaxr2RZGIAGlYQaQ143SDeKAka0LDh4HsPmfMRbuLUWmnSmbuChh4HMAsPIki/jBSGe11NS3lu4IkWYopRRVkblMSYDam070IK24g7bO2uq+D2vG5UoBGn0BJGQbaO1+jqSeCVURIIQXQcmXAmq3W9pWGBrREGeY5LxCZTtd5Z6tjbMCkoSRZ6qpKBhuogltDMtZeyhMqouU4JlnE
QV8RhURntbyXD+Te34DPBQVZXr2mFAvoa7JmiqC9MaJwLG0YhOE2JgMNAApyais/LMum2SRhLNZggYpXqNnrCGNceWPRSCfFuJQ5QcJeyEHrM4LCeCKDPQYmcx52Jnl4hREbW5dd7k+v1OiC5TzcTH0JE7REXz3bIv+d7DgzIgXbADuu6YxGZgJgTHKjdVSY4tFi0kUU9a4yzFPZlsFJbwQubxaXCAhKc52gLnuYrVLy4+ifvStzFYq1tCGeqPN8
QhjhgPZAZMPKwadcVPW6YwwhRDHlcMeVA8bU5rlW1sYiq6yNgtQxdVB8tV4z3AFtAb8+NyjfaUM8OqH5juW3jQp1rY5fljDJ+IH5nW1MPtB99HrTjrI836gdjhwvDtKKOp+E6p0zrnQug16aV1oFDGCzLapBThj/AWWM82DVlordJgVeZwUjElEnQUYoXbvHvX+59gH8D7cgH2z7Q7tsGr+xGnmo5JCkANOLd6mhKGprB1myFxa90kalFMPMKXQ0
o8RHEPiIq/yS+4vGRdLaicAce6+3hAN/Jfp/UcJ9Cv1ulF9aBgTCGX0NJHbB/XIREMCeQ/+5+aACNgFt2ALDDvcNqPt/GZIGWQwahZR1rraiwDcmGMkOMI2uLjbGyMZjW9thBHY5x1p3G9GdK8RsC34n+moCx9WPGGMxkk1F/K5UdHx7slpvM7x8QVMrM9W97m6xLGEH0HAgUAtsC9iSMwXAUJ3rDn0M4A0Jx6wwGmJrOz3mHO+Y8y5k2ZteAPLH
+gK5oU3lEg+eDILPyQvAo2OF32UWMyyrDNjQSONyYdZzUirGTcuKTGhYJWFiPut6089VglOdiX5zJVVkuNWvR1b9DXBlVAIZYjNlbUeUIZUUFOXUdkXrUGbgGTYjM9biKUBMHkeLKbbgQUX8VUVUJHUtJVJbfIPDNNVbKDIDUoTbVfHbLJPbZXO+I7cNa3FsYg87YpW1K7b3bLe7Q3d1SiOPOib1YDD7QNb7anUNWncdHmSdadWdedDnZdLnTLKs
M9SUKsQZWMNlRdEXMkOIeULiGVGFWYMbPAu9B9TXLtepMnDAFYSnUQ1AHbCQyNAUYcOAPmYcBBCvWXBQrkUMdUOjIwzPCbU9AUQZLQo9NAKtbUSXIw+IOYEMfkWXQnR9K3Q3Kwj9NXNQDXFIknPUP1ODCgA3HImDYgfIwo7xVPdkFDW8F+Ooe3R3HDNsPDO3HBYA/LMAj3SA7GaAtsf3BA7iSA0eHgVAqYeMSPEoYgmPLRfgsIBPQJPGGgyoSKNP
ETMkKUZYomcZREXMHGYUOjR/UvAODYUUSvNmaYwQ9+KQwHWQkHO9bWefKQIEEEPOYDKfQA/HJ/FzezBfRzPzd5PVT5dkN2DfT2RkHfSLdkUFMbJUZUTFf8AsTLAwi/AZRUDrOMOjSUOjTLRFSfNEF/dAMrXOCrT/E+PE6AWrSuerAAxrXgMObQSA3LGLfMO7GA1uMGISDAgZISYOBbJ8Qgm3Yg3edcMgo3Cgk+LbRXEUyAQ7S8RgtDbBHo4JL+H+
P+ABYBUBcBSBaBWBBBTJLpco7hTBNRfRD+dAbTXTfTfAQzYzQgUzczSzazXU5PJDQ02eY0nmevRvZvVvdvTvbvXvfvQfYfP3XbfU3xF0+U0NE0iAShA0KEYcd6XsSxWCB4ZwO4IYIxT+BAAUKAPYIMYMhYlPA0nRFjM7K1Ng0pe1RHSAzrbgiQMCL9VKfaDKaycyfQNgVYOiUiciF7FpAQkSbIFiNiQYLfRibIMSCSfAKSAraASKCQBsvacyQ6Fs
9KNsjs3IXcSgBaMGCAectKZsrKFc9soIdc2SaoHqJqdYYIE4auEZSCcwbqRqPqN6CtbYIaKIUaUgNbJ7V2fTfwAgLc9YXcpspcg81AVc48vEXAV6D6L6IctAX6c4yAQGYGPrREMMeIWY3jAsuqPEHPZqTracvCyTUmTFGVcMTUBTMvDYAUE4tTM4zTCQSQSxXAAWXAE4QBOkU5O4zEa2QEYEEQZ4nXTzafeuNfHEmEL4m2CfDbZfcU94oE2kEEgF
ME1dPfNAZwKsRIPiIwlFcYMObEvGKSCMKtcUfwuMcFGTHFcShAUkgk9/PGUlR0L/SlD0ckulKkmfZOMMEjeYLHIwiA7lOAuUacyVaiIY2FIXUoSePk5glcUgng7VFYcU7XKU01R+aom3V0oJKM4RURcRSRKAaRWReRRRBAZRVRIJAs50nRI07KnmNgIwKEcMC8OBLHShXsQZJIesQBKAT+PYcWa4R0jRIsvJKPR8Ms1Zdg+1KUHLNUacoCB7CAMC
esYyIEKAVAQcI8zssiXgqiV7PshiJiQcki/sqAccySY9WqWc9AFa75dazatc0KTc66iAW6tajarak8+Ys8x8y8hAa83Coqe8/Ac8p8gaV8piEaYkT84U6aX8uaACiQN67Ae6z6yC6Cz6VgOC1ABC51IGVktCyGfxDpeYvUmcxadYrYwi0ZDYvPMkIvOMPyrfA47JWYWi9TGvC49YZw1w9w3sTw2zbi3WPip4pzYSt4ufHinzO2GS/zVfeS75RSv5
LfQFVSiEjMSApUDUFUXMXMISFlLPUoKSZwD8Ok3kBMHLSUUYAsXFb/V/IlQSqUyrEku2suX/Ck//dkWuGfGVBIWMEMFUIVDQ7o0oWA3ldkn1UsaiMAmVHk5VIguKveL88gyASg/4iUk1Bg9Kpg23N0uvBvJvFvNvDvLvHvPvAfIfIa/jEa4mrKhUqM1cYzPoIwT+T4ZMSxKAXvDLSxIwZwKu7pMM4ssa0sopSais8YfLbdd4ha0CPIVip6AMMIVA
WCZMGacILs3a+iw6gc76Yc0686ycy608xaCQeepgRex2/EZ6k+9AM+uWXYS+uqUGv6gGoTLqEG36j0cG9kN8qGsaWGwE+GgieaF6u+i+9Gt6TG3e+C0gP6PGlCoK8GdCzCpPa2HCymskFldY4ixEZUXykItYkvOZQ43AE5EvZZU46vA62vCQfASQEYedOANCTiwW85KWxix4gSsW146k945zS2e4xfX4lfdOhW4LJSsLCLNWvGAOZwDrWLWVYOSU
YtSYdUJEwOcYAVfQlUPY0OeHW2ly/Et/S+xy8lYgUk6lWlSkr2wAoSLMGTYI2E38eMacsOtkkKqOoePiZlOOmK+8ROoUhK2WpK1fFKiAaU4gY7c1GoxPeunme0ZwAWOASQfQDgcWIQB4bACgfQHoYgZwVWUUScR29Rauwe0a8Yy1Uem1celUGHc9Ws9AMCHoBANgVAYcNgNEFyEWBAQEMwU0VAViigDexpPgqhrmd4I66B3gEc0SKyQ+loK6m+iA
Zp1p9pzpgybp3p9gUgAZygJ68KF6lZtpjpmELpnp3APpnZwZvEJ+z+9AK8m87PIG9wZ+r+l8n+yGj85OyUiAGaP8kBpZo5tZ05jZ85y53ZwTAFDG2Cn6WBxCiAZCgmskZB2u2Jkpj0JY28wmekSK+oGmnBloXR5lW9JYYh7JEWdmremh9AEWSQUUGAesesdJEfIW3izh0EG5ESwLayySoR7VP452dfJW8GULUoVWiHNSwOUYJuZUYtDrY/RjYZQy
oeKtZlTFCMW7WMKYXFj43E120rYxokpyl2wxsk929ymx6k2IziHLYeeMGTSUCOvGNxwYDx1ZQSYPXx6efkgJjVIJ0UnVZK781KrOk7GJuYyM/BQhYhUhchKhGhOhBhJhFhfu0M3JVF/hOq9YaYQcTQQgaRUcAWZwWYZgIYSCPmesSQJIC8eIF5BUqqi3TBEs0oVgseu1cYVUWItRwCGpWe+WA0AWPYYZ57UZ/a8ZyAUc5iKZ+UfeuZqcxZ7c/twd
/ZxG9AJdvYG5n63qF+x5zoZ5h87dt5waT56G75uG2aYB1diAddiBmCrG2FuBnt4kBB3lCGDCjNrCsm9BrF9PYYd4oizYskIUU9etDLEO0lxTBmA0SlsZ+FqMqEEWeWSWcWQcSF24th4W9ly+/h42CWnlwRn4/lkRwVwExW35EVlWlSiV9W9SkebQCYc9SXGYHLPMdRriAVNUc9TFQZHMVj6y2yw1klZ2nVCxty6xvGb20S0YNdOYIUUecYPMHNcD
qQJFmkjkvlUeUVyAaK712KlbJOgB4J3VI8YN8JtKsNzKiM6liAHNvNgtotktst+JSt6t2t1NwsspjNtF6zhJpJlJtJjJrJnJvJgpop9z6q8psAFgia6p9t2p5lZk99XtusvIVum6O6AKWkYd0oCiPa3s8dpdHe7Gmd7es6udo+76pZtLsqfycwRSjcg5qr0qW6D9Orj2Bd15+5/63dvFu8l5u5/qd5vGX+r5wzn8i9/8l66rlr2r4El6SBmF7gXG
p9/G1C5FomsAPhT95Pb9p54TZqSYbBwD8GEI8YcUFlEwiDqi3ADdy4Chui2Dhi9AW4KEAWPBdUEWQBFljDtl/ijl6yrlgEl4gR9h746SgNgV7lvGBS8jsbSjqR6jmRrGcUTuGVbiFjuIw2yAKSZrCmYtaMP9nUPh5/fVuykx4TilfFN2mlP/HriAST+A3w210YMOMDgiwK8Ot16iAsHWr107NVAz/11OsU0J0ziJqJjKlsOuyN9YGMuMhMpMlMtM
jMrMnMvMyqsmiL/xZtyAVt2LjgoZS2hppavIPBVMZwPBaIZe1e/TdenakZvLtZahiZork60rg++d4+7cs35QC36IFdl6n3v34NDrgbh5wGvrg9i8o9iG4aUboX35oBybpZoPy3kPqFhb+9pbuF+B1Tt9lB0mnbzFvb7F1Yx/ADum6ZqUTFYbbkohyD7xC8GDsduD+nRnZnVndnLin7gELD7htEQHsS4HiSgj8H4XuW0RoV2HrT7fBH1kSVoYrMTt
mTHnW7EY6c42sbLSzLVoAOhUeMfufj0nwTj/Y1kT/Vyx2nhrGfTMBIQ3yAriX8UeDUDn9x9TkMcYJVqKgg3T/x/TwJookZyDYp0zOobaJpZ0zZxMtMOmPTAZiMwmYzMFmbAFZhsz1tNejbIehU3GpVNLslZFlKHES45dkujTPIBeEsRCBCA9AAgE/FQAsQwSuzJ6Nbxaa29mA2XJCj2Sd4FdJ2x1Peu73K4LMveISb4ALAD5LMLwwgzdvJE64Itu
uEfd+tIOfLHs4+p7MbpSCT4Atty4gkQfNzvZTNluSXZ9nnxRabcSa6LNNhH1L4itlOFfKTCK2FDrp1QmYSiiQ1HDN98urfWXrGXjKJlkyqZW4OmW+CZlsyuZb7ry0I7D9XMM+R/Dhy8yg8pKMtCHsRyh6uwyOm+UEnPy3wBx4wVaOjKKn8rxZZU6jGYDa0GTxxt0sqNAiS11YZxTWZPI1mY1E7mtxOpQBnu3Cbjm0Qi66UeNKyx4qc1uqAdjjlnl
YF5Kk4od/tCllTqgsGNYH/vzwnbxVABAbEJunWoJ6keAVhcXrKQTrYCLsZIcetdmMpf8kKxAsJrlypZCVhCg6Owg4UYIA4ZCwOeQhmi5wzAfcVMLHN0LzBDEwiqOEVpCi46NxwUZ6UOPMCx4Tski5hVInQWNz9oRCwaMQiOluE8wXub3D7l9y8JPDV0yQB/tulA65DcCl3bTuEV4BhhwwrQbYtGDPRdxEiZhbIhKTSKq4DA6ueXBYRAG656opuSD
Anz7SlEzcpTNDqUCqI510MOCeos7mFE9EcsxGW7J0PjCTAARfuDSoqCGG8gRhYocUGMSi7R42MUxWDgXzMEed+RvXSwZpSO6V9+Q56MbBd2cHZJhwbgzgR4IkAEIiEJCMhBQmoS0J6EjCZhKwm75hCx+1QyIaJWiGeY/RCQ8fpDyB4pDxGytdIbvho6Bxb+HbXML+HiyqhNCqWcGIKCVDboR4PHSMEKgMZU8DWDteoc5SLGX8PadPVodJCbj/gIw
KoXkLCmvSFCWS/Q7GAKk9ylJq+nQ6FOpzPTFphs+YPntsJ3gLCM6iVYzj9nYRrCNh5ncAXpxHq7CSkcXQcZTAaanCOBGmd7JBFsJwj7CNOREesH5hCxRYEsKWDLDliKxlYasDWOiPByBxfCI2IwkYTVG4FKMwuIkVWhlScc4UFtUAvjjBE0jicdIqEb9hsKwipxYabOpGlpb0tGWzLO8VzlIoagC8qjesUKG+GDASRQkZRjjDVFUjQc4I2kd2lAl
IUGR36TIsyIT5sieRnIxYeThNzgZeRA9Q0RAEFFylaiIov3A0WHqcSeicjWscHBCIKgPWzYkliUGcDtjaMXYxOFKGhQaiJi2ojjLqI/aoM+RFg9PFWC3w2D2IWOHNJKHhTWiGY9YO0VuOs62d828sQtsW1LblsXONbOtgTlZbS1HJhWAfrY0lq6w+WstCMUPyjHAkYxylDIZK25CJjmUwwHLMylAL/h1GvtRuBMBlQspZUMmJwUf1qEn8HKFPcxh
fzE6e0JOgBNlB2OjDagEUYcD8AmFf7Bgg8OWXuEMmSlgp3+oBGEmNmHE+t/+freifiBF4rCDUCxdYaRNAEyls6cwiAHr1wEdtRUrQdcaZzOGPdtx/qCCfCN+yHiJAsEhlkywySITMRYKU7uMGTGwoZMMmACRAG0IZ56OaJNlBoWDjnohiBWQCVRJJxWEKci0/ceIRWnoAEOSHWCCh0NETtvC6lbNIKHVCShGaKolMeJJOlEiIURhFUEozZTCg/wu
Le6ckWAkkSvOCLciUyJRla5TONEjkaoOsIlF8Z6k7YOxPDZ1FuJYotsPbg0qJBL0kYL3EJFuy3SFRsKaqTKklB1S8wYKBSVqNjwqSTBPGNSSxI0krFeAJXEvk0AJaZieQScLoVUJZoMw0R5DVTBzWd6CIJAvnZJqk3SaZNsmuTfJoU0vpawe+4+MMQGMH7BjPio/c2Q7CSGRjKQqQiRmKyo7z94xzgRfofhQk1oEpw2S7hACMqJB7UwchMGHFZTv
ihKRWY/iWKE7Elz+prCsRa3ynUlJgxGbiLumjCjBwUPjVsYg0TEhFIpBDMbLCnU5w9BIBk+TDMMWy/8BSY4sJmnWbCrCvE/U9GZsOGkjiW2MXcafF1PSP4Z6nU2aS31yI7iXpNw6CYYkQ7IdUOjw+8c4EhzDZH+yoKYLgTR6YSWg9HYbLKiGIDZOsUocDsjIhGPSBpz0q4XuLHljpI0dDBht8CYYsNm0/0h8WGDlHgoZgvISXBliRmQyfhWYIZL+
A1DhV1CkBbrAfOImWEBp6RRkZROxksifmeMpiXRPHHQjaJ5uHpJUStwcT8MXEkUVTL4lthnAqcnkA/xfFZzr0Co/OQWBfETBi5swXmaxn5kt89R04p0hUUlliyfwpo2wcyh55DFgiRk7xHzFMmc0NZ6AXKmIgkRSIZEciBREohUShCbZrki2R5Pw5xDvJiQuSlPzSFBS4xSPdSpKNKTzB5O107YuoyEhKjF+bQRHFTB5BHCAxAnGOafwaE5SmheU
loYAQ7ibztaWOFUBelcaqcOs9HZAoJARxzBdi6nX8DjGhTF58C1ckaYKQ6mIKlhk4paUwqNQDS25FnBcZ3JwF7CVxjqZTv3ISXsDR27g4eQtNPmQTHCPMY8TGjPHxpLxSaG8TPK5zZCpQekkMJ7jmBWUPxPw1FOuiFCZhZR6JMVHdLTRETUZYC9GSfK+xnyDx48gEMxVYrsU75O8B+aGHRSZgjCQxF+WSLXlnSeF0OFlJljklRLTCD0kCejIgUUT
f00C6iSBnZHwKCZ3I4mSLNJnoLyZWCnojxKwHUyqM7i0kRMC8U5ji0fufxZMGf6fhQ4IS9ULQoRH0L3BjCkMuTTp54Vj0/snSe+BhQKhyKfCjYNoJVlV4h5JeHmEYD5iwRvg8sYWGzV9H3ERaXDTlnhwiGhiFFds9RaR2jHTNYx4JHRRnlNqyc7UIxQOsqHUbchQ49HEInMFlSxEG0Z6QsSVjqGxyz+lPErInOaGQBqx8oNdCRkzmNjnGynF1sFX
U58RcwOrHTrErrmmcG5CfdJfONzpZsJAjdFWA1Vbp0MEAHdLuqKB7p918y6Amuptx16jSu5OSspDhPVBVCClJvI0NkGWBCAhA+gDaggGBDWBzArA+3iO0d5mSXeU7YrjMzHL8DpIC7QCkxGjWxr41iajgMmtEHblI1UELcCWsHAJrAQ5a7AF9Xhhbto+XXV+reXkEDdFBsfd8ioIT5/MEaL1atcWrjX1qy1FanQVA2xr6CiBhg/ofn1UmF9hqviD
BtJB1boq9hOxD8KHGZpksGYg4QRerMVLoAHVzdZ1e3U7pzyPVvdORSovCGRz3J1JK2SDy8mPrwx9svyY7PZUSyXZwU+McHDpkzVOs4YYPHGGFXAF6xCJc9AWC6L+yYhdi8rAqscUJzcpVYt4m0HRxXopgOWHdDq31V8o4gOtcitjBzQE9lOoVekIjNQJjCq5vJGub6zPYTjxSTc1Ja3LnGS8/+i48snFzfk7TppIAweSUvmm7iKl70iADzTcIeEm
lPhdCsPA/A8g2UA2E5VFShl3960jcIUB0QIHUizlaMwWdCLE3JKoJF84laSvJWUrZNEORAsqAjDh4UU0KaMASK/nwE6SjNf+aUgTAoE9NNyo+RcsxlQLD5hSp/HkWeUhanlDykmWgtQzvLPllMxoi7hwRw9sNVCihfhoVH8oSNn4MjVxBFQwrlpcK+0QiuwrF892+3LGNTX27SzZZScRTYfxpgHrvEPQY9QVyjL1goA2AfAJYk/gOR71mHP7th3F
q8NPJlyD9V1In4kdoeTsuUPD20X+x98VaPSVpojDw4TRGYkbGGCFAFp8wyhSjST3Sn2LMpccpVT/hp6Vjr+UnKEhFJX5+V0eNtXOZz1LlYqt8pqjufMMF6dTLVnU61Vxul7WcjEJiMxBYmsS2J7EjiZxK4huKhoG2vqqGP6rGlBrpqmcyZMbzAj9gxAwQTCGIDYEItNxQiwrlmrd4rLc1E5T3pV23IY70g2Oy+mFCvZU6sd1gAYKH0PYtQn47UPb
t2tZ2DclB/a/+oOvUH07sAmOpgEzsvpQVM+egnPitxfb9ZjBW3YWeYPXVboOF7EfMdrQjD7EmtGwcWK1odEfTjEpicxFYhsR2IHETiFxG4n61jb/RMQy2aNpclL5JtyQn9QFI5VaKuVC2uUFCU6KJZ+xsRYYCYtGDeUoiCoOasXJ1aIbo5yGhxWWOVXobLtiIKEmHCvQfhOOycf2YRs6wJAwUQxD+XESc19ict9aKmK1MyUfaABIW77a9JXXXw0l
nGnOtF2yXLiykq4yMIJp+bCb7RpS4zTXuWlzKJA1S08XGgvGJprxKaLaQDI44Sg9ao8SpIxghmnTUUsG1pVWFZTBxcwIyuXH5vOWGawJMI8pSZsqXrAOtXWnrX1sn2PzipYBYSSillYhFdlEKHaRlilD35uIqoJ1qcp30GbdEGMlEBkWuXBawmcC+DMxIi2MTQDCCg0Zbli0QDMF8W7BYlvFFtgt0ftVPRik6JTA/c2e+RnnrPQF6OsBW8nEpLOI
lav2ZWo0enhVCq7cGqoYOHMH3UN8Ngt4/FZQ0JXWdJYHAHgMoCSAnAxg1u3voNv764cRtyi99f6JZXy0NFvAyRvNpBS4MswcYGtK1lHiQEw4bHeUPR0xR35WUwM3kLKuzhHaDsWUxoedqTmuKX1YKTiNdnVYdtT8lUg1ZHXdaDI/12nWYe9pIKfaq93UkziAN+1CirOXNCQKEnCSRJoksSeJIkmSSpIEJGvZhXDoR2BqW901eUP4XmrECTeaEZYE
2QkJgU1M2kYgLjq70Zq/prvGQ5mo94VdW1SzLI+WvMi5HMg6gdspWvWC1GcjjBPI00YUW3NudrUKoKgPK1c721POvtX/RhoC6JuGg1o9kfqMdHGjBR29jOofbwtEWi6+XaYJSXRbWF+FT/ZQdzycLBQGof8M5pxW4A4Eeup7hABCMRIokMSOJAkiSQpJLEaSTaawyZXCHAx7mRlfIqd2+SxGbu1w7PzkMchEQeYM2qYtlQGFOl/swOUv2QLrpcw8
J3oVHsO0x7jtiq7KWhucUYbqSRhSFDhNPSXSLaPIBw9JGhlBKNQn/biIJEo2eNpMvITVqPH9lva2po4rw/XJ8OQS+ps4sAVxqb1LipqDqIUO3qfYPYNxxS7vaJtHmzKzNR46NMPvPEJorxyaFg/fIxFT7F+pI0eEKFSONwhVyOdTQ2ODg9xoNCYYBaMqAk4ylcky8CYfr73EGB96ATg9wd4P8HL9c87MDEWcYsdETFUg0z8MSDlIt5QCnkFyVBEW
n9NEyvfWRP/2QLADoC1kXcuQVciIDBRMA9AdeWwGpePyhA58pwXwG2weJqmLv3PRlStWAEsABqC1pRxda/lGk0QbDRFauMy6/Ubt3K2WDT0NBgZPMDFAspS99fa7u9AuNEr1g+gTFGhCSDXBVYQ56lXENpX/cIhg/YntbIfUSHZKUhtlQCbm2e75D6lQSLFh7OwlVGUyGxUZQyw560e8ofScHH1MRCkNhJFDXHrO1WMXFaqtxV+OZRo8BIpJ3Y3r
DpN8pWgNZejfHVZMC9K9HJwNqLz8MN6MFEbazg1Sao8AWqbVDqplm6q9V+qg1b1fEc85+reJuvJI4Kb3kOD0jLqFLsDEghGAIWRR/HSeu4HTsc1ZXMnVUfYQvUKLUAKi9cwa5Xt2LnFvZizuGN9GOdgx4GgoO/rDcT2/OzqUOsvZsWiofF1iRLt0GzrpdBg1bogyXV77tuq61iSivbi9Ct14MBVolkxSnHodSwe7mrLa31VGqzVVqkkHaqdV0LfV
AagIbNkKK7dSi746udtnrnJ+m54VoCfFZuzuVio0MHujDixg5WW6HVkZSTicRcwScTjv2NzAGH7aaJ4wydsxPliE9HlK7Uv0ywAiR48UkuY9rBjFoEgtaZjtllDiVyJU/57bcqB45VCWT5ezw+BYtWcmTN3J+vbycb2VMBTNTWFCyga3zqxTM02iwVzZG97z5/2HmExRYpsUOK1m1kMkGFD8hgz4VZAkBe6WYEBUE2OWVqx9yqhfNQBqM7/qmVU5
7Tpmua6OfHOTnpzK1j07mHVChyus8qPSrstiy19fwV5jLKqGKlb6xlVp0nOAsC3xnxliZsLVFs6mRbIDKCtdTFr+05nMMCW/C80X4myysRIw4q3ZqOESSKrgkXeZjyGGfgGzkxZSQwu16ai6A5aOAL8BsjDpoAyYTIJeVQodAGAzwCgCLBMOk8Tg/NgW28AgAZo0E/2KoPoF+BRzUTD5woMLZEBVwOtGQHm1ldMMvnd2ct0WxGnFtZHnJ7loWyLY
Vvi3Jbz6qIRzYNti2Mgxtkfj5ccka3DbGQd6H5am2QBzbWtjIOLBm3u7Sgrt8dNrdmbMWBB3t+Wxbf0BoRJm2as28Hbdv6Aty0goSwMbtsh2GbeuGGwksTvR2LwqZsohmdls+3Fb+gfIrBDJp7ghbPkSEF8AySEs6Z4KNlDmNvx0YObZd40JaX3zQy7UGqvMMaqdSy2jAHTfQD9gYAEA/oaFAnszNmLp3fbDtrq+gBLsc2nQJAHgbNrnv6ZiAvwB
AAGeXskAHqCATO7gE0DBA5p3/EgHiV4wixjQPMUgMoHtAAAKYYFUl4DcRqAD9++6GHiAABKPEJ9GUDbhK46wS+zfYcFP3AHvAYUE/dfsf3x7Ptq2wgA9tQROAvhkUu1YQCfQ5k+ma4TBj3sH3s+j7YbijGwfwsCIrNmBjg9divRAY+D8e3YFVgJqcg3wAiHAG3u73975wjYCjUoEIBYIHTfAAPYLJhBggbDkTK+UzRvQY7epcU+moJ0fp+wUERgJ
w+NCQi8LWCUZcEEbnw6oYQAA
```
%%

Binary file not shown.

0
.trash/passive.md Normal file
View file

0
.trash/pcld].md Normal file
View file

View file

@ -1,13 +0,0 @@
This is my personal wiki for my Bibliographic Study on **Bridged Carbone-Epoxy laminates co-cured with an inserted viscoelastic layer, their damping, and the dynamic response to impacts**.
## Start looking around
A good start would be the [[Main articles descriptions|main]] or [[Secondary articles descriptions|secondary]] articles descriptions (found in the articles folders).
If you want to read **what I understood** about a linked term, you can follow the link to go to the corresponding page.
If you wish to learn more about a topic or question my informations *(which you should)*, you can check out the **sources** (that I try to provide as often as possible).
This collection of markdown files are under the [CC0 v1.0 license](https://creativecommons.org/publicdomain/zero/1.0/), but the PDFs do not belong to me.

View file

@ -122,7 +122,7 @@ Its physical limitations are explored, to underline the model's advantages and l
**To further read, but not necessary at first glance for my study** **To further read, but not necessary at first glance for my study**
## Optimization method of composite laminates with a viscoelastic layer ## Optimization method of composite laminates with a viscoelastic layer
*2009* #perforated_vel #unfinished_read *2009* #perforated_vel
[[Optimization_of_composite_laminate_with_viscoelastic_layer.pdf|local ref]] [[Optimization_of_composite_laminate_with_viscoelastic_layer.pdf|local ref]]
This paper develops a method to transform a multi objective (damping and stiffness) This paper develops a method to transform a multi objective (damping and stiffness)
@ -132,7 +132,6 @@ The [[Viscoelasticity|viscoelastic]] layer is **perforated**, and the sandwich i
Co-curing means the viscoelastic material within the composite laminate undergo the temperature and pressure cycle needed to cure the composite material. Co-curing means the viscoelastic material within the composite laminate undergo the temperature and pressure cycle needed to cure the composite material.
--- ---
# Composite laminates # Composite laminates