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Preface

The range of engineering applications of composite materials and structures

is growing significantly, leading to an increasing demand for their modeling.

The purpose of this book is to present a variety of mathematical methods

and models that can be useful in the design, certification, analysis,

and characterization of composite materials, the simulation of composite

materials manufacturing, and in the prediction of damage and failure of

composite materials in service. The chapters written by well-known scholars

alongside promising young researchers — engineers, mathematicians, and

physicists — present up-to-date reviews of such mathematical methods and

models and their applications to the solutions of challenging engineering

problems in composites.

Since 2014, when the very successful first edition of this book appeared,

this topic has evolved rapidly, so the second extended edition containing

13 chapters is an opportunity to address several relevant issues not covered

by the first edition. The chapters of the first edition included in the second

edition have been revised and updated, and some of them have also been

substantially extended (Chapters 1, 4, 8, 10–13). Moreover, the second

edition includes three new chapters, Chapters 5, 7, and 9. Thus, this second

edition includes a broad spectrum of mathematical methods and models

currently applied to composite materials and structures.

The chapters are organized and grouped by topic. Chapters 1 and

2 present and analyze homogenization methods for composite materials

and structures. Several equivalent single-layer and layer-wise models for

multilayered plates and shells are reviewed and applied to a variety of

problems in Chapters 3–6. Instabilities in nonlinearly elastic multilayers

and fiber-reinforced solids are analyzed in Chapters 6 and 7. The Stroh

vii
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viii Preface

formalism is applied to the analysis of wave-propagation in anisotropic

homogenized composites in Chapter 8. Advanced mathematical models

and efficient numerical simulations of composite processes, reviewed in

Chapter 9, are based on the Proper Generalized Decomposition (PGD),

a powerful model reduction technique. The aim of different mathematical

models and computational tools presented in Chapters 10–13 is to predict

damage and fracture initiation and propagation in composites at micro-,

meso-, and macroscales. Comprehensive explanations and references make

all chapters self-contained.

Chapter 1 by A.L. Kalamkarov reviews the multiscale asymptotic

homogenization method and some of its applications to composite materials

and three-dimensional thin-walled composite reinforced structures,

including smart composite materials, plates, and shells. Analytical formulae

for the effective elastic properties of an equivalent homogeneous material

are derived through the analytical solution of the corresponding unit-cell

problems. Examples of the application of the method to rib- and wafer-

reinforced shells, orthotropic grid-reinforced composite plates and shells,

sandwich composite shells with cellular cores, and carbon nanotubes- are

presented.

Chapter 2 by M. Ostoja-Starzewski and S.I. Ranganathan considers

the scale-dependent properties of random microstructures employing the

framework of stochastic (micro)mechanics consistent with the mathematical

statement of the Hill–Mandel condition. The scaling from a statistical

toward a representative volume element is analyzed and the scale-dependent

bounds and scaling laws in planar conductivity, linear and nonlinear

(thermo)elasticity, plasticity, and Darcy permeability are studied and

illustrated by examples.

Chapter 3 by C. Hwu presents the Stroh-like formalism for thin

anisotropic plates with stretching-bending coupling. This formalism is a

powerful complex-variable method for the analysis of general symmetric

and unsymmetric composite laminates. Extensions of this formalism to

hygrothermal and electro-elastic problems in composite laminates are also

introduced. Analytical solutions of several problems for laminates with holes

and cracks are shown.

Chapter 4 by E. Carrera, M. Cinefra, and M. Petrolo first provides

a comprehensive review of available classical, refined, zig-zag, and layer-

wise models for multilayered plates and shells, paying particular attention

to their historical origins and evolution and to the key relations between

them. The best theory diagram is introduced as a tool to evaluate the
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Preface ix

accuracy of structural models against reference solutions. Then, a refined

finite element formulation for multilayered shell structures based on the first

author’s unified formulation is developed and numerically tested on classical

discriminating problems showing good convergence and robustness. Finally,

the best theory diagrams for the plate and shell models considered provide

recommendations for a suitable development of refined structural theories.

Chapter 5 by J. Reinoso, M. Paggi, and A. Blázquez reviews various

nonlinear continuum-based shell parametrizations with the corresponding

extension for laminated composite shells, and a nonlinear cohesive interface

element including nonlinear geometric and material effects. A variational

formulation and the corresponding finite element discretizations are

presented. These computational strategies are then used for the nonlinear

analysis of different composite structures: a postbuckling analysis of a

composite stiffened panel, and a wrinkling–delamination analysis of a

layer–substrate composite system predicting a postbuckling deformation

pattern and delamination. Comparisons with previous semi-analytical

investigations and experimental data demonstrate the reliability of the

proposed methodology for the analysis of complex thin-walled composite

structures involving instabilities.

Chapter 6 by D. Bigoni, M. Gei, and S. Roccabianca applies an

incremental bifurcation theory of prestressed elastic solids to analyze

instabilities that often lead to delamination in multilayers, for different

deformation paths including finite tension/compression and finite bending.

The interlaminar contact is described by introducing linear imperfect

interfaces. It is shown that several instabilities such as Euler buckling,

necking, surface instability, and several wavelike modes may occur in a

multilayer.

Chapter 7 by J. Merodio and R.W. Ogden analyzes several instability

mechanisms in fiber-reinforced materials, fiber kinking and fiber splitting

in compression, and fiber debonding and matrix failure under tension.

The nonlinearly elastic composite material is modeled by a constitutive

law consisting of an isotropic contribution by a matrix material, and

a transversely isotropic contribution associated with the fiber direction.

The studied loss of ellipticity of the governing equations of equilibrium is

associated with surfaces of discontinuity of the deformation gradient tensor

(or of its gradient) in the material at different orientations relative to the

fiber direction. It is shown how the loss of ellipticity can be related to

different failure mechanisms in fiber-reinforced materials.
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x Preface

Chapter 8 by K. Tanuma and C.-S. Man introduces the Stroh formalism

for anisotropic elastodynamics and shows some of its applications.

A perturbation formula for the phase velocities and polarization ratio

of Rayleigh waves that propagate along the free surface of a prestressed

orthotropic or transversely isotropic half-space is derived. The possibility

of determination of the prestress in homogenized orthotropic or transversely

isotropic composites by boundary measurement of angular dependence of

phase velocities or polarization ratio of Rayleigh waves is examined. The

properties of the polarization ratio make it advantageous for use in the

non-destructive evaluation of the prestress.

Chapter 9 by E. Abisset-Chavanne, A. Barasinski, and F. Chinesta,

after a review of the latest developments in reinforced polymer flow,

focuses on the efficient modeling and simulation of composite manufacturing

processes of laminates, requiring very fine meshes in the thickness direction

because of the complexity of the involved physics. Special attention is

paid to the appropriate representation of the physics at the interfaces

where thermal resistance, molecular diffusion, and squeeze flow during

consolidation of composite laminates occur. Often such complex models,

where hypotheses for reducing the dimensionality of the model from

3D to 2D is not possible, should be solved many times because of the

history-dependent thermomechanical behavior. To circumvent the curse

of dimensionality in solving such complex problems in the fabrication

of composite structures, the necessary application of a model reduction

technique, the proper generalized decomposition, is discussed.

Chapter 10 by C.G. Dávila, C.A. Rose, E.V. Iarve, and F.A. Leone

re-examines the most common computational modeling strategies for the

prediction of localized and distributed damage in laminated composites

with an emphasis on the scale of the damage idealization and size effects.

The capabilities of cohesive crack models to represent crack initiation and

propagation and the intrinsic limitations of continuum damage models

for modeling laminated composites are analyzed. An x-FEM technique

modeling damage propagation by inserting cohesive cracks in arbitrary

directions is introduced and its capabilities for avoiding some of the

limitations of continuum damage models are shown.

Chapter 11 by T. Roub́ıček, M. Kruž́ık, J. Zeman, C.G.

Panagiotopoulos, R. Vodička, and V. Mantič describes a general and

rigorous mathematical framework based on various concepts of solutions,

such as the energetic or stress-driven type of solutions, for quasistatic and

rate-independent processes of delamination and debonding in composites,
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Preface xi

possibly combined with interface plasticity or friction. Nevertheless,

these approaches also allow consideration of other inelastic or rate-

dependent processes in the bulk, such as plasticity, viscosity, inertia,

and thermal processes. The process evolution is assumed to be governed

by the minimum-energy and minimum dissipation-potential principles

written in terms of a time-dependent stored energy functional and a

dissipation potential. This ultimately leads to the solution of a time-

incremental variational problem. The methodology developed is applied to

several macroscopic delamination/debonding and microscopic fiber-matrix

debonding problems.

Chapter 12 by D. Leguillon and E. Martin presents the coupled criterion

in the framework of finite fracture mechanics, which allows to predict the

nucleation of a crack of finite length at stress concentrations or stress

singularities. This criterion uses the conditions for energy and tensile

stress and involves both the fracture toughness and tensile strength of the

material. It is applied to semi-analytical studies of the following damage

mechanisms: a transverse crack in a layer approaching the interface with an

adjacent layer, where this crack can stop, deflect originating a delamination

crack, or cross the interface; the mechanism of crack kinking out of an

interface by considering the T-stress; and the initiation of damage at the

corner of an interface.

Chapter 13 by V. Mantič, A. Barroso, and F. Paŕıs first introduces

a general semi-analytic matrix formalism for the evaluation of singular

stresses in anisotropic elastic multi-material corners, covering also the case

of sliding frictional contact surfaces. A least-squares fitting technique for

extracting generalized stress intensity factors in such corners from FEM

and BEM results is then presented and used for the singularity analysis

of a crack terminating at a ply interface in a laminate, and a bimaterial

corner in a double-lap joint. A criterion for the failure initiation at a

multi-material corner tip is proposed, and a new experimental procedure is

introduced using a modified Brazilian disc specimen for the determination

of the corresponding failure envelope for the bimaterial corner in a double-

lap joint, and tested. Finally, examples of application of the developed

procedure to the elimination of stress singularities in some bimaterial joints

are presented.

I am greatly indebted to all the contributors to this book for their

efforts in producing chapters of high quality and originality, and for their

patience in waiting for the book to be published. I sincerely apologize

to the contributors for the long delay in the publication of the book,
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especially on my part. I thank all the reviewers who recommended numerous

improvements to the original manuscripts.

I also thank Professor Tomáš Roubıček (Charles University in Prague)

for his practical advice on the book layout, and for his constant motivation

to push this second edition forward.

This book is dedicated to Professor Federico Paŕıs (University of

Seville) with whom I have worked for the last 30 years. I am very grateful to

him not only for his professional advice and guidance and for his important

contribution to my professional career, but also for his personal support to

me and my family, especially in the difficult times when we needed it most.

I would like to express my special gratitude to Prof. Ferri Aliabadi

(Imperial College London) and the editorial team at World Scientific for

inviting me to edit this second extended edition of the book, and for their

very professional advice and support throughout the preparation of the

book.

Vladislav Mantič

Seville

December, 2022
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Chapter 1

Micromechanical Modeling of Advanced Composites and

Smart Composite Structures Using the Asymptotic

Homogenization Method

Alexander L. Kalamkarov

Department of Mechanical Engineering, Dalhousie University,
Halifax, Nova Scotia, Canada

alex.kalamkarov@dal.ca

Abstract

The basics of the multi-scale asymptotic homogenization method and its
applications to the analysis of the advanced composite materials, thin-
walled composite structures and smart composite materials and structures
are presented. Asymptotic homogenization is a powerful mathematically
rigorous technique for analyzing composite materials and structures. The
proof of the possibility of homogenizing a composite material of a regular
structure, i.e., of examining an equivalent homogeneous material instead of
the original inhomogeneous composite material, is one of the principal results
of this theory. Method of asymptotic homogenization has also indicated a
procedure of transition from the original problem for the inhomogeneous
composite medium to a problem for a homogeneous medium. The effective
properties of this equivalent homogeneous medium are determined through

the solution of the unit-cell problems formulated within a single unit cell
of the material and derived in the process of asymptotic homogenization.
The asymptotic homogenization technique is applied to the analysis of
three-dimensional (3D) composite materials, thin-walled composite reinforced
structures, and smart composite materials and structures. The analytical
solution of the corresponding unit cell problems is obtained and the explicit
analytical formulae for the effective elastic properties of 3D grid-reinforced
composites of various structures are derived. Asymptotic homogenization of
3D thin-walled composite reinforced structures is presented, and the general
homogenization composite shell model is introduced. It is applied to the
analysis of practically important composite reinforced shells and plates,
including rib- and wafer-reinforced shells, orthotropic grid-reinforced composite
shells and plates, and sandwich composite shells with cellular cores of different
geometrical configuration. In particular, one of considered examples represents
micromechanical modeling of the carbon nanotubes. The analytical expressions

1
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2 A.L. Kalamkarov

for the effective stiffness moduli of these composite reinforced shells and plates
are presented. For many problems presented in this chapter, the asymptotic
homogenization is much more effective and mathematically rigorous method
than any other analytical or numerical approach.

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Asymptotic Homogenization Method . . . . . . . . . . . . 4

1.3 Unit-Cell Problems . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Three-Dimensional Grid-Reinforced Composites . . . . . . 13

1.4.1 Examples of 3D grid-reinforced composite
structures . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Asymptotic Homogenization of Thin-Walled Composite
Reinforced Structures . . . . . . . . . . . . . . . . . . . . . 20

1.6 Generally Orthotropic Grid-Reinforced Composite Shell . . 29

1.6.1 Calculation of the effective elastic coefficients . . . . 36

1.7 Examples of Grid-Reinforced Composite Shells with
Orthotropic Reinforcements . . . . . . . . . . . . . . . . . 36

1.8 Sandwich Composite Shells with Cellular Cores . . . . . . 47

1.8.1 Examples of sandwich shells . . . . . . . . . . . . . 51

1.9 Smart Composite Materials and Structures . . . . . . . . . 52

1.9.1 Asymptotic homogenization of 3D smart composite
materials . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9.2 Asymptotic homogenization of smart composite
shells and plates . . . . . . . . . . . . . . . . . . . . 62

1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.1. Introduction

The rapidly increasing popularity of composite materials and structures

in recent years has been seen through their incorporation in the wide-

ranging engineering applications. In particular, the advanced composites

are used to reinforce and monitor components in the civil and structural

engineering (see, e.g., [1, 2]), in the aerospace, automotive and marine

engineering components of all sizes, medical prosthetic devices, sports and

recreational goods and others. Success in practical application of composites

largely depends on a possibility to predict their mechanical properties

and behavior through the development of the appropriate mechanical

models. The micromechanical modeling of composite structures however,

can be rather complicated as a result of the distribution and orientation
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Micromechanical Modeling of Advanced Composites 3

of the multiple inclusions and reinforcements within the matrix, and their

mechanical interactions on a local (micro-)level. Therefore, it is important

to establish such micromechanical models that are neither too complicated

to be developed and applied, nor too simple to reflect the real mechanical

properties and behavior of the composite materials and structures.

At present, asymptotic techniques are applied in many cases in

micromechanics of composites. Various asymptotic approaches to the

analysis of composite materials have apparently reached their conclusion

within the framework of the mathematical theory of asymptotic homo-

genization. Indeed, the proof of the possibility of homogenizing a

composite material of a regular structure, i.e., of examining an equivalent

homogeneous solid instead of the original inhomogeneous composite solid, is

one of the principal results of this theory. Theory of homogenization has also

indicated a method of transition from the original problem (which contains

in its formulation a small parameter related to the small dimensions of the

constituents of the composite) to a problem for a homogeneous solid. The

effective properties of this equivalent homogeneous material are determined

through the solution of so-called local problems formulated on the unit cell

of the composite material. These solutions also enable calculation of local

stresses and strains in the composite material.

In the present chapter, we will review the basics of the asymptotic

homogenization in Section 1.2; consider the formulation of the unit-cell

problems in Section 1.3. In Section 1.4, the asymptotic homogenization

technique is applied to the analysis of the three-dimensional (3D) grid-

reinforced composites with generally orthotropic reinforcement materials.

The analytical solution of the corresponding unit-cell problems is obtained

and the explicit analytical formulas for the effective elastic properties

of 3D grid-reinforced composites of various structures are derived. The

general homogenization composite shell model is presented in Section 1.5.

It is applied to the analysis of thin-walled composite structures, including

rib- and wafer-reinforced shells, and sandwich composite shells with

honeycomb fillers. The analytical expressions for the effective stiffness

moduli of these composite reinforced shells are obtained. Section 1.6 is

devoted to the application of the general homogenization composite shell

model to the analysis of generally orthotropic grid-reinforced composite

shells. The analytical solutions of the pertinent unit-cell problems are

obtained, and used in Section 1.7 to derive formulas for the effective stiffness

moduli of practically important types of grid-reinforced composite shells

with orthotropic reinforcements. In particular, one of examples considered

in Section 1.7 represents analytical modeling of the mechanical behavior
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4 A.L. Kalamkarov

of the carbon nanotubes. Section 1.8 presents application of the general

homogenization composite shell model to the analysis of the sandwich

composite shells with cellular cores of a different geometrical configuration.

Finally, the introduction into the smart materials is presented in Section 1.9.

The asymptotic homogenization is applied in this section to the smart

composite materials and smart composite reinforced shells and plates.

The homogenization composite shell model presented in Section 1.5 is

generalized in Section 1.9 to the case of a smart composite materials.

The present chapter is largely based on research results obtained by

the author and his graduate students.

1.2. Asymptotic Homogenization Method

For the past 25 years, asymptotic homogenization methods have proven

to be powerful techniques for the study of heterogeneous media. Some

of these classical tools today include multiscale expansions [3–8], G- and

Γ-convergence [9, 10] and energy methods [11, 12].

An approach based on Fourier analysis has been proposed in [13, 14].

This method works in the following way. First, the original operator is

transformed into an equivalent operator in the Fourier space. Standard

Fourier series are used to expand the coefficients of the operator and a

Fourier transform is used to decompose the integrals. Next, the Fourier

transforms of the integrals are expanded using a suitable two-scale

expansion and the homogenized problem is finally derived by merely

neglecting high-order terms in the above expansions when moving to the

limit as the period tends to zero.

The method of orientational averaging was proposed in [15]. It is based

on the following assumptions: a characteristic volume (repeated throughout

the bulk of the composite) is isolated from the composite medium. The

properties of the composite as a whole are assumed to be the same as those

of this characteristic volume. In the case of ideally straight fibers, the set

of fibers is represented in the form of an array of unidirectional reinforced

cylinders. The papers on homogenization using wavelet approximations [16]

and non-smooth transformations [17] should also be mentioned.

In this section, we describe a variant of the asymptotic homogenization

approach that will be used later. For simplicity, we will start with a

two-dimensional (2D) heat conduction problem. However, these results will

remain valid for other kinds of transport coefficients such as electrical

conductivity, diffusion, magnetic permeability, etc. Due to the well-known
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Micromechanical Modeling of Advanced Composites 5

l 

fiber

matrix

x2 

x1 

Fig. 1.1. Composite material with hexagonal array of cylindrical fibers.

longitudinal shear–transverse conduction analogy, see [18], the elastic

antiplane shear deformation can also be evaluated in a similar mathematical

way. This will be followed by a summary of asymptotic homogenization

applied to an elasticity problem for a 3D composite solid. An analogous

asymptotic homogenization technique has been developed for a number of

more complicated nonlinear models, see [3, 5, 11].

Let us consider a transverse transport process through a periodic

composite structure, when the fibers are arranged in a periodic square

lattice, as shown in Fig. 1.1.

The characteristic size l of the inhomogeneities is assumed to be much

smaller than the global size L of the whole structure: l � L. Assuming

perfect bonding conditions on the interface ∂Ω between the constituents,

the governing boundary-value problem can be written as follows:

ka
(
∂2ua

∂x21
+
∂2ua

∂x22

)
= −fa in Ωa, u

m = uf ,

km
∂um

∂n
= kf

∂uf

∂n
on ∂Ω. (1.1)

Here and in the following, variables indexed by m correspond to the matrix,

and those indexed by f correspond to the fibers, index a takes both of these

references: a = m or a = f . Generally, the boundary-value problem (1.1)

has a number of different physical interpretations, but here it is discussed

with reference to heat conduction. Then, in the above expressions, ka are the

heat conductivities of the constituents, ua is a temperature distribution, fa

is a density of heat sources and ∂/∂n is a derivative in the normal direction

to the interface ∂Ω. Let us now consider the governing boundary-value
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6 A.L. Kalamkarov

problem (1.1) using the asymptotic homogenization method [3–8]. We will

introduce a dimensionless small parameter ε = l/L, ε � 1, characterizing

the rate of heterogeneity of the composite structure.

In order to separate the micro- and macroscale components of the

solution, we introduce the so-called slow (x) and fast (y) coordinates

y1 =
x1
ε
, y2 =

x2
ε

(1.2)

and we express the temperature field in the form of an asymptotic

expansion:

ua = u0(x) + εua1(x,y) + ε2ua2(x,y) + · · · , (1.3)

where x = x1e1+x2e2, y = y1e1+y2e2, and e1 and e2 are the Cartesian unit

vectors. The first term u0(x) of expansion (1.3) represents the homogeneous

part of the solution; it changes slowly within the whole domain of the

material and does not depend on the fast coordinates. All the further terms

uai (x,y), i = 1, 2, 3, . . . , describe the local variation of the temperature

field on the scale of the heterogeneities. In the perfectly regular case, the

periodicity of the medium induces the same periodicity for uai (x,y) with

respect to the fast variables:

uak(x,y) = uak(x,y + Lp), (1.4)

where Lp = ε−1lp, lp = p1l1 + p2l2, ps = 0,±1,±2, . . . , and l1 and l2 are

the fundamental translation vectors of the square lattice.

The spatial derivatives are defined as follows:

∂

∂x1
→ ∂

∂x1
+ ε−1 ∂

∂y1
,

∂

∂x2
→ ∂

∂x2
+ ε−1 ∂

∂y2
. (1.5)

Substituting expressions (1.2), (1.3) and (1.5) into the governing boundary-

value problem (1.1) and splitting it with respect to equal powers of ε one

comes to a recurrent sequence of problems:

∂2ua1
∂y21

+
∂2ua1
∂y22

= 0 in Ω, [um1 = uf1 ]|∂Ω,[
km

∂um1
∂m

− kf
∂uf1
∂m

= (kf − km)
∂u0
∂n

]∣∣∣∣∣∣∣
∂Ω

;

(1.6)
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Micromechanical Modeling of Advanced Composites 7

ka
(
∂2u0
∂x21

+
∂2u0
∂x22

+ 2
∂2ua1
∂x1∂y1

+ 2
∂2ua1
∂x2∂y2

+
∂2ua2
∂y21

+
∂2ua2
∂y22

)

= −fa in Ω, (1.7)

[um2 = uf2 ]|∂Ω,
[
km

∂um2
∂m

− kf
∂uf2
∂m

= kf
∂uf1
∂n

− km
∂um1
∂n

]∣∣∣∣∣∣∣
∂Ω

;

and so on.

Here ∂/∂m is a derivative in the normal direction to the interface ∂Ω in

the fast coordinates y1, y2.

The boundary-value problem (1.6) allows evaluation of the higher-

order component uai (x,y) of the temperature field; owing to the periodicity

condition (1.4) it can be considered within only one periodically repeated

unit cell. It follows from the boundary-value problem (1.6) that the variables

x and y can be separated in u1(x,y) by assuming

u1(x,y) =
∂u0(x)

∂xl
U1(y) +

∂u0(x)

∂x2
U2(y), (1.8)

where U1(y) and U2(y) are local functions for which problem (1.6) yields

the following unit-cell problems:

∂2U1(y)

∂y21
+
∂2U1(y)

∂y22
= 0,

∂2U2(y)

∂y21
+
∂2U2(y)

∂y22
= 0 in Ω,

Um1 (y) = Uf1 (y), Um2 (y) = Uf2 (y) on ∂Ω,

(1.9)

km
∂Um1 (y)

∂m
− kf

∂Uf1 (y)

∂m
= (kf − km)n1,

km
∂Um2 (y)

∂m
− kf

∂Uf2 (y)

∂m
= (kf − km)n2 on ∂Ω.

The effective heat conductivity can be determined from the boundary-

value problem (1.7). The following homogenization operator over the unit-

cell area Ω0 will be applied to Eq. (1.7):[∫∫
Ωm

0

(· · ·)dy1dy2 +
∫∫

Ωin
0

(· · ·)dy1dy2
]
L−2,

where Ωm0 and Ωin0 denote unit-cell areas occupied by the matrix and

inclusion, respectively.
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8 A.L. Kalamkarov

Terms containing ua2 will be eliminated by means of Green’s theorem

and taking into account the boundary conditions (1.7) and the periodicity

condition (1.7), which yields:

[(1 − c)km + ckf ]

(
∂2u0
∂x21

+
∂2u0
∂x22

)

+
km

L2

∫∫
Ωm

0

(
∂2um1
∂x1∂y1

+
∂2um1
∂x2∂y2

)
dy1dy2

+
kf

L2

∫∫
Ωin

0

(
∂2uf1
∂x1∂y1

+
∂2uf1
∂x2∂y2

)
dy1dy2

= −[(1− c)fm + cff ], (1.10)

where c is the fiber volume fraction.

The homogenized heat conduction equation can be obtained by

substituting expression (1.8) for u1(x,y) into Eq. (1.10), which yields

〈kij〉∂u
2
0(x)

∂xi∂xj
= −〈f〉, (1.11)

〈kij〉 = [(1− c)km + ckf ]δij +
km

L2

∫∫
Ωm

0

∂Umj
∂yi

dy1dy2

+
kf

L2

∫∫
Ωin

0

∂Ufj
∂yi

dy1dy2, (1.12)

where 〈f〉 = (1− c)fm + cff is the effective density of heat sources; δij
is Kronecker’s delta; indexes i, j, l = 1, 2; and the summation over the

repeated indexes is implied.

Note that in general the homogenized material will be anisotropic, and

〈kij〉 in Eq. (1.11) is a tensor of effective coefficients of heat conductivity.

Tensor 〈kij〉 is defined by the expression (1.12), and it can be readily

calculated as soon as the unit-cell problems (1.9) are solved and the local

functions U1(y) and U2(y) are found. The unit-cell problems (1.9) can

be solved analytically or numerically. The approximate methods of their

analytical solution will be presented below in a number of practically

important cases.
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Micromechanical Modeling of Advanced Composites 9

(b)

y3 

Matrix 

y2 

Reinforcement 

y1 

x1

(a)

x2

Reinforcement 

Unit cell, Y 

Boundary, S

x3

Domain, 

ε

Ω

Fig. 1.2. (a) Three-dimensional periodic composite structure, (b) unit cell, Y.

Let us now consider the asymptotic homogenization of an elasticity

problem for a 3D periodic composite material occupying region Ω with a

boundary S; see Fig. 1.2.

We assume that the region Ω is made up by the periodic repetition

of the unit cell Y in the form of a parallelepiped with dimensions εYi,

i = 1, 2, 3. The elastic deformation of this composite solid is described by

the following boundary-value problem:

∂σεij
∂xj

= fi in Ω, uεi (x) = 0 on S, (1.13)

σεij = Cijkle
ε
kl, eεij =

1

2

(
∂uεi
∂xj

+
∂uεj
∂xi

)
in Ω, (1.14)

where Cijkl, is a tensor of elastic coefficients. The coefficients Cijkl are

assumed to be periodic functions with a unit cell Y. Here and in the following

all Latin indexes assume values 1, 2, 3, and repeated indexes are summed.

The introduction of the fast variables yi = xi

ε , i = 1, 2, 3, similar to

Eq. (1.2), into Eqs. (1.13) and (1.14) and the rule of differentiation (1.5)

leads to the following boundary-value problem:

∂σεij
∂xj

+
1

ε

∂σεij
∂yj

= fi in Ω, uεi (x,y) = 0 on S, (1.15)

σεij(x,y) = Cijkl(y)
∂uεk
∂xl

(x,y) in Ω. (1.16)
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10 A.L. Kalamkarov

The next step is to expand the displacements and as a result the stresses

into the asymptotic expansions in powers of the small parameter ε, as for

expansion (1.3):

uεi (x,y) = u
(0)
i (x,y) + εu

(1)
i (x,y) + ε2u

(2)
i (x,y) + · · · , (1.17)

σεij(x,y) = σ
(0)
ij (x,y) + εσ

(1)
ij (x,y) + ε2σ

(2)
ij (x,y) + · · · , (1.18)

where all the above functions are periodic in y with the unit cell Y.

Substituting Eqs. (1.17) and (1.18) into Eqs. (1.15) and (1.16), while

considering at the same time the periodicity of u(i) in y, reveals that u(0) is

independent of the fast variable y; see [5] for details. Subsequently, equating

terms with similar powers of ε results in the following set of equations:

∂σ
(0)
ij (x,y)

∂yj
= 0, (1.19)

∂σ
(1)
ij (x,y)

∂yj
+
∂σ

(0)
ij (x,y)

∂xj
= fi, (1.20)

where

σ
(0)
ij = Cijkl

(
∂u

(0)
k

∂xl
+
∂u

(1)
k

∂yl

)
, (1.21)

σ
(1)
ij = Cijkl

(
∂u

(1)
k

∂xl
+
∂u

(2)
k

∂yl

)
. (1.22)

Substitution of Eq. (1.21) into Eq. (1.19) yields:

∂

∂yj

(
Cijkl

∂u
(1)
k (x,y)

∂yl

)
= −∂Cijkl(y)

∂yj

∂u
(0)
k (x)

∂xl
. (1.23)

Due to the separation of variables in the right-hand side of Eq. (1.23) the

solution of Eq. (1.23) can be written as follows, as with Eq. (1.8):

u(1)n (x,y) =
∂u

(0)
k (x)

∂xl
Nkl
n (y), (1.24)

where Nkl
n (y) (n, k, l = 1, 2, 3) are periodic functions with a unit cell Y

satisfying the following equation:

∂

∂yj

(
Cijmn(y)

∂Nkl
m (y)

∂yn

)
= −∂Cijkl

∂yj
. (1.25)
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Micromechanical Modeling of Advanced Composites 11

It is observed that Eq. (1.25) depends only on the fast variable y and

it is entirely formulated within the unit cell Y. Thus, the problem (1.25)

is appropriately called an elastic unit-cell problem. Note that instead

of boundary conditions, this problem has a condition of a periodic

continuation of functions Nkl
m (y).

If inclusions are perfectly bonded to the matrix on the interfaces

of the composite material, then the functions Nkl
m (y) together with the

expressions [(Cijkl + Cijmn(y)
∂Nkl

m (y)
∂yn

)n
(c)
j ], i=1, 2, 3, must be continuous

on the interfaces. Here, n
(c)
j are the components of the unit normal to the

interface.

The next important step in the homogenization process is achieved

by substituting Eq. (1.24) into Eqs. (1.21) and (1.22), and the resulting

expression into Eq. (1.20). The result is then integrated over the domain Y

of the unit cell (with volume |Y |), remembering to treat x as a parameter

as far as integration with respect to y is concerned. After canceling out

terms that vanish due to the periodicity, we obtain the homogenized global

problem

C̃ijkl
∂2u

(0)
k (x)

∂xj∂xl
= fi in Ω, u

(0)
i (x) = 0 on S, (1.26)

where the following notation is introduced:

C̃ijkl =
1

|Y |
∫
Y

(
Cijkl(y) + Cijmn(y)

∂Nkl
m

∂yn

)
dv. (1.27)

Similarly, substitution of Eq. (1.24) into Eq. (1.21) and then integrating

the resulting expression over the domain of the unit cell Y yields:

〈
σ
(0)
ij

〉
=

1

|Y |
∫
Y

σ
(0)
ij (y)dv = C̃ijkl

∂u
(0)
k

∂xl
. (1.28)

Equations (1.26) and (1.28) represent the homogenized elasticity

boundary-value problem. The coefficients C̃ijkl given by Eq. (1.27) are the

effective elastic coefficients of the homogenized material. They are readily

determined as soon as the unit-cell problem (1.25) is solved and the

functions Nkl
m (y) are found. It is observed that these effective coefficients are

free from the complications that characterize the original rapidly varying

elastic coefficients Cijkl(y). They are universal for a composite material

under study, and can be used to solve a wide variety of boundary-value

problems associated with the given composite material.
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12 A.L. Kalamkarov

It should be noted that while asymptotic homogenization leads to a

much simpler problem for an equivalent homogeneous material with certain

effective properties, the construction of a solution in the vicinity of the

boundary S of the composite solid, i.e., at the distances of the order of ε,

remains beyond the capabilities of classical homogenization. In order

to determine the stresses and strains near the boundary, a boundary-

layer problem should be considered as an extension to the asymptotic

homogenization. A boundary-layer method in asymptotic homogenization

was developed by Kalamkarov [5]. This approach was further developed

by Kalamkarov and Georgiades [19] in the asymptotic homogenization of

smart periodic composites. The exponential decaying of boundary layers

was proved in [10] for problems with a simple geometry.

New generalized integral transforms for the analytical solution of the

boundary-value problems for composite materials have been developed by

Kalamkarov [5, 20], and Kalamkarov et al. [21].

The properties of boundary layers in periodic homogenization in

rectangular domains that are either fixed or have an oscillating boundary

are investigated in [22]. Such boundary layers are highly oscillating near

the boundary and decay exponentially fast in the interior to a non-zero

limit, which the authors called a boundary-layer tail. It is shown that these

boundary-layer tails can be incorporated into the homogenized equation by

adding dispersive terms and a Fourier boundary condition. Although finding

the explicit analytical solutions of boundary-layer problems in the theory

of homogenization still remains an open problem, the effective numerical

procedures have been proposed in [23, 24].

1.3. Unit-Cell Problems

As we have seen in Section 1.2, the derivation of the homogenized equations

for the periodic composites includes solution of the unit-cell problems (1.9)

or (1.25). In some particular cases, these problems can be solved analytically

producing exact solutions, for example for laminated composites and grid-

reinforced structures; see [5, 25–27]. The explicit formulas for the effective

moduli are very useful, especially for the design and optimization of

composite materials and structures [27, 28]. But in the general case, the

unit-cell problems cannot be solved analytically and therefore numerical

methods should be used. In some cases, approximate analytical solutions

of the unit-cell problems can be found, and explicit formulas for the

effective coefficients can be obtained due to the presence of additional small
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Micromechanical Modeling of Advanced Composites 13

parameters within the unit cell, not to be confused with the small parameter

of inhomogeneity.

For a small volume fraction of inclusions, c � cmax, one can use the

three-phase model [29–31]. It is based on the following assumption: the

periodically heterogeneous composite structure is approximately replaced

by a three-phase medium consisting of a single inclusion, a matrix layer and

an infinite effective medium with homogenized mechanical properties. An

asymptotic justification of the three-phase composite model is given in [29].

For laminated composite materials, the unit-cell problems (1.9) and

(1.25) are one-dimensional and they can be solved analytically. Using this

analytical solution, the effective properties of laminated composites can be

obtained in an explicit analytical form from Eqs. (1.12) and (1.27); see

[5, 27]. In the more complicated case of generally anisotropic constituent

materials, explicit formulas for the effective elastic, actuation, thermal

conductivity and hygroscopic absorption properties of laminated smart

composites have been derived by Kalamkarov and Georgiades [32]. In

particular, the following explicit formula for the effective elastic coefficients

of a laminated composite in the case of generally anisotropic constituent

materials is derived in [32]:

m3q3Cq3kl〉C̃ijkl = 〈Cijkl〉 − 〈Cijm3C
−1

m3q3+ 〈Cijm3C
−1

q3p3〉〈C−1 〉−1〈C−1
p3n3Cn3kl〉, (1.29)

where the angle brackets denote a rule of mixture, and as earlier indicated

all Latin indexes assume values 1, 2, 3, and repeated indexes are summed.

For fiber-reinforced periodic composites the unit-cell problem (1.25)

becomes 2D, and it can be solved analytically for some simple geometries,

or numerically; see [5, 33, 34].

1.4. Three-Dimensional Grid-Reinforced Composites

In this section, we will apply the above described asymptotic

homogenization technique to the analysis of a 3D composite structure

reinforced with N families of reinforcements. An example of such a

structure with three families of mutually perpendicular reinforcements

is shown in Fig. 1.3 [35]. We assume that the members of each family

are made of individual, generally orthotropic materials and have relative

orientation angles θn1 , θ
n
2 , θ

n
3 (where n = 1, 2, . . . , N) with the y1, y2, y3 axes

respectively.
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14 A.L. Kalamkarov

(a) (b)

Fig. 1.3. (a) Cubic grid-reinforced structure and (b) its unit cell.

(a) (b)

2

1

3

y3

y2

y1

η
η

η

Fig. 1.4. Unit cell for a single reinforcement family in original (a) and rotated
(b) microscopic coordinates.

It is further assumed that the orthotropic reinforcements have

significantly higher elasticity moduli than the matrix material, so we are

justified in neglecting the contribution of the matrix phase in the analytical

treatment. Clearly, for the particular case of framework or lattice network

structures the surrounding matrix is absent and this is modeled by assuming

zero matrix rigidity.

The nature of the network structure of Fig. 1.3 is such that it would

be more efficient if we first considered a simpler type of unit cell made

of only a single reinforcement as shown in Fig. 1.4. Having solved this,

the effective elastic coefficients of more general structures with several

families of reinforcements can be determined by the superposition of the

found solution for each of them separately. In following this procedure,
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Micromechanical Modeling of Advanced Composites 15

one must naturally accept the error incurred at the regions of intersection

between the reinforcements. However, our approximation will be quite

accurate because these regions of intersection are highly localized and do

not contribute significantly to the integral over the entire volume of the

unit cell. A mathematical justification for this argument in the form of the

so-called principle of the split homogenized operator can be found in [4].

In order to calculate the effective coefficients of the simpler structure

of Fig. 1.4, the unit-cell problem given by Eq. (1.25) must be solved and

subsequently Eq. (1.27) must be applied. The problem formulation for the

structure shown in Fig. 1.4 begins with the introduction of the following

notation [5, 35]:

bklij = Cijmn(y)
∂Nkl

m (y)

∂yn
+ Cijkl . (1.30)

With this definition in mind, the unit cell of the problem given by Eq. (1.25)

can be solved as:

bmmmm = Cmmmm +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λmm1 {Cm1q21 + Cm6q22 + Cm5q23}
+λmm2 {Cm1q31 + Cm6q32 + Cm5q33}
+λmm3 {Cm6q21 + Cm2q22 + Cm4q23}
+λmm4 {Cm6q31 + Cm2q32 + Cm4q33}
+λmm5 {Cm5q21 + Cm4q22 + Cm3q23}
+λmm6 {Cm5q31 + Cm4q32 + Cm3q33}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.31)

bmnmn = Cmnmn +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λmm1 {Cmn11q21 + Cmn12q22 + Cmn13q23}
+λmn2 {Cmn11q31 + Cmn12q32 + Cmn13q33}
+λmm3 {Cmn12q21 + Cmn22q22 + Cmn23q23}
+λmn4 {Cmn12q31 + Cmn22q32 + Cmn23q33}
+λmm5 {Cmn13q21 + Cmn23q22 + Cmn33q23}
+λmm6 {Cmn13q31 + Cmn23q32 + Cmn33q33}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.32)

where there is no summation on either index m or n. The CIJ (I, J =

1, 2, 3, . . . , 6) in Eq. (1.31) are the elastic coefficients of the orthotropic

reinforcements in the contracted notation; see, e.g., [5, 36]. These

components are obtained from Cijkl by the following replacement of

subscripts: 11→ 1, 22→ 2, 33→ 3, 23→4, 13→ 5, 12→ 6. The resulting CIJ
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16 A.L. Kalamkarov

are symmetric, i.e., CIJ = CJI . The coefficients qij in Eqs. (1.31) and (1.32)

represent the components of the matrix of direction cosines characterizing

the axes of rotation in Fig. 1.4. The constants λkli in Eqs. (1.31) and (1.32)

satisfy the following linear algebraic equations:

A1λ
kl
1 +A2λ

kl
2 +A3λ

kl
3 +A4λ

kl
4 +A5λ

kl
5 +A6λ

kl
6 + Akl7 = 0,

A8λ
kl
1 +A9λ

kl
2 +A10λ

kl
3 +A11λ

kl
4 +A12λ

kl
5 +A13λ

kl
6 +Akl14 = 0,

A15λ
kl
1 +A16λ

kl
2 +A17λ

kl
3 +A18λ

kl
4 +A19λ

kl
5 +A20λ

kl
6 +Akl21 = 0,

A22λ
kl
1 +A23λ

kl
2 +A24λ

kl
3 +A25λ

kl
4 +A26λ

kl
5 +A27λ

kl
6 +Akl28 = 0,

A29λ
kl
1 +A30λ

kl
2 +A31λ

kl
3 +A32λ

kl
4 +A33λ

kl
5 +A34λ

kl
6 +Akl35 = 0,

A36λ
kl
1 +A37λ

kl
2 +A38λ

kl
3 +A39λ

kl
4 +A40λ

kl
5 +A41λ

kl
6 +Akl42 = 0,

(1.33)

where Akli are constants that depend on the geometric parameters of the

unit cell and the material properties of the reinforcement. The explicit

expressions for these constants can be found in [35]. Once the system in

Eq. (1.33) is solved, the obtained coefficients λkli are substituted back into

Eqs. (1.31) and (1.32) to determine the bklij coefficients. In turn these are

used to calculate the effective elastic coefficients of the 3D grid-reinforced

composite structures by integrating over the volume of the unit cell.

The effective elastic moduli of the 3D grid-reinforced composite with

generally orthotropic reinforcements with a unit cell shown in Fig. 1.4 are

obtained on the basis of Eq. (1.27), which, on account of notation (1.30),

becomes:

C̃ijkl =
1

|Y |
∫
Y

bklijdv. (1.34)

Noting that the bklij are constants in the considered case, and denoting

the length and cross-sectional area of the reinforcement (in coordinates

y1, y2, y3) by L and A respectively, and the volume of the unit cell by V,

the effective elastic coefficients become

C̃ijkl =
AL

V
bklij = Vfb

kl
ij , (1.35)

where Vf is the volume fraction of the reinforcement within the unit cell.

For structures with more than one family of reinforcements (a particular

case of which is shown in Fig. 1.3) the effective moduli can be obtained by

superposition. The influence of a fiber coating on the mechanical properties

of fiber-reinforced composites was analyzed in [37].
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Micromechanical Modeling of Advanced Composites 17

1.4.1. Examples of 3D grid-reinforced composite structures

Let us now apply the above asymptotic homogenization model to calculate

the effective elastic coefficients for three different examples of 3D grid-

reinforced composite structures. We will also compare the analytical

(asymptotic homogenization) results with numerical (finite element)

calculations. We will consider consequently a grid-reinforced structure with

two families of mutually perpendicular reinforcements (structure A1 shown

in Fig. 1.5); a 3D model with three mutually perpendicular reinforcements

oriented along the three coordinate axes (structure A2 shown in Fig. 1.3);

and, finally, a 3D structure with a rhombic arrangement of orthotropic

reinforcements: two reinforcements are oriented in the y1−y2 plane at 45◦ to
one another with a third reinforcement oriented along the y3 axis (structure

A3 shown in Fig. 1.6).

The properties of the orthotropic reinforcement and isotropic matrix

materials are listed in Table 1.1.

The results are shown below in Figs. 1.7–1.9. Figure 1.7 shows the

variation of the effective elastic coefficient Ẽ1 = Ẽ3 for the structure A1 vs.

the total reinforcement volume fraction. Three different lines are shown

in this figure. The first line represents the asymptotic homogenization

(AHM) results, the second line represents the finite element (FEM)

results considering the reinforcement contribution only (i.e., neglecting

the matrix), and the third line represents the FEM results with both

the reinforcement and matrix contributions; see [38] for details. Certain

interesting observations are apparent from Fig. 1.7. First of all the high

(a) (b)

Fig. 1.5. (a) Grid-reinforced composite structure A1, with reinforcements oriented along
the y1 and y2 directions. (b) Unit cell of structure A1.
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18 A.L. Kalamkarov

(a) (b)

Fig. 1.6. (a) 3D grid-reinforced composite structure A3, with reinforcements arranged
in a rhombic fashion. (b) Unit cell of structure A3.

Table 1.1. Material properties.

(a) Material properties of carbon reinforcement
E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

173.0 GPa 33.1 GPa 5.2 GPa 9.4 GPa 8.3 GPa 3.2 GPa 0.036 0.25 0.171

(b) Material properties of epoxy matrix
E ν

3.6 GPa 0.35

degree of conformity between the first and second lines validates the

accuracy of the asymptotic homogenization model in the case when the

matrix contribution is neglected. We recall that we have assumed that

the reinforcements were much stiffer than the matrix and we consequently

neglected the contribution of the latter. The discrepancy between the first

and third lines is due to the contribution of the matrix. Figure 1.7 also

validates another assumption of the asymptotic homogenization model. In

using superposition to determine the effective properties of structures with

two or more families of reinforcements, an error will be incurred at the

region of overlap between the reinforcements. However, we assume that for

the practical purposes this error will not contribute significantly to the

integral in Eq. (1.34) and thus will not appreciably affect the effective

coefficients. This assumption is confirmed by the excellent agreement

between the first and second lines in Fig. 1.7. Of course we expect that in
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Micromechanical Modeling of Advanced Composites 19
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1 3E E= (FEM) 

Reinforcements only 

1 3E E= (FEM) 

Reinforcements and matrix 

1 3E E= (AHM) 

Total reinforcement volume fraction

Fig. 1.7. Variation of the effective stiffness moduli Ẽ1 (or Ẽ3) for structure A1 (shown
in Fig. 1.5).
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1 2 3E E E= = (FEM) 

Reinforcements only 

1 2 3E E E= = (FEM) 

Reinforcements and matrix 

1 2 3E E E= = (AHM) 

Total reinforcement volume fraction

Fig. 1.8. Variation of the effective stiffness moduli Ẽ1 = Ẽ2 = Ẽ3 for structure A2

(shown in Fig. 1.3).

more complex unit-cell structures with a larger extent of overlap between

reinforcements this error could be more pronounced. This will be illustrated

in subsequent examples.

We now turn our attention to structure A2 shown in Fig. 1.3 for which

the variation of the effective elastic moduli vs. the reinforcement volume

fraction is shown in Fig. 1.8. Again, three lines are plotted corresponding

to the AHM results, the FEM (contribution of reinforcements only) and

FEM (contribution of reinforcements and matrix) results. It should be

expected that the discrepancy between the AHM results and the FEM

results (considering only the reinforcements) is higher for structure A2 than
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20 A.L. Kalamkarov

3E (FEM) Reinforcements only

3E (FEM) Reinforcements 

and matrix 

3E (AHM) 

Total reinforcement volume fraction
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Fig. 1.9. Variation of the effective stiffness modulus Ẽ3 for structure A3 (shown in
Fig. 1.6).

for structure A1. This is attributed to the larger volume of overlap between

the various reinforcements in the unit cell of structure A2.

The final structure to be considered is structure A3 shown in Fig. 1.6,

for which the variation of Ẽ3 vs. the reinforcement volume fraction is shown

in Fig. 1.9. As with the previous example, the discrepancy between the

lower two lines is attributed to the regions of overlap between the different

reinforcement families. The difference between the upper two lines is the

contribution of the matrix on the effective elastic coefficients.

1.5. Asymptotic Homogenization of Thin-Walled Composite

Reinforced Structures

In numerous engineering applications, composite materials are used in the

form of thin-walled structural members such as shells and plates. Their

stiffness and strength combined with the reduced weight and associated

material savings offer very impressive possibilities. It is very common

that the reinforcing elements such as embedded fibers or surface ribs

form a regular array with a period much smaller than the characteristic

dimensions of the whole composite structure. Consequently, the asymptotic

homogenization analysis becomes applicable.

An asymptotic homogenized model for plates with periodic

inhomogeneities in tangential directions was developed for the first time by

Duvaut [39, 40]. In these works the asymptotic homogenization procedure

was applied directly to a 2D plate problem. Evidently, the asymptotic

homogenization method cannot be applied directly to 3D thin composite

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Micromechanical Modeling of Advanced Composites 21

layers if their small thickness (in the direction in which there is no

periodicity) is comparable with the small dimensions of the periodicity

cell (in the two tangential directions). To deal with the 3D problem for

a thin composite layer, a modified asymptotic homogenization approach

was proposed by Caillerie [41, 42] in heat conduction studies. It consists

of applying a two-scale asymptotic formalism directly to the 3D problem

for a thin inhomogeneous layer with the following modification. Two

sets of ‘rapid’ coordinates are introduced. Two tangential coordinates are

associated with the rapid periodic variation in the composite properties.

The third one is in the transverse direction and it is associated with the

small thickness of the layer. It takes into account that there is no periodicity

in this transverse direction. There are two small parameters: one is a

measure of the periodic variation in the two tangential directions and the

other is a measure of the small thickness. Generally, these two parameters

may or may not be of the same order of magnitude, although in practical

applications, they are commonly small values of the same order. Kohn and

Vogelius [43–45] adopted this approach in their study of the pure bending

of a thin, linearly elastic homogeneous plate with wavy surfaces.

A generalization of this approach to the most comprehensive case of

a thin 3D composite layer with wavy surfaces (which model the surface

reinforcements) was offered by Kalamkarov [5, 25, 26]; see also [27]. In these

works the general asymptotic homogenization model for a composite shell

was developed by applying the modified two-scale asymptotic technique

directly to 3D elastic and thermoelastic problems for a thin curvilinear

composite layer with wavy surfaces; see Fig. 1.10. Homogenization models

were also developed for nonlinear problems for composite shells; see [46, 47].

(a) (b)

Fig. 1.10. Thin 3D curvilinear composite layer (a) with a periodicity cell Ωδ (b).
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22 A.L. Kalamkarov

The homogenization models developed for a composite shell were applied

in the design and optimization of composite and reinforced shells [27, 28].

Most recently, this technique was adopted in modeling smart composite

shells and plates [19, 48–57]. The general homogenization model for

a composite shell has found numerous applications in the analysis of

various practically important composite structures. Grid-reinforced and

network-thin generally orthotropic composite shells, as well as 3D network-

reinforced composite structures are studied in [58–61]. Sandwich composite

shells and in particular honeycomb sandwich composite shells made

of generally orthotropic materials are analysed in [62–64]. Asymptotic

homogenization was also applied by Kalamkarov et al. [65–67] to calculate

the effective properties of carbon nanotubes and carbon nanotube-

reinforced structures.

Let us now summarize the above general homogenization model for a

composite shell; see [5, 27] for details. Consider a general thin 3D composite

layer of a periodic structure with the unit cell Ωδ shown in Fig. 1.10. In

this figure, α1, α2 and γ are the orthogonal curvilinear coordinates, such

that the coordinate lines α1 and α2 coincide with the main curvature lines

of the mid-surface of the carrier layer, and coordinate line γ is normal to

its mid-surface (at which γ = 0).

The thickness of the layer and the dimensions of the unit cell of the

composite material (which define the scale of the composite material’s

inhomogeneity) are assumed to be small compared with the dimensions

of the whole structure. These small dimensions of the periodicity cell are

characterized by a small parameter δ.

The unit cell Ωδ shown in Fig. 1.10(b) is defined by the following

relations:

−δh1
2

< α1 <
δh1
2
, −δh2

2
< α2 <

δh2
2
, γ− < γ < γ+,

γ± = ± δ
2
± δF±

(
α1

δh1
,
α2

δh2

)
.

(1.36)

Here, δ is the thickness of the layer, δh1 and δh2 are the tangential

dimensions of the periodicity cell Ωδ. The functions F
± in Eq. (1.36) define

the geometry of the upper (S+) and lower (S−) reinforcing elements, for

example, the ribs or stiffeners; see Figs. 1.10 and 1.11. If there are no

reinforcing elements then F+ = F− = 0 and the composite layer has a

uniform thickness of the order of δ as for example in the case shown in

Fig. 1.12.
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Micromechanical Modeling of Advanced Composites 23

(a) (b)

Fig. 1.11. (a) Wafer-reinforced shell and (b) its unit cell.

Fig. 1.12. Sandwich composite shell with honeycomb filler.

The periodic inhomogeneity of the composite material is modeled by

the assumption that the elastic coefficients Cijkl(α1, α2, γ) are periodic

functions of the variables α1 and α2 with a unit cell Ωδ.

The elasticity problem for the above 3D thin composite layer is

formulated as follows:

∂σij
∂αj

= fi,

σij = Cijkl(α1, α2, γ)ekl, ekl =
1

2

(
∂uk
∂αl

+
∂ul
∂αk

)
, (1.37)

σijn
±
j = p±i .

Here fi, p
±
i and uk represent body forces, surface tractions and the

displacement field, respectively; n±
j is the unit normal to the upper and

lower wavy surfaces γ±(α1, α2) and is given by

n± =

{
−∂γ

±

∂α1
,−∂γ

±

∂α2
, 1

}(
1

H2
1

(
∂γ±

∂α1

)2

+
1

H2
2

(
∂γ±

∂α2

)2

+ 1

)−1/2

,

(1.38)
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24 A.L. Kalamkarov

where H1 and H2 are the Lamé coefficients defined by

H1 = A1(1 + κ1γ), H2 = A2(1 + κ2γ), (1.39)

where A1(α1, α2) and A2(α1, α2) are the coefficients of the first quadratic

form and κ1 and κ2 are the main curvatures of the mid-surface of the carrier

layer (γ = 0).

We introduce the following fast variables, ξ = (ξ1, ξ2), and z:

ξ1 =
α1A1

δh1
, ξ2 =

α2A2

δh2
, z =

γ

δ
. (1.40)

The displacements and stresses are expressed in the form of the

following two-scale asymptotic expansions:

ui(α, ξ, z) = u
(0)
i (α) + δu

(1)
i (α, ξ, z) + δ2u

(2)
i (α, ξ, z) + · · · ,

σij(α, ξ, z) = σ
(0)
ij (α, ξ, z) + δσ

(1)
ij (α, ξ, z) + δ2σ

(2)
ij (α, ξ, z) + · · · .

(1.41)

As a result of the asymptotic homogenization procedure, see [5, 27]

for details, the following relations for the displacements and stresses are

derived:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1 = v1(α)− δ
z

A1

∂w(α)

∂α1
+ δUμν1 eμν + δ2V μν1 τμν +O(δ3),

u2 = v2(α)− δ
z

A2

∂w(α)

∂α2
+ δUμν2 eμν + δ2V μν2 τμν +O(δ3),

u3 = w(α) + δUμν3 eμν + δ2V μν3 τμν +O(δ3),

(1.42)

σij = bμνij eμν + δb∗μνij τμν . (1.43)

Here and in the following Latin indexes assume values 1, 2, 3; Greek indexes

1, 2; and repeated indexes are summed; the mid-surface strains are denoted

as follows: e11 = e1, e22 = e2 (elongations), e12 = e21 = ω/2 (shear),

τ11 = k1, τ22 = k2 (bending) and τ12 = τ21 = τ (twisting).

The following notation is used in Eq. (1.43):

blmij =
1

hβ
Cijnβ

∂U lmn
∂ξβ

+ Cijn3
∂U lmn
∂z

+ Cijlm, (1.44)

b∗lmij =
1

hβ
Cijnβ

∂V lmn
∂ξβ

+ Cijn3
∂V lmn
∂z

+ zCijlm. (1.45)

The functions U lmn (ξ1, ξ2, z) and V lmn (ξ1, ξ2, z) in Eqs. (1.42), (1.44)

and (1.45) are solutions of the unit-cell problems. Note that all the above
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Micromechanical Modeling of Advanced Composites 25

functions are periodic in the variables ξ1 and ξ2 with periods A1 and A2,

respectively. The above unit-cell problems are formulated as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

hβ

∂bλμiβ
∂ξβ

+
∂bλμi3
∂z

= 0,

1

hβ
n±
β b

λμ
iβ + n±

3 b
λμ
i3 = 0 at z = z±,

(1.46)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

hβ

∂b∗λμiβ

∂ξβ
+
∂b∗λμi3

∂z
= 0,

1

hβ
n±
β b

∗λμ
iβ + n±

3 b
∗λμ
i3 = 0 at z = z±,

(1.47)

where n+
i and n−

i are components of the normal unit vector to the upper

(z = z+) and lower (z = z−) surfaces of the unit cell, respectively, defined

in the coordinate system ξ1, ξ2, z.

If inclusions are perfectly bonded to the matrix on the interfaces of

the composite material then the functions U lmn and V lmn together with

the expressions [ 1
hβ
n
(c)
β bλμiβ + n

(c)
3 bλμi3 ] and [ 1

hβ
n
(c)
β b∗λμiβ + n

(c)
3 b∗λμi3 ] must be

continuous on the interfaces. Here n
(c)
i are the components of the unit

normal to the interface.

It should be noted that unlike the unit-cell problems of ‘classical’

homogenization models, e.g., Eqs. (1.9) and (1.25), those set by Eqs. (1.46)

and (1.47) depend on the boundary conditions at z = z± in the z direction

rather than on the periodicity.

After the local functions U lmn (ξ1, ξ2, z) and V lmn (ξ1, ξ2, z) are found

from the unit-cell problems given by Eqs. (1.44)–(1.47), the functions

blmij (ξ1, ξ2, z) and b∗lmij (ξ1, ξ2, z) given by Eqs. (1.44) and (1.45) can be

calculated. These local functions define the stress σij as in from Eq. (1.43).

They also define the effective stiffness moduli of the homogenized shell.

Indeed the constitutive relations of the equivalent anisotropic homogeneous

shell, that is between the stress resultants N11, N22 (normal), N12 (shear)

and moment resultants M11, M22 (bending), M12 (twisting) on the one

hand, and the mid-surface strains e11 = e1, e22 = e2 (elongations), e12 =

e21 = ω/2 (shear), τ11 = k1, τ22 = k2 (bending), τ12 = τ21 = τ (twisting)

on the other, can be represented as follows (see [5, 27] for details):⎧⎨
⎩
Nαβ = δ〈bλμαβ〉eλμ + δ2〈b∗λμαβ 〉τλμ,
Mαβ = δ2〈zbλμαβ〉eλμ + δ3〈zb∗λμαβ 〉τλμ.

(1.48)
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26 A.L. Kalamkarov

The angle brackets in Eq. (1.48) denote averaging by the integration over

the volume of the 3D unit cell:

〈f (ξ1, ξ2, z)〉 =
1

|Ω|
∫
Ω

f(ξ1, ξ2, z) dξ1dξ2dz.

The coefficients in the constitutive relations Eq. (1.48) 〈bλμαβ〉, 〈b∗λμαβ 〉,
〈zbλμαβ〉 and 〈zb∗λμαβ 〉 are the effective stiffness moduli of the homogenized

shell.

The following symmetry relationships for the effective stiffness moduli

have been proved in [5]:〈
bmnij
〉
=
〈
bijmn
〉
,
〈
zbmnij

〉
=
〈
b∗ijmn
〉
,
〈
zb∗mnij

〉
=
〈
zb∗ijmn

〉
. (1.49)

The mid-surface strains eλμ(α1, α2) and τλμ(α1, α2) can be determined

by solving a global boundary-value problem for the homogenized anisotropic

shell with the constitutive relations (1.48); see [5, 27] for details. It should

be noted that, as can be observed from Eq. (1.48), there is a following

one-to-one correspondence between the effective stiffness moduli and the

extensional [A] coupling [B] and bending [D] stiffnesses familiar from

classical composite laminate theory (see, e.g., [36]):[
A B

B D

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ
〈
b1111
〉

δ
〈
b2211
〉

δ
〈
b1211
〉

δ2
〈
zb1111

〉
δ2
〈
zb2211

〉
δ2
〈
zb1211

〉
δ
〈
b2211
〉

δ
〈
b2222
〉

δ
〈
b1222
〉

δ2
〈
zb2211

〉
δ2
〈
zb2222

〉
δ2
〈
zb1222

〉
δ
〈
b1211
〉

δ
〈
b1222
〉

δ
〈
b1212
〉

δ2
〈
zb1211

〉
δ2
〈
zb1222

〉
δ2
〈
zb1212

〉
δ2
〈
b∗1111

〉
δ2
〈
b∗2211

〉
δ2
〈
b∗1211

〉
δ3
〈
zb∗1111

〉
δ3
〈
zb∗2211

〉
δ3
〈
zb∗1211

〉
δ2
〈
b∗2211

〉
δ2
〈
b∗2222

〉
δ2
〈
b∗1222

〉
δ3
〈
zb∗2211

〉
δ3
〈
zb∗2222

〉
δ3
〈
zb∗1222

〉
δ2
〈
b∗1211

〉
δ2
〈
b∗1222

〉
δ2
〈
b∗1212

〉
δ3
〈
zb∗1211

〉
δ3
〈
zb∗1222

〉
δ3
〈
zb∗1212

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(1.50)

It is worth mentioning at this point that the coordinates ξ1 and ξ2,

defined by Eq. (1.40) in terms of the functions A1(α1, α2) and A2(α1, α2),

are involved in the local problems. Functions A1(α1, α2) and A2(α1, α2) are

the coefficients of the first quadratic form of the mid-surface of the carrier

layer. This means that if the mid-surface is not a developing surface, so that

these functions are not constant, the effective stiffness coefficients will also
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Micromechanical Modeling of Advanced Composites 27

depend on the macroscopic coordinates α1 and α2 through these functions.

Therefore, even in the case of the originally homogeneous material, we may

find structural inhomogeneity after the homogenization process.

The unit-cell problems given by Eqs. (1.44), (1.46) and (1.45), (1.47)

have been solved analytically for a number of structures of practical

interest, and the explicit analytical formulas for the effective stiffness

moduli have been obtained for the following types of composite and

reinforced shells and plates: angle-ply fiber-reinforced shells, grid-reinforced

and network shells [5, 25, 27, 55, 56, 58, 59]; rib- and wafer-reinforced

shells [5, 26, 27, 49, 50, 54]; sandwich composite shells, in particular,

honeycomb sandwich composite shells made of generally orthotropic

materials [5, 27, 62–64] and carbon nanotubes [65–67].

As examples of these results, we will present here the analytical

formulae for the effective stiffness moduli of a wafer-reinforced shell

(Fig. 1.11) and a sandwich composite shell with a honeycomb filler

(Fig. 1.12).

All the non-zero effective stiffness moduli of the wafer-reinforced shell

shown in Fig. 1.11 are obtained as follows, (see [5, 26, 27, 50] for details):

〈
b1111
〉
=

E
(3)
1

1− ν
(3)
12 ν

(3)
21

+ E
(2)
1 F

(w)
2 ,

〈
b2222
〉
=

E
(3)
2

1− ν
(3)
12 ν

(3)
21

+ E
(1)
2 F

(w)
1 ,

〈
b1122
〉
=
〈
b2211
〉
=

ν
(3)
12 E

(3)
1

1− ν
(3)
12 ν

(3)
21

,
〈
b1212
〉
= G

(3)
12 ,

〈
zb1111

〉
=
〈
b∗1111

〉
= E

(2)
1 S

(w)
2 ,

〈
zb2222

〉
=
〈
b∗2222

〉
= E

(1)
2 S

(w)
1 ,

〈
zb∗1111

〉
=

E
(3)
1

12
(
1− ν

(3)
12 ν

(3)
21

) + E
(2)
1 J

(w)
2 , (1.51)

〈
zb∗2222

〉
=

E
(3)
2

12
(
1− ν

(3)
12 ν

(3)
21

) + E
(1)
2 J

(w)
1 ,

〈
zb∗1122

〉
=
〈
zb∗2211

〉
=

ν
(3)
12 E

(3)
1

12(1− ν
(3)
12 ν

(3)
21 )

,

〈
zb∗1212

〉
=
G

(3)
12

12
+
G

(1)
12

12

(
H3t1
h1

−K1

)
+
G

(2)
12

12

(
H3t2
h2

−K2

)
,
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28 A.L. Kalamkarov

where

K1 =
96H4

π5A1h1

√√√√√G
(1)
12

G
(1)
23

∞∑
n=1

[1− (−1)n]

n5
tanh

⎛
⎝
√√√√√G

(1)
23

G
(1)
12

nπA1t1
2H

⎞
⎠,

K2 =
96H4

π5A2h2

√√√√√G
(2)
12

G
(2)
13

∞∑
n=1

[1− (−1)
n
]

n5
tanh

⎛
⎝
√√√√√G

(2)
13

G
(2)
12

nπA2t2
2H

⎞
⎠.

(1.52)

Here the superscripts indicate the elements of the unit cell Ω1, Ω2 and Ω3;

see Fig. 1.11(b); A1 and A2 are the coefficients of the first quadratic form

of the mid-surface of a carrier layer; F
(w)
1 , F

(w)
2 , S

(w)
1 , S

(w)
2 and J

(w)
1 , J

(w)
2

are defined as follows:

F
(w)
1 =

Ht1
h1

, F
(w)
2 =

Ht2
h2

, S
(w)
1 =

(H2 +H)t1
2h1

,

S
(w)
2 =

(H2 +H)t2
2h2

, J
(w)
1 =

(4H3 + 6H2 + 3H)t1
12h1

,

J
(w)
2 =

(4H3 + 6H2 + 3H)t2
12h2

.

(1.53)

All the non-zero effective stiffness moduli of the sandwich composite

shell with a honeycomb filler shown in Fig. 1.12 are obtained as follows (see

[5, 27] for details):

〈
b1111
〉
=
〈
b2222
〉
=

2E0t0
1− ν20

+

√
3

4

EHt

a
,

〈
b1212
〉
=

E0t0
(1 + ν0)

+

√
3

12

EHt

a
,

〈
b1122
〉
=
〈
b2211
〉
=

2ν0E0t0
1− ν20

+

√
3

12

EHt

a
,

〈
zb∗1111

〉
=
〈
zb∗2222

〉
=

E0

1− ν20

(
H2t0
2

+Ht20 +
2t30
3

)
+

√
3

48

EH3t

a
,

〈
zb∗1122

〉
=
〈
zb∗2211

〉
=

ν0E0

1− ν20

(
H2t0
2

+Ht20 +
2t30
3

)
+

√
3

144

EH3t

a
,

〈
zb∗1212

〉
=

E0

2(1 + ν0)

(
H2t0
2

+Ht20 +
2t30
3

)
+

EH3t

12(1 + ν)a

×
[
3 + ν

4
√
3

− 128H

(
√
3π5At)

∞∑
n=1

tanh(π(2n− 1)At/(2H))

(2n− 1)5

]
.

(1.54)
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Micromechanical Modeling of Advanced Composites 29

The first terms in Eq. (1.54) define the contribution from the top and

bottom carrier layers of the sandwich shell while the latter terms represent

the contribution from the honeycomb filler. E0 and ν0 are the properties

of the material of the carrier layers, and E and ν of the honeycomb

foil material. We have confined our attention here to the case of equal

coefficients of the first quadratic form of the mid-surface of the shell, i.e.,

A1 = A2 = A. The details of the derivation of Eq. (1.54) and more

complicated cases of composite sandwich shells with generally orthotropic

constituent materials will be presented below in Section 1.8.

1.6. Generally Orthotropic Grid-Reinforced Composite Shell

In this section, we will apply the asymptotic homogenization model to a

composite shell reinforced with a number of families of parallel reinforcing

elements. An example of a shell with two mutually perpendicular reinforce-

ment families is shown in Fig. 1.13. We assume that the reinforcements are

made of generally orthotropic materials and that they are much stiffer than

the surrounding matrix material. As such, we may neglect the contribution

of the matrix in the ensuing analysis.

As in the approach we used above in Section 1.4, we will first consider

a simpler type of shell with only one family of reinforcements. The effective

elastic coefficients of more general structures with several reinforcement

families will be determined by superposition.

Consider the unit cell of Fig. 1.14 shown both before and after the

introduction of the microscopic variables ξ1, ξ2 and z, defined in Eq. (1.40).

Note that the matrix [C] of elastic coefficients of an orthotropic material

referenced to a coordinate system that has been rotated by the angle ϕ of

the reinforcing grid orientation (in the ξ1−ξ2 plane) with respect to the

Orthotropic 
reinforcements

Fig. 1.13. Composite shell with two families of orthotropic reinforcements.
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γ

α2

α1

δh1

δh2δ

ϕ

z 

ξ2

ξ1

A1

A21

ϕ′

zγ
ξ
ξα

2

11

α2

→
→
→

Fig. 1.14. Unit cell in microscopic (ξ1, ξ2, z) and macroscopic (α1, α2, γ) variables.

principal material coordinate system coincides with that of a monoclinic

material and has the following form:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.55)

After this coordinate transformation, the shape of the unit cell changes and

the angle between the reinforcement and the ξ1-axis changes to angle ϕ
′ (see

Fig. 1.14) through the following relationship ϕ′ = arctan(A2h1

A1h2
tanϕ).

We begin by first solving for bλμij from Eq. (1.44). These local functions

are given as follows for an orthotropic material of reinforcement:

bλμ11 =
1

h1
C11

∂Uλμ1

∂ξ1
+

1

h2
C12

∂Uλμ2

∂ξ2
+ C13

∂Uλμ3

∂z

+C16

[
1

h1

∂Uλμ2

∂ξ1
+

1

h2

∂Uλμ1

∂ξ2

]
+ C11λμ, (1.56)
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Micromechanical Modeling of Advanced Composites 31

bλμ22 =
1

h1
C12

∂Uλμ1

∂ξ1
+

1

h2
C22

∂Uλμ2

∂ξ2
+ C23

∂Uλμ3

∂z

+C26

[
1

h1

∂Uλμ2

∂ξ1
+

1

h2

∂Uλμ1

∂ξ2

]
+ C22λμ, (1.57)

bλμ33 =
1

h1
C13

∂Uλμ1

∂ξ1
+

1

h2
C23

∂Uλμ2

∂ξ2
+ C33

∂Uλμ3

∂z

+C36

[
1

h1

∂Uλμ2

∂ξ1
+

1

h2

∂Uλμ1

∂ξ2

]
+ C33λμ, (1.58)

bλμ12 =
1

h1
C16

∂Uλμ1

∂ξ1
+

1

h2
C26

∂Uλμ2

∂ξ2
+ C36

∂Uλμ3

∂z

+C66

[
1

h1

∂Uλμ2

∂ξ1
+

1

h2

∂Uλμ1

∂ξ2

]
+ C12λμ, (1.59)

bλμ13 = C55

[
1

h1

∂Uλμ3

∂ξ1
+
∂Uλμ1

∂z

]
+ C45

[
1

h2

∂Uλμ3

∂ξ2
+
∂Uλμ2

∂z

]
+ C13λμ, (1.60)

bλμ23 = C45

[
1

h1

∂Uλμ3

∂ξ1
+
∂Uλμ1

∂z

]
+ C44

[
1

h2

∂Uλμ3

∂ξ2
+
∂Uλμ2

∂z

]
+ C23λμ. (1.61)

In order to reduce the complexity of the associated problems, we

introduce a new coordinate system {η1, η2, z} obtained via rotation through

an angle ϕ′ around the z-axis, such that the η1-coordinate axis coincides

with the longitudinal axis of the reinforcing element and the η2-coordinate

axis is perpendicular to it; see Fig. 1.15. With this transformation the

problem at hand is now independent of the η1 coordinate and will only

η2

η1

z

Fig. 1.15. Coordinate transformation to the microscopic coordinates (η1, η2, z).
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32 A.L. Kalamkarov

depend on η2 and z. Consequently, the order of the differential equations is

reduced by one and the analysis of the problem is simplified. Thus the bλμij
functions from Eqs. (1.56)–(1.61) can be written as follows:

bλμ11 = − 1

h1
C11 sinϕ

′ ∂U
λμ
1

∂η2
+

1

h2
C12 cosϕ

′ ∂U
λμ
2

∂η2
+ C13

∂Uλμ3

∂z

+C16

[
− 1

h1
sinϕ′ ∂U

λμ
2

∂η2
+

1

h2
cosϕ′ ∂U

λμ
1

∂η2

]
+ C11λμ, (1.62)

bλμ22 = − 1

h1
C12 sinϕ

′ ∂U
λμ
1

∂η2
+

1

h2
C22 cosϕ

′ ∂U
λμ
2

∂η2
+ C23

∂Uλμ3

∂z

+C26

[
− 1

h1
sinϕ′ ∂U

λμ
2

∂η2
+

1

h2
cosϕ′ ∂U

λμ
1

∂η2

]
+ C22λμ, (1.63)

bλμ33 = − 1

h1
C13 sinϕ

′ ∂U
λμ
1

∂η2
+

1

h2
C23 cosϕ

′ ∂U
λμ
2

∂η2
+ C33

∂Uλμ3

∂z

+C36

[
− 1

h1
sinϕ′ ∂U

λμ
2

∂η2
+

1

h2
cosϕ′ ∂U

λμ
1

∂η2

]
+ C33λμ, (1.64)

bλμ12 = − 1

h1
C16 sinϕ

′ ∂U
λμ
1

∂η2
+

1

h2
C26 cosϕ

′ ∂U
λμ
2

∂η2
+ C36

∂Uλμ3

∂z

+C66

[
− 1

h1
sinϕ′ ∂U

λμ
2

∂η2
+

1

h2
cosϕ′ ∂U

λμ
1

∂η2

]
+ C12λμ, (1.65)

bλμ13 = C55

[
− 1

h1
sinϕ′ ∂U

λμ
3

∂η2
+
∂Uλμ1

∂z

]

+C45

[
1

h2
cosϕ′ ∂U

λμ
3

∂η2
+
∂Uλμ2

∂z

]
+ C13λμ, (1.66)

bλμ23 = C45

[
− 1

h1
sinϕ′ ∂U

λμ
3

∂η2
+
∂Uλμ1

∂z

]

+C44

[
1

h2
cosϕ′ ∂U

λμ
3

∂η2
+
∂Uλμ2

∂z

]
+ C23λμ, (1.67)
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and the unit-cell problem and associated boundary condition (1.46) can be

rewritten in terms of the coordinates η2 and z as follows:

− sinϕ′

h1

∂

∂η2
bλμi1 +

cosϕ′

h2

∂

∂η2
bλμi2 +

∂

∂z
bλμi3 = 0, (1.68)

[
n′
2

(
− sinϕ′

h1
bλμi1 +

cosϕ′

h2
bλμi2

)
+ n′

3b
λμ
i3

]∣∣∣∣∣∣
�
= 0, (1.69)

where n′
2 and n′

3 are the components of the unit vector normal to the

lateral surface of the reinforcement with respect to the {η1, η2, z} coordinate
system, and the suffix � stands for the matrix/reinforcement interface.

We will now solve the system defined by Eqs. (1.62)–(1.68) and associated

boundary condition (1.69) by assuming that the local functions Uλμ1 and

Uλμ2 are linear in η2 and are independent of z, whereas Uλμ3 is linear in z

and independent of η2. That is, the solution can be found as follows:

Uλμ1 = Aλμη2, Uλμ2 = Bλμη2, Uλμ3 = Cλμz, (1.70)

where Aλμ, Bλμ and Cλμ are constants to be determined. Equation (1.70) is

substituted into the expressions (1.62)–(1.67), which allows the calculation

of the aforementioned constants in conjunction with Eq. (1.69). After

solving the pertinent system of algebraic equations the results are then

back-substituted into Eqs. (1.62)–(1.67) to yield the following formulas for

all the non-zero local functions bklij :

bλμ11 =
C12λμ[Λ4Λ7 + Λ8Λ3] + C11λμ[Λ5Λ7 − Λ9Λ3] + C22λμ[Λ6Λ7] + C33λμΛ3

Λ7

[
A2 tan φ

A1
Λ4 + Λ5 +

A2
2 tan2 φ

A2
1

Λ6

]
+ A2 tan φ

A1
[Λ8Λ3] − Λ9Λ3

,

(1.71)

bλμ22 =
C12λμ[Λ4Λ7 + Λ8Λ3] + C11λμ[Λ5Λ7 − Λ9Λ3] + C22λμ[Λ6Λ7] + C33λμΛ3

Λ7

[
A1

A2 tan φ
Λ4 +

A2
1

A2
2 tan2 φ

Λ5 + Λ6

]
+ A1

A2 tanφ
[Λ8Λ3] − A2

1

A2
2 tan2 φ

Λ9Λ3

,

(1.72)

bλμ12 =
C12λμ[Λ4Λ7 + Λ8Λ3] + C11λμ[Λ5Λ7 − Λ9Λ3] + C22λμ[Λ6Λ7] + C33λμΛ3

Λ7

[
Λ4 + A1

A2 tan φ
Λ5 + A2 tan φ

A1
Λ6

]
+ [Λ8Λ3] − A1

A2 tan φ
Λ9Λ3

,

(1.73)

where the quantities Λ1,Λ2, . . . ,Λ9 can be found in [60].
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34 A.L. Kalamkarov

We now turn our attention to the local functions b∗klij . We begin by

expanding Eq. (1.45) keeping Eq. (1.55) in mind as well as the coordinate

transformation defined by Figs. 1.14 and 1.15. The resulting expressions are

as follows:

b∗λμ11 = − 1

h1
C11 sinϕ

′ ∂V
λμ
1

∂η2
+

1

h2
C12 cosϕ

′ ∂V
λμ
2

∂η2
+ C13

∂V λμ3

∂z

+C16

[
− 1

h1
sinϕ′ ∂V

λμ
2

∂η2
+

1

h2
cosϕ′ ∂V

λμ
1

∂η2

]
+ zC11λμ, (1.74)

b∗λμ22 = − 1

h1
C12 sinϕ

′ ∂V
λμ
1

∂η2
+

1

h2
C22 cosϕ

′ ∂V
λμ
2

∂η2
+ C23

∂V λμ3

∂z

+C26

[
− 1

h1
sinϕ′ ∂V

λμ
2

∂η2
+

1

h2
cosϕ′ ∂V

λμ
1

∂η2

]
+ zC22λμ, (1.75)

b∗λμ33 = − 1

h1
C13 sinϕ

′ ∂V
λμ
1

∂η2
+

1

h2
C23 cosϕ

′ ∂V
λμ
2

∂η2
+ C33

∂V λμ3

∂z

+C36

[
− 1

h1
sinϕ′ ∂V

λμ
2

∂η2
+

1

h2
cosϕ′ ∂V

λμ
1

∂η2

]
+ zC33λμ, (1.76)

b∗λμ12 = − 1

h1
C16 sinϕ

′ ∂V
λμ
1

∂η2
+

1

h2
C26 cosϕ

′ ∂V
λμ
2

∂η2
+ C36

∂V λμ3

∂z

+C66

[
− 1

h1
sinϕ′ ∂V

λμ
2

∂η2
+

1

h2
cosϕ′ ∂V

λμ
1

∂η2

]
+ zC12λμ, (1.77)

b∗λμ13 = C55

[
− 1

h1
sinϕ′ ∂V

λμ
3

∂η2
+
∂V λμ1

∂z

]

+C45

[
1

h2
cosϕ′ ∂V

λμ
3

∂η2
+
∂V λμ2

∂z

]
+ zC13λμ, (1.78)

b∗λμ23 = C45

[
− 1

h1
sinϕ′ ∂V

λμ
3

∂η2
+
∂V λμ1

∂z

]

+C44

[
1

h2
cosϕ′ ∂V

λμ
3

∂η2
+
∂V λμ2

∂z

]
+ zC23λμ. (1.79)
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Similarly, the unit-cell problem (1.47) becomes:

− sinϕ′

h1

∂

∂η2
b∗λμi1 +

cosϕ′

h2

∂

∂η2
b∗λμi2 +

∂

∂z
b∗λμi3 = 0, (1.80)

[
n′
2

(
− sinϕ′

h1
b∗λμi1 +

cosϕ′

h2
b∗λμi2

)
+ n′

3b
∗λμ
i3

]∣∣∣∣∣∣
�
= 0. (1.81)

Since the local functions b∗klij are related to the bending deformations it

is expected that the pertinent solution will depend on the shape of the

reinforcing elements (unlike the corresponding bklij coefficients). Indeed the

presence of the z coordinates in Eqs. (1.74)–(1.79) implies exactly that.

From the practical viewpoint, let us assume that the reinforcing elements

have a circular cross-section. From the coordinate transformation from

α1, α2 to ξ1, ξ2, defined by Eq. (1.40), we note that the cross-section

will change from circular to elliptical with the eccentricity e′ given by the

following formula:

e′ =
(
1− A2

1A
2
2

A2
2h

2
1 sin

2 ϕ+A2
1h

2
2 cos

2 ϕ

)1/2

. (1.82)

Additionally, the components n′
2 and n′

3 (clearly n′
1 = 0) of the unit vector

normal to the surface of the reinforcing element are as follows:

n′
2 = η2[1− (e′)2]−1 and n′

3 = z. (1.83)

It is possible to satisfy the differential equation (1.81) and boundary

conditions (1.81) by assuming that the functions V λμi have the following

general functional form:

V λμi =Wλμ
i1 η2z +Wλμ

i2

η22
2

+Wλμ
i3

z2

2
, (1.84)

where Wλμ
ij are constants to be determined. The determination of the local

functions b∗λμij follows in a straightforward, albeit algebraically tedious

manner. Keeping Eqs. (1.82) and (1.83) in mind, we first substitute

Eq. (1.84) into Eqs. (1.80) and (1.81) and calculate the constants Wλμ
ij by

comparing terms with like powers of η2 and z. Once the Wλμ
ij functions

are determined they are substituted into Eq. (1.84) and the resulting

expressions are back-substituted into Eqs. (1.74)–(1.79) to obtain the
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desired local functions b∗λμij . As a result, the following expressions for the

functions b∗λμ11 , b∗λμ22 and b∗λμ12 are found:

b∗λμ11 = zBλμ11 ; b∗λμ22 = zBλμ22 ; b∗λμ12 = zBλμ12 , (1.85)

where

Bλμ11 =

∑
5

∑
6 −
∑

2

∑
3∑

1

∑
2 −
∑

4

∑
5

, Bλμ22 =

∑
3

∑
4 −
∑

1

∑
6∑

1

∑
2 −
∑

4

∑
5

,

Bλμ12 =
A2 tanϕ

2A1
Bλμ11 +

A1

2A2 tanϕ
Bλμ22 .

(1.86)

Explicit expressions for
∑

1,
∑

2, . . . ,
∑

6, which depend on the

geometric parameters of the unit cell and the material properties of the

reinforcements, can be found in [60].

1.6.1. Calculation of the effective elastic coefficients

The effective elastic coefficients for the reinforced generally orthotropic

composite shell of Fig. 1.14 can be calculated by means of

expressions (1.71)–(1.73), (1.85) and (1.86). Let us denote the volume of

one reinforcing element within the unit cell of Fig. 1.14 by δ3V . Then, the

effective elastic coefficients are given by

〈
bλμij
〉
=

1

|Ω|
∫
Ω

bλμij dv =
V

h1h2
bλμij ,

〈
zbλμij

〉
=

1

|Ω|
∫
Ω

zbλμij dv = 0,

〈
b∗λμij

〉
= 0,

〈
zb∗λμij

〉
=

V

16h1h2
Bλμij .

(1.87)

The corresponding results for composite shells reinforced by more than

one family of orthotropic reinforcements can be obtained from Eq. (1.87)

by superposition. In doing so, we accept an error incurred due to stress

variations at the regions of overlap of the reinforcements. However, this

error is small and will not contribute significantly to the integral over the

volume of the unit cell as discussed earlier in Section 1.4.

1.7. Examples of Grid-Reinforced Composite Shells with

Orthotropic Reinforcements

The mathematical model and methodology presented in Section 1.6 can

be used in analysis and design to tailor the effective elastic properties of

the above reinforced composite shells to meet the criteria of a particular

application, by selecting the appropriate shape of the shells as well
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as the type, number, orientation and geometric characteristics of the

reinforcements. In this section, we will apply our general solution to different

composite shells and plates. In the first example, we will consider a general

composite shell reinforced with isotropic reinforcements. In the second

example, the special case of a cylindrical shell will be considered. In the

third example, we will obtain the closed-form expressions for the effective

elastic properties of single-walled carbon nanotubes. In the fourth example,

we will consider general multilayered composite shells and illustrate our

results with a typical three-layer cylindrical shell. Finally, we will observe

how our model can be used to derive the effective elastic coefficients of

grid-reinforced composite plates. Without loss of generality, we will assume

that in the considered grid-reinforced structures all reinforcements have

similar cross-sectional areas and are made of the same material. If desired,

however, the model allows for each family of reinforcements to have specific

geometric and material properties.

Example 1.1: Composite shell reinforced with isotropic

reinforcements

In the case of isotropic reinforcements, all the non-zero effective stiffness

moduli are as follows [5, 25, 27]:

〈
b1111
〉
=

VA4
1

h1h2Θ4
E cos4 φ,

〈
b2222
〉
=

VA4
2

h1h2Θ4
E sin4 φ,

〈
b1211
〉
=

VA3
1A2

h1h2Θ4
E cos3 φ sinφ,

〈
b1222
〉
=

VA1A
3
2

h1h2Θ4
E cosφ sin3 φ,

〈
b2211
〉
=
〈
b1212
〉
=

VA2
1A

2
2

h1h2Θ4
E cos2 φ sin2 φ;

(1.88)

〈
zb∗1111

〉
=

V

16h1h2

EA4
1

(1 + ν)Θ4
cos2 φ[2A4

2Ψsin2 φ+ cos2 φ(1 + ν)],

〈
zb∗2211

〉
=

V

16h1h2

EA2
1A

2
2

(1 + ν)Θ4
cos2 φ sin2 φ[−2A2

1A
2
2Ψ+ 1 + ν],

〈
zb∗1211

〉
=

V

16h1h2

EA3
1A2

(1 + ν)Θ4
cosφ sinφ

× [A2
2Ψ(A2

2 sin
2 φ−A2

1 cos
2 φ) + cos2 φ(1 + ν)],
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〈
zb∗1212

〉
=

V

16h1h2

EA2
1A

2
2

2(1 + ν)Θ4
(1.89)

× [(A2
1 cos

2 φ−A2
2 sin

2 φ)Ψ + 2 cos2 φ sin2 φ(1 + ν)],

〈
zb∗1222

〉
=

V

16h1h2

EA1A
3
2

(1 + ν)Θ4
cosφ sinφ

× [A2
1Ψ(A2

1 cos
2 φ−A2

2 sin
2 φ) + sin2 φ(1 + ν)],

〈
zb∗2222

〉
=

V

16h1h2

EA4
2

(1 + ν)Θ4
sin2 φ[2A4

1Ψcos2 φ+ sin2 φ(1 + ν)].

In Eqs. (1.72) and (1.73), E and ν are Young’s modulus and Poisson’s ratio

of the reinforcement and

Θ = A2
1 cos

2 ϕ+ A2
2 sin

2 ϕ, Ψ =
√
Θ2 +A2

1A
2
2. (1.90)

Example 1.2: Thin cylindrical shell

The second example represents a cylindrical composite shell (i.e., we can

assume that A1 = A2 = 1) reinforced with a single family of reinforcements

parallel to the longitudinal axis of the shell (ϕ = 00) as shown in Fig. 1.16.

The effective elastic coefficients of this structure can readily be determined

from Eq. (1.87) with the use of the solutions (1.71)–(1.73) and (1.86).

Although the resulting expressions are too lengthy to be reproduced here,

typical coefficients will be presented graphically for the reinforcement

material properties given in Table 1.2.

Fig. 1.16. Cylindrical composite shell with a single family of orthotropic reinforcements.

Table 1.2. Reinforcement material properties.

Property E1 E2 = E3 G12 = G13 G23 ν12 = ν13 = ν23

Value 152.0 GPa 4.1 GPa 2.9 GPa 1.5 GPa 0.35
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b aPM11
11 bz aPM11

11
∗

11
11zb∗

11
11b

1 2R V h h=

Fig. 1.17. Plot of
〈
b1111

〉
and

〈
zb∗1111

〉
vs. R, volume fraction of reinforcement for a

composite shell reinforced with a single family of orthotropic reinforcements (shown in
Fig. 1.16).

Figure 1.17 shows a typical plot for the variation of
〈
b1111
〉
and

〈
zb∗1212

〉
vs. R for the reinforced shell of Fig. 1.16, where R is the ratio of the volume

of one reinforcing element within the unit cell to the volume of the entire

unit cell. In other words, R is the volume fraction of the reinforcements and

can be expressed as:

R = V/(h1h2). (1.91)

As expected, both the bending and extensional stiffnesses in the

direction of the reinforcements increase with an increase in the volume

fraction. Clearly, all the effective coefficients can be modified to fit different

requirements by changing either the geometrical characteristics of the shell

and reinforcements or by changing the type and number of reinforcement

families.

Example 1.3: Single-walled carbon nanotube

Of particular interest in the context of cylindrical grid-reinforced shells is

the case of a single-walled carbon nanotube (SWCNT). Carbon nanotubes

are a recently discovered allotrope of carbon comprising long-chained

molecules of carbon with carbon atoms arranged in a hexagonal network

to form a tubular structure. They are classified as single- or multi-walled

depending on the number of walls. Typically, the nanotubes are about

20 to 150 Å in diameter and about 1000 to 2000 Å in length. And they

demonstrate remarkable strength and stiffness properties: Young’s modulus
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2

1α

2δ

δ

2l

l

(a) (b)

Fig. 1.18. (a) Schematic representation of an SWCNT; (b) unit cell of an SWCNT.

of 1.3 ± 0.5TPa and tensile strength of 150 GPa for an SWCNT. Carbon

nanotubes can be made by rolling up a carbon-sheet in various ways.

Figure 1.18(b) shows the unit cell of an SWCNT in the so-called ‘arm-

chair’ configuration.

As Fig. 1.18 demonstrates, the periodic nature of SWCNTs makes

them particularly amenable to study by asymptotic homogenization

techniques and the micromechanical model developed in Section 1.6; see

Kalamkarov et al. [65, 66] for details. In this micromechanical model the

C–C bonds are modeled by bars as shown in Fig. 1.18(b). It is assumed that

these bars are of circular cross-section with the material properties E and ν.

Equations (1.88)–(1.90) can be applied to the geometry of the unit cell of

the SWCNT shown in Fig. 1.18(b), and all the effective stiffnesses moduli

entering the constitutive relations (1.48) as coefficients can be calculated.

As a result, the following constitutive relations of the homogenized SWCNT

were obtained [65, 66]:

N11 = δ2
E

l

π

16
√
3
(3ε11 + ε22),

N22 = δ2
E

l

π

16
√
3
(ε11 + 3ε22), (1.92)

N12 = δ2
E

l

π

16
√
3
ε12,
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M11 = δ3
E

(1 + ν)l

π
√
3

768
[(4 + 3ν)k11 + νk22],

M22 = δ3
E

(1 + ν)l

π
√
3

768
[νk11 + (4 + 3ν)k22], (1.93)

M12 = δ3
E

l

π
√
3

768
k12.

The constitutive relations given by Eqs. (1.92) and (1.93) can be further

applied to derive the analytical formulas for the engineering constants of

SWCNTs. In particular, Eq. (1.76) yields the following formula for the

effective Young’s moduli E11 and E22 of SWCNTs:

E11 = E22 = ESWCNT =
π

6
√
3

δE

l
. (1.94)

Using Eq. (1.76) we also obtain ν12 = 0.33 and the following formula for

the effective shear modulus G12 of an SWCNT:

G12 =
π

32
√
3

δE

l
. (1.95)

It can be observed from Eq. (1.78) that the Young’s modulus of a carbon

nanotube increases with increasing bar diameter δ and with decreasing C–C

link length l; see Fig. 1.18(b). In other words, this can be interpreted by

saying that the Young’s modulus of an SWCNT increases with decreasing

tube diameter d. This dependency of Young’s modulus on the tube diameter

of an SWCNT is consistent with experimental observations. Using typical

values of E = 5.488 × 10−6N/nm2, δ = 0.147nm and l = 0.142nm, the

effective Young’s and shear moduli of SWCNTs were determined from

Eqs. (1.94) and (1.95) to be 1.71TPa and 0.32TPa, respectively [66]. These

results compare favorably with the results of other researchers who used

experimental or numerical techniques in their analyses; see, e.g., [68, 69].

Example 1.4: Laminated grid-reinforced composite shell

with generally orthotropic reinforcements

In this example, we will analyze a laminated composite shell formed

by N layers, each layer reinforced with a single family of orthotropic

reinforcements; see Fig. 1.19. We assume that the family of reinforcements

in the jth layer of the shell makes an angle ϕj with the coordinate line α1.
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j = 1 

j = 2 

. 

. 

. 

j = N 

δaN

...   . 

Fig. 1.19. Composite N-layered reinforced shell with each layer reinforced with a family
of orthotropic reinforcements.

The distance between the axis of the jth reinforcement from the shell’s mid-

surface is denoted by δaj (in the {α1, α2, γ} coordinate system) as shown

in Fig. 1.19.

One may derive expressions for the effective properties in a similar way

as demonstrated in Section 1.6 after modifying the unit-cell problems in

Eqs. (1.44) and (1.45) by replacing z with (z′ + aj). The procedure, though

algebraically tedious, is straightforward. The final results show that the

local functions bklij remain as in Eqs. (1.71)–(1.73) while the local functions

b∗klij become

b∗λμij = z′Bλμij + ajb
λμ
ij , (1.96)

where bλμij and Bλμij are given by Eqs. (1.71)–(1.73) and (1.86) after repla-

cing tanϕ with tanϕj and C
λμ
mn with Cλμmn(j). Finally, the effective properties

as calculated by summation over all N layers are as follows:

〈
bλμij
〉
=

N∑
j=1

bλμij γj ,
〈
zbλμij

〉
=
〈
b∗λμij

〉
=

N∑
j=1

bλμij γjaj,

〈
zb∗λμij

〉
=
∑N
j=1

(
Bλμ

ij γj

16 + a2jb
λμ
ij γj

)
,

(1.97)

where γj is the volume fraction of reinforcements in the jth layer and is

given by

γj =
Vj
h1h2

. (1.98)

We will now illustrate Example 1.4 by considering a three-layer

composite shell with orthotropic reinforcements oriented at ϕ = 60◦,
ϕ = 90◦ and ϕ = 120◦ as shown in Fig. 1.20. The effective stiffness moduli
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δh1 δ

ϕ = 60o

ϕ = 90o

ϕ = 120o

Fig. 1.20. Unit cell for three-layer composite shell.

22
22b

11
11b

Reinforcement volume fraction γ j

M
Pa

Fig. 1.21. Plot of typical extensional effective stiffness moduli vs. reinforcement volume
fraction per layer γj .

are readily obtained from Eq. (1.97) and although the resulting expressions

are too lengthy to be reproduced here, some of the effective stiffnesses will

be presented graphically. We will assume that the shell layers are cylindrical

and that the reinforcements have the properties given in Table 1.2.

Figure 1.21 shows the variation of effective stiffnesses
〈
b1111
〉
and

〈
b2222
〉

vs. γj . Without loss of generality, we assume that the reinforcement volume

fraction is the same in each of the three layers. As expected, the extensional

stiffness for the shell is larger in the α2 direction than in the α1 direction

because there are more reinforcements either entirely (middle layer) or

partially (top and bottom layers) oriented in the α2 direction. For the

same reason, the bending stiffness in the α2 direction is larger than its

counterpart in the α1 direction as shown in Fig. 1.22.
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M
Pa

 

Reinforcement volume fraction   j

22
22zb∗

11
11zb∗

Fig. 1.22. Plot of typical bending effective elastic stiffness vs. reinforcement volume
fraction per layer γj .

Example 1.5: Composite plates with generally orthotropic

reinforcements

As a final example, we will now apply the obtained general results for

the case of a thin plate reinforced with a grid of generally orthotropic

reinforcements, shown in Fig. 1.23.

The effective stiffness moduli for the grid-reinforced plate can readily

be obtained from Eqs. (1.71)–(1.73), (1.85) and (1.86) by letting A1 =

A2 = 1. The results are too lengthy to reproduce here, and for purposes

of illustration we will compare graphically some of the effective stiffnesses

pertaining to the two structures shown in Figs. 1.24 and 1.25. The structure

of Fig. 1.24 consists of two mutually perpendicular families of orthotropic

reinforcements (ϕ = 0◦ and ϕ = 90◦) forming a rectangular reinforcing

grid. This structure will be referred to in the following as S1.

The structure of Fig. 1.25 has three families of orthotropic reinforce-

ments oriented at ϕ = 45◦, ϕ = 90◦ and ϕ = 135◦ forming a triangular

reinforcing grid. This structure will be referred to as S2. The unit cells

of S1 and S2 are also shown in Figs. 1.24 and 1.25. In the ensuing plots

we will assume that the reinforcements have the elastic properties given

in Table 1.2. The different effective stiffnesses are plotted vs. the volume

fraction of the reinforcements R defined in Eq. (1.91).

Figure 1.26 shows the variation of
〈
b1111
〉
vs. R for the two structures S1

and S2. It can be observed that the stiffness in the ξ1 direction is larger for S1
than for S2 because S1 has more reinforcements oriented in the ξ1 direction.
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Matrix 

Orthotropic
reinforcements 

Fig. 1.23. Composite plate reinforced with a network of orthotropic bars.

Fig. 1.24. Grid-reinforced plate (structure S1) with reinforcements arranged at angles
ϕ = 0◦ and ϕ = 90◦.

Fig. 1.25. Grid-reinforced plate (structure S2) with reinforcements arranged at angles
ϕ = 45◦, ϕ = 90◦ and ϕ = 135◦.
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11
11b  MPa 

VR h1h2
=

S1

S2

Fig. 1.26. Plot of elastic stiffness
〈
b1111

〉
vs. volume fraction of reinforcements R for

structures S1 and S2.

22
22b  MPa 

S1

S2

VR h1h2
=

Fig. 1.27. Plot of elastic stiffness
〈
b2222

〉
vs. volume fraction of reinforcements R for

structures S1 and S2.

S2 has an overall larger number of reinforcements but one of them is oriented

entirely in the ξ2 direction and therefore makes no contribution to the

stiffness in the ξ1 direction while the other two are oriented at an angle

to the ξ1 axis and therefore only partially contribute to the value of
〈
b1111
〉
.

For the same reason, we expect that the trend in the ξ2 direction will be

reversed and that S2 should be stiffer. Indeed Fig. 1.27 shows precisely that.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Micromechanical Modeling of Advanced Composites 47

11
11zb∗ 〉 MPa〈 S1 S2

VR h1h2
=

Fig. 1.28. Plot of
〈
zb∗1111

〉
vs. volume fraction of reinforcements R for structures S1

and S2.

Similar considerations hold for the remaining effective stiffness moduli.

Figure 1.28 shows the variation of
〈
zb∗1111

〉
vs. R for S1 and S2. We note that

this coefficient characterizes the bending stiffness of the composite plate

in the ξ1–z plane. On the basis of the arguments given above the value

of the
〈
zb∗1111

〉
coefficient is higher for S1 than S2. It is important to note,

however, that all of these trends and characteristics can be easily modified

by changing the size, type, angular orientation, etc. so that the desirable

elastic coefficients are obtained to conform to a particular application.

1.8. Sandwich Composite Shells with Cellular Cores

Composite sandwich structures with cellular cores have found numerous

engineering applications; see, e.g., [70, 71]. In many cases, the methods of

synthesis and fabrication of these structures are controlled by the phase

separation processes with surface tension being the controlling physical

factor; see [72]. Therefore, the hexagonal cell that has the minimal surface

area will have a big advantage in relation to the thermoelastic performance

of sandwich structures in engineering applications.

We considered earlier in Section 1.5 an example of a three-layered

sandwich shell with a hexagonal honeycomb filler; see Fig. 1.12. Now we

will present the details of the derivation of the effective stiffness moduli

given earlier in Eq. (1.41) in the case of isotropic constituent materials.

We will apply the above-introduced asymptotic homogenization technique
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Fig. 1.29. Unit cell of a three-layered composite sandwich with honeycomb filler.

to examine the composite sandwich shell with hexagonal honeycomb filler

with a periodicity cell consisting of ten individual elements as shown in

Fig. 1.29. We assume that A1 = A2 = 1 and that all elements of the

sandwich structure shown in Fig. 1.29 are made of different generally

orthotropic materials.

As noted above, the matrix [C] of elastic coefficients of an orthotropic

material referenced to a coordinate system that has been rotated by an

angle ϕ with respect to its principal material coordinate system coincides

with that of a monoclinic material and has the form given in Eq. (1.55).

The analytical solution of local problems (1.44), (1.46), and (1.45), (1.47)

in the considered case can be found with the assumption that the thickness

of each of the cell elements is small in comparison to the other dimensions,

i.e., under the conditions t � h1, h2, H , t0 � H and H ∼ h1, h2. This

assumption is very appropriate for sandwich structures with cellular cores

used in engineering applications. On the basis of this analytical solution for

all non-zero effective stiffness moduli we obtain (see [63, 64] for details):

〈
b1111
〉
=

E
(1)
2 F1

1− ν
(1)
12 ν

(1)
21

+
E

(2)
2 F2

1− ν
(2)
12 ν

(2)
21

+
10∑
i=3

E(i)FiS
4
(i)h

−4
2

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,
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〈
b2222
〉
=

E
(1)
1 F1

1− ν
(1)
12 ν

(1)
21

+
E

(2)
1 F2

1− ν
(2)
12 ν

(2)
21

+

10∑
i=3

E(i)FiC
4
(i)h

−4
2

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,

〈
b1122
〉
=
〈
b2211
〉
=

ν
(1)
12 E

(1)
1 F1

1− ν
(1)
12 ν

(1)
21

+
ν
(2)
12 E

(2)
1 F2

1− ν
(2)
12 ν

(2)
21

+

10∑
i=3

E(i)FiC
2
(i)S

2
(i)h

−2
1 h−2

2

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,

〈
b1212
〉
= G

(1)
12 F1 +G

(2)
12 F2

+

10∑
i=3

E(i)FiC
2
(i)S

2
(i)h

−2
1 h−2

2

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,

〈
zb∗1111

〉
=

E
(1)
1 J1

1− ν
(1)
12 ν

(1)
21

+
E

(2)
1 J2

1− ν
(1)
12 ν

(1)
21

+

10∑
i=3

E(i)JiS
4
(i)h

−4
2

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,

〈
zb∗2222

〉
=

E
(1)
2 J1

1− ν
(1)
12 ν

(1)
21

+
E

(2)
2 J2

1− ν
(1)
12 ν

(1)
21

+

10∑
i=3

E(i)JiC
4
(i)h

−4
1

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,

〈
zb∗1122

〉
=
〈
zb∗2211

〉
=

ν
(1)
12 E

(1)
1 J1

1− ν
(1)
12 ν

(1)
21

+
ν
(2)
12 E

(2)
1 J2

1− ν
(2)
12 ν

(2)
21

+
10∑
i=3

E(i)JiC
2
(i)S

2
(i)h

−2
1 h−2

2

(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)−2
,

〈
zb∗1212

〉
= G

(1)
12 J1 +G

(2)
12 J2 +

10∑
i=3

G
(i)
12Ji

⎛
⎝ C2

(i)S
2
(i)h

−2
1 h−2

2(
C2

(i)h
−2
1 + S2

(i)h
−2
2

)2
− 8H

3π5h1

∞∑
n=1

tanh[π(2n− 1)t/(2H)]

(2n− 1)5

)
. (1.99)
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In the above formulas, the superscripts (1), (2) and (i), i = 3, 4, . . . , 10,

refer to the corresponding elements of the unit cell Ω1,Ω2,Ω3, . . . ,Ω10,

shown in Fig. 1.29, and indicate the material properties of the corresponding

structural element; C(i) and S(i) stand for cosϕi and sin ϕi, respectively,

where ϕi is an angle that element Ωi makes with the α2-axis, i = 3, 4, . . . , 10;

and the quantities F1, F2, . . . , F10 and J1, J2, . . . , J10 are defined as

follows:

Fi = 〈1〉Ωi = t0; Ji = 〈z2〉Ωi =
t0
3

(
3H2

4
+

3H t0
2

+ t20

)
, for i = 1, 2,

Fi = 〈1〉Ωi =

√
3

9

Ht

a
; Ji = 〈z2〉Ωi =

√
3

108

H3 t

a
, for i = 3, 4, 5, 6, (1.100)

Fi = 〈1〉Ωi =

√
3

18

Ht

a
; Ji = 〈z2〉Ωi =

√
3

216

H3 t

a
, for i = 7, 8, 9, 10.

Here F1, F2, . . . , F10 are the cross-sectional areas and J1, J2, . . . , J10 are

the moments of inertia of the cross-sections of the corresponding elements

Ω1,Ω2, . . . ,Ω10 relative to the middle surface of the shell, and are calculated

in the coordinate system ξ1, ξ2, z.

It is seen in Eq. (1.99) that the first terms represent the contribution

from the top and bottom face carriers and the latter terms describe the

contribution of the sandwich core. If we now consider a particular case

when the face carriers and honeycomb core are made of similar orthotropic

material then Eq. (1.99) reduces to the following formulas [64]:

〈
b1111
〉
= 2E1t0/(1− ν12ν21) + 1.1732E1ν21Ht/(ν12a),〈

b2222
〉
= 2E2t0/(1− ν12ν21) + 0.5152E2Ht/(a),〈

b1122
〉
=
〈
b2211
〉
= 2ν12E1t0/(1− ν12ν21) + 0.3908E1ν21Ht/(ν12a),〈

b1212
〉
= 2G12t0 + 0.3908E2H t/a,〈

zb∗1111

〉
= E1t0(0.5H

2 +Ht0 + 0.6667t20)/(1− ν12ν21) (1.101)

+ 0.0976E1ν21H
3t/(ν12a),〈

zb∗2222

〉
= E2t0(0.5H

2 +Ht0 + 0.6667t20)/(1− ν12ν21)

+ 0.0429336E2H
3t/a,
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〈
zb∗1122

〉
=
〈
zb∗2211

〉
= ν12E1t0(0.5H

2 +H t0 + 0.6667t20)/(1− ν12ν21)

+ 0.03256E1ν21H
3t/(ν12a),〈

zb∗1212

〉
= G12t0(0.5H

2 +Ht0 + 0.6667t20) + 0.03256E2H
3t/a.

Note that Eqs. (1.99)–(1.101) generalize the earlier given Eq. (1.54) for

much more complicated cases of generally orthotropic constituent materials.

1.8.1. Examples of sandwich shells

The effective properties of sandwich composite structures can be tailored to

meet the requirements of a particular application by changing the geometric

parameters including the thickness of the face carriers, the width and cross-

sectional areas of the core elements or the relative height of the core, the

angular orientation of the elements and by changing the materials of the

core and face carriers. This is demonstrated below where a comparison of

the effective elastic properties of two different cellular cores is made; see

Fig. 1.30. The unit cells of the analysed structures are shown in Figs. 1.31

and 1.32. Both structures have hexagonal symmetry beginning with the

triangular cell and maintaining the basic 60◦, 120◦ angular architecture.

The analytical formulas for all the effective stiffness moduli of these

sandwich structures have been derived in the case when the structural

elements are made of generally orthotropic materials. All the non-zero

effective stiffness moduli are given in Table 1.3 [64].

Figures 1.33–1.37 show the variation of the effective stiffness moduli

of the hexagonal-triangular and star-hexagonal cores vs. core height H .

A graphite/epoxy core material is considered with the following properties:

C11 = 183.443GPa, C12 = C13 = 4.363GPa, C22 = C33 = 11.662GPa,

C23 = 3.918GPa, C44 = 2.87GPa, C55 = C66 = 7.17GPa, ν12 = ν13 =

0.01593, ν21 = ν31 = 0.28003 and ν23 = ν32 = 0.33.

Figure 1.33 shows that the stiffness
〈
b1111
〉

in the ξ1 direction is

significantly larger for the hexagonal-triangular core than its star-hexagonal

counterpart because the former has more reinforcements oriented in the ξ1
direction. Although the latter structure has an overall similar number of

reinforcements to those of the hexagonal-triangular core, the horizontal

component of the reinforcements of that structure is much shorter in

length in the ξ1 direction and therefore makes a significant difference in

the homogenized stiffness in the ξ1 direction, while making almost no

contribution in the elastic properties in the ξ2 direction. In other words, it
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(a)

(b)

Fig. 1.30. (a) Hexagonal-triangular and (b) star-hexagonal cored composite sandwich
structures.

is expected that the stiffness properties in the ξ2 direction for the two cores

remain almost unchanged. Indeed, Fig. 1.34 proves this trend precisely.

Figure 1.35 shows the variation of the effective stiffness
〈
zb∗1111

〉
vs.

core height H . It is obvious that the presence of additional members in the

hexagonal-triangular core has contributed to making the structure stiffer

than its star-hexagonal counterpart. In Fig. 1.36, the effective stiffnesses

of the two cores are very close due to the same reason as explained for

Fig. 1.34. Finally, Fig. 1.37 shows the variation of effective stiffnesses
〈
b1212
〉

and
〈
zb∗1212

〉
vs. core height H . As expected both the extensional and

torsional stiffnesses in the direction of the reinforcements increase with the

height of the core.

1.9. Smart Composite Materials and Structures

The high maintenance cost and limited service life condition often

associated with traditional structural materials like concrete and steel can

be significantly offset by the application of composites in the areas of civil
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Fig. 1.31. Unit cell of hexagonal-triangular core in global (α1, α2, γ) and local (ξ1, ξ2, z)
coordinates.

engineering, aerospace, transportation industry, oil and gas, and marine

engineering. At the same time, new technologies permitted the growth of

other fields such as new actuator materials, advancements in fiber-optics,

MEMS and telecommunications, significantly facilitates the development of

new and highly effective sensors and actuators that now became available at

reasonable prices. Their merge with the field of composites gave birth to the

so-called smart materials and structures. Smart materials have the ability to

respond adaptively in a pre-designed useful and efficient manner to changes

in environmental conditions, including certain changes in their own state.

Smart structures incorporate sensors and actuators made of smart materials

and they can perform self-adjustment or self-repair as conditions change,
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54 A.L. Kalamkarov

Fig. 1.32. Unit cell of star-hexagonal core in global (α1, α2, γ) and local (ξ1, ξ2, z)
coordinates.

as shown in Fig. 1.38. Ideally, they demonstrate optimum performance

under a variety of environmental conditions.

In general, depending on their type, smart materials and structures

can be classified as passive or actively controlled. Passive smart materials

incorporate sensors that provide information on their state and integrity,

while actively controlled smart materials incorporate both sensors and

actuators. Two basic types of control can be specified: passive control,

with the use of auxiliary non-adaptable elements; and active control, with

the use of adaptable materials or mechanisms, such as electromechanical,

piezoelectric, magnetostrictive, electro- or magnetorheological, or actuators

using the shape memory effect, etc. The most popular material systems

being used for sensors and actuators are as follows: (1) piezoelectric
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Table 1.3. Effective stiffness moduli of hexagonal-triangular and star-hexagonal cores
(A1 = A2 = 1, a = 2.5).

Effective stiffness Hexagonal-triangular core Star-hexagonal core
moduli shown in Figs. 1.30(a) and 1.31 shown in Figs. 1.30(b) and 1.32

〈
b1111

〉
16.6276E1ν21Ht/(ν12a) 3.3366E1ν21Ht/(ν12a)

〈
b2222

〉
2.4250E2Ht/(a) 2.3287E2Ht/(a)

〈
b1122

〉
=

〈
b2211

〉
5.5424E1ν21Ht/(ν12a) 1.1122E1ν21Ht/(ν12a)

〈
b1212

〉
5.5424E2Ht/a 1.1122E2Ht/a

〈
zb∗1111

〉
1.3856E1ν21H3t/(ν12a) 0.2780E1ν21H3t/(ν12a)

〈
zb∗2222

〉
0.2022E2H3t/a 0.1941E2H3t/a

〈
zb∗1122

〉
=

〈
zb∗2211

〉
0.4620E1ν21H3t/(ν12a) 0.0927E1ν21H3t/(ν12a)

〈
zb∗1212

〉
0.4620E2H3t/a 0.0927E2H3t/a
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1

Hexagonal-
triangular

Star-
hexagonal

Fig. 1.33. Effective stiffness
〈
b1111

〉
/E1 vs. core height H of hexagonal-triangular and

star-hexagonal sandwich cores.

materials, (2) magnetostrictive and electrostrictive materials, (3) shape

memory alloys, (4) electrorheological and magnetorheological fluids,

(5) carbon nanotubes, (6) optical fibers, (7) electrochromic materials, and

(8) smart gels.

Piezoelectric materials, e.g., lead zirconate titanate (PZT) and

barium titanate, by virtue of their unique electromechanical coupling

characteristics, low power requirements, and relatively high generative

forces, play a prominent role in the modern electro-ceramic industry.

In conjunction with efforts to develop monolithic materials with improved

piezoelectric properties, there have been a number of efforts to develop
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Fig. 1.34. Effective stiffness
〈
b2222

〉
/E2 vs. core height H of hexagonal-triangular and

star-hexagonal sandwich cores.
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Fig. 1.35. Effective stiffness
〈
zb∗1111

〉
/E1 vs. core height H of hexagonal-triangular and

star-hexagonal sandwich cores.
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Fig. 1.36. Effective stiffness
〈
zb∗2222

〉
/E2 vs. core height H of hexagonal-triangular and

star-hexagonal sandwich cores.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Micromechanical Modeling of Advanced Composites 57

0

50

100

150

200

250

300

350

5 10 15 20 25

H

<b
12

12
>/

E
2 4

3

2

1

0

5

6

<z
b

12
*1

2
>/

E
2

<b12
12>/E2, 

hex.-trian. 

<b12
12>/E2, 

star-hex. 

<zb12
*12>/E2, 

hex.-trian. 

<zb12
*12>/E2, 

star-hex. 

Fig. 1.37. Effective stiffness moduli
〈
b1212

〉
/E2 and

〈
zb∗1212

〉
/E2 vs. core height H of

hexagonal-triangular and star-hexagonal sandwich cores.

Fig. 1.38. Three basic constituents of smart structure: (1) Sensor — data acquisition.
(2) Actuator — action triggered by control. (3) Control — analyzing data and reaching
decision.

composite piezoelectric materials/structures with enhanced and unique

mechanical and piezoelectric properties as well. Overall, in order to facilitate

the continuous integration of piezoelectric smart composite structures

in new engineering platforms, the effective homogenized mechanical,

thermal and actuation properties of such composites structures need to

be characterized accurately. The actuation coefficients characterize the

intrinsic transducer nature of active smart composites that can be used

to induce strains and stresses in a coordinated fashion.

In the present section, we will develop a general asymptotic

homogenization model to determine the effective mechanical, thermal and
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actuation properties of (i) 3D smart composite materials, and (ii) smart

composite shells and plates.

1.9.1. Asymptotic homogenization of 3D smart composite

materials

Consider a general smart composite structure representing an

inhomogeneous solid occupying domain Ω with boundary S that contains

a large number of periodically arranged reinforcements and actuators as

shown in Fig. 1.39(a). It can be observed that this periodic structure is

obtained by repeating a small unit cell Y in the domain Ω, see Fig. 1.39(b).

The elastic deformation of this structure can be described by means of

the following boundary-value problem (cf. Eqs. (1.13)–(1.16)):

∂σij

(
x,

x

ε

)
∂xj

= Fi in Ω, (1.102)

ui

(
x,

x

ε

)
= 0 on S, (1.103)

where

σij

(
x,

x

ε

)
= Cijkl

(x
ε

){
ekl

(
x,

x

ε

)}
− Pijkl

(x
ε

)
Rk(x)−Θij

(x
ε

)
T (x), (1.104)

εij

(
x,

x

ε

)
=

1

2

{
∂ui
∂xj

(
x,

x

ε

)
+
∂uj
∂xi

(
x,

x

ε

)}
. (1.105)

(a) (b)

Fig. 1.39. (a) 3D periodic smart composite solid, (b) unit cell Y.
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In Eqs. (1.102)–(1.105), in addition to earlier defined notations, Pijk
is a tensor of actuation coefficients describing the effect of a control

signal R on the stress field σij , Θij is the thermal expansion tensor, and

T represents change in temperature with respect to a reference state.

In case of piezoelectric actuators, R is the electric field, and Pijk are

the piezoelectric coefficients. It is assumed that the elastic, actuation

(piezoelectric in case of piezoelectric actuators) and thermal expansion

coefficients are all periodic with a unit cell Y of characteristic dimension ε.

Consequently, the periodic smart composite structure in Fig. 1.39(a) is seen

to be made up of a large number of unit cells periodically arranged within

the domain Ω. It is noteworthy to consider at this point that if the boundary

conditions in Eq. (1.103) were made non-zero to examine a very general

model, then boundary-layer type solutions can be developed to satisfy

such inhomogeneous boundary conditions; see [19]. However, the obtained

effective coefficients will not be altered in any way. The development

of asymptotic homogenization model for the 3D smart composite

structures can be found in [19, 32, 73–75]. The application of asymptotic

homogenization method for the micromechanical analysis of quantum dot-

embedded smart nanocomposite materials can be found in [88].

Similar to the asymptotic homogenization model developed for 3D bulk

composite structures, the first step is to define the fast variables according

to (cf. Eq. (1.2)):

yi =
xi
ε
, i = 1, 2, 3. (1.106)

As a consequence of introducing y, the chain rule of differentiation mandates

that the derivatives must be transformed according to (cf. Eq. (1.5))

∂

∂xi
→ ∂

∂xi
+

1

ε

∂

∂yi
. (1.107)

Introduction of y necessitates the transformation of Eqs. (1.102)–(1.104)

into the following expressions:

∂σij(x,y)

∂xj
+

1

ε

∂σij(x,y)

∂yi
= Fi in Ω, (1.108)

ui(x,y) = 0 on S, (1.109)

and

σij(x,y) = Cijkl(y)

{
∂uk
∂xl

(x,y)

}
− Pijk(y)Rk(x)−Θij(y)T (x). (1.110)
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The next step in the model development is to asymptotically expand

the stress and displacement fields into infinite series in terms of the small

parameter ε as shown:

(i) Asymptotic expansion for the displacement field :

ui(x,y) = u
(0)
i (x,y) + εu

(1)
i (x,y) + ε2u

(2)
i (x,y) + · · · . (1.111)

(ii) Asymptotic expansion for the stress field :

σij(x,y) = σ
(0)
ij (x,y) + εσ

(1)
ij (x,y) + ε2σ

(2)
ij (x,y) + · · · . (1.112)

Substituting Eqs. (1.106), (1.107) and (1.110) into Eq. (1.108) and

considering at the same time the periodicity of u(i) in yj one can readily

eliminate the microscopic variable y from the first term u(0) in the

asymptotic displacement field expansion thus showing that it depends only

on the macroscopic variable x. Subsequently, by substituting Eq. (1.112)

into Eq. (1.108) and separating terms with like powers of ε one obtains a

series of differential equations the first two of which are as follows:

∂σ
(0)
ij

∂yj
= 0, (1.113)

∂σ
(1)
ij

∂yj
+
∂σ

(0)
ij

∂xj
= fi, (1.114)

where

σ
(0)
ij = Cijkl

(
∂u

(0)
k

∂xl
+
∂u

(1)
k

∂yl

)
− PijkRk − ΘijT, (1.115)

σ
(1)
ij = Cijkl

(
∂u

(1)
k

∂xl
+
∂u

(2)
k

∂yl

)
. (1.116)

From Eq. (1.113) and Eq. (1.115) one obtains:

∂

∂yj

(
Cijkl

∂u
(1)
k (x,y)

∂yl

)

=
∂Pijk(y)

∂yj
Rk(x) +

∂Θij(y)

∂yj
T (x)− ∂Cijkl(y)

∂yj

∂u
(0)
k (x)

∂xl
. (1.117)
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The separation of variables on the right-hand side of Eq. (1.117)

prompts us to write down the solution for u(1) as follows:

u(1)n (x,y) = Rk(x)N
k
n(y) + T (x)Nn(y) +

∂u
(1)
k (x)

∂xl
Nkl
n (y), (1.118)

where the auxiliary functions Nkl
n , Nk

n and Nn are periodic in y and satisfy

(cf. Eq. (1.25)):

∂

∂yj

(
Cijmn(y)

∂Nkl
m (y)

∂yn

)
= −∂Cijkl

∂yj
, (1.119)

∂

∂yj

(
Cijmn(y)

∂Nk
m(y)

∂yn

)
=
∂Pijk
∂yj

, (1.120)

∂

∂yj

(
Cijmn(y)

∂Nm(y)

∂yn

)
=
∂Θij
∂yj

. (1.121)

Equations (1.119)–(1.121) depend entirely on the fast variable y and

are thus solved in the domain Y of the unit cell, remembering at the same

time that all of Cijkl , Pijk , Θij and N
kl
m , Nk

m, and Nm are Y -periodic in y.

They are appropriately called as unit-cell problems.

The next important step in the model development is the

homogenization procedure. This is carried out by first substituting

Eq. (1.118) into Eq. (1.115), and combining the result with Eq. (1.114).

The resulting expressions are then integrated over the domain Y of the

unit cell (with volume |Y |) remembering to treat xi as a parameter as far

as integration with respect to yj is concerned. Canceling out terms that

vanish due to periodicity considerations yields

C̃ijkl
∂2u

(0)
k (x)

∂xj∂xl
− P̃ijk

∂Rk(x)

∂xj
− Θ̃ij

∂T (x)

∂xj
= Fi, (1.122)

where the following definitions are introduced (cf. Eq. (1.27)):

C̃ijkl =
1

|Y |
∫
Y

(
Cijkl(y) + Cijmn(y)

∂Nkl
m (y)

∂yn

)
dv, (1.123)

P̃ijk =
1

|Y |
∫
Y

(
Pijk(y)− Cijmn(y)

∂Nkl
m (y)

∂yn

)
dv, (1.124)

Θ̃ij =
1

|Y |
∫
Y

(
Kij(y)− Cijmn(y)

∂Nm(y)

∂yn

)
dv. (1.125)
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The coefficients C̃ijkl , P̃ijk, Θ̃ij are called, respectively, the effective

elastic, actuation (piezoelectric in case of piezoelectric actuators) and

thermal expansion coefficients of the general 3D smart composite structure.

As it was mentioned above, all the effective coefficients are free from the

inhomogeneity complications that characterize their actual rapidly varying

material counterparts Cijkl , Pijk, Θij , and as such, are more amenable to

analytical and numerical treatment. They are universal in nature and can

be used to study a wide variety of boundary value problems associated with

a given composite structure. Note that for a general 3D composite material,

the elastic unit cell problem is given by Eq. (1.25) and the formulae for the

effective elastic coefficient is given by Eq. (1.27).

In summary, Eqs. (1.119)–(1.125) represent the governing equations of

the homogenized model of a smart composite structure with periodically

arranged reinforcements and actuators. Equations (1.119)–(1.121) represent

the unit cell problems, formulae (1.123)–(1.125) define the effective

properties, and expression (1.118) provides an asymptotic formula for the

local displacement field.

1.9.2. Asymptotic homogenization of smart composite

shells and plates

In the present section, a general 3D micromechanical model pertaining to

thin composite layers with wavy boundaries is applied to the case of smart

shells and plates. Similar to Section 1.5, the asymptotic homogenization

method is used, which reduces the original boundary value problem into

a set of three decoupled problems, each problem characterized by two

differential equations. These three sets of differential equations, referred

to as unit-cell problems, deal, independently, with the elastic, piezoelectric,

and thermal expansion behavior of the smart composite shells and plates.

The solution of the unit-cell problems yields expressions for effective elastic,

piezoelectric and thermal expansion coefficients which, as a consequence of

their universal nature, can be used to study a wide variety of boundary

value problems associated with a smart structure of a given geometry. These

formulas for the effective properties can readily be used to tailor their

values to meet the requirements of a particular application by changing

certain material or geometric parameters such as the size or properties of

the reinforcements.

The general 3D micromechanical models pertaining to smart composite

layers with wavy boundaries can be found in [48, 49, 51, 52, 76, 77, 82–87].
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The general homogenization model for smart composite shell has found

numerous applications in the analysis of various practically important

composite structures. Georgiades et al. [55] and Challagulla et al. [53, 60]

studied generally orthotropic grid-reinforced and network smart composite

plates and shells. Saha et al. [62, 63] and Saha and Kalamkarov [64]

analyzed the smart sandwich composite shells, and, in particular, the

honeycomb sandwich composite shells made of generally orthotropic

materials.

Consider a 3D inhomogeneous thin layer with wavy surfaces and with

a large number of embedded and periodically arranged reinforcements/

actuators; see Fig. 1.10. This solid can be constructed by repeating a certain

small unit cell Ωδ in the α1–α2 plane (Fig. 1.10). All three coordinates (α1,

α2, γ) in Fig. 1.10 are made dimensionless by dividing them with a certain

characteristic dimension of the solid, D. Furthermore, δ is a small thickness

of the smart shell and δh1, δh2 are the tangential dimensions of the unit

cell.

Thus, the unit cell Ωδ of the structure under consideration is

characterized by the inequalities (1.36). The elastic deformation of this

periodic structure can be represented by means of following expressions (cf.

Eq. (1.37)):

∂σij
∂αj

= fi, (1.126)

σij = Cijkl

{
ekl − d

(r)
klmRm − θ

(t)
kl T

}
and eij =

1

2

(
∂ui
∂αj

+
∂uj
∂αi

)
.

(1.127)

Here, in addition to earlier defined notations, d
(r)
ijk is a tensor of

actuation coefficients describing the effect of a control signalR on the stress

field σij , and θ
(t)
ij is the thermal expansion tensor (relating strain with

temperature change). In case of piezoelectric actuators, R is the electric

field, and d
(r)
ijk are the piezoelectric coefficients. All indices take on values

1, 2, 3 with α3 = γ. The inhomogeneity of composite material is modeled by

assuming that the elastic, piezoelectric, and thermal expansion coefficients

are the functions in spatial coordinates α1, α2, γ, periodic in tangential

coordinates α1 and α2 with periodicity cell Ωδ. Assume also that the top

and bottom surfaces of the layer, S±, are subjected to surface tractions

pi which are related to stresses as σijnj = pi, where n is the unit vector

normal to the surfaces γ± and is given by Eq. (1.38).
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The fast variables, {ξ1, ξ2, z} are introduced according to Eq. (1.40),

and the asymptotic expansions for the displacement and stress fields given

by Eq. (1.41) are subsequently assumed.

The solution of the pertinent 3D problem is obtained from Eqs. (1.126),

(1.127), (1.40), (1.41) and results in the homogenized smart composite shell

model. The constitutive relations of the equivalent (homogenized) smart

shell are obtained in terms of the stress resultants (Nαβ), moment resultants

(Mαβ), averaged (homogenized) stresses
〈
σ
(1)
αβ

〉
and

〈
zσ

(1)
αβ

〉
, and the mid-

surface strains (εαβ) and curvatures (kαβ) as follows (cf. (1.48)):

Nαβ = δ
〈
bλμαβ

〉
ελμ + δ2

〈
b∗λμαβ

〉
κλμ − δ2

〈
dkαβ
〉
R

(0)
k − δ2

〈
d∗kαβ
〉
R

(1)
k

−δ2 〈θαβ〉 T (0) − δ2
〈
θ∗αβ
〉
T (1), (1.128)

Mαβ = δ
〈
zbλμαβ

〉
ελμ + δ2

〈
zb∗λμαβ

〉
τλμ − δ2

〈
zdkαβ

〉
R

(0)
k − δ2

〈
zd∗kαβ

〉
R

(1)
k

−δ2 〈zθαβ〉T (0) − δ2
〈
zθ∗αβ

〉
T (1), (1.129)〈

σ
(1)
αβ

〉
=
〈
bλμαβ

〉
ε
(1)
λμ +

〈
b∗λμαβ

〉
κλμ − 〈dkαβ〉R(0)

k − 〈d∗kαβ〉R(1)
k

− 〈θαβ〉T (0) − 〈θ∗αβ〉T (1), (1.130)〈
zσ

(1)
αβ

〉
=
〈
zbλμαβ

〉
ε
(1)
λμ +

〈
zb∗λμαβ

〉
κλμ −

〈
zdkαβ

〉
R

(0)
k −

〈
zd∗kαβ

〉
R

(1)
k

− 〈zθαβ〉T (0) − 〈zθ∗αβ〉T (1), (1.131)

where the temperature T and control signal R are assumed to follow linear

through-the-thickness relationships. Throughout this work, it is assumed

that Greek indices α, β, γ, etc. take values 1 and 2, whereas Latin indices,

i, j, k, etc. vary from 1 to 3. In addition to earlier defined effective elastic

coefficients 〈bλμαβ〉, 〈b∗λμαβ 〉, 〈zbλμαβ〉, and 〈zb∗λμαβ 〉 the quantities 〈dkαβ〉, 〈d∗kαβ〉
are called the effective actuation coefficients, and 〈θαβ〉, 〈θ∗αβ〉 are the

effective thermal expansion coefficients of the homogenized smart shell. The

effective coefficients are obtained through integration of local functions bλμαβ,

b∗λμαβ , dkαβ , d
∗k
αβ , θαβ, and θ

∗
αβ over the 3D unit cell. In case of piezoelectric

actuators, 〈dkαβ〉, 〈d∗kαβ〉 are the effective piezoelectric coefficients.

The above introduced local functions are periodic in tangential

coordinates ξ1 and ξ2 with periodicity cell Ω, but, evidently, they are not

periodic in the z-direction and as such differ from classical homogenization

schemes, see [5]. They are defined in terms of pertinent elastic Cijkl ,
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actuation (in case of piezoelectric actuators, piezoelectric) Pijk , and thermal

expansion Kij material coefficients and the yet unknown local functions

U lmn (ξ1, ξ2, z), V
lm
n (ξ1, ξ2, z), U

l
n(ξ1, ξ2, z), etc. as follows:

blmij =
1

hβ
Cijnβ

∂U lmn
∂ξβ

+ Cijn3
∂U lmn
∂z

+ Cijlm,

b∗lmij =
1

hβ
Cijnβ

∂V lmn
∂ξβ

+ Cijn3
∂V lmn
∂z

+ zCijlm,

(1.132)

dkij = Pijk − 1

hβ
Cijnβ

∂Ukn
∂ξβ

− Cijm3
∂Ukn
∂z

,

d∗kij = zP ijk − 1

hβ
Cijnβ

∂V kn
∂ξβ

− Cijm3
∂V kn
∂z

,

(1.133)

θij = Kij − 1

hβ
Cijnβ

∂Un
∂ξβ

− Cijm3
∂Un
∂z

,

θ∗kij = zKij − 1

hβ
Cijnβ

∂Vn
∂ξβ

− Cijm3
∂Vn
∂z

,

(1.134)

where

Pijm = Cijkld
(r)
klm, Kij = Cijklθ

(t)
kl . (1.135)

Definitions given in Eqs. (1.132)–(1.134) are then substituted in

the following unit-cell local problems to determine the local functions

U lmn (ξ1, ξ2, z), V
lm
n (ξ1, ξ2, z), U

l
n(ξ1, ξ2, z), etc., all of them periodic in ξ1,

ξ2 with periodicity cell Ω (cf. (1.46) and (1.47)),

1

hβ

∂

∂ξβ
bλμiβ +

∂

∂z
bλμi3 = 0,

1

hβ
n±
β b

λμ
iβ + n±

3 b
λμ
i3 = 0 at z = z±, (1.136)

1

hβ

∂

∂ξβ
b∗λμiβ +

∂

∂z
b∗λμi3 = 0,

1

hβ
n±
β b

∗λμ
iβ + n±

3 b
∗λμ
i3 = 0 at z = z±, (1.137)

1

hβ

∂

∂ξβ
dkiβ +

∂

∂z
dki3 = 0,

1

hβ
n±
β d

k
iβ + n±

3 d
k
i3 = 0 at z = z±, (1.138)

1

hβ

∂

∂ξβ
d∗kiβ +

∂

∂z
d∗ki3 = 0,

1

hβ
n±
β d

∗k
iβ + n±

3 d
∗k
i3 = 0 at z = z±, (1.139)

1

hβ

∂

∂ξβ
θiβ +

∂

∂z
θi3 = 0,

1

hβ
n±
β θiβ + n±

3 θi3 = 0 at z = z±, (1.140)

1

hβ

∂

∂ξβ
θ∗iβ +

∂

∂z
θ∗i3 = 0,

1

hβ
n±
β θ

∗
iβ + n±

β θ
∗
i3 = 0 at z = z±. (1.141)
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Here, z± represent the profiles of the upper and lower surfaces of the

composite layer in terms of the macroscopic variables. The differential

equations and pertinent boundary conditions in Eqs. (1.138)–(1.141) are

formulated and solved entirely on the domain of the unit cell and are

independent of the global formulation of the problem. Once functions

U lmn (ξ1, ξ2, z), V
lm
n (ξ1, ξ2, z), U

l
n(ξ1, ξ2, z), etc. are determined, they are

back-substituted into Eqs. (1.132)–(1.134) to obtain the local functions bλμαβ,

b∗λμαβ , dkαβ , d
∗k
αβ , θαβ , and θ∗αβ and finally these are used to determine the

effective coefficients by averaging over the volume of the 3D unit cell Ω as

follows:

〈f(ξ1, ξ2, z)〉 = 1

|Ω|
∫
Ω

f(ξ1, ξ2, z)dξ1dξ2dz. (1.142)

In addition to the above given symmetry properties of the effective

coefficients given by the Eq. (1.49), the following new symmetry properties

have been proved by Kalamkarov and Georgiades [49], Kalamkarov

et al. [51, 52]:

δ
〈
dkmn

〉
=
〈
d
(r)
ijkb

mn
ij

〉
, δ

〈
zdkmn

〉
=
〈
d
(r)
ijkb

∗mn
ij

〉
,

δ
〈
d∗kmn

〉
=
〈
zd

(r)
ijkb

mn
ij

〉
, δ

〈
zd∗kmn

〉
=
〈
zd

(r)
ijkb

∗mn
ij

〉
,

(1.143)

δ
〈
θmn

〉
=
〈
α
(θ)
ij b

mn
ij

〉
, δ

〈
zθmn

〉
=
〈
α
(θ)
ij b

∗mn
ij

〉
,

δ
〈
θ∗mn
〉
=
〈
zα

(θ)
ij b

mn
ij

〉
, δ

〈
zθ∗mn

〉
=
〈
zα

(θ)
ij b

∗mn
ij

〉
.

(1.144)

The unit-cell problems given by Eqs. (1.132)–(1.134) and (1.136)–

(1.141) have been solved analytically for a number of structures of a

practical interest, and the explicit analytical formulas for the effective

stiffness moduli have been obtained for the following types of smart

composite and reinforced shells and plates: angle-ply fiber-reinforced shells,

grid-reinforced and network shells (Georgiades et al. [54], Challagulla

et al. [53, 58, 60], Hadjiloizi et al. [77]), rib- and wafer-like reinforced

shells (Kalamkarov and Georgiades [49], Kalamkarov et al. [52], Georgiades

and Kalamkarov [50], Hadjiloizi et al. [76, 77, 82−86]), sandwich composite

shells, in particular, the honeycomb sandwich composite shells made of

generally orthotropic materials (Kalamkarov et al. [51], Saha et al. [62, 63],

Saha and Kalamkarov [64]).
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Asymptotic analysis of perforated plates, shells and membranes is

developed in [78, 79]. The methods of three-phase composite model,

boundary shape perturbation technique, and Padé approximants are

applied to the solution of the unit-cell problems for composites in

[80, 81, 89]. Asymptotic homogenization model is generalized for the

geometrically nonlinear elastic composite plates with wavy surfaces by

Kalamkarov et al. [90]. Comparative analysis of micromechanical models

for the elastic composite laminae and the analysis of longitudinal, shear and

transversal strength of composite laminae is conduced in [91–94] Theoretical

models are compared with the numerous experimental data. It is shown, in

particular that the asymptotic homogenization method presents the best

predictions among the elasticity-based models.

The general asymptotic homogenization model pertaining to smart

magnetoelectric composite shells composed of reinforcements and/or

actuators attached to the surface of a shell or sandwiched between two

carrier layers is developed in [95]. This paper highlights the strong influence

of the curvature of the shell’s middle surface on the effective properties.

That is caused by entrance of the coefficients A1(α1, α2), A2(α1, α2) of the

first quadratic form of mid-surface into the Eq. (1.40), as explained on pages

25 and 26. After homogenization the effective shell can be structurally

inhomogeneous even if the material of original shell was homogeneous.

The general model developed in [95] is illustrated by several practically

important examples which include spherical, paraboloidal, ellipsoidal and

cylindrical shells reinforced with ribs, wafers, or triangularly arranged

reinforcements. It is also shown in [95] that in case of shell reinforced with

piezoelectric and piezomagnetic constituents, the effective elastic and most

other coefficients are functions of not only elastic properties but also of the

electric and magnetic properties of the constituents.

1.10. Conclusion

Asymptotic homogenization is a mathematically rigorous powerful tool for

analyzing composite materials and structures. The proof of the possibility of

homogenizing a composite material of a regular structure, i.e., of examining

an equivalent homogeneous solid instead of the original inhomogeneous

composite solid, is one of the principal results of this theory. Method of

asymptotic homogenization has also indicated a procedure of transition

from the original problem (which contains in its formulation a small

parameter related to the small dimensions of the constituents of the
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composite) to a problem for a homogeneous solid. The effective properties

of this equivalent homogeneous material are determined through the

solution of the unit-cell problems. Important advantage of the asymptotic

homogenization is that, in addition to the effective properties, it allows to

determine with a high accuracy the local stress and strain distributions

defined by the microstructure of composite materials.

The present chapter reviews the basics of the asymptotic

homogenization of advanced composite materials, thin-walled composite

structures and smart composite materials and structures.

The explicit analytical formulae for the effective elastic properties of the

generally orthotropic 3D grid-reinforced composites of various structures

are derived. The asymptotic homogenization of 3D thin-walled composite

reinforced structures is presented, and the general homogenization smart

composite shell model is introduced. Micromechanical models are derived

and applied to obtain the analytical formulas for the effective stiffnesses

of the generally orthotropic composite shells and plates, rib- and

wafer-reinforced shells, network and grid-reinforced shells as well as

sandwich composite shells with cellular cores of different geometrical

configuration. In particular, one of considered examples represents

micromechanical modeling of the carbon nanotubes.

For many problems that are presented in the present chapter, any other

analytical or numerical approaches are not as effective as the asymptotic

homogenization method.
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Application of Padé approximants, Int. J. Eng. Sci., 78, 178–191.

[82] Hadjiloizi D.A., Kalamkarov A.L., Georgiades A.V., 2018.
Micromechanical analysis of piezo-magneto-thermo-elastic T-ribbed and
P-ribbed plates, Mech. Adv. Materials Struct., 25, 657–668.

[83] Hadjiloizi D.A., Kalamkarov A.L., Saha G.C., Christoforidis K., Georgiades
A.V., 2017. Micromechanical modeling of thin composite and reinforced
magnetoelectric plates — effective elastic, piezoelectric and piezomagnetic
coefficients, Comp. Struct., 172, 102–118.

[84] Hadjiloizi D.A., Kalamkarov A.L., Saha G.C., Christofi I., Georgiades
A.V., 2017. Micromechanical modeling of thin composite and reinforced
magnetoelectric plates — effective electrical, magnetic, thermal and product
properties, Comp. Part B: Eng., 113, 243–269.

[85] Hadjiloizi D.A., Kalamkarov A.L., Georgiades A.V., 2017. Plane stress
analysis of magnetoelectric composite and reinforced plates: micromechanical
modeling and application to laminated structures, ZAMM (Zeit. Angew.
Math. Mech.), 97, 761–785.

[86] Hadjiloizi D.A., Kalamkarov A.L., Georgiades A.V., 2017. Plane stress
analysis of magnetoelectric composite and reinforced plates: micromechanical
modeling and applications to wafer- and rib-reinforced plates and three-
layered honeycomb shells, ZAMM (Zeit. Angew. Math Mec.) 97, 786–814.

[87] Christofi I., Hadjiloizi D.A., Kalamkarov A.L., Georgiades A.V., 2021.
Micromechanical analysis of thermoelastic and magnetoelectric composite
and reinforced shells, Comp. Struct. 259, 113426.

[88] Alam A., Saha G.C., Kalamkarov A.L., 2020. Micromechanical analysis of
quantum dot-embedded smart nanocomposite materials, Comp. C, 3, 100062.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



74 A.L. Kalamkarov

[89] Kalamkarov A.L., Andrianov A.V., Pacheco P.M.C.L., Savi M.A.,
Starushenko G.A., 2016. Asymptotic analysis of fiber-reinforced composites
of hexagonal structure, J. Multiscale Modelling 7, 1650006.

[90] Kalamkarov A.L., Tornabene F., Pacheco P.M.C.L., Savi M.A., Saha G.C.,
2017. Geometrically non-linear elastic model for a thin composite layer with
wavy surfaces, ZAMM (Zeits. Angew. Math. Mech. 97, 1381–1392.

[91] Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., 2019.
Comparative analysis of micromechanical models for the elastic composite
laminae, Comp. B: Eng.,, 174, 106961.

[92] Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., 2020.
Micromechanical analysis of strength of notched composite plates, Comp.
Struct., 253, 112827.

[93] Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., 2020.
Micromechanical analysis of longitudinal and shear strength of composite
laminae, J. Comp. Mater., 54, 4853–4873.

[94] Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., 2020.
Micromechanical analysis of transversal strength of composite laminae,
Comp. Struct., 250, 112546.

[95] Christofi I., Hadjiloizi D.A., Kalamkarov A.L., Georgiades A.V., 2021.
Asymptotic homogenization of magnetoelectric reinforced shells: effective
coefficients and influence of shell curvature, Int. J. Solids Structures, 228,
111105.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



c© 2023 World Scientific Publishing Europe Ltd.

https://doi.org/10.1142/9781800611887 0002

Chapter 2

Scaling Functions in Spatially Random Composites

Martin Ostoja-Starzewski∗,‡ and Shivakumar I. Ranganathan†,§
∗Department of Mechanical Science and Engineering,

Beckman Institute, and Institute for Condensed Matter Theory,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

†International Consulting Associates, Inc.,

3300 Fairfax Dr Suite 302,
Arlington, VA 22201, USA

‡martinos@illinois.edu
§sranganathan@icaglobal.co

Abstract

We review the key issues involved in scaling and homogenization of random
composite materials. In the first place, this involves a Hill–Mandel condition in
the setting of stochastic micromechanics. Within this framework, we introduce
the concept of a scaling function that describes “finite-size scaling” of thermally
conducting or elastic crystalline aggregates. While the finite size is represented
by the mesoscale, the scaling function depends on an appropriate measure
quantifying the single-crystal anisotropy. Based on the scaling function, we
construct a material scaling diagram, from which one can assess the scaling
trend from a statistical volume element (SVE) to a representative volume
element (RVE) for many different materials. We demonstrate these concepts
with the scaling of the fourth-rank elasticity and the second-rank thermal
conductivity tensors. We also briefly discuss the trends in approaching the RVE
for linear/nonlinear (thermo)elasticity, plasticity, and Darcy permeability.
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2.1. Introduction

Determining the scale-dependent properties of spatially random materials

given the properties of individual phases, volume fraction and the

orientation distribution of phases is of importance in the design of

composite materials with desired properties. To illustrate the effect of scale

dependence, consider a simple tension test of a polycrystalline aggregate

such as a bar of copper with randomly oriented grains. This is perhaps

among the earliest concepts taught in an introductory solid mechanics or

materials science course. The objective of conducting such a test would

be to construct the stress–strain curve (true or engineering) and extract

appropriate material properties (elastic modulus, yield stress, ultimate

stress, toughness, etc). In extracting these properties, it is tacitly assumed

that the sample size is “significantly larger” than the grain size which

leads to the notion of a Representative Volume Element (RVE). According

to Hill [1]:

A Representative Volume is a sample that (a) is structurally

entirely typical of the whole mixture on average and (b) contains

a sufficient number of inclusions for the apparent overall moduli
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to be effectively independent of the surface values of traction and

displacement, so long as these values are macroscopically uniform.

The same idea was independently developed by Mandel and Dantu [2].

Strictly speaking, the apparent overall modulus becomes independent of

the applied boundary conditions only at an infinite length scale, but for

all practical purposes, one could approximate the size of the RVE at

finite scales within a few percent error. Below the RVE, the response

involves statistical scatter and such a volume element is therefore called

the statistical volume element (SVE). Besides this situation of a domain

containing a very large (mathematically infinite) set of microscale elements

(e.g., grains or inhomogeneities), the RVE is very clearly defined for a unit

in a periodic microstructure. We shall not pursue the latter situation here.

With reference to the example of the simple tension test on a copper

bar, the above statement implies that the response of the specimen will

be realization dependent if the sample size is not representative. It is of

interest here to analyze: (i) the approach of the SVE towards the RVE,

and (ii) establish scaling laws in a variety of random microstructures such

as those depicted in Fig. 2.1. Indeed, these form but a small subset of a

myriad of different microstructures (e.g., [3, 4]), but the methodology we

outline on simple models of random composites can readily be applied to

more complex material systems.

We employ the framework of stochastic (micro)mechanics consistent

with the mathematical statement of the Hill–Mandel condition stated

above. Such an approach is extremely versatile and can be used not only in

linear elastic problems but also in bounding the response of hyperelastic

materials, elasto-plastic materials, heat conduction, porous media; e.g.,

see [5–7]. In the following sections, we discuss the scale-dependent bounds

and scaling laws on the various constitutive behaviors of random materials.

2.2. Conductivity of Random Polycrystals

Single crystals exhibit an anisotropic behavior in heat conduction.

In general, thermal conductivity is a second-rank tensor that is completely

defined by three independent components in the principal direction. For

example, trigonal, hexagonal, and tetragonal single crystals demonstrate

a uniaxial thermal character with two of the principal components of

the conductivity tensor being equal. On the other hand, a randomly

oriented polycrystal exhibits isotropic behavior at the RVE scale. Thus, the
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(a) (b)

(c) (d)

Fig. 2.1. (a) Random checkerboard in 2D. (b) Random polycrystal in 3D with
5000 grains. Color scale represents the different orientation (random) of each grain.
(c) Circular-inclusion composite, showing a mesoscale window. (d) Microstructure of
trabecular bone obtained by micro-CT imaging.

following are the key aspects at the intermediate scale of the SVE: (i) the

sample response is in general anisotropic and realization dependent; (ii) the

isotropic response may be recovered by averaging over a sufficient number of

ensembles; (iii) the apparent conductivity is very much dependent on the

applied boundary conditions; and (iv) with increasing length scales, the

SVE approaches the RVE. It is apparent from these observations that in

going from the level of a single crystal to that of a polycrystalline aggregate,

the conductivity is scale dependent and isotropy is gradually approached

indicating the reduction in the number of independent constants necessary

to define the conductivity tensor completely. A related question is whether

one can establish scaling laws unifying a class of materials. For instance,
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hematite and quartz possess a trigonal crystal structure at the single-crystal

level and thereby one is tempted to seek similarities in their scale-dependent

properties. In the subsequent discussion, we attempt to answer some of

the above questions using stochastic (micro)mechanics as the tool and the

Hill–Mandel condition as the basis.

2.2.1. The Hill–Mandel condition

Consider a specific realizationBδ(ω) of a random medium Bδ. Here, ω(∈ Ω)

indicates a specific realization of the microstructure taken from the sample

space Ω and the subscript δ, defined as

δ = (NG)
1
3 , (2.1)

is the dimensionless parameter specifying the mesoscale of the polycrystal-

line aggregate comprising NG grains. In the following, δ will sometimes be

referred to as window size.

Now, adapting the idea of the Hill–Mandel condition, one can establish

the following relationship [6–9]:

q · ∇T = q · ∇T ⇔
∫
∂Bδ

(q · n− q · n)(T −∇T · x)dS = 0, ∀x ∈ ∂Bδ.

(2.2)

Here q is the heat flux,∇T is the temperature gradient, and x is the position

vector. The overbar operator (•) indicates volume averaging. Equation (2.2)

suggests three types of loadings:

(i) Essential Uniform Boundary Condition (EUBC): T = ∇T 0 · x, (2.3a)

(ii) Natural Uniform Boundary Condition (NUBC): q · n = q0 · n, (2.3b)

(iii) Mixed-Orthogonal (MOBC): (q · n− q0 · n)(T −∇T 0 · x) = 0. (2.3c)

By increasing the mesoscale δ (effectively, the number of grains in Bδ)

and by setting up stochastic boundary-value problems with the above

boundary conditions and upon ensemble averaging, one obtains bounds

on the constitutive response of the aggregate. Now, the condition (2.3a)

results in a mesoscale (i.e., δ-dependent) conductivity tensor Ce
δ, (2.3b) is a

mesoscale resistivity tensor Snδ , while (2.3c) yields a mesoscale conductivity

or resistivity tensor (depending on the interpretation). The superscripts
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Fig. 2.2. Methodology for obtaining scale-dependent bounds in heat conduction.

e and n denote quantities obtained under essential and natural boundary

conditions, respectively. The condition (2.3c) is understood with the

stipulation that one must not simultaneously specify both the heat flux

and the temperature gradient in any given direction on any portion of the

boundary.

The methodology outlined here works, provided the hypotheses of

spatial homogeneity and ergodicity hold for the random field Θ(x, ω) of

material parameters involved. In particular, we assume Θ(x, ω) to be a

wide-sense stationary (WSS) random field with a constant mean and finite-

valued autocorrelation [6]:

〈Θ(x1)〉 = μ,

〈Θ(x1)Θ(x1 + h)〉 = RΘ(h) <∞.
(2.4a)

The operator 〈•〉 indicates ensemble averaging. The random field Θ(x, ω)

is mean ergodic providing its spatial average equals the ensemble average:

1

V

∫
V

Θ(x, ω)dV = Θ(x) = 〈Θ(x)〉 =
∫
Ω

Θ(x, ω)dP. (2.4b)

The proposed methodology is illustrated in Fig. 2.2. The single crystal has

a reference conductivity tensor Cref
pq with three independent constants in

its principal directions c1, c2, and c3. By using a set of uniformly generated

rotation tensors (Fig. 2.3), the reference tensor is rotated to assign the

material property for each individual crystal in the polycrystal. Using (2.3a)
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and (2.3b), the boundary-value problems are solved and mesoscale tensors

established so that upon ensemble averaging one obtains bounds on the

aggregate conductivity.

2.2.2. Bounds on the conductivity

At this point, we recall the ergodicity and WSS properties of the

microstructure and obtain the hierarchy of scale-dependent bounds as

follows:

〈Sn1 〉−1 ≤ · · · ≤ 〈Snδ′〉−1 ≤ 〈Snδ 〉−1 ≤ · · · ≤ Ceff
∞ · · · ≤ 〈Ce

δ〉
≤ 〈Ce

δ′ 〉 · · · ≤ 〈Ce
1〉, ∀ δ′ ≤ δ. (2.5)

Such bounds date back to Ostoja-Starzewski and Schulte [8] and Jiang

et al. [10]; see also [11]. Using (2.5) along with the definition of the isotropic

conductivity tensor, we obtain the following hierarchy of bounds on the

isotropic conductivity measure:

cH ≤ · · · ≤ 〈cnδ′ δ〉 ≤ 〈cn〉 ≤ · · · ≤ ceff∞

≤ · · · 〈ceδ〉 ≤ 〈ceδ′〉 ≤ cA, ∀ δ′ ≤ δ, (2.6)

where 1/cH = (1/c1 + 1/c2 + 1/c3)/3 and cA = (c1 + c2 + c3)/3 are the

harmonic (Reuss type) and the arithmetic mean (Voigt type) estimates

of the conductivity. While the hierarchy type of behavior of mesoscale

tensors appears evident, it has been found in Ostoja-Starzewski [12] that the

coefficient of variation of the second invariant of Ce
δ as well as S

e
δ for several

different planar random microstructures (all generated by homogeneous

Poisson point fields) equals ∼0.55.

2.2.3. Scaling function in heat conduction

For a given realizationBδ(ω) of a random medium Bδ on some mesoscale δ,

(2.3a) yields a mesoscale random conductivity tensor Ce
δ(ω) such that

qδ(ω) = Ce
δ(ω) · ∇T 0. (2.7)

Similarly, (2.3b) yields a mesoscale random resistivity tensor Snδ (ω) such

that

∇Tδ(ω) = Snδ (ω) · q0. (2.8)
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In general, for any given realization ω(∈ Ω), Ce
δ(ω), and Snδ (ω) are

anisotropic. We obtain an isotropic response only by assigning the crystal

orientations uniformly (distributed uniformly on a unit sphere; also

see [13]) and upon ensemble averaging over the realization space. Thus,

the ensemble-averaged isotropic conductivity and resistivity tensors can be

expressed as follows:

〈Ce
δ〉 = 〈ceδ〉I, (2.9)

〈Snδ 〉 =
1

〈cnδ 〉
I. (2.10)

In the above, I represents the second-rank identity tensor, while 〈ceδ〉
δand 〈cn〉 are ensemble-averaged isotropic conductivity measures under the

essential and natural boundary conditions, respectively. By contracting

(2.9) and (2.10), we obtain the following scalar equation:

〈Ce
δ〉 : 〈Snδ 〉 = 3

〈ceδ〉
〈cnδ 〉

. (2.11)

In the limit δ → ∞ the conductivity tensor must be the exact inverse of

the resistivity tensor, and so we obtain

lim
δ→∞

〈Ce
δ〉 : 〈Snδ 〉 = 3. (2.12)

Now, we postulate the following relationship between the left-hand side

of (2.11) and (2.12), that is

〈Ce
δ〉 : 〈Snδ 〉 = lim

δ→∞
〈Ce

δ〉 : 〈Snδ 〉+ g(c1, c2, c3, δ)

= lim
δ→∞

〈Ce
δ〉 : 〈Snδ 〉+ g(k1, k2, c3, δ). (2.13)

In the above, g(c1, c2, c3, δ) [“or” g(k1, k2, c3, δ)] defines the scaling function

and k1 = c1c
−1
3 and k2 = c2c

−1
3 are two non-dimensional parameters.

Substituting (2.13) and (2.12) into (2.11), we obtain

g(k1, k2, c3, δ) = 3

( 〈ceδ〉
〈cnδ 〉

− 1

)
. (2.14)

Notice that the right-hand side of (2.14) is dimensionless. Thus, the scaling

function is dependent only on the non-dimensional parameters and takes

the form g(k1, k2, δ) and can be determined numerically by the solution

of boundary-value problems subject to the essential and natural uniform

boundary conditions.
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2.2.4. Some properties of and bounds on the scaling function

The scaling function g(k1, k2, δ) introduced in (2.14) has the following

properties (see also [9, 14]):

g(k1, k2, δ = ∞) = 0. (2.15)

Again, the scaling function becomes null if the crystals are locally

isotropic:
g(k1 = k2 = 1, δ) = 0. (2.16)

One can further establish the following bounds on the scaling function

for aggregates made up of single crystals with uniaxial thermal character

(k1 = k2 = k for trigonal, hexagonal, and tetragonal single crystals. k is

also a measure of a single crystal’s anisotropy)

0 ≤ g(k, δ) ≤ 2

3

(√
k − 1√

k

)2

. (2.17)

The lower bound in (2.17) is easily established using Eqs. (2.6) and (2.14).

Also at any given scale the following inequality holds (using Eq. (2.6)):( 〈ceδ〉
〈cnδ 〉

− 1

)
≤
(
cA

cH
− 1

)
. (2.18)

Using the definitions of cA and cH in Eq. (2.6), we obtain the upper bound.

2.2.5. Numerical simulations

We proved several properties of the scaling function in Section 2.2.4. We now

proceed to derive a suitable form for the scaling function based on numerical

results. Since it is not practical here to perform numerical simulations on

all known crystals, we restrict our study to the materials listed in Table 2.1.

We perform numerical simulations with the number of grains, NG =

20, 23, 26, and 29 (i.e., δ = 1, 2, 4, and 8). The following loading conditions

have been imposed to run the stochastic boundary-value problems:

Dirichlet problem: ∇T 0 = 4�k, (2.19a)

Neumann problem: q0 = −18�k, (2.19b)

where �k is a unit vector along the z-direction. Based on the numerical

results for these materials, one can postulate a suitable form for the scaling

function and develop the material scaling diagram.
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Table 2.1. Material parameters.

Single crystal property
Thermal (W/m.◦C)

Crystal Thermal axes and Scaling
system character orientation Materials c1 = c2 c3 k= c1/c3 k−1 function

Cubic Isotropic c1 = c2 = c3 Aluminum 208 208 1 1 0
Copper 410 410 1 1 0

Trigonal Uniaxial c1 = c2 �= c3 Calcite 4.18 4.98 0.84 1.19 g1(k, δ)
Hematite 14.6 12.17 1.20 0.83 ∼= g1(k, δ)
Quartz 6.5 11.3 0.58 1.74 g2(k, δ)

Hexagonal Uniaxial c1 = c2 �= c3 Graphite 355 89 3.99 0.25 g3(k, δ)

Mesoscale (δ)

C
on

du
ct

iv
ity

(W
/m

.K
)

1 2 3 4 5 6 7 8
4.41

4.42

4.43

4.44

4.45

Calcite-Voigt
Calcite-Reuss
Calcite-EBC
Calcite-NBC

Fig. 2.3. Bounds on the aggregate response (calcite).

We begin the discussion by studying the scale-dependent response of

calcite and hematite. As seen from Table 2.1, these materials have very

different single-crystal conductivities. Notice that, although the anisotropy

index of calcite is greater than 1 and that of hematite is less than 1, their

product is almost equal to one. In other words, the anisotropy measure

of calcite is almost the reciprocal of that of hematite. The scale-dependent

bounds for calcite and hematite are shown in Figs. 2.3 and 2.4, respectively.
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Mesoscale (δ)

C
on

du
ct

iv
ity

(W
/m

.K
)

1 2 3 4 5 6 7 8
13.66

13.68

13.7

13.72

13.74

13.76

13.78

13.8

Hematite-Voigt
Hematite-Reuss
Hematite-EBC
Hematite-NBC

Fig. 2.4. Bounds on the aggregate response (hematite).

Notice that since the anisotropy index for these crystals is close to one,

the Voigt and Reuss bounds are very close to one another. As observed

in these plots, we obtain the upper bound on application of (2.19a) and

the lower bound using (2.19b). Also, as we increase the number of grains

(or as the mesoscale size δ increases), we obtain tighter bounds on the

aggregate conductivity. The scaling functions for the calcite and hematite

aggregates have similar trends and are quite close to one another (Fig. 2.5).

We attribute the discrepancies to the finite number of realizations used to

obtain the ensemble average and the slight differences in the anisotropy

index. Based on these observations, we conclude that two materials with

single-crystal anisotropy indices k and k−1 represent the same scaling

function. Mathematically,

g(k, δ) = g

(
1

k
, δ

)
. (2.20)

Let us now consider the scale-dependent bounds on quartz and graphite

as illustrated in Figs. 2.6 and 2.7. Owing to the higher single-crystal

anisotropy index (or its reciprocal), the Voigt and Reuss bounds for quartz
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Mesoscale (δ)

S
ca

lin
g

fu
nc

tio
n

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03
Hematite
Calcite

Fig. 2.5. Scaling function (calcite and hematite).

Mesoscale (δ)

C
on

du
ct

iv
ity

(W
/m

.K
)

2 4 6 8
7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

Quartz-Voigt
Quartz-Reuss
Quartz-EBC
Quartz-NBC

Fig. 2.6. Bounds on the aggregate response (quartz).
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Mesoscale (δ)

C
on

du
ct

iv
ity

(W
/m

.K
)

1 2 3 4 5 6 7 8
160

180

200

220

240

260

280

Graphite-Voigt
Graphite-Reuss
Graphite-EBC
Graphite-NBC

Fig. 2.7. Bounds on the aggregate response (graphite).

and graphite are much farther apart compared to calcite or hematite. Again,

the application of (2.19a) and (2.19b) bounds the aggregate conductivity

from above and below, respectively. The scaling functions for quartz and

graphite are plotted in Figs. 2.8 and 2.9, respectively. We immediately

notice that for any given scale, the scaling functions for graphite and

quartz have much larger values than hematite or graphite. Since the

anisotropy index (or its reciprocal) for graphite is much larger than that

of quartz, its scaling function takes markedly higher values than that of

quartz at all scales.

2.2.6. Constructing the scaling function

In Fig. 2.10, we compile the scaling function for all the different crystals

considered in the previous section. It is useful to rewrite (2.17) as follows:

0 ≤ 3

2
(√
k − 1√

k

)2 g(k, δ) ≤ 1. (2.21)
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Mesoscale (δ)

S
ca
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g

fu
nc

tio
n

1 2 3 4 5 6 7 8
-0.05

0

0.05

0.1

0.15

0.2

0.25

Quartz

Fig. 2.8. Scaling function (quartz).

Mesoscale (δ)
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lin
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Graphite

Fig. 2.9. Scaling function (graphite).
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Mesoscale (δ)

S
ca

lin
g

fu
nc

tio
n

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Graphite
Quartz
Hematite
Calcite

Fig. 2.10. Scaling function (compiled).

We now proceed to plot the rescaled scaling function defined in (2.21).

Interestingly, from Fig. 2.11 it appears that rescaling bounds all the

materials closely. We attribute the discrepancies (especially, for aggregates

with few grains (small mesoscale δ)) to the finite number of realizations

employed to construct the scaling function. The above essentially means

that we could approximate the mean rescaled function g∗(δ) to be

independent of the single-crystal anisotropy. The scaling function can now

be redefined as follows:

g(k, δ) =
2

3

(√
k − 1√

k

)2

g∗(δ), (2.22)

where g∗(δ) represents the material-independent rescaled function. Based

on the mean values of g∗(δ) in Fig. 2.11, we construct the effective averaged

rescaled function and fit it using an exponential function. The effective

function and its fit are illustrated in Fig. 2.12. Based on this fit, g∗(δ) takes
the following form:

g∗(δ) = exp[−0.9135(δ − 1)0.5]. (2.23)
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Mesoscale (δ)

R
es

ca
le

d
fu

nc
tio

n

1 2 3 4 5 6 7 8
0

0.5

1

1.5

Quartz
Graphite
Hematite
Calcite

Fig. 2.11. Rescaled scaling function.
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Fig. 2.12. Effective rescaled scaling function and fit.
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In view of (2.22), the scaling function takes the following form:

g(k, δ) =
2

3

(√
k − 1√

k

)2

exp[−0.9135(δ − 1)0.5], δ = N
1
3
g . (2.24)

This particular form of the scaling function satisfies all the properties

defined in Section 2.2.4. Consistent with (2.20), it does not distinguish

between k and k−1. Equation (2.24) also suggests that the scaling function

is exact in the single-crystal anisotropy index. The empirical form comes

from its dependence on the window size. The form of (2.24) has been used to

reconstruct the scaling function for the different polycrystals and is plotted

in Fig. 2.13. It is evident from the plot that (2.24) captures the scaling

function reasonably well.

(a) (b)

(c)

Fig. 2.13. Goodness of fit: (a) calcite and hematite, (b) quartz, (c) graphite.
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It is now possible to construct the contours of the scaling function in

the k–δ space based on Eq. (2.24) as illustrated in Fig. 2.14. Notice that, as

the scaling function decreases, the curves shift towards a higher mesoscale

and vice versa.

Theoretically the scaling function becomes zero only when the number

of grains is infinite (i.e., δ ≈ ∞) or when the crystal is locally isotropic with

k = 1 (such as cubic crystals). For all practical purposes, one defines the

RVE based on some finite value of the scaling function. We chose a value

of 0.01 for the scaling function to construct Fig. 2.15 since the discrepancy

in the conductivity predictions for most crystals based on the essential

and natural boundary conditions lie within 0.5%. The plots give an idea

of the number of grains necessary to homogenize the aggregate response

in the anisotropic heat conduction for hexagonal (Fig. 2.15(a)), trigonal

(Fig. 2.15(b)), and tetragonal crystals (Fig. 2.15(c)). Since cubic crystals

are locally isotropic, the number of grains necessary is trivial and equals

one. We notice from these plots that two aggregates made up of single

crystals with anisotropy indices k and k−1 scale identically. Also, we need

Anisotropy index

M
es

os
ca

le
(δ

)

1 2 3 4
100

101

102 f=0.1
f=0.3
f=0.6
f=1.0
f=10.0

Fig. 2.14. Contours of scaling function (for 0.0001 ≤ g ≤ 10).
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(a) (b)

(c)

Fig. 2.15. Material scaling diagram at g = 0.01: (a) hexagonal single crystals,
(b) trigonal single crystals, (c) tetragonal single crystals.

more grains (or crystals) to homogenize the aggregate response as k or k−1

are different from unity.

2.3. Conductivity of Planar Random Checkerboards

In this section, we focus on the scale dependence of conductivity and

resistivity in two-phase planar random microstructures (see Fig. 2.1(a))

and, in particular, the resulting scaling function. The microstructures

studied here are mixtures of two kinds of phases at nominal volume

fractions 50 % at arbitrary contrasts. Although the effective, macroscale

conductivity of such composites is well known (i.e., geometrical mean of

the individual phases) at sufficiently large length scales, the conductivity

at finite scales remains dependent on the boundary conditions. A
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wide range of checkerboards are analyzed under both essential and

natural boundary conditions. Variety of material combinations was

chosen to establish the form of the scaling function. It turns out

that the scaling function for a random checkerboard is simply a

function of the contrast and the dimensionless mesoscale, unlike

the 3D polycrystal where it was a function of the single crystal

anisotropy.

2.3.1. Governing equations

We study two-phase composite with geometries given by random checker-

boards, such as shown in Fig. 2.1(a). Each phase (i=1, 2) is characterized

by an isotropic Fourier-type conductivity, with perfect bonding present at

all the cell boundaries. Each square cell is sampled according to a strict-

white-noise process, i.e., independent of states of all the other cells.

Technically, the random checkerboard is a Bernoulli lattice process,

generated at a nominal probability 1/2 of either phase (1 or 2). Clearly,

this model is statistically homogeneous, isotropic, and ergodic. We are

considering steady-state heat conduction without heat sinks or sources, so

that the governing equation is

∇ · (c(�x)∇T ) = 0, (2.25)

where, c (�x) = χ1 (�x) c1+χ2 (�x) c2, �x is a position vector, T is temperature,

c1 and c2 are the conductivities of the individual phases and χi (�x) is the

indicator functions of the region occupied by phase i. The contrast ratio of

material pairs is defined as

k = c1/c2. (2.26)

It follows that the effective (macroscopic) conductivity should be isotropic

and an explicit formula for it is well known [15]

ceff =
√
c1c2. (2.27)

However, on finite scales and for any realization of the random checker-

board, the conductivity depends on the boundary conditions of the domain.

Using Eqs. (2.3a) and (2.3b) on a variety of two phase checkerboards with

varying contrast results in the following form for the scaling function [16]

g(δ, k) =
1

2

(√
k − 1√

k

)2

exp
[−0.53(δ − 1)

0.69]
. (2.28)
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Subsequently, Dalaq and Ranganathan [17] proved that the variance of the

trace of mesoscale conductivity tensor takes the following form:

Variance =
(c1 − c2)

2

δ2
, (2.29)

a result that is consistent with Kanit et al. [18] and Matheron [19].

More recently, Raghavan et al. [20] generalized this study to two phase

checkerboards with arbitrary volume fraction vf in the context of electrical

conductivity and obtained the following form for the scaling function:

g(vf , k, δ) = 2vf (1− vf )
1

2

(√
k − 1√

k

)2

exp
[− 0.73(δ − 1)

0.5]
. (2.30)

2.4. Elastic Properties of Random Polycrystals

In this section, we consider the elastic properties of polycrystals at the

microscale, mesoscale, and macroscale. Single crystals are typically aniso-

tropic elastically and the extent of anisotropy can be quantified by using

various measures of anisotropy [21–23]. At the microscale, a polycrystalline

sample consists of relatively few grains exhibiting a realization-dependent

anisotropic response. As the length scale increases and as the RVE is

approached, the aggregate sample typically consists of many grains and

the response becomes realization independent and isotropic. Much like our

observations in the heat conduction problem, the elastic properties are

indeed scale dependent and our attempt is to establish unifying scaling

laws for a class of elastic crystals. For instance, copper and tantalum have a

cubic crystal system at the single-crystal level and thereby one is tempted to

seek similarities in their scale-dependent properties. With these objectives

in mind, we re-state the Hill–Mandel condition for elastic properties and

then employ stochastic (micro)mechanics to determine the scale-dependent

elastic properties and to establish scaling laws.

2.4.1. The Hill–Mandel condition

The Hill–Mandel condition in elasticity stems from the consideration

of the equivalence of energetic and mechanical interpretations of stored

energy [2, 24–28]:

σij : εij = σij : εij ⇒ 1

V

∫
∂V

σ′
ij : ε

′
ijdV = 0

⇔
∫
∂Bδ

(ti − σijnj)(ui − εijxj)dS = 0. (2.31)
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Fig. 2.16. Methodology for obtaining scale-dependent bounds for elastic polycrystals.

The three loadings that satisfy (2.31) are as follows:

(i) Kinematic Uniform Boundary Condition (KUBC): ui = ε0ijxj , (2.32a)

(ii) Static Uniform Boundary Condition (SUBC): ti = σ0
ijnj , (2.32b)

(iii) Mixed-Orthogonal (MOBC): (ti − σ0
ijnj)(ui − ε0ijxj) = 0. (2.32c)

With increasing mesoscale δ, we obtain scale-dependent bounds (Fig. 2.16)

on the elastic response of the aggregate by setting up and solving boundary-

value problems consistent with Eq. (2.32a). The condition (2.32c) is

understood with the stipulation that one must not simultaneously specify

both the traction and the displacement in any given direction on any portion

of the boundary.

2.4.2. Bounds on the elastic response

At this point, we recall that the ergodicity and WSS properties of the

microstructure, together with the variational principles of elasticity theory,

imply a hierarchy of scale-dependent bounds on the elastic response

〈St1〉−1 ≤ · · · ≤ 〈Stδ′〉−1 ≤ 〈Stδ〉−1 ≤ · · · ≤ Ceff
∞ · · · ≤ 〈Cd

δ〉
≤ 〈Cd

δ′〉 · · · ≤ 〈Cd
1〉, ∀ δ′ ≤ δ. (2.33)

The superscripts t and d denote quantities obtained under the application of

traction and displacement boundary conditions, respectively. Such bounds
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date back to Huet [26] and Sab [29] and have been applied to micros-

tructures with various geometries [6, 18, 30–34]. Using (2.33) along with the

definition of the isotropic elasticity tensor, we obtain the following hierarchy

of bounds on the shear and bulk moduli:

GR ≤ · · · ≤ 〈Gtδ′〉 ≤ 〈Gtδ〉 ≤ · · · ≤ Geff
∞

≤ · · · 〈Gdδ〉 ≤ 〈Gdδ′ 〉 · · · ≤ GV , (2.34a)

KR ≤ · · · ≤ 〈Kt
δ′〉 ≤ 〈Kt

δ〉 ≤ · · · ≤ Keff
∞

≤ · · · 〈Kd
δ 〉 ≤ 〈Kd

δ′〉 · · · ≤ KV , ∀ δ′ ≤ δ, (2.34b)

where (GR, KR) and (GV, KV ) represent, respectively, the Reuss and Voigt

estimates of the shear and bulk moduli.

2.4.3. Elastic scaling function

For a given realizationBδ(ω) of a random medium Bδ on some mesoscale δ,

(2.32a) yields a mesoscale random stiffness tensor Cd
δ(ω) such that

σ̄δ(ω) = Cd
δ(ω) : ε

0. (2.35)

Similarly, (2.32b) yields a mesoscale random compliance tensor Stδ(ω) such

that

εδ(ω) = Stδ(ω) : σ
0. (2.36)

By uniformly distributing the crystal orientations and upon ensemble

averaging, we recover the isotropic aggregate response. In such a case, the

averaged stiffness and compliance tensors can be expressed in terms of the

shear modulus G and the bulk modulus K as follows:

〈Cd
δ〉 = 2〈Gdδ〉K+ 3〈Kd

δ 〉J, (2.37)

〈Stδ〉 =
1

2〈Gtδ〉
K+

1

3〈Kt
δ〉
J. (2.38)

In the above, J and K represent the spherical and the deviatoric parts of

the unit fourth-order tensor I. By contracting (2.37) and (2.38), we obtain

the following scalar equation:

〈Cd
δ〉 : 〈Stδ〉 = 5

〈Gdδ〉
〈Gtδ〉

+
〈Kd

δ 〉
〈Kt

δ〉
. (2.39)
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98 M. Ostoja-Starzewski & S.I. Ranganathan

In the limit δ → ∞, the stiffness tensor must be the exact inverse of the

compliance tensor, and so we obtain

lim
δ→∞

〈Cd
δ〉 : 〈Stδ〉 = 6. (2.40)

Now, we postulate the following relationship between the left-hand side

of (2.39) and (2.40), that is

〈Cd
δ〉 : 〈Stδ〉 = lim

δ→∞
〈Cd

δ〉 : 〈Stδ〉+ f(Cij , δ), (2.41)

where f(Cij , δ) defines the elastic scaling function. The parameter Cij
represents all the independent single-crystal elastic constants depending on

the crystal type. For aggregates made up of cubic single crystals, Cij ≡
(C11, C12, C44) and for triclinic systems, Cij will include all the 21

independent single-crystal constants. Substituting (2.41) and (2.40) in

(2.39), we obtain

f(Cij , δ) = 5
〈Gdδ〉
〈Gtδ〉

+
〈Kd

δ 〉
〈Kt

δ〉
− 6. (2.42)

For the specific case of cubic crystals, the bulk modulus is scale

independent [35, 36] and (2.42) can be rewritten as

f(C11, C12, C44,δ) = 5

(〈Gdδ 〉
〈Gtδ〉

− 1

)
. (2.43)

The scaling function f(Cij , δ) introduced in (2.42) has the following

properties:

f (Cij , δ = ∞) = 0. (2.44)

Equation (2.44) states that the scaling function is identically zero at infinite

mesoscale. Again, the scaling function becomes null if the crystals are locally

isotropic, that is

f(iso(Cij), δ) = 0. (2.45)

The term iso(Cij) accounts for all the possible combinations of the single-

crystal elastic constants that will ensure an isotropic single-crystal response.

One can further establish the following bounds on the scaling function

f(Cij ,∞) ≤ f(Cij , δ) ≤ f(Cij , 1), ∀ 1 ≤ δ ≤ ∞. (2.46)
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Scaling Functions in Spatially Random Composites 99

Using (2.44) and (2.42) in (2.46), we obtain

0 ≤ f(Cij , δ) ≤ AU4 (1) = 5
GV

GR
+
KV

KR
− 6, ∀ 1 ≤ δ ≤ ∞, (2.47)

where the quantity AU4 (1) = 5GV /GR + KV /KR − 6 represents the so-

called universal anisotropy index quantifying the single-crystal anisotropy

(see also [21]) of the fourth-rank elasticity tensor. That index is increasingly

proving to be a new standard measure to many researchers in solid-state

physics, materials science and geophysics; e.g., see [37] for the mapping of

the entire Earth’s surface in terms of AU4 (1) = 5GV /GR +KV /KR − 6.

Based on (2.47) one can interpret the elastic scaling function in (2.42)

as the evolution of the equivalent anisotropy in the mesoscale domain, thus

f(Cij , δ) = AU4 (δ). (2.48)

The simplest form for (2.48) having a separable structure (see also [38]):

f(Cij , δ) = AU4 (δ) = AU4 (1)h4(δ), (2.49)

is a very good approximation for single-phase aggregates made up of single

crystals of cubic type. The scaling function depends on the single-crystal

anisotropy and the mesoscale, and takes the following form based on

numerical simulations (see also [35]):

f(Cij , δ) = AU4 (δ) = AU4 (1)h4(δ)

=
6

5

(√
A− 1√

A

)2

exp[−0.767(δ − 1)0.5]. (2.50)

Again, as discussed previously in Section 2.2.3, one may determine the

size of the RVE by choosing a convenient value for the scaling function.

Based on (2.50), in Fig. 2.17 we plot the contours of the scaling function in

the (A, δ) space. It is evident that for a fixed value of the scaling function,

the mesoscale size increases with an increase in the single-crystal anisotropy.

In other words, the higher is the single-crystal anisotropy, the greater is the

number of grains necessary to homogenize the aggregate response. This

property is again confirmed in Fig. 2.18 (plotted for f = 0.23) for a variety

of aggregates made up of cubic single crystals. Again, notice the distinct

regions (microscale, limiting mesoscale, and macroscale) in these plots.
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100 M. Ostoja-Starzewski & S.I. Ranganathan

Fig. 2.17. Contours of the scaling function in the (A, δ) space.

Fig. 2.18. Material scaling diagram for polycrystals made up of cubic single crystals
(f = 0.23).
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Scaling Functions in Spatially Random Composites 101

Fig. 2.19. Six tests (1 to 6 from left to right) used to determine the components of the
in-plane stiffness and compliance tensors.

2.5. Elastic Properties of Planar Random Checkerboards

We now study the scaling of elastic properties in a two-phase checkerboard

as shown in Fig. 2.1(a). For every microstructure, six numerical tests are

run to determine the unknown components of the in-plane stiffness and

compliance tensors as shown in Fig. 2.19. A total of 163,728 microstructural

realizations were considered at varying contrasts, mesoscale and boundary

conditions to establish the following form for the planar elastic scaling

function (see [39])

f(K1, K2, μ1, μ2, δ) =

[
2
μV

μR
+
KV

KR
− 3

]
exp[−0.58(δ − 1)0.44], (2.51)

where K and μ represent the bulk and the shear modulus. The subscripts

1 and 2 represent the individual phases and the superscripts V and R

represent the Voigt and Reuss bounds, respectively.

2.6. Scaling in Inelastic and Nonlinear Materials

2.6.1. Thermoelasticity

First recall that the thermal expansion phenomenon reflects a coupling

between mechanical and thermal fields. It is grasped by the thermal strain

coefficient αkl (a second-rank tensor), a material property. Alternatively,

one can also employ the thermal expansion stress coefficient Γkl given by

the constitutive relation Γij = −Cijklαkl, with Cijkl being the stiffness

tensor. For heterogeneous materials, that relation does not hold unless the

dV element is a homogeneous domain within any constituent phase or the

RVE for a homogenized composite. To study the RVE size in the latter

case, one again uses the Hill–Mandel condition as the starting point, and

follows the scaling concepts introduced elsewhere. Thus, besides Eqs. (2.33),

(2.34a) and (2.34b), one also needs to set up bounds on the effective thermal

expansion and the specific heat [40, 41]. In particular, depending on the
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102 M. Ostoja-Starzewski & S.I. Ranganathan

relations between the material constants of a composite’s constituents, for

the thermal expansion coefficients we have two cases of hierarchies:

(i) α1 > α2 ≥ 0 and k1 > k2:

δα∗ ≥ · · · ≥ 〈αn δ′〉 ≥ 〈αn 〉 ≥ · · · ≥ 〈αn1 〉, ∀ δ′ ≤ δ; (2.52)

(ii) α1 > α2 ≥ 0 and k1 < k2:

α∗ ≤ · · · ≤ 〈αnδ 〉 ≤ 〈αnδ′〉 ≤ · · · ≤ 〈αn1 〉, ∀ δ′ ≤ δ. (2.53)

Similarly, there are two cases of hierarchies for the thermal stress

coefficients:

(i) 0 ≥ Γ1 > Γ2 and k1 > k2:

δΓ∗ ≤ · · · ≤ 〈Γe δ′〉 ≤ 〈Γe 〉 ≤ · · · ≤ 〈Γe1〉, ∀ δ′ ≤ δ; (2.54)

(ii) 0 ≥ Γ1 > Γ2 and k1 < k2:

Γ∗ ≥ · · · ≥ 〈Γeδ〉 ≥ 〈Γeδ′〉 ≥ · · · ≥ 〈Γe1〉, ∀ δ′ ≤ δ. (2.55)

2.6.2. Elasto-plasticity

Turning to a two-phase elastic-hardening plastic composite, the constitutive

responses of both phases p (= 1, 2) are taken in the following form [24]:

dε′ij =
dσ′

ij

2Gp
+ h · dfp · ∂fp

∂σij
whenever fp = cp and dfp ≥ 0,

dε′ij = dσ′
ij/2Gp whenever fp < cp,

dε = dσ · (1− 2νp)

2Gp(1 + νp)
everywhere

(
dε =

dεii
3
, dσ =

dσii
3

)
.

(2.56)

Here primes indicate deviatoric tensor components; Gp is a shear modulus,

vp is Poisson’s ratio, fp is a yield function, cp is a material constant, and h

is an isotropic hardening parameter.

Under monotonically increasing loading, elasto-plastic hardening

composites can be treated as physically nonlinear elastic materials. Since

the stiffness and compliance tensors are not constant any more, we
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Scaling Functions in Spatially Random Composites 103

consider the tangent stiffness and compliance moduli (CTdδ or STtδ ),

defined as

dσ = CTd
δ : dε = CTd

δ : dε0; dε = STtδ : dσ = STtδ : dσ0. (2.57)

Here the superscript d (or t) indicates the response obtained under

the displacement or traction boundary conditions. As noticed by Jiang

et al. [42], there is a hierarchy of upper and lower bounds on the effective

tangent modulus:

〈STS1 〉−1 ≡ 〈STt1 〉−1 ≤ · · · ≤ 〈STt
δ′ 〉−1 ≤ 〈STtδ 〉−1 ≤ · · · ≤ (ST∞)−1

≡ CT
∞ ≤ · · · ≤ 〈CTd

δ 〉 ≤ 〈CTd
δ′ 〉 ≤ · · · ≤ 〈CTd

1 〉
≡ 〈CTT

1 〉, ∀ δ′ ≤ δ, (2.58)

where 〈STS1 〉−1 and 〈CTT
1 〉 are recognized as the tangential Sachs and Taylor

bounds, respectively. Sample results are shown in Figs. 2.20 and 2.21 [43].

Note that the flow rule on the mesoscale (under both kinds of boundary

condition) for a composite made of phases with a normal flow rule is not

necessarily normal.

An application of the above concepts to imperfect masonry structures

is reported in [44, 45], while there is a computation of RVE size using the

mixed-orthogonal boundary condition in [46]; see also [47]. A perspective

on trends in multiscale plasticity is given in [48].

A recent experimental study investigating the RVE size is reported

in [49]; see also [50–52]. A thermomechanics framework allowing an

effective physical interpretation of the micromechanical internal variables

and parameters in the RVE is developed in [53]; see also [54, 55]. The

geodesic character of the strain field patterns, apparently almost self-

evident in Fig. 2.19, has been investigated in [56].

2.6.3. Finite elasticity

The assumption inherent in the finite hyperelasticity theory is the exist-

ence of a strain energy function ψ per unit volume of an undeformed

body, which depends on the deformation of the object and its material

properties. The equation of state of the material in the reference

configuration then takes the form Pik = ∂ψ/∂Fik, where Pik is the first

Piola–Kirchhoff stress tensor and Fik is the deformation gradient tensor.
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104 M. Ostoja-Starzewski & S.I. Ranganathan

Fig. 2.20. Equivalent plastic strain patterns in matrix-inclusion composites (at
mesoscale δ = 6 and 20) under traction (middle row) and displacement (bottom row)
boundary conditions [42].

These two tensors form a conjugate pair, which satisfies the Hill–Mandel

condition:

PijFij = P ijF ij . (2.59)

Following the same procedure as in Section 2.2.2, we consider the

functional:

P{Ui} =

∫
V0

ψ(Ui,k)dV −
∫
ST

t0iUidS, (2.60)
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Scaling Functions in Spatially Random Composites 105

(a) (b)

Fig. 2.21. Ensemble-averaged elasto–plastic stress–strain curves (a) and yield surfaces
(b), depending on the boundary conditions imposed.

where Ui is an admissible displacement field and t0i is the specified boundary

traction. The relation (2.60) represents the finite elasticity counterpart

of the principle of the minimum potential energy for infinitesimal elastic

deformation. The functional P{Ui} assumes a local minimum for the actual

solution ui providing
∫
V0

∂2ψ
∂ui,k∂up,q

di,kdp,qdV > 0, for all non-zero di such

that di = 0 [57]. Under the uniform displacement boundary condition,

which in nonlinear elasticity has the form ui = (F 0
ik− δik)xk, ∀xk ∈ S0, the

upper bound on the effective response is [58, 59]:

〈Ψ(F0,Δ)〉 ≤ 〈Ψ(F0, δ)〉 ≤ 〈Ψ(F0, δ′)〉 ≤ 〈Ψ(F0, 1)〉, for ∀ δ′ < δ < Δ,

(2.61)

where Ψ(ω,F0) =
∫
V0
ψ(ω,X,F)dV , and Δ and 1 denote the RVE size and

inhomogeneity size, respectively.

Considering the complementary energy principle [57], under the

uniform traction boundary condition ti = P 0
iknk, ∀xj ∈ S0, we have another
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106 M. Ostoja-Starzewski & S.I. Ranganathan

scale-dependent hierarchy of bounds on the effective properties:

〈Ψ∗(P0)〉Δ ≤ 〈Ψ∗(P0)〉δ ≤ 〈Ψ∗(P0)〉δ′ ≤ 〈Ψ∗(P0)〉1, for ∀ δ′ < δ < Δ,

(2.62)

where Ψ∗(ω,P0) =
∫
V0

{ ∂ψ
∂Uik

Uik − ψ}dV and we assume
∫
V0

∂2ψ
∂ui,k∂up,q

dik

dpqdV > 0 for all non-zero dik satisfying ∂
∂xk

( ∂2ψ
∂ui,k∂up,q

dpq) = 0 in V0 and

∂2ψ
∂ui,k∂up,q

dpqnk = 0 on ST . Ψ
∗(ω,P0) is a complementary strain energy

function, which in nonlinear elasticity is generally unknown.

For the RVE-sized composite material, the application of different

types of boundary conditions leads to a similar response and therefore

Ψ∗(ω,P0) = Ψ∗(ω,F0) and Ψ(ω,F0) = Ψ(ω,P0). Then, the lower bound

(2.62) can be written as

〈Ψ(P0)〉1 − V0〈P : F〉1 + V0〈P : F〉Δ
≤ 〈Ψ(P0)〉δ′ − V0〈P : F〉δ′ + V0〈P : F〉Δ
≤ 〈Ψ(P0)〉δ − V0〈P : F〉δ + V0〈P : F〉Δ
≤ 〈Ψ(P0)〉Δ, for ∀ δ′ < δ < Δ, (2.63)

where we used the following relation between the complementary and strain

energy functions:

Ψ∗(ω,P0) = V0(P : F)−Ψ(ω,P0). (2.64)

Bounds (2.61) and (2.63) allow us to estimate the convergence rate

and consequently the RVE size for any nonlinear composite satisfying

the convexity requirement on the strain energy function. Sample results

obtained by finite element analysis are shown in Figs. 2.22–2.24.

A comparison of scaling in linear versus nonlinear thermoelastic materials

(a) (b)

Fig. 2.22. Finite element mesh of a composite in (a) undeformed and (b) deformed
(under uniform traction boundary conditions) configurations.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Scaling Functions in Spatially Random Composites 107

(a) (b)

Fig. 2.23. Probability densities for the stored strain energy density of a nonlinear
composite such as in Fig. 2.22 under (a) uniform displacement and (b) uniform traction
boundary conditions.

is reported in [40]. See [60] for a related development in elastomers and

Ghysels et al. [61] for an application of similar concepts in biological

structures. A different approach, not involving the convexity assumption,

has just been reported in Temizer and Wriggers [62].

2.6.4. Permeability of porous media

Darcy’s law, which describes the permeability of a fluid-saturated material,

has the form

�U = −K

μ
· ∇p, (2.65)

where �U is the Darcy velocity, ∇p is the applied pressure gradient, μ is the

fluid viscosity, and K is the permeability, is considered to be the governing

partial differential equation for fluid flow in porous media at small Reynolds

numbers. A flow distribution for one realization of particles is shown in

Fig. 2.25.

Note that the relation (2.65) is a purely phenomenological equation

(it is not derivable from the Navier–Stokes equation), and its validity

needs assessment through a corresponding Hill–Mandel condition for flow

in porous media. The latter is

p,iUi = p,iUi ⇔
∫
∂B

(p− p,jxj)(Uini − Uini)dS = 0. (2.66)
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108 M. Ostoja-Starzewski & S.I. Ranganathan

Fig. 2.24. Finite elasticity stress-strain responses of a random composite under uniaxial
loading, KUBC (and SUBC) stand for kinematic (and static) uniform boundary
conditions.

It follows that there are three possible boundary conditions: (i) p = p,ixi,

(ii) Uini = U0ini, and (iii) (p − p,ixi)(Uini − U0in) = 0 on ∂B satisfying

(2.66). Following a derivation analogous to what was carried out in the

above sections, one obtains the scale-dependent hierarchy of mesoscale

bounds [63]:

〈Kes
δ 〉 ≥ 〈Ke

2δ〉 ≥ · · · ≥ Keff

= (Reff)−1 ≥ · · · ≥ 〈Rn
2δ〉−1 ≥ 〈Rn

δ 〉−1, ∀ δ′ < δ, (2.67)

where R is the resistance of porous media that satisfies K = R−1 for

homogenized media. Sample results are shown in Fig. 2.26.
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Scaling Functions in Spatially Random Composites 109

Fig. 2.25. Schematic of a flow distribution in one realization of particles in a random
fluid-saturated material, leading to a question: On what scale is Darcy’s law valid? A
mesoscale window is also shown.

2.6.5. Comparative numerical results

In the preceding sections, we outlined basic theoretical results on scaling

in linear elasticity, finite elasticity, elasto-plasticity, thermoelasticity, and

permeability. In this section, we compare the relative convergence rates

to the RVE of these different physical systems. For common reference, we

consider a two-phase composite, consisting of circular inclusions randomly

distributed in a matrix according to a Poisson point process with exclusion;

see Fig. 2.1(c). Finite element analyses of such composites were conducted

using ABAQUS 6.5. In order to compare the scaling from the SVE to the

RVE between the physical systems, a so-called discrepancy is employed:

D =
Reδ −Rnδ

(Reδ +Rnδ )/2
. (2.68)

Here Reδ is the response under the essential boundary conditions and Rnδ
is the response under the natural boundary conditions, both interpreted

according to a given physical situation. For linear elasticity Reδ = tr〈Ce〉δ,
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Fig. 2.26. (a) Effect of increasing window scale on the convergence of the hierarchy
(2.67) of mesoscale bounds, obtained by computational fluid mechanics. (b) Effect of
increasing window scale on the convergence of (2.67) as obtained by computational fluid
mechanics.

Rnδ = tr〈Sn〉−1
δ , for linear thermoelasticity Reδ = 〈Γeii〉δ, Rnδ = −〈Cnijkl〉δ

〈αnkl〉δ (see Fig. 2.1), for plasticityReδ = 〈he〉δ, Rnδ = 〈hn〉δ, and for nonlinear

elasticity Reδ = 〈Ψe〉δ, Rnδ = 〈Pn : Fn −Ψn〉δ.
The material parameters used for modeling and the computational

results are summarized in Table 2.2. Here κ is the bulk modulus, μ is
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Table 2.2. Mismatch and discrepancy values for the mesoscale δ = 16.

Mismatch D[%]

Linear elasticity
μ(i)

μ(m)
= 10,

κ(i)

κ(m)
= 1 2.28

Linear thermoelasticity
μ(i)

μ(m)
= 10,

κ(i)

κ(m)
= 10,

α(i)

α(m)
=

1

10
5.51

Plasticity
h(i)

h(m)
= 10,

E(i)

E(m)
= 1 2.29

Nonlinear elasticity
μ
(i)
0

μ
(m)
0

= 10,
κ
(i)
0

κ
(m)
0

= 1 5.86

Flow in porous media
tr(K(i))

tr(K(m))
= ∞ 27

the shear modulus, κ0 is the initial bulk modulus, μ0 is the initial

shear modulus, and superscripts (i) and (m) denote inclusion and matrix

accordingly. In order to compare physically different problems, linear-type

constitutive relations were assumed, i.e., linear isotropic hardening in

plasticity and neo-Hookean strain energy function in nonlinear elasticity.

In linear thermoelasticity, we need to consider the mismatch not only of

the thermal expansion coefficients but also of the elastic properties of both

phases, otherwise α becomes a scale-dependent constant parameter.

As can be seen from the table, the discrepancy increases in the following

order: linear elasticity, plasticity, linear thermoelasticity, and nonlinear

elasticity. By nature, the mismatch between the solid and fluid phases in

porous media is infinite, so the discrepancy value for permeability cannot be

compared to the results in elasticity. The numerical results for this case show

D = 27% for the sample size δ = 16, which obviously cannot be considered

homogeneous in the sense of Hill. While in linear elasticity the discrepancy

D is not a function of strain, in nonlinear elasticity it strongly depends on

deformation. In general, the value shown in Table 2.2 is the average over

the considered deformation range.

2.7. Conclusions

Microstructural randomness is present in just about all solid materials.

In this chapter, we reviewed the scaling from a statistical volume element

(SVE) to a representative volume element (RVE). Using micromechanics,

the RVE is approached in terms of two hierarchies of bounds stemming,

respectively, from Dirichlet-type and Neumann-type boundary-value
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problems set up on the SVE. In [64] one can find a comprehensive

introduction to basic homogenization theory, microstructural optimization,

and the multifield analysis of heterogeneous elastic materials; see also

[29, 65]. A separate area of research and application is the extensive

methodology, based on mathematical morphology, used to model a wide

range of random composite materials, typically employing a few parameters

calibrated by the image analysis of real microstructures [66–69].

Besides the settings of conductivity, (thermo)elasticity, elasto-

plasticity, and Darcy permeability discussed in this review as well as a more

extensive one [7], the scaling from SVE to RVE has been (and continues to

be) examined in various other fields of mechanics and physics, for instance:

composite materials [70, 71], random plates [72], strength and damage [73],

functionally graded materials [74], Fickian diffusion [75], solidification [76],

thermodynamics and heat transfer [77, 78], granular media [79–81], and

the morphogenesis of fractals [82]. Related efforts compare scale-dependent

bounds, those resulting from periodic three-dimensional polycrystal models

have been pursued in [83, 84], or determine the effects of the clustering of

inclusions [85].

In the late 90s, the seminal paper by Forest and Sab [86] launched the

effort to find a homogeneous (Cosserat) micropolar continuum smoothing

a spatially heterogeneous Cauchy material. The objective of this line

of research is to trade highly detailed information about a Cauchy-

type microstructure for a less detailed description via an equivalent

Cosserat continuum; see also [87–96] and, for the latest research on this

subject, [97, 98]. A broad overview of multiscale models of microstructured

materials — indeed, dating back to works by Navier, Cauchy, and Poisson—

can be found in [99].

However, the presence of spatial randomness presents an extra challenge

which has been undertaken in [100, 101] where a passage from a random

microstructure of micropolar type of a linear elastic type in static setting

has been made to a homogeneous micropolar medium.

We end with a note that the methodology outlined in this review

forms a microstructure-mechanics basis for setting up mesoscale continuum

random fields and stochastic finite element methods [102–105]. Such fields

are essential for solving macroscopic boundary-value problems lacking a

separation of the scales, i.e., where heterogeneous components are present

but a finite element is not larger than the RVE. In that case, the finite

element is analogous to the SVE. In view of the boundary conditions (2.32),
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the mesoscale random field is not only scale dependent, but also non-unique,

its properties being anisotropic even if the RVE-level properties are

isotropic. The stiffness matrix is dictated by the boundary condition (2.32a)

while the flexibility matrix is dictated by (2.32b). These matrices enter,

respectively, into minimum potential and complementary formulations of

finite element methods.

While this chapter has been concerned with scaling and homogenization

in random materials where a separation of scales can be attained,

the subject matter meets even more formidable challenges in fractal

media. A theoretical formulation in this direction, based on dimensional

regularization, is under development [106–111].
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Abstract

If laminates are unsymmetric, they will be stretched as well as bent even
under pure in-plane forces or pure bending moments. The coupled stretching-
bending theory of laminates was developed to study the mechanical behavior
of thin-laminated plates. Since this theory considers the linear variation
of displacements across the thickness direction, by separating the thickness
dependence it is easy to get general solutions through the complex-variable
approach. An elegant and powerful complex-variable method called Stroh
formalism is well known for problems in two-dimensional linear anisotropic
elasticity. In this chapter, its counterpart, generally called Stroh-like formalism,
will be introduced to deal with the coupled stretching-bending theory of
laminates. Moreover, its extension to hygrothermal problems and electro-elastic
composite laminates, and its applications to the problems of holes and cracks
in laminates will all be presented. Some representative numerical examples are
then shown to illustrate the advantage and necessity of the analytical closed-
form solutions obtained by the Stroh-like formalism.
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3.1. Introduction

The virtually limitless combinations of ply materials, ply orientations, and

ply stacking sequences offered by laminated plates considerably enhance the

design flexibility inherent in composite structures. In practical applications,

to take advantage of the designable characteristics of composite laminates,

there is always the option of designing an unsymmetric laminated plate.

In that case, stretching-bending coupling may occur no matter what kind

of loading is applied on the laminated plates.

In most practical applications, the plates are usually designed with

much smaller thickness than the other two dimensions; such configurations

are commonly called thin plates. According to observations of the actual

mechanical behavior of thin-laminated plates, Kirchhoff’s assumptions are

usually made in classical lamination theory. If the effects of transverse shear

deformation are considered, shear deformation theory may be considered for

relatively thick laminated plates. Both classical lamination theory and shear

deformation theory are based upon the assumption of the linear variation

of displacement fields in the thickness coordinate, and are usually called the

first-order plate theory. Sometimes it is difficult to describe the deformation

of thick laminates by first-order plate theory. By considering the warping of

the cross-section that probably occurs in thick laminates, high-order plate

theory was developed by assuming the displacement fields of higher-order

variation in the thickness coordinate. In this chapter, the main concern
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is the applicability of the complex-variable method to general laminated

plates; to avoid the complexity involved in the thickness direction only

classical lamination theory for thin plates is considered.

It is well known that the complex-variable method is a powerful

method for two-dimensional elasticity problems as well as plate bending

problems. For two-dimensional linear anisotropic elasticity, there are two

major complex-variable formalisms presented in the literature. One is

Lekhnitskii formalism [1, 2], which starts with equilibrated stresses given

in terms of stress functions followed by the compatibility equations,

and the other is Stroh formalism [3–6], which starts with compatible

displacements followed by the equilibrium equations. For plate bending

analysis, Lekhnitskii bending formalism and Stroh-like bending formalism

swap over. That is, Lekhnitskii bending formalism starts with compatible

deflections whereas Stroh-like bending formalism starts with equilibrated

bending moments. This interesting connection provides a hint to mixed

formalism for the coupled stretching-bending analysis of general laminated

plates [7], which is different from the displacement formalism initiated

by Lu and Mahrenholtz [8], and improved by Cheng and Reddy [9] and

Hwu [7]. Further discussion and interpretation of Stroh-like formalism were

presented in [10–13]. In addition to the above-mentioned works, various

Lekhnitskii-oriented complex-variable formulations and their applications

have also been proposed in the literature, for example [14–19] with

displacement formulation, [20–22] with mixed formulation, and [23–26]

which considers all types of non-degenerate and degenerate anisotropic

plates.

Through an appropriate combination of displacement formalism and

mixed formalism, Stroh-like formalism was developed for the coupled

stretching-bending analysis of general laminated plates [7]. Since there is

much detail in the development of Stroh-like formalism, to save space in

this chapter most of the results are presented without detailed derivation.

The reader may refer to the book Anisotropic Elastic Plates [6] or the

original papers cited in the following sections for the detailed derivation of

Stroh-like formalism and its applications.

This chapter is divided into seven sections. Following the

introduction in this section, Stroh-like formalism will be introduced in

Section 3.2. The extension to hygrothermal problems and electro-elastic

composite laminates will then be presented in Sections 3.3 and 3.4,

respectively.
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124 C. Hwu

Since Stroh-like formalism has been purposely arranged into the form

of Stroh formalism for two-dimensional linear anisotropic elasticity, almost

all the mathematical techniques developed for two-dimensional problems

can be transferred to the coupled stretching-bending problems. Thus, by

simple analogy many unsolved lamination problems can be solved if their

corresponding two-dimensional problems have been solved successfully.

With this advantage, several applications of Stroh-like formalism can

be found in the literature, for example [27–36]. In order to show the

applications of Stroh-like formalism, problems with holes and cracks in

laminates are considered in Section 3.5. These problems are: (i) holes

in laminates subjected to uniform stretching and bending moments, (ii)

holes in laminates subjected to uniform heat flow and moisture transfer,

(iii) holes in electro-elastic laminates, and (iv) cracks in laminates. Some

representative numerical examples are then shown in Section 3.6 to

illustrate the advantage and necessity of the analytical explicit closed-form

solutions presented in this chapter.

Recently, further applications have been made in boundary element

analysis, such as [36–39]. This achievement was made mainly due to the

Green’s function derived based upon the Stroh-like formalism [32, 34, 35].

The Green’s functions here are the solutions for an infinite laminate

(symmetric or unsymmetric) with or without holes/cracks/inclusions

subjected to concentrated forces and moments at an arbitrary point. The

complete loading cases such as transverse loading, in-plane loading, out-

of-plane bending moment and in-plane torsion are all considered. These

solutions are important because analytically they can provide solutions

for arbitrary loading through superposition, and numerically they can be

employed as the fundamental solutions of boundary element method and as

the kernel functions of integral equations to consider interactions between

holes/inclusions and cracks.

Although the problems such as corners and singular integrals appear

commonly for boundary element method and their solution techniques are

well documented [40–43], most of them are restricted to two-dimensional or

three-dimensional analysis with the fundamental solutions expressed in real

form. Very few of them discussed the coupling between in-plane and plate

bending problems with complex form fundamental solutions. To develop

a boundary element for the coupled stretching-bending analysis of general

laminated plates, most of the techniques available in the literature have

been reconsidered and extended, such as auxiliary relationships for corners

and analytical closed-form solutions for singular integrals [38, 39].
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3.2. Stroh-Like Formalism

A commonly used orthotropic material in engineering applications is

unidirectional fiber-reinforced composite. Laminated composites are made

by laying various unidirectional fiber-reinforced composites. A single layer

of a laminated composite is generally referred to as a ply or lamina. A single

lamina is generally too thin to be directly used in engineering applications.

Several laminae are bonded together to form a structure termed a laminate.

The overall properties of laminates can be designed by changing the fiber

orientation and the stacking sequence of the laminae. The most popular

way to describe the overall properties and macromechanical behavior of

a laminate is classical lamination theory [44]. According to observations

of the actual mechanical behavior of laminates, Kirchhoff’s assumptions

are usually made in this theory: (a) The laminate consists of perfectly

bonded laminae and the bonds are infinitesimally thin as well as non-

shear-deformable. Thus, the displacements are continuous across lamina

boundaries so that no lamina can slip relative to another. (b) A line

originally straight and perpendicular to the middle surface of the laminate

remains straight and perpendicular to the middle surface of the laminate

when the laminate is deformed. In other words, transverse shear strains are

ignored, i.e., γ13 = γ23 = 0. (c) The normals have constant length so that

the strain perpendicular to the middle surface is ignored, i.e., ε3 = 0.

Based upon Kirchhoff’s assumptions, the displacement fields, the

strain–displacement relations, the constitutive laws, and the equilibrium

equations can be written as follows:

Ui = ui + x3βi, β1 = −w,1, β2 = −w,2,
ξij = εij + x3κij , εij = (ui,j + uj,i)/2, κij = (βi,j + βj,i)/2,

Nij = Aijklεkl +Bijklκkl, Mij = Bijklεkl +Dijklκkl,

Nij,j = 0, Mij,ij + q = 0, Qi =Mij,j , i, j, k, l = 1, 2,

(3.1)

where U1 and U2 are the displacements in the x1 and x2 directions; u1
and u2 are their associated middle surface displacements; βi, i = 1, 2, are

the negative slopes; w is the displacement in the x3 direction; ξij , εij ,

and κij are, respectively, the strains, the midplane strains, and the plate

curvatures; Nij and Mij are the stress resultants and bending moments;

Aijkl , Bijkl, and Dijkl are, respectively, the tensors of extensional, coupling,

and bending stiffnesses; Qi is the transverse shear force; and q is the lateral

distributed load applied on the laminates. The subscript comma stands for
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126 C. Hwu

differentiation, e.g., w,1 = ∂w/∂x1, and repeated indices imply summation

through 1 to 2.

In order to find a solution satisfying all the basic equations in (3.1)

in the coupled stretching-bending analysis of general laminates, several

different complex-variable methods have been proposed in the literature.

The main differences between these methods are: (1) the choice of

the primary and secondary functions, (2) the organization of the final

expressions of the general solutions, (3) the establishment of a material

eigen-relation, and (4) the consideration of degenerate anisotropic plates.

These differences are discussed in the following.

(1) The choice of the primary and secondary functions starts from the

consideration of the constitutive laws given in (3.1)3, which can be rewritten

in matrix form as {
N

M

}
=

[
A B

B D

]{
ε0
κ

}
. (3.2)

By inversion or semi-inversion, we have

{
ε0
κ

}
=

[
A∗ B∗

B∗ D∗

]{
N

M

}
,

{
N

κ

}
=

[
Ã B̃

−B̃T
D̃

]{
ε0
M

}
, (3.3)

or

{
ε0
M

}
=

[
Ã B̃

−B̃T
D̃

]−1{
N

κ

}
=

[
Ã

∗
B̃

∗

−B̃∗T D̃
∗

]{
N

κ

}
, (3.4)

where

˜

A∗ = A−1 +A−1BD∗BA−1, B∗ = −A−1BD∗,

D∗ = (D −BA−1B)−1,

A = A−BD−1B, B̃ = BD−1, D̃ = D−1,

Ã∗ = A−1, B̃∗ = −A−1B, D̃
∗
=D −BA−1B.

(3.5)

If the formulation takes the compatible displacements ui, w as the

primary functions, we have a single-valued midplane strain ε0 and

curvature κ. The stress resultants N and bending moments M can be

obtained from (3.2). The equilibrium equations can then be expressed in

terms of the displacements. The problems remaining are the system of

partial differential equations of u1, u2, and w in which the plate properties
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are expressed byA,B, andD. This is the usual step taken in the literature,

for example, [7–9, 13, 14], and is generally called displacement formalism.

If the formulation takes the Airy stress function F and the plate

deflection w as the primary functions, the stress resultants N are obtained

directly from the Airy stress function, and the equilibrium equations

for the in-plane problem will be satisfied automatically. A single-valued

curvature κ is obtained through the second-order differentiation of the

plate deflection w. With the equilibrated N and the compatible κ, the

midplane strain ε0 and bending moment M can be obtained from (3.4).

The compatibility equation for the midplane strain ε0 and the equilibrium

equations for plate bending moments M can then be expressed in terms

of F and w. The problems remaining are the system of partial differential

equations of F and w in which the plate properties are expressed by Ã∗, B̃∗,
and D̃∗. This is called mixed formalism and has been used in [20, 23].

An alternative choice for the above mixed primary functions is the

compatible displacements u1, u2 and the equilibrated bending moment

potentials ψ1 and ψ2. With this choice, we get the compatible midplane

strain ε0 and the equilibrated bending moment M . We get N and κ

from the second equation of (3.3). The equilibrium equation of N and

the compatibility equation of κ will then lead to the system of partial

differential equations in terms of u1, u2, ψ1, and ψ2 in which the plate

properties are expressed by Ã, B̃, and D̃. This approach was taken by

Hwu [7] and Lu [10].

(2) The organization of the final expressions of the general solutions

can roughly be distinguished as being in component form or matrix form.

The former expresses the general solutions for each component of the

displacements, stress resultants, and bending moments, whereas the latter

organizes the solutions in terms of vectors and matrices. Examples of

component form expressions proposed in the literature are [14, 20] and

examples of matrix form expressions are [7–9, 12, 23, 24].

(3) The establishment of a material eigen-relation is important in the

complex-variable method since the material eigenvalues μα, which have

been proved to be complex numbers, are the key parameters of the complex

variables zα(=x+μαy). In Lekhnitskii formalism this relation is represented

by the characteristic polynomial equation, whereas in Stroh formalism

it is represented by a standard eigen-relation Nξ = μξ in which N is

called the fundamental elasticity matrix and ξ is the material eigenvector.

Using Lekhnitskii formalism, the analytical expressions of the material

eigenvectors can be obtained explicitly in terms of the material eigenvalues.
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128 C. Hwu

Using the standard eigen-relation of Stroh formalism, many properties

and identities that are useful for the derivation of explicit analytical

solutions can be obtained for the material eigenvalues and eigenvectors,

which is fundamental to the success of Stroh formalism in solving a

large variety of problems in general anisotropic elasticity. In practical

applications, these two different formalisms can benefit each other. One may

refer to [14, 20, 23, 24] for Lekhnitskii formalism and [6–9, 12] for Stroh

formalism.

(4) Most of the complex-variable methods proposed in the literature

consider only non-degenerate anisotropic plates. That is, the formulation is

based upon the assumption that the material eigenvalues are distinct. For

degenerate anisotropic plates, some or all of the material eigenvalues are

repeated and cannot yield a complete set of independent eigensolutions.

Thus, the solutions constructed through the eigensolutions of distinct

eigenvalues are not general enough and should be modified for degenerate

anisotropic plates. To get a complete set of independent eigensolutions,

one can add the generalized eigensolutions obtained by differentiating

the eigensolutions with respect to the eigenvalue. Full consideration of

degenerate anisotropic plates can be found in [23–26]. It should be

noted that if a solution is obtained by the complex-variable method for

non-degenerate anisotropic plates, it is applicable to degenerate plates

analytically if its final expression does not contain the material eigenvector

matrices, and it is also applicable to degenerate plates numerically if a small

perturbation of the material eigenvalues is made [45].

As stated above, several different complex-variable methods have been

proposed in the literature for the coupled stretching-bending analysis of

general laminated plates. Their main differences have been described by

the names: displacement formalism or mixed formalism, component form

or matrix form, Lekhnitskii formalism or Stroh formalism, non-degenerate

anisotropic plates or degenerate anisotropic plates. Since each method

possesses its own merits, the best approach may be the combination of

all their merits. From this viewpoint, the Stroh-like formalism proposed by

Hwu [7] is the most appropriate one to be introduced in this chapter. In

Hwu’s Stroh-like formalism, the final expression of the general solution

is written in matrix form and is derived from displacement formalism,

whereas the associated material eigen-relation is derived from mixed

formalism and the explicit expression of the material eigenvector is

obtained by Lekhnitskii formalism. Although analytically it is valid only

for non-degenerate anisotropic plates, numerically by perturbation it is
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applicable for all different types of anisotropic plates including degenerate

anisotropic plates. Moreover, through the identities established using the

material eigen-relation, many complex form solutions can be converted into

real form. In this case, the final analytical solutions can still be applied to

the degenerate anisotropic plates even if they have been derived for non-

degenerate anisotropic plates.

By selecting u1, u2, β1, and β2 as the primary functions, general

solutions satisfying all the basic equations in (3.1) with q = 0 have been

obtained as [7]

ud = 2Re{Af(z)}, φd = 2Re{Bf(z)}, (3.6a)

where

ud =

{
u

β

}
, φd =

{
φ

ψ

}
,

A = [a1 a2 a3 a4], B = [b1 b2 b3 b4],

f(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(z1)

f2(z2)

f3(z3)

f4(z4)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, zk = x1 + μkx2, k = 1, 2, 3, 4,

(3.6b)

and

u =

{
u1

u2

}
, β =

{
β1

β2

}
=

{
−w,1
−w,2

}
, φ =

{
φ1

φ2

}
, ψ =

{
ψ1

ψ2

}
. (3.6c)

In Eq. (3.6c), φi, i = 1, 2, are the stress functions related to the in-plane

forces Nij , and ψi, i = 1, 2, are the stress functions related to the bending

moments Mij , transverse shear forces Qi, and effective transverse shear

forces Vi(= Qi +Mij,j). Their relations are

N11 = −φ1,2, N22 = φ2,1, N12 = φ1,1 = −φ2,2 = N21,

M11 = −ψ1,2, M22 = ψ2,1, M12 = ψ1,1 − η = −ψ2,2 + η =M21,

Q1 = −η,2, Q2 = η,1,

V1 = −ψ2,22, V2 = ψ1,11, (3.7a)
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where

η =
1

2
(ψ1,1 + ψ2,2). (3.7b)

The material eigenvalues μk and their associated eigenvectors ak and

bk can be determined from the following eigen-relation

Nξ = μξ, (3.8a)

where

N = ItNmIt, ξ =

{
a

b

}
, (3.8b)

and

N =

[
N1 N2

N3 NT
1

]
, Nm =

[
(Nm)1 (Nm)2

(Nm)3 (Nm)T1

]
, It =

[
I1 I2

I2 I1

]
,

(Nm)1 = −T−1
m RT

m, (Nm)2 = T−1
m = (Nm)T2 , (3.8c)

(Nm)3 = RmT−1
m RT

m −Qm = (Nm)T3 , I1 =

[
I 0

0 0

]
, I2 =

[
0 0

0 I

]
,

and I is a 2 × 2 unit matrix. Note that the material eigenvalues μk have

been assumed to be distinct in the general solution (3.6). Moreover, the

four pairs of material eigenvectors (ak,bk), k = 1, 2, 3, 4, are assumed to

be those corresponding to the eigenvalues with positive imaginary parts.

For materials whose eigenvalues are repeated, a small perturbation in

their value may be introduced to avoid degeneracy problems [45] or a

modification of the general solution can be made [46].

In (3.8b), Nm is the 8 × 8 fundamental elasticity matrix of mixed

formalism whose explicit expressions have been obtained in [47]. In (3.8c),

the three 4× 4 real matrices Qm,Rm, and Tm are related to the matrices
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A, B̃, and D̃ by

Qm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ã11 Ã16 B̃16/2 B̃12

Ã16 Ã66 B̃66/2 B̃62

B̃16/2 B̃66/2 −D̃66/4 −D̃26/2

B̃12 B̃62 −D̃26/2 −D̃22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦, (3.9a)

Rm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã16 Ã12 −B̃11 −B̃16/2

Ã66 Ã26 −B̃61 −B̃66/2

B̃66/2 B̃26/2 D̃16/2 D̃66/4

B̃62 B̃22 D̃12 D̃26/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.9b)

Tm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ã66 Ã26 −B̃61 −B̃66/2

Ã26 Ã22 −B̃21 −B̃26/2

−B̃61 −B̃21 −D̃11 −D̃16/2

−B̃66/2 −B̃26/2 −D̃16/2 −D̃66/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦. (3.9c)

Note that unlike the two-dimensional elastic case, Qm and Tm defined

in (3.9a) and (3.9c) are not positive definite. However, the existence of the

inverse of Tm used in (3.8c) for the calculation of (Nm)i is guaranteed,

since it has been proved through the derivation of the explicit expressions

of (Nm)i [47] or the relation between displacement formalism and mixed

formalism [7, 11].

With the general solutions presented in (3.6), the next important task is

constructing an environment to help researchers find solutions satisfying the

boundary conditions for a given problem. It is helpful if this environment

contains the following features: (1) the relations for the physical quantities

on the rotated coordinate; (2) the identities for the conversion of a complex

form solution into a real form solution; and (3) the explicit expressions for

the matrices used in the formulation.

(1) To be suitable for general problems, which may have arbitrary

geometrical shape, it is always desirable to have the relations for the

physical quantities expressed in other coordinates. If a quantity is identified

as a tensor, the change to the components of the quantity can be made by
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following the transformation laws of tensors. From this viewpoint, with

the conventional approach one usually applies the transformation law of

second-order tensors to obtain the bending moments (Mn,Ms,Mns) and

in-plane forces (Nn, Ns, Nns), and applies the transformation laws of first-

order tensors to obtain the transverse shear force (Qn, Qs), and then one

uses the definition of effective transverse shear force to obtain (Vn, Vs).

Here, the subscripts n and s denote, respectively, the normal and tangential

directions of the normal-tangent (n−s) coordinate system. In the Stroh-like

formalism the secondary functions are the stress functions φ1, φ2, ψ1, and

ψ2 instead of the stresses. Thus, it is more convenient if we express the

relations calculating the stress resultants and bending moments in the n−s
coordinates using the stress functions instead of their quantities in the

x1 − x2 coordinates. The relations obtained in [34] are as follows:

Nn = nT tn = nTφ,s, Nns = sT tn = sTφ,s,

Ns = sT ts = −sTφ,n, Nsn = nT ts = −nTφ,n = Nns,

Mn = nTmn = nTψ,s, Mns = sTmn = sTψ,s − η,

Ms = sTms = −sTψ,n, Msn = nTms = −nTψ,n + η =Mns,

Qn = η,s, Qs = −η,n, Vn = (sTψ,s),s,

Vs = −(nTψ,n),n, η = (sTψ,s + nTψ,n)/2,

(3.10)

where tn and mn are the surface traction and surface moment along

the surface with normal n, and ts and ms are the surface traction and

surface moment along the surface with normal s, which is perpendicular to

the direction n; n and s are the directions normal and tangential to the

boundary and can be written as

nT = (− sin θ, cos θ), sT = (cos θ, sin θ), (3.11)

where θ denotes the angle from the positive x1-axis to the direction s in a

clockwise direction.

In addition to the relations shown in (3.10), another important relation

that cannot be obtained directly through simple tensor transformation is

the generalized material eigen-relation. This relation is established through

a consideration of the dual coordinate system in which the displacements

and stress functions are referred to the x1 − x2 coordinate system, whereas

other terms such as the elastic constants are referred to a rotated coordinate
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system x∗1 − x∗2. The generalized material eigen-relation presented in [48] is

N(ω)ξ = μ(ω)ξ, (3.12a)

where

N(ω) = ItNm(ω)It, ξ =

{
a

b

}
, (3.12b)

N(ω) =

[
N1(ω) N2(ω)

N3(ω) NT
1 (ω)

]
, Nm(ω) =

[
(Nm(ω))1 (Nm(ω))2

(Nm(ω))3 (Nm(ω))T1

]
,

(Nm(ω))1 = −T−1
m (ω)RT

m(ω), (Nm(ω))2 = T−1
m (ω), (3.12c)

(Nm(ω))3 = Rm(ω)T
−1
m (ω)RT

m(ω)−Qm(ω),

and

μ(ω) =
− sinω + μ cosω

cosω + μ sinω
. (3.12d)

In (3.12), Qm(ω),Rm(ω), and Tm(ω) are related to the matrices Qm,Rm,

and Tm defined in (3.9) by

Qm(ω) = Qm cos2 ω + (Rm +RT
m) sinω cosω +Tm sin2 ω,

Rm(ω) = Rm cos2 ω + (Tm −Qm) sinω cosω −RT
m sin2 ω,

Tm(ω) = Tm cos2 ω − (Rm +RT
m) sinω cosω +Qm sin2 ω,

(3.12e)

in which ω denotes the angle between the transformed and original

coordinates.

(2) Since all physical quantities are real, it is desirable to have real form

solutions instead of complex form solutions. Moreover, if the solutions can

be written in a real form that does not involve complex numbers — material

eigenvalues μα and their associated material eigenvector matrices A and

B — they will not have the degeneracy problems raised by the repetition

of material eigenvalues. Therefore, if the solutions can be converted into

real form, they are not only convenient for practical applications but are

also applicable for all the different types of laminated plates including

degenerate plates. Thus, the identities converting the complex form into

real form are important for the analytical derivation using the Stroh-like

formalism.

In the eigen-relation Nξ = μξ, N is real, whereas μ and ξ are complex.

In other words, this eigen-relation is the foundation for converting the

identities connecting the complex μ, A, and B to real N. Several identities
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deriving from this relation have been obtained for the Stroh formalism

of two-dimensional anisotropic elasticity [5, 6]. Since the material eigen-

relations (3.8) and (3.12) of the Stroh-like formalism have been purposely

organized into the same forms as those of the Stroh formalism, all the

identities derived from this eigen-relation can be applied to the Stroh-like

formalism without further proof. Therefore, in this chapter no identities

will be presented. For those interested in these identities, please refer to

the books [5, 6] for anisotropic elasticity.

(3) The explicit expressions for the matrices used in the formulation are

useful when one tries to find the analytical solutions for each component

of the physical quantities such as displacements, strains, and stresses. The

advantage of the matrix form is that the solution can be expressed in an

elegant and easily programmed way. Moreover, through proper arrangement

of the matrices, it is possible that one solution form will be suitable for

several different kinds of problem. The typical example is the general

solution shown in (3.6a), which is a matrix form solution suitable for two-

dimensional elasticity problems, plate bending problems as well as coupled

stretching-bending problems, and the materials considered can be any kinds

of anisotropic or piezoelectric materials. In other words, this simple matrix

form solution (3.6a) can be applied to a wide range of problems and

materials, and hence, it is important to know the explicit expressions of

the material eigenvector matrices A and B in this solution.

As stated in (2), a key feature of Stroh formalism is its eigen-relation

relating the complex material eigenvectors to real material properties.

Several real matrices connected through this eigen-relation, such as the

fundamental elasticity matrix N, the generalized fundamental elasticity

matrix N(θ), and the Barnett–Lothe tensors L, S, and H, are crucial when

the analytical solutions lead to real form expressions. Because these real

matrices can be obtained directly from the material properties, they exist

for all types of materials — degenerate or non-degenerate. In other words,

if the final solution of a particular elasticity problem can be expressed in

terms of these real matrices, even if they are derived using an assumption

of non-degenerate materials, they are still valid for degenerate materials.

Therefore, no matter whether complex or real, getting the explicit

expressions for A, B, N, N(θ), L, S, and H is an important stage

in understanding the effects of the material properties in problems of

anisotropic elasticity. For plane problems with anisotropic elastic materials,

most of the explicit expressions have been well documented in [5, 6].

Their corresponding explicit expressions for general piezoelectric materials
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covering all the possible two-dimensional states such as generalized plane

strain or plane stress and short circuit or open circuit, were provided

in [49]. In my recent study [48], one can find the explicit expressions of

the Stroh-like formalism for the coupled stretching-bending analysis.

3.3. Extended Stroh-Like Formalism — Hygrothermal

Stresses

In the previous section, the constitutive relations pertain only to an

environment with constant temperature and constant moisture, i.e., no

temperature or moisture changes are allowed. However, in laminated

structures hygrothermal changes occur frequently during fabrication and

structural usage. When a homogeneous body is completely free to deform,

the hygrothermal changes may produce only hygrothermal strains for

which the body is free of stresses. However, for a composite laminate

each individual lamina is not completely free to deform. Lamina stresses

are therefore induced by the constraints placed on deformation by

adjacent lamina. Thus, the study of hygrothermal stresses in laminates

is important for practical engineering design. Like the extension of

Stroh formalism to anisotropic thermoelasticity, in this section we

extend the Stroh-like formalism to the hygrothermal stress analysis of

laminates.

When hygrothermal effects are considered, the basic equations shown

in (3.1) should be modified to

Ui = ui + x3βi, T = T 0 + x3T
∗, H = H0 + x3H

∗,

β1 = −w,1, β2 = −w,2,
q̆i = −Kt

ijT
0
,j −K∗t

ij T
∗
,j −Kt

i3T
∗, m̆i = −Kh

ijH
0
,j −K∗h

ij H
∗
,j −Kh

i3H
∗,

εij =
1

2
(ui,j + uj,i), κij =

1

2
(βi,j + βj,i),

Nij = Aijklεkl +Bijklκkl −AtijT
0 −AhijH

0 −BtijT
∗ −BhijH

∗,

Mij = Bijklεkl +Dijklκkl −BtijT
0 −BhijH

0 −Dt
ijT

∗ −Dh
ijH

∗,

Nij,j = 0, Mij,ij + p = 0, Qi =Mij,j , q̆i,i + q = 0,

m̆i,i +m = 0, i, j, k, l = 1, 2, (3.13)

where Ui, T , and H are the displacements, temperature, and moisture

content of the plates, ui, T
0, and H0 are the middle surface displacements,

temperature, and moisture content, and βi, T
∗, and H∗ are the negative
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slopes, and the rates of change of temperature and moisture content across

the thickness. q̆i and m̆i denote the heat flux resultant and moisture transfer

resultant; Atij , B
t
ij , D

t
ij and Ahij , B

h
ij , D

h
ij are the corresponding tensors for

the thermal and moisture expansion coefficients; Kt
ij , K

h
ij and K∗t

ij , K
∗h
ij

are the coefficients related to the heat conduction and moisture diffusion

coefficients; p, q, and m are the lateral distributed load, heat flux, and

moisture concentration transfer applied to the laminates.

Since the basic equations in (3.13) are quite general, it is not easy to

find a solution satisfying all these basic equations. Here, two special cases

that occur frequently in engineering applications are considered. One is the

case when the temperature and moisture distributions depend on x1 and

x2 only, i.e., T ∗ = H∗ = 0, and the other is the case when the temperature

and moisture distributions depend on x3 only, i.e., T = T 0 + x3T
∗ and

H = H0 + x3H
∗ in which T 0, T ∗, H0, and H∗ are constants independent

of x1 and x2. The general solutions for these two special cases have been

obtained in [28] and are called the extended Stroh-like formalism since they

are the extensions of Stroh-like formalism.

Case 1: Temperature and moisture content depend on x1 and x2 only

In this case, the temperature and moisture content are assumed to vary

in the x1–x2 plane and distribute uniformly in the thickness direction.

The lateral distributed load, heat flux, and moisture concentration

transfer applied on the laminates are neglected. With this consideration,

T ∗=H∗ = p= q=m=0, and the basic equations in (3.13) can be simplified.

By following the steps for the Stroh formalism of two-dimensional

thermoelasticity [50], the general solutions satisfying all the basic equations

in (3.13) can be found as [28]

T = 2Re{g′t(zt)}, H = 2Re{g′h(zh)},
q̆i = −2Re{(Kt

i1 + τtK
t
i2)g

′′
t (zt)},

m̆i = −2Re{(Kh
i1 + τhK

h
i2)g

′′
h(zh)},

ud = 2Re{Af(z) + ctgt(zt) + chgh(zh)},
φd = 2Re{Bf(z) + dtgt(zt) + dhgh(zh)},

(3.14)

in which zt = x1 + τtx2, zh = x1 + τhx2, and τt, τh and (ct,dt), (ch,dh)

are thermal and moisture eigenvalues and eigenvectors, which can be
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determined by the following eigen-relations:

Kt
11 + 2τtK

t
12 + τ2t K

t
22 = 0, Kh

11 + 2τhK
h
12 + τ2hK

h
22 = 0,

Nηt = τtηt + γt, Nηh = τhηh + γh,
(3.15a)

where

N =

[
N1 N2

N3 NT
1

]
, ηt =

{
ct
dt

}
, ηh =

{
ch
dh

}
, (3.15b)

and N is the fundamental elasticity matrix defined in (3.8c), γt and γh are

two 8×1 complex vectors related to the elastic constants and the coefficients

of thermal and moisture expansion [6].

Case 2: Temperature and moisture content depend on x3 only

If the temperature and moisture content depend on x3 only, the general

solutions satisfying all the basic equations in (3.13) can be expressed as [28]

ud = 2Re{Af(z)},
φd = 2Re{Bf(z)} − x1ϑ2 + x2ϑ1,

(3.16a)

where

ϑi = α
t
iT

0 +αhiH
0 +α∗t

i T
∗ +α∗h

i H
∗, i = 1, 2. (3.16b)

αti and α
∗t
i are defined by

αt1 =

{
αtA1

αtB1

}
, αt2 =

{
αtA2

αtB2

}
, αtAi =

{
At1i
At2i

}
, αtBi =

{
Bt1i
Bt2i

}
,

(3.16c)

and

α∗t
i =

{
αtBi
αtDi

}
, αtBi =

{
Bt1i
Bt2i

}
, αtDi =

{
Dt

1i

Dt
2i

}
, i = 1, 2. (3.16d)

The same expressions as (3.16c) and (3.16d) are defined for αhi and α∗h
i by

replacing superscript t with h.

With the general solution shown in (3.14) or (3.16) for the generalized

displacement and stress function vectors, the middle surface displacements

ui and slopes βi can be obtained directly from the components of the

generalized displacement vector ud. For the stress resultants Nij , shear

forcesQi, effective shear forces Vi, and bending momentsMij , we can utilize

the relations shown in (3.7).
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3.4. Expanded Stroh-Like Formalism — Electro-Elastic

Laminates

Consider an electro-elastic laminate made of fiber-reinforced composites

and piezoelectric materials. Although it may exhibit electric-elastic coupling

effects that are more complicated than those of single-phase piezoelectric

materials, a similar extension from pure elastic materials to piezoelectric

materials for a two-dimensional analysis can still be applied to the coupled

stretching-bending analysis of electro-elastic laminates. For piezoelectric

anisotropic elasticity, to include the piezoelectric effects the constitutive

laws, the strain–displacement relations, and the equilibrium equations can

be written as follows [51]:

{
σij = CEijklεkl − ekijEk,

Dj = ejklεkl + ωεjkEk,
εij =

1

2
(ui,j + uj,i),{

σij,j = 0,

Di,i = 0,
i, j, k, s = 1, 2, 3, (3.17)

in which ui, σij , εij , Dj , and Ek are, respectively, the displacement, stress,

strain, electric displacement (also called induction), and electric field;

CEijkl , ekij , and ω
ε
jk are, respectively, the elastic stiffness tensor at constant

electric field, piezoelectric stress tensor, and dielectric permittivity tensor

at constant strain. By letting

Dj = σ4j , −Ej = u4,j = ε4j , j = 1, 2, 3,

Cijkl = CEijkl , i, j, k, l = 1, 2, 3,

Cij4l = elij , i, j, l = 1, 2, 3,

C4jkl = ejkl, j, k, l = 1, 2, 3,

C4j4l = −ωεjl, j, l = 1, 2, 3,

(3.18)

the basic equations in (3.17) can be rewritten in an expanded notation as

σIj = CIjKlεKl, εIj =
1

2
(uI,j + uj,I), σIj,j = 0,

I,K = 1, 2, 3, 4, j, l = 1, 2, 3,

(3.19)

where uj,4 = 0. Through the use of the expanded notation for piezoelectric

materials, the basic equations for the coupled mechanical-electrical analysis
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of electro-elastic composite laminates can be rewritten in the form of (3.1)

by expanding the range of certain subscripts from 2 to 4 [29]. And, hence

the general solutions satisfying the basic equations can also be written

in the same matrix form as shown in (3.6) for the Stroh-like formalism [6].

The only difference is the dimension and content of the matrices. Thus, this

formalism is called expanded Stroh-like formalism due to the expansion of

the matrix dimension.

3.5. Holes and Cracks

Due to the stress concentration induced by the existence of holes and cracks,

anisotropic plates containing holes or cracks have been studied extensively

in two-dimensional problems. Owing to the mathematical complexity, not

many analytical results have been presented for coupled stretching-bending

problems of holes and cracks in general composite laminates. In this section

we will show some results for laminates containing holes or cracks presented

in the literature using the Stroh-like formalism.

3.5.1. Holes in laminates under uniform stretching

and bending moments

Consider an unbounded composite laminate with an elliptical hole subjected

to in-plane forces N11 = N∞
11 , N22 = N∞

22 , N12 = N∞
12 , and out-of-plane

bending moments M11 = M∞
11 , M22 = M∞

22 , M12 = M∞
12 , at infinity

(Fig. 3.1). The contour of the elliptical hole is represented by

x1 = a cosϕ, x2 = b sinϕ, (3.20)

where 2a and 2b are the major and minor axes of the ellipse and ϕ is a real

parameter. There is no load around the edge of the elliptical hole, i.e.,

Nn = Nns = 0, Mn = Vn = 0, (3.21)

along the hole boundary.

A solution satisfying all the basic equations in (3.1) and the boundary

condition (3.21) has been found as [27]

ud = x1d
∞
1 + x2d

∞
2 − Re{A〈ζ−1

α 〉B−1(am∞
2 − ibm∞

1 )},
φd = x1m

∞
2 − x2m

∞
1 − Re{B〈ζ−1

α 〉B−1(am∞
2 − ibm∞

1 )},
(3.22)
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a2

b2

∞
11M

∞
22M

∞
12N

∞
11N

∞
12M

∞
12N

∞
12M

∞
22N

∞
11M

∞
12N

∞
11N

∞
12M

∞
22M

∞
12N

∞
12M

∞
22N

Fig. 3.1. A composite laminate weakened by an elliptical hole subjected to in-plane
forces and out-of-plane bending moments.

in which the angular bracket 〈 〉 stands for a diagonal matrix in which each

component is varied according to the subscript α, and

ζα =
zα +

√
z2α − a2 − μ2

αb
2

a− iμαb
. (3.23)

m∞
1 = (N∞

11 , N
∞
12 ,M

∞
11 ,M

∞
12 )

T ,m∞
2 = (N∞

12 , N
∞
22 ,M

∞
12 ,M

∞
22 )

T , and d∞
1

and d∞
2 are the vectors containing the quantities for the shear strains and

curvatures at infinity, which are related to m∞
1 and m∞

2 by

d∞

{
d∞
1

2

}
=

[
Q∗ R∗

R∗T T∗ m∞

]{
m∞

1

2

}
, (3.24a)

where

Q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
11 A∗

16/2 B∗
11 B∗

16/2

A∗
16/2 A∗

66/4 B∗
61/2 B∗

66/4

B∗
11 B∗

61/2 D∗
11 D∗

16/2

B∗
16/2 B∗

66/4 D∗
16/2 D∗

66/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦, (3.24b)
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R∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
16/2 A∗

12 B∗
16/2 B∗

12

A∗
66/4 A∗

26/2 B∗
66/4 B∗

62/2

B∗
61/2 B∗

21 D∗
16/2 D∗

12

B∗
66/4 B∗

26/2 D∗
66/4 D∗

26/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦, (3.24c)

T∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A∗
66/4 A∗

26/2 B∗
66/4 B∗

62/2

A∗
26/2 A∗

22 B∗
26/2 B∗

22

B∗
66/4 B∗

26/2 D∗
66/4 D∗

26/2

B∗
62/2 B∗

22 D∗
26/2 D∗

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦, (3.24d)

and A∗
ij , B

∗
ij , D

∗
ij are the components of A∗,B∗,D∗ defined in (3.5).

According to the relations given in (3.10) we know that the calculation

of the stress resultants and bending moments relies upon the calculation

of the differentials φd,s and φd,n. Along the hole boundary, the real form

expressions have been obtained as φd,s = 0 and

φd,n = sin θ
{
G1(θ)m

∞
1 −

[
I+

a

b
G3(θ)

]
m∞

2

}

− cos θ

{[
I+

b

a
G3(θ)

]
m∞

1 +G1(θ)m
∞
2

}
, (3.25a)

where

G1(θ) = NT
1 (θ) −N3(θ)SL

−1, G3(θ) = −N3(θ)L
−1. (3.25b)

L, S, and H are three real matrices which are called the Barnett–Lothe

tensors defined by

H = 2iAAT , L = −2iBBT , S = i(2ABT − I). (3.26)

Note that, as it has been shown by Wu[52], in some cases to satisfy

the requirement of single-valued displacement an additional term should

be added in the solutions of (3.22) and (3.25a).

3.5.2. Holes in laminates under uniform heat flow

and moisture transfer

Using the extended Stroh-like formalism presented in Section 3.3, the

hygrothermal stresses in composite laminates disturbed by an elliptical hole

subjected to uniform heat flow and moisture transfer in the x1 − x2 plane

or x3 direction were solved in [28]. To save space only the solutions for the
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problem under uniform heat flow and moisture transfer in the x3 direction

are presented in this section.

If the temperature and moisture content are assumed to vary linearly

in the thickness direction, and T = Tu and H = Hu on the top surface and

T = Tl and H = Hl on the bottom surface, we have

T 0 =
Tl + Tu

2
, H0 =

Hl +Hu

2
, T ∗ =

Tl − Tu
h

, H∗ =
Hl −Hu

h
,

(3.27)

where h is the thickness of the laminated plate.

The field solution of this problem has been obtained as

ud = Re{A〈ζ−1
α 〉B−1(aϑ2 − ibϑ1)},

φd = Re{B〈ζ−1
α 〉B−1(aϑ2 − ibϑ1)} − x1ϑ2 + x2ϑ1,

(3.28)

where ϑ1 and ϑ2 are related to T 0, H0, T ∗, and H∗ by the equation shown

in (3.16b). Along the hole boundary, the real form expressions of φd,n have

been obtained as

φd,n = cos θ

[
ϑ1 +G1(θ)ϑ2 +

b

a
G3(θ)ϑ1

]

+sin θ
[
ϑ2 −G1(θ)ϑ1 +

a

b
G3(θ)ϑ2

]
. (3.29)

3.5.3. Holes in electro-elastic laminates under uniform

loads and charges

Consider an unbounded electro-elastic composite laminate with an elliptical

hole subjected to the uniform generalized forces N∞
11 , N

∞
22 , N

∞
12 , N

∞
41 , N

∞
42 ,

and uniform generalized moments M∞
11 ,M

∞
22 ,M

∞
12 , M

∞
41 ,M

∞
42 at infinity.

The generalized forces and moments N4i andM4i, i = 1, 2, are related to the

electric displacement [29]. The contour of the elliptical hole is represented

by (3.20). If the hole edge and the upper and lower surfaces of the laminate

are free of traction and electric charge, the boundary conditions of this

problem can be expressed by the same matrix form equation as that for

the laminates discussed in Section 3.5.1. The only difference is that the

dimension of the vectors φd, m
∞
1 , and m∞

2 is now 6 × 1 instead of 4 × 1.

Due to the equivalence of the mathematical formulation, the solutions of

this problem can also be expressed by the matrix form expressions shown

in (3.22)–(3.25).
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3.5.4. Cracks in laminates

Consider an unbounded composite laminate containing a through-thickness

crack loaded at infinity and the crack is assumed to lie on the x1-axis

with its center located at the origin. Since an elliptical opening can be

considered to be a crack of length 2a by letting the minor axis b be zero,

the field solutions for cracks can therefore be obtained from the solutions for

problems for elliptical holes with b = 0. After deriving the field solutions,

the stress intensity factors k can be calculated directly through the following

definition:

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KII

KI

KIIB

KIB

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= lim
r→0

√
2πr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N12

N22

M12

M22

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= lim
r→0

√
2πrm2, (3.30)

where r is the distance ahead of the crack tip; KII , KI , KIIB , KIB are,

respectively, the stress intensity factors of the shearing mode, opening

mode, twisting mode, and bending mode. From the relations given in (3.7)

and the definition (3.30), we get

k = lim
r→0

√
2πr(φd,1 − ηi3), (3.31a)

where

iT3 = (0 0 1 0). (3.31b)

Using the relation (3.31) and the solutions for the problems of elliptical holes

(3.22)2 with b = 0, the explicit solutions for the stress intensity factors can

be obtained as [53]

k =
√
πa{m∞

2 − η0i3}, (3.32a)

where

η0 = {M∞
12 + (G1m

∞
2 )4}/2, (3.32b)

and G1 = G1(0) which is defined in (3.25b).

3.6. Numerical Examples

For the analytical closed-form solutions presented in the previous section,

several numerical examples are illustrated in this section. All the examples
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consider an unbounded laminate composed of different combinations of

graphite/epoxy fiber-reinforced composite laminae. Each lamina thickness

is 1 mm, and the material properties of the graphite/epoxy are

E1 = 181GPa, E2 = 10.3GPa, G12 = 7.17GPa, ν12 = 0.28,

αt11 = 0.02× 10−6/◦C, αt22 = 22.5× 10−6/◦C,

kt11 = 1.5W/m
◦
C, kt22 = 0.5W/m

◦
C,

(3.33)

where E1 and E2 are the Young’s moduli in the x1 and x2 directions,

respectively; G12 is the shear modulus in the x1–x2 plane; ν12 is the major

Poisson’s ratio and is related by ν21E1 = ν12E2 to the minor Poisson’s ratio

ν21; α
t
11 and αt22 are the coefficients of thermal expansion in the fiber and

its transverse directions, respectively; and kt11 and kt22 are the coefficients

of heat conduction. All the other values of αtks, k
t
ij , i �= j, are zero. Note

that the properties given in (3.33) are for the plane-stress condition of

orthotropic materials, whose properties in the thickness direction are not

required. With the material properties (3.33) and layup sequence, the field

deformations and stresses as well as the resultant forces and moments

around the hole boundary can be calculated by following the procedure

shown in the flowchart Fig. 3.2.

3.6.1. Holes

Consider a [+45/0/+45/−45] unsymmetric laminate containing a circular

hole. Figure 3.3 shows the resultant forces and bending moments around

the hole boundary under different loading conditions. From this figure,

we see that if an unsymmetric composite laminate is subjected to in-

plane forces only or out-of-plane bending moments only, both bending

moments and in-plane forces will be induced around the hole boundary,

which is reasonable and expected due to the existence of the coupling

stiffnesses.

To show the effect of hole shape, five different ratios, b/a = 5, 3, 1,

1/3, 1/5, were considered. Figure 3.4 shows that the maximum values of

Ns increase as the ratio b/a increases. Moreover, the maximum values of

Ns are located at ϕ = 90◦ and 270◦ when the ratio b/a ≥ 1. On the other

hand, when the ratio b/a < 1 the location of the maximum values has a

tendency, although not quite clear, to shift to near ϕ = 180◦ and ϕ = 360◦.
A similar situation occurs for the variation of Ms and Mns [27].
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Laminate construction

nn hhh ,...,,,,...,, 2121 θθθ

Calculate the eigen-relation  (3.8)

Generalized matrices 
(3.12e))(),(),( θθθ mmm TRQ

In-plane forces and out-of-
plane bending moments at 
infinity 
Temperature changes:              

∞∞
21 ,mm

Hole geometry, a and b

Lamina properties

Thermal problem: 
121221 ,,, νGEE

Generalized fundamental matrices  
(3.12c))(),(),( 321 θθθ NNN

Matrices                      (3.5)*** D,B,A

General solutions              for 
the whole field (3.22) 
Thermal problem: (3.28)

dd φ,u

Laminate stiffness              [6]

(3.5)

(3.9)

Thermal problem:                            

[6];              (3.16c,d)

, ,m m mQ R T

DB,A,

, * * *A,B, D A ,B ,D

Material eigenvalues          (3.8)
Material eigenvector matrices A, B (3.6b&3.8)  
Barnett–Lothe tensors S, H, L (3.26);

kμ

Fundamental matrices 
N1, N2, N3 (3.8)

,  t t
ij ijkα

t , ,t t
ij ij ijA B D *,t t

i i

0 *,  T T

(3.24a)1 2
∞ ∞,  d d

Resultant forces and moments around the hole 
boundary  (3.25)
Thermal problem: (3.29)
Stress intensity factors for crack problem: (3.32)

Fig. 3.2. Flowchart for the calculation of deformations and stresses, and resultant
forces and moments, around the hole boundary, and the stress intensity factors for crack
problems.

3.6.2. Thermal environment

To show the necessity of the analytical solutions, here we consider

the simplest case where only in-plane stretching occurs under uniform

temperature changes in a unidirectional laminate. Consider a [0]4
unidirectional laminate containing a through-thickness circular hole

subjected to a temperature change from 0◦C to 100◦C over the entire

laminate, i.e., T 0 = 100◦C and T ∗ = 0 in (3.13). Figure 3.5 compares

the resultant hoop stress Ns around the hole boundary obtained by the

solution (3.14) with three different element types, Plane42, Shell99, and

Solid45, from the commercial finite element software ANSYS. In the ANSYS
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x1

nsM

sM

sN

p̂

nsM

sM

sN

m̂

(a) (b)

x1

Fig. 3.3. Forces and moments around the circular hole in an unsymmetric composite
laminate under different loading conditions. (a) N∞

11 = p̂; (b) M∞
11 = m̂ [27].
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Fig. 3.4. Force around an elliptical hole in an unsymmetric laminate subjected to N∞
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p̂,M∞

11 = m̂ (m̂ = p̂× 1) [27].
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Fig. 3.5. Resultant force Ns around the circular hole boundary when the laminate is
subjected to a uniform temperature change [28].

simulation, 72 nodes around the hole boundary and a 1:100 hole/plate ratio

were used to approximate the unbounded laminate. Figure 3.5 shows that

the results for Plane42 agree well with the present solution while a larger

discrepancy occurs for the other element types. To illustrate the reason for

this, numerical values of the resultant tractions Nn/Ns and Nns/Ns around

the hole boundary, which should vanish for a traction-free hole, are plotted

in Figs. 3.6(a) and 3.6(b). These two figures provide strong evidence for why

a larger discrepancy occurs for Shell99 and Solid45 since they did not satisfy

the traction-free hole boundary condition, which is satisfied by Plane42

approximately and by the present solution exactly. Because the element

type Plane42 can only be used for in-plane problems, for general stretching-

bending coupling problems one must choose a shell or solid element. It is

then expected that a large discrepancy between the analytical solutions and

those of ANSYS will occur for general unsymmetric laminates. In other

words, due to the approximate nature of any finite element software, to

avoid the calculation of inaccurate solutions it is important to have a good

reference such as the exact solutions for unbounded plates shown in this

chapter. Several numerical examples for unsymmetric laminates under a

uniform heat flow in the x1 − x2 plane or in the x3 direction can be found

in [28].
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Fig. 3.6. Resultant forces around the hole boundary under uniform temperature
changes. (a) Nn/Ns; (b) Nns/Ns [28].

3.6.3. Electro-elastic coupling

Due to the complexity of electro-elastic coupling, not many numerical

examples can be found in the literature. To learn how to calculate

the physical responses for electro-elastic laminates subjected to in-plane

forces, out-of-plane bending moments, or electric displacements, one may

refer to [29] for [E/0/45/E] composed of two layers of a graphite/epoxy

fiber-reinforced composite in the middle and two piezoelectric layers of

left-hand quartz at the top and bottom. From the discussions therein,

we see that to avoid numerical ill-conditioning before employing the

explicit solutions shown in this chapter a proper dimensional adjustment is

necessary, since the elastic stiffness constants are usually of the order above

9, whereas the dielectric permittivity is usually of the order below −12, if SI

units are used. For example, the constitutive relation shown in (3.17) can be

rewritten as

σij/E0 = (CEijkl/E0)εkl − ekij(Ek/E0),

Dj = ejklεkl + (E0ω
ε
jk)(Ek/E0),

(3.34)

in which E0 is a reference number, such as 109N/m
2
, used for scale

adjustment. In numerical calculations, Eq. (3.34) allows the replacement

of the material properties CEijkl and ω
ε
jk by CEijkl/E0 and E0ω

ε
jk. With this

replacement the output values of the stresses and electric fields are σij/E0

and Ek/E0, which should be multiplied by E0 to return them to their

original units.
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Fig. 3.7. Stress intensity factors of composite laminates.

3.6.4. Cracks

From the solution shown in (3.32) we see that the stress intensity factor

KIIB depends on the material properties, and all the other stress intensity

factors are independent of the material properties. To illustrate the effect

of the material, two additional materials were considered in crack problems

besides the graphite/epoxy laminates. One was glass/epoxy and the other

was boron/epoxy. Their material properties are

Glass/epoxy:

E1 = 38.6GPa, E2 = 8.27GPa, G12 = 4.14GPa, ν12 = 0.26.

Boron/epoxy:

E1 = 209GPa, E2 = 19GPa, G12 = 6.6GPa, ν12 = 0.21.

Figure 3.7 shows that the larger the crack length 2a the higher the stress

intensity factors KIB and KIIB , and the Mode II stress intensity factor

KIIB depends on both the crack geometry and the material properties.

3.7. Conclusions

From the presentation in this chapter, it can be seen that most of the

features of the Stroh formalism for two-dimensional anisotropic elasticity
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have been preserved in the Stroh-like formalism for coupled stretching-

bending analysis. Using this advantage, most of the problems in coupled

stretching-bending analysis, which could not be solved previously have now

been solved by referring to the solutions obtained for the two-dimensional

elasticity problems.
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Diagrams for Laminated Structures
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Abstract

This chapter overviews classical and advanced theories for laminated plates
and shell structures. Findings from existing historical reviews are used to
confirm that the advanced theories can be grouped and referred to as
Lekhnitskii multilayered theories, Ambartsumian multilayered theories, and
Reissner multilayered theories. The unified formulation proposed by the first
author, which is known as CUF (Carrera Unified Formulation), is used
to make numerical assessments of various laminated plate/shell theories.
The chapter provides details of a recent reliable finite element formulation
for laminated shell analysis. It is embedded in the CUF framework, and
it leads to the classical, zig-zag, and layer-wise models as particular cases.
Numerical mechanisms such as shear and membrane locking are contrasted
by developing an appropriate choice of shape functions and mixed assumed
shear strain techniques. Furthermore, the Best Theory Diagram (BTD) is
introduced as a tool to evaluate the accuracy of any structural model against
a reference solution. The BTD is obtained through an axiomatic/asymptotic
method (AAM) developed by the authors and using genetic algorithms. BTDs
for plate and shell Equivalent Single Layer models (ESL) are presented, and
guidelines and recommendations are provided for the proper development of
refined structural theories.
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4.1. Introduction

Two-dimensional (2D) modeling of multilayered plates and shells

requires appropriate theories. The discontinuity of physical/mechanical

properties in the thickness direction makes theories that were origi-

nally developed for one-layered structures inadequate, such as the Cauchy–

Poisson–Kirchhoff–Love thin plate/shell theories [1–4], or the Reissner and

Mindlin [5, 6] first-order shear deformation theory (FSDT) as well as higher-

order models such as that by Hildebrand, Reissner, and Thomas [7]. These

theories are in fact not able to reproduce piecewise continuous displacement

and transverse stress fields in the thickness direction, which are usually

experienced by multilayered structures. These two fields are often described

in the literature as zig-zag effects and interlaminar continuity, respectively

(see also the three-dimensional solutions reported by Pagano [8]).

In [9] these two effects have been summarized using the acronym

C0
z -requirements, that is displacements and transverse stresses must be
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Fig. 4.1. C0
z -requirements. Single-layered and three-layered structures.

C0-continuous functions in the z-thickness directions. A qualitative

comparison of displacement and stress fields in a one-layered and a

multilayered structure is depicted in Fig. 4.1. This picture clearly shows

that theories designed for one-layer structures are inappropriate to analyze

multilayered ones.

Some refinements of classical models as well as theories designed for

multilayered structures have been proposed in the literature over the last

four decades. Due to the form of displacement fields (see Fig. 4.1), the

latter are often referred to as “zig-zag” theories. For a complete review

of this topic, readers who are interested can refer to the many available

survey articles on beams, plates, and shells. Among these, excellent reviews

are quoted in the articles by Ambartsumian [10], Librescu and Reddy [11],

Grigolyuk and Kulikov [12], Kapania and Raciti [13], Kapania [14], Noor

and co-authors [15–17], Reddy and Robbins [18], Carrera [19], as well

as in the books by Librescu [20] and Reddy [21]. These articles review

theories that deal with layer-wise models (LWMs) and equivalent single-

layer models (ESLMs). Following Reddy [21], it is intended that the number

of displacement variables is kept independent of the number of constitutive

layers in the ESLM, while the same variables are independent in each layer

for LWM cases.

Although these review works are excellent, in the authors’ opinion,

there still exists the need for a historical review with the aim of giving clear

answers to the following questions:

(1) Who first presented a zig-zag theory for a multilayered structure?
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(2) How many different and independent ESL zig-zag theories have been

proposed in open literature?

(3) Who first proposed the theories for question 2?

(4) Are the original works well recognized and mentioned correctly in

subsequent articles?

(5) What are the main differences among the available approaches to

multilayered structures?

The answers to these five points could be extremely useful to

analyze of layered structures. Furthermore, it will give an insight into

early and, equally very interesting, ideas and methods such as those by

Lekhnitskii [22], which could be extended and applied to further problems.

This chapter is, therefore, a historical review of “zig-zag” theories,

which can describe what have previously been called C0
z -requirements,

given questions (1)–(5). These topics have already been documented in

the historical note by the first author [23]. The findings in that paper are

reconsidered in the first part of this chapter.

The present chapter considers mostly ESLMs. For the sake of

completeness, a few comments on layer-wise cases are given in a separate

section. A further limitation of the present chapter is that it is restricted

to axiomatic-type approaches, although a novel axiomatic/asymptotic

approach is presented in the last part of this work. The three multilayered

theories discussed introduce initial assumptions: stress function forms were

assumed by Lekhnitskii, transverse shear stress fields were assumed by

Ambartsumian, while both displacements and transverse shear stresses

were assumed in the framework of the mixed theorem proposed by

Reissner. Therefore, those works which are based on asymptotic expansion

such as those in [24–26] have not been discussed in the present

chapter.

The second part of this chapter considers the development of a refined

shell finite element formulation, which is based on the Carrera Unified

Formulation (CUF) [27, 28].

The most common mathematical models used to describe shell

structures may be classified into two classes according to their

different physical assumptions. The Koiter model [29] is based on

the Kirchhoff hypothesis. The Naghdi model [30] is based on the

Reissner–Mindlin assumptions, which take into account transverse shear

deformation. It is known that when a finite element method is

used to discretize a physical model, numerical locking may arise
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from hidden constraints that are not well represented in the finite

element approximation. In the Naghdi model both transverse shear

and membrane constraints appear as the shell thickness becomes very

small, thus locking may arise. The most common approaches proposed

to overcome the locking phenomenon are the standard displacement

formulation with higher-order elements [31, 32] or techniques of reduced-

selective integration [33, 34]. But these introduce other numerical

problems.

Concerning works by Bathe and others [35–37], the present authors

have employed the mixed interpolation of tensorial components (MITC)

method, coupled to CUF, to overcome the locking phenomenon. This

method has been applied to both ESL and LW variable kinematic models

contained in CUF to analyze multilayered structures. Nine-node cylindrical

shell elements have been considered. The performance of the new element

has been tested by solving benchmark problems involving very thin shells

as well as multilayered shells. The results show that the element has

good convergence and robustness when the thicknesses become very small.

In particular, the study of multilayered structures demonstrates that the

zig-zag and LW models provide more accurate solutions than the simple

ESL models.

The present work represents an extension of [38]. In particular, the

axiomatic/asymptotic method (AAM) and the Best Theory Diagram

(BTD) were added. The AAM has been recently introduced [39–42] as a

method to evaluate the influence of each primary variable of a structural

model for the solution of a given problem. Starting from an axiomatic

choice of a model, asymptotic-like results can be obtained by evaluating

the effectiveness of each variable on characteristic parameters, such as the

thickness, orthotropic ratio or stacking sequence. Via the AMM reduced

advanced models can be built by retaining only those variables that

influence the solution. The AMM has been recently applied to various

structural problems involving beam [40, 43], plate [44–49], and shell [50, 51]

models. The AAM can be used to build the BTD that is a curve in which,

for a given problem, the number of unknown variables of a structural model

is plotted against the accuracy of the model [52–55]. In particular, all

those models that provide the best accuracy with the minimum number

of variables belong to the BTD. Such a curve can be obtained by direct use

of the AAM, or by coupling the AAM with a genetic algorithm. The former

approach is computationally less expensive. In this chapter, some BTDs
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are presented, with particular attention paid to ESL models for composite

plates and shells.

4.2. Who First Proposed a Zig-Zag Theory?

To the best of the authors’ knowledge, Lekhnitskii should be considered

as the first contributor to the theory for multilayered structures. In [22],

in fact, Lekhnitskii proposed a splendid method able to describe zig-zag

effects (for both in-plane and through-the-thickness displacements) and

interlaminar continuous transverse stresses. This is proved by Fig. 4.2,

taken from Lekhnitskii’s pioneering work [22], which shows an interlaminar

continuous transverse shear stress field (τ1 and τ2 are shear stresses in

the layers 1 and 2, respectively) with discontinuous derivatives at the layer

interface (the first author thanks Prof Shifrin, who provided the original

article in Russian, and D. Carrera for providing an Italian translation of

the same article). In other words, the C0
z–requirements of Fig. 4.1 were

entirely accounted for by Lekhnitskii [22].

The authors believe it would be of relevant interest to quote the original

derivations made by Lekhnitskii. It is, in fact, difficult to obtain the original

article by Lekhnitskii, which has no English translation. Furthermore, the

theory proposed by Lekhnitskii is very interesting and the method used

could be a starting point for future developments. The following detailed

Fig. 4.2. C0
z -form of a transverse shear stress in a two-layered structure.
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derivation is therefore taken directly from Lekhnitskii’s original paper,

written in Russian. A few changes in notation are made. A briefer treatment

can be found in the English translation of the book [56, Chapter 3,

Section 18, p. 74].

This section closes with a few remarks on the theory proposed by

Lekhnitskii:

(1) Lekhnitskii’s theory describes the zig-zag form of both longitudinal and

through-the-thickness displacements, in particular:

(a) the longitudinal displacements uk have a cubic order in the

z–thickness direction;

(b) the through-the-thickness displacement wk varies according to a

parabolic order in z.

(2) Lekhnitskii’s theory gives the interlaminar continuous transverse

stresses σzz and σxz.

(3) The stresses obtained by Lekhnitskii fulfill the 3D indefinite equilibrium

equations (this fundamental property is intrinsic in the used stress

function formulation).

(4) Stresses and displacements were obtained by employing:

(a) compatibility conditions for stress functions;

(b) strain–displacement relations;

(c) compatibility conditions for displacements at the interface:

uk−1 = uk, wk−1 = wk, k = 2, Nl; (4.1)

(d) homogeneous conditions at the bottom and top surfaces for the

transverse stresses:

σ1
zz = σNl

zz = 0, σ1
xz = σNl

xz = 0, for z = 0, h; (4.2)

(e) interlaminar equilibrium for the transverse stresses:

σk−1
zz = σkzz , σk−1

xz = σkxz, k = 2, Nl. (4.3)

(5) No post-processing is used to recover transverse stresses.

(6) The thickness stresses σzz are neglected. Nevertheless, the Poisson

effects on the thickness displacement wk are fully retained.

(7) Full retention of Koiter’s recommendation would require a different

assumption for the stress functions (the authors do not know any work

that does so).
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Although Lekhnitskii’s theory was published in the mid-1930s and reported

in a short paragraph of the English edition of his book [56], it has been

systematically forgotten in the recent literature. An exception is the work

by Ren [57–59], which is documented in the next paragraph.

4.3. The Lekhnitskii–Ren Theory

This is the first of the three discussed theories. It is named after the author

of the original work, Lekhnitskii and the author who first extended the work

to plates, Ren. Due to the original stress function formulation, the present

approach could also be referred to as a “stress approach”.

To the best of the authors’ knowledge, Ren is the only scientist who has

used Lekhnitskii’s work as described in the previous section. In two papers

[57, 58], Ren has, in fact, extended Lekhnitskii’s theory to orthotropic and

anisotropic plates. Further applications to vibration and buckling were

made in a third paper written in collaboration with Owen [59]. These three

papers are the unique contributions known to the authors that have been

made under the framework of Lekhnitskii’s theory. As these three papers

have been published in journals that are easily available worldwide, a full

description of Ren’s extension of Lekhnitskii’s theory to plates has been,

therefore, omitted. Nevertheless, it is of interest to make a few comments

on Ren’s work in order to make explicit the stress and displacement fields

that were introduced by Ren to analyze the response of anisotropic plates.

On the basis of the form of τkxz obtained by Lekhnitskii, it appeared

reasonable to Ren, see [57], to assume the following distribution of

transverse shear stresses in a laminated plate, composed of Nl orthotropic

layers (x, y, and z are the coordinates of the reference system depicted in

Fig. 4.3):

σkxz(x, y, z) = ξx(x, y)a
k(z) + ηx(x, y)c

k(z),

σkyz(x, y, z) = ξy(x, y)b
k(z) + ηy(x, y)g

k(z).
(4.4)

Four independent function of x, y were introduced to describe the

transverse shear stresses. The layer constants are parabolic functions of

the thickness coordinate z. As in Lekhnitskii, the displacement fields are

obtained by integrating the strain–displacement relations.

In contrast to the work by Lekhnitskii, it is underlined that the

transverse strain εzz was discarded by Ren. This assumption contrasts

with Koiter’s recommendation already mentioned. The constants of

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Classical, Refined, Zig-Zag and Layer-Wise Models for Laminated Structures 163

z

z

h

h k

x yk k

z 0k

k=1

k=3

k=2

k

k=N l

Ω

Ω
k

k k

x,y

Fig. 4.3. Multilayered plate.

integration are determined by imposing compatibility conditions for the

displacements at the interface. The displacement field assumes the following

form:

uk(x, y, z) = u0(x, y)− w,x + ξx(x, y)A
k(z) + ηx(x, y)C

k(z),

vk(x, y, z) = v0(x, y)− w,y + ξy(x, y)B
k(z) + ηy(x, y)G

k(z),

w(x, y, z) = w0(x, y),

(4.5)

where Ak(z), Bk(z), Ck(z), and Gk(z) are obtained by integrating the

corresponding ak(z), bk(z), ck(z), and gk(z). That is, Eqs. (4.5) represent a

piecewise continuous displacement field in the thickness direction z, which

is cubic in each layer. An extension to generally anisotropic layers has been

provided by the same author in the article already mentioned [58].

The displacement model of Eqs. (4.5) can be used in the framework of

known variational statements, such as the principle of virtual displacements

(PVD) to formulate the governing equations for anisotropic plates as well

as finite element models. This was done in [57–59]. No shell applications of

the Lekhnitskii–Ren theory are known to the authors.
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4.4. The Ambartsumian–Whitney–Rath–Das Theory

This is the second of the three discussed theories. Ambartsumian was the

author of the original work [60–63]; Whitney [64] extended the theory to

anisotropic plates and introduced the theory to the scientific community

in the West; Rath and Das [65], extended Whitney’s work to shell

geometries.

The Ambartsumian–Whitney–Rath–Das (AWRD) approach has the

peculiarity of having the same number of unknown variables as first-order

shear deformation theory, i.e., three displacements and two rotations (or

shear strains). It was originated by Ambartsumian [60, 61] who restricted

the formulation to orthotropic layers. Here attention will focus on the work

by Whitney [64] who first applied and extended it to generally anisotropic

and symmetrical and asymmetrical plates. For simplicity, only symmetrical

laminated plates are outlined. Details can be read in the above-mentioned

articles and books. The transverse shear stresses are assumed to be:

σkxz(x, y, z) = [Qk55f(z) + ak55]φx(x, y) + [Qk45f(z) + ak45]φy(x, y),

σkyz(x, y, z) = [Qk45f(z) + ak55]φx(x, y) + [Qk44f(z) + ak44]φy(x, y).
(4.6)

The Ambartsumian case can be obtained by putting Qk45 = ak45 =0. f(z)

is a function of the thickness coordinate which is assumed to be different

in the symmetrical and unsymmetrical laminate cases. A parabolic form

for f(z) has mostly been considered (an explicit formula for unsymmetrical

cases was given by Whitney). The layer constants ak44, a
k
45, and ak55 are

determined by imposing the continuity conditions of transverse shear

stresses at the interface while top–bottom homogeneous conditions are used

to determine the form of f(z). Notice that the top–bottom inhomogeneous

conditions for transverse shear stresses were addressed by Ambartsumian

[60, 61], along with a method to compute transverse normal stresses. These

two facts have not been addressed in subsequent work.

The transverse shear strains related to the assumed transverse shear

stress fields are as follows:

γkxz(x, y, z) =
[
f(z) + Sk55a

k
55 + Sk45a

k
45

]
φx(x, y)

+
[
Sk55a

k
45 + Sk45a

k
44

]
φy(x, y),

γkyz(x, y, z) =
[
Sk44a

k
44 + Sk45a

k
45

]
φx(x, y)

+
[
f(z) + Sk44a

k
44 + Sk45a

k
55

]
φy(x, y),

(4.7)
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in which the following compliances have been introduced:

Sk55 =
Qk55
D

, Sk45 = −Q
k
45

D
, Sk44 =

Qk44
D

, D = Qk44Q
k
55 − (Qk45)

2.

By assuming the transverse displacement is constant in the thickness

direction, i.e., εzz = 0, on integrating the shear strains, the displacement

field has the following form:

uk(x, y, z) = −zw,x + [J(z) + gk1 (z)]φx(x, y) + gk2 (z)φy(x, y),

vk(x, y, z) = −zw,y + [J(z) + gk3 (z)]φy(x, y) + gk4 (z)φx(x, y),

wk(x, y, z) = w0(x, y, z),

(4.8)

where

J(z) =
∫
f(z)dz,

gk1 (z) = [Sk55a
k
55 + Sk45a

k
45]z + dk1 ,

gk2 (z) = [Sk55a
k
55 + Sk45a

k
45]z + dk2 ,

gk3 (z) = [Sk55a
k
55 + Sk45a

k
45]z + dk3 ,

gk4 (z) = [Sk55a
k
55 + Sk45a

k
45]z + dk4 .

(4.9)

dk1 , d
k
2 , d

k
3 , and d

k
4 are calculated by imposing the compatibility of the in-

plane displacement at each interface. Equation (4.8) are the starting point

for any analytical or computational study of multilayered plates.

An extension to doubly curved shells and a dynamic case of Whitney’s

work was made by Rath and Das [65].

Dozens of papers have been presented over recent decades that deal

with zig-zag effects and interlaminar continuous transverse shear stresses,

and which have stated that new theories were being proposed. The authors

believe that these articles should be considered as simplified cases of the

AWRD theory or the AWRD theory itself. Unfortunately, the original work

and authors (Ambartsumian, Whitney, Rath, and Das) are not mentioned,

or rarely cited, in the literature lists of this large number of articles. This

historical unfairness has been corrected in [23].

4.5. The Reissner–Murakami–Carrera Theory

A third approach to laminated structures originated in two papers by

Reissner [66, 67] in which a mixed variational equation, namely the Reissner

mixed variational theorem (RMVT) was proposed. The displacement and
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transverse stress variables are independently assumed in RMVT. This third

approach is the only one that was entirely developed in the West. Reissner

[66] proposed a mixed theorem and traced the manner in which it could

be developed; Murakami [68, 69], a student under Prof Reissner in San

Diego, was the first to develop a plate theory on the basis of RMVT

and introduced fundamental ideas on the application of RMVT in the

framework of ESLM; Carrera [9, 70] presented a systematic way to use

RMVT to develop plate and shell theories and introduced a weak form

of Hooke’s law (WFHL), which reduces mixed theories to classical models

with only displacement variables.

RMVT fulfills completely and a priori the C0
z -requirements by

assuming two independent fields for displacements u = {u, v, w}, and

transverse stresses σn = {σxz, σyz, σzz} (bold letters denote arrays). Briefly,

RMVT puts 3D indefinite equilibrium equations (and related equilibrium

conditions at the boundary surfaces, which for brevity are not written here)

and compatibility equations for transverse strains in a variational form. The

3D equilibrium equations in the dynamic case are as follows:

σij,j − ρ üi = pi i, j = 1, 2, 3, (4.10)

where ρ is the mass density and double dots denote acceleration while

(p1, p2, p3)=p are volume loadings. The compatibility conditions for

transverse stresses can be written by evaluating transverse strains in two

ways: using Hooke’s law εnH = {εxzH , εyzH , εzzH} and using a geometrical

relation εnG= {εxzG , εyzG , εzzG}; the subscript n denotes transverse/normal

components. Hence

εnH − εnG = 0. (4.11)

RMVT therefore states:∫
V

(δεp
T
GσpH + δεn

T
GσnM + δσn

T
M (εnG − εnH))dV

=

∫
V

ρδu ü dV + δLe. (4.12)

The superscript T signifies an array transposition and V denotes the

3D multilayered body volume while the subscript p denotes in-plane

components, respectively. Therefore, σp = {σxx, σyy, σxy} and εp =

{εxx, εyy, εxy}. The subscript H underlines that stresses are computed via

Hooke’s law. The variation of the internal work has been split into in-

plane and out-of-plane parts and involves the stress from Hooke’s law and

the strain from the geometrical relations (subscript G). δLe is the virtual
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variation of the work done by the external layer-force p. Subscript M

underlines that transverse stresses are those of the assumed model.

The first application of RMVT was due to Murakami [68, 69], who

developed a refinement of Reissner–Mindlin type theories. First a zig-zag

form of the displacement field was introduced by means of two “zig-zag”

functions (Dx, Dy):

uk(x, y, z) = u0(x, y) + zφx(x, y) + ξk(−1)kDx(x, y),

vk(x, y, z) = v0(x, y) + zφy(x, y) + ξk(−1)kDy(x, y), (4.13)

w(x, y, z) = w0(x, y).

ξk=2zk/hk is a dimensionless layer coordinate (zk is the physical

coordinate of the kth layer whose thickness is hk). The exponent k changes

the sign of the zig-zag term in each layer. This trick reproduces the

discontinuity of the first derivative of the displacement variables in the

z-direction. The geometrical meaning of the zig-zag function is explained

in Figs. 4.4 and 4.5.

The transverse shear stresses fields were assumed to be parabolic by

Murakami [68] in each layer and interlaminar continuous according to the

following formula:

σkxz(x, y, z) = σktxz(x, y)F0(zk) + F1(zk)
k
x(x, y) + σkbxz(x, y)F2(zk),

σkyz(x, y, z) = σktyz(x, y)F0(zk) + F1(zk)R
k
y(x, y) + σkbyz(x, y)F2(zk),

(4.14)

z

x,y

ED1

Zig-Zag

Fig. 4.4. Geometrical meaning of Murakami’s zig-zag function. Linear case.
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z

x,y

Zig-Zag

ED3

Fig. 4.5. Geometrical meaning of Murakami’s zig-zag function. Higher-degree case.

where σktxz(x, y), σ
kt
yz(x, y), σ

kb
xz(x, y), and σ

kb
yz(x, y) are the top and bottom

values of the transverse shear stresses, while Rkx(x, y), and Rky(x, y) are

the layer stress resultants. The introduced layer thickness coordinate

polynomials hold:

F0 = −1/4 + ξk + 3ξ2k, F1 =
3− 12ξ2k

2hk
, F2 = −1/4− ξk + 3ξ2k.

The homogeneous and inhomogeneous boundary conditions at the

top–bottom plate surfaces can be linked to the introduced stress field.

Toledano and Murakami [71] introduced transverse normal strain and

stress effects by using a third-order displacement field for both in-plane and

out-of-plane components and a fourth-order transverse stress field for both

shear and normal components. This paper is the first paper in the ESLM

framework in which Koiter’s recommendation is retained.

A generalization of RMVT to plate/shell theories has been provided by

Carrera [28, 72–78]. The displacements and transverse stress components

were assumed as follows:

uk = Ftu
k
t + Fbu

k
b + Fru

k
r = Fτu

k
τ , τ = t, b, r,

r = 2, 3, . . . , N,

σknM = Ftσ
k
nt + Fbσ

k
nb + Frσ

k
nr = Fτσ

k
nτ , k = 1, 2, . . . , Nl.

(4.15)
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The subscripts t and b denote values for the top and bottom surface layer,

respectively. These two terms consist of the linear part of the expansion.

The thickness functions Fτ (ξk) can now be defined at the kth layer level:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2,

r = 2, 3, . . . , N, (4.16)

in which Pj = Pj(ξk) is the jth order Legendre polynomial defined in the

ξk domain: −1 ≤ ξk ≤ 1. For instance, the first five Legendre polynomials

are as follows:

P0 = 1, P1 = ξk, P2 = (3ξ2k − 1)/2, P3 =
5ξ3k
2

− 3ξk
2
,

P4 =
35ξ4k
8

− 15ξ2k
4

+
3

8
.

The chosen functions have the following properties:

ξk =

{
1 when Ft = 1; Fb = 0; Fr = 0,

−1 when Ft = 0; Fb = 1; Fr = 0.
(4.17)

The top and bottom values have been used as unknown variables. Such a

choice makes the model particularly suitable, in view of the fulfillment of

the C0
z -requirements. The interlaminar transverse shear and normal stress

continuity can therefore be linked by simply writing:

σknt = σ
k+1
nb , k = 1, Nl − 1. (4.18)

In those cases in which the top/bottom plate/shell stress values are

prescribed (zero or imposed values), the following additional equilibrium

conditions must be accounted for:

σ1
nb = σ̄nb, σNl

nt = σ̄nt, (4.19)

where the over-bar denotes the imposed values for the plate boundary

surfaces.

Examples of the application of RMVT to laminated plates in the

equivalent single-layer model were presented in the already mentioned

articles [68, 69, 71]. The results obtained for the cylindrical bending

of cross-ply symmetrically laminated plates showed an improvement in

describing the in-plane response with respect to the first-order shear

deformation theory [69]. Applications to unsymmetrically laminated plates
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were presented in [71]. Shell applications based on [69] were developed by

Bhaskar and Varadan [79] and Jing and Tzeng [80]. Bhaskar and Varadan

[79] underlined the severe limitation of the transverse shear stress a priori

evaluated by the assumed model. Finite element applications of this model

have been developed. The linear analysis of thick plates was discussed by

Rao and Meyer-Piening [81]. Linear and geometrically nonlinear static and

dynamic analyses were considered by Carrera [72, 82] and co-authors [83].

Partial implementations to shell elements were proposed by Bhaskar and

Varadan [84]. A full shell implementation has recently been given by Brank

and Carrera [85].

The limitations of the equivalent single-layer analysis were known to

Toledano and Murakami [71] who applied RMVT in a multilayered model.

A linear in-plane displacement expansion was expressed in terms of the

interface values in each layer while the transverse shear stresses were

assumed parabolic. It was shown that the accuracy of the resulting theories

was independent of layout. Transverse normal stress and related effects

were discarded and the analysis showed severe limitations when analyzing

thick plates. A more comprehensive evaluation of layer-wise theories for

linear and parabolic expansions was made by the first author in [73] where

applications to the static analysis of plates were presented. Subsequent work

extended the analysis to dynamic cases [28, 74, 77, 78] and shell geometry

[70, 75, 76]. A more exhaustive overview work of based on the Reissner

theorem has been provided in [19].

4.6. Remarks on the Theories

In the authors’ opinion the work by Lekhnitskii is the most relevant

contribution to multilayered structure modeling:

• L1. This is the first work to account for the C0
z -requirements.

• L2. Even though Lekhnitskii restricted his analysis to a cantilevered

multilayered beam, he quoted explicit formulas for transverse stresses and

displacement fields (Eqs. (4.4) and (4.5)), which are valid at all points

of the considered beam. This could be extremely useful in assessing new

analytical and numerical models.

• L3. The work by Lekhnitskii shows how multilayered structures problems

can be handled. For instance, it is clear in [22] that the inclusion of

a transverse normal stress would require a different choice of stress

functions.
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• L4. The stress function formulation leads to in-plane and transverse

stress fields which fulfill “by definition” the 3D equilibrium equations.

Stresses were calculated by Lekhnitskii by solving a boundary-value

problem for the compatibility equations written in terms of a stress

function. In particular, the evaluation of transverse stresses does not

require any post-processing procedure such as Hooke’s law or integration

of 3D equilibrium equations.

• L5. Although transverse normal stresses are neglected, the transverse

displacement varies in the beam thickness according to a piecewise-

parabolic distribution. A direct attempt to include the transverse normal

stress effect would require an appropriate choice for the stress function.

Concerning Lekhnitskii–Ren plate theory observe that:

• LR1. The transverse shear stresses are continuous at the interfaces

and parabolic in each layer. Furthermore, homogeneous conditions are

fulfilled at the top–bottom plate surfaces.

• LR2. Four independent functions defined on Ω are used to express

transverse shear stresses. Layer constants, which are parabolic in each

layer, are used to describe the transverse shear stresses.

• LR3. Expressions for the layer constants were given by Ren. In other

words, their calculation does not require any imposition of transverse

shear stresses.

• LR4. The in-plane displacements are continuous at each interface and

are cubic in each layer.

• LR5. Seven independent variables defined on Ω were used to describe

the displacement and stress fields in the laminated plates. Four are

used for the transverse shear stresses and three for the displacements

corresponding to the chosen reference surface Ω.

• LR6. According to Lekhnitskii, Ren neglects the transverse normal stress

σzz . In contrast to Lekhnitskii, the transverse normal strain εzz is

discarded by Ren.

• LR7. The transverse shear stresses are calculated by Ren directly using

Eqs. (4.4). Hooke’s law is not used and integration of the 3D equilibrium

equations is not required.

Regarding the Ambartsumian–Whitney–Rath–Das theory notice that:

• AWRD1. As LR1.

• AWRD2. Two independent functions defined on Ω are used to express

transverse shear stresses (Eqs. (4.6)).
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• AWRD3. Layer constants, parabolic in each layer, must be computed

by imposing transverse shear stress continuity at each interface while

the form of the f(z) function is found by imposing top–bottom layer

homogeneous conditions.

• AWRD4. As LR4.

• AWRD5. Five independent variables defined on Ω are used to describe

the displacement and stress fields in a laminated plate/shell, which is two

less than LR.

• AWRD6. As LR6.

• AWRD7. The literature shows that much better evaluations for

transverse shear stresses are obtained via integration of the 3D

equilibrium equations, with respect to Eqs. (4.6).

• AWRD8. The extension to a shell requires a reformulation of the

displacement models and related layer constants.

For the Reissner–Murakami–Carrera theory observe that:

• RMC1. As LR1. In this case, homogeneous as well as inhomogeneous

conditions for transverse stresses can be included.

• RMC2. At least 2Nl + 1 independent variables must be used for each

transverse stress component. However, these variables can be expressed

in terms of the displacement variables using a weak form of Hooke’s law.

• RMC3. The in-plane displacements are continuous at each interface and

can be chosen linear or of higher order in each layer.

• RMC4. The number of independent variables can be chosen arbitrarily

according to RMC3.

• RMC5. Interlaminar continuous transverse normal stresses/strains can be

easily described by the RMC theory. These effects were, in fact, included

in the early development of the RMC theory, fulfilling the fundamental

Koiter’s recommendation.

• RMC6. As for the AWRD theory much better evaluations for transverse

stresses are obtained via integration of the 3D equilibrium equations,

with respect to assumed forms, e.g. Eqs. (4.14).

• RMC7. The extension to a shell does not require any changes in either

displacement or stress fields.

4.7. A Brief Discussion on Layer-Wise Theories

The previous discussion has been restricted to ESLM. In this class of

theories the number of unknown variables does not depend on the number
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of layers (it is intended that for the RMC theory this restriction is only for

displacement variables). The use of independent variables in each layer, as

in the layer-wise description, increases computational costs. On the other

hand, such a choice permits one to include “naturally” the zig-zag form of

displacements in the thickness direction and in general can significantly

improve for the response of very thick structures. In this respect, the

authors’ experience suggests that the layer-wise description is mandatory

for thick plate/shell analyses and in any other problems in which the

response is essentially a layer response. In particular, in [78] the first author

showed that the use of a sufficiently high order for the displacement fields

in the layers could lead to a description with acceptable accuracy of the

transverse stresses directly computed by Hooke’s law. Many layer-wise

theories have been proposed. So-called global/local approaches have also

been proposed, see [21]. Excellent overviews can be found in the review

articles and books mentioned in the Introduction.

To the best of the authors’ knowledge, there is no layer-wise theory

based on the LR approach. Works with a layer-wise description in the

framework of the AWRD theories have recently been discussed by Cho

and Averill [86]. Studies on the use of the RMC theory have been made for

plates by Toledano and Murakami [71] and extended to higher-order cases

(including normal stress effects), dynamics, and shells in Carrera’s articles

[73, 78].

4.8. Best Theory Diagrams via the Axiomatic/Asymptotic

Method

The structural models discussed in this chapter are axiomatic. In fact,

some hypotheses on the mechanical behavior of structures are formulated

and then applied to the mathematical model. An alternative approach is

the asymptotic method which makes use of expansions of characteristic

parameters of the structures (e.g., the length-to-thickness ratio) to build an

asymptotic series. Those terms that exhibit the same order of magnitude

as the parameter when it vanishes are retained. The axiomatic approach

is simpler but is affected by the lack of information about the accuracy

of the approximated theory on the exact 3D solution. In other words, it

is not usually possible to apriori evaluate the accuracy of an axiomatic

theory. The asymptotic method is mathematically more cumbersome and

may require the use of many characteristic parameters, but can be seen

as a step towards the development of approximated theories with known
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accuracy with respect to the 3D exact solution which, in the beam case,

is a method that can approximate the 3D energy through 1D terms with

known accuracy.

The AAM method can be seen as a methodology that, starting from

axiomatic hypotheses, leads to asymptotic-like results. The AAM evaluates

the influence of each expansion term, or variable, and eliminate all those

terms that do not contribute to the solution for a given set of characteristic

parameters. The AAM can, therefore, reduce the computational cost of

refined models without affecting their accuracies by developing reduced

refined models with fewer degrees of freedom but as accurate as the full

models.

4.8.1. The axiomatic/asymptotic method

The AAM is a tool to build reduced refined models, and it consists of the

following steps:

(1) Parameters such as the geometry, BCs, materials and layer layouts are

fixed.

(2) A set of output parameters is chosen, such as displacement or stress

components.

(3) A starting theory is fixed (axiomatic part); that is, the displacement

variables to be analyzed are defined; usually, a theory which provides

3D-like solutions is chosen; a reference solution is defined (in the present

work the LW4 was adopted, since this fourth-order model offers an

excellent agreement with the three-dimensional solutions [27]).

(4) The CUF is used to generate the governing equations for the theories

considered.

(5) The effectiveness of each term of the adopted expansion is evaluated

by evaluating the error due to its deactivation; a term is considered

as non-effective if the error is negligible; the deactivation of a term is

obtained using a penalty technique.

(6) The most suitable structural model for a given structural problem is

then obtained by discarding all the non-effective variables.

A graphical notation was introduced to show the results. This consists of a

table of three lines, and as many columns as the number of the displacement

variables used in the expansion. The displacement field of a fourth-order
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Table 4.1. Symbolic representation of the reduced kinematic
model with v2 discarded.

� � � � �
� � � � �
� � � � �

ESL model (ESL4) can be defined as

u = u0 + zu1 + z2u2 + z3u3 + z4u4,

v = v0 + zv1 + z2v2 + z3v3 + z4v4,

w = w0 + zw1 + z2w2 + z3w3 + z4w4.

(4.20)

Table 4.1 shows a reduced model in which v2 is deactivated; that is,

u = u0 + zu1 + z2u2 + z3u3 + z4u4,

v = v0 + zv1 + +z3v3 + z4v4, (4.21)

w = w0 + zw1 + z2w2 + z3w3 + z4w4.

4.8.2. The Best Theory Diagram

It is possible to associate to each reduced refined model the number of the

active terms and its error computed on a reference solution as reported in

Fig. 4.6. Each black dot represents a reduced refined model and its position

on the Cartesian plane is defined considering its error and the number of the

active terms. Furthermore, the graphical representation of the active/non-

active terms is reported for some reduced models. It is possible to note that

some of them present the lowest error for a given number of active terms.

These models are labeled in Fig. 4.6 as 1, 2, 3, 4, 5 and they represent the

Pareto front for the considered problem. This Pareto front is defined as the

Best Theory Diagram (BTD). This curve can be constructed for several

problems, for example by considering several types of materials, geometries

and boundary conditions. Moreover, the information reported in a BTD

makes it possible to evaluate the minimum number of terms that have to

be used to achieve the desired accuracy.

The number of all possible combinations of active/not-active terms

for a given refined model is equal to 2M where M is the number of

the terms of a model. In the case of an ESL4 model, M is 15. As the

expansion order increases, the number of the combinations to consider also

increases. A genetic algorithm was used to construct a BTD with a small

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



176 E. Carrera, M. Cinefra & M. Petrolo

Fig. 4.6. The Best Theory Diagram.

Fig. 4.7. Displacement variables of a refined model and genes of an individual.

computational effort. In fact, each model is considered as an individual.

The genes are the terms of the expansion, and each gene can be active or

not active, as shown in Fig. 4.7. Each individual is, therefore, described

by the number of active terms and its error computed with respect to a

reference solution. Through these two parameters, it is possible to apply

the dominance rule to evaluate the individual fitness. The generation of
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new refined theories starting from a generic population is inspired to the

reproduction of bacteria; for each individual (i.e., for each structural model)

a number of copies are created according to its dominance and then, some

mutations are applied to vary the set of new individuals. The purpose of

this analysis is to find the individuals that belong to the Pareto front, that

is, the subset of individuals that are dominated by no other individuals. In

all cases, the number of generations, i.e., iterations, needed is equal to 10,

and the number of the initial population is equal to 400. The error of the

reduced models with respect to a reference solution is evaluated through

the following formula:

e = 100

∑Np

i=1 |Qi −Qiref|
maxQref

· 1

Np
, (4.22)

where Q can be a stress or displacement component, and Np is the number

of points along the thickness on which Q is evaluated.

4.9. CUF Shell Finite Elements

The efficient load-carrying capabilities of shell structures make them very

useful in a variety of engineering applications. The continuous development

of new structural materials leads to ever more complex structural designs

that require careful analysis. Although analytical techniques are very

important, the use of numerical methods to solve mathematical shell models

of complex structures has become an essential ingredient in the design

process. The finite element method (FEM) has been the fundamental

numerical procedure in the analysis of shells.

In this section, a new shell finite element approach based on

variable kinematic models within the Carrera Unified Formulation [27, 28]

is presented. Elements with nine nodes and cylindrical geometry are

considered. Referring to Bathe and others [35–37], the MITC method is used

to overcome the locking phenomenon. The governing equations are derived

in the framework of the CUF in order to apply FEM. Some numerical results

are provided to show the efficiency of the new element.

4.9.1. Geometry of cylindrical shells

Let us consider a cylindrical shell. In a system of Cartesian coordinates

(O, x, y, z), the region occupied by the mid-surface of the shell is as follows:

S = {(x, y, z) ∈ R3 : −L/2 < x < L/2, y2 + z2 = R2}, (4.23)
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where L and R are the length and the radius of the shell, respectively. Let

us consider a curvilinear coordinate system (α, β, z) placed at the center of

the upper part of the mid-surface. The 3D medium corresponding to the

shell is defined by the 3D chart given by

Φ(α, β, z) = φ(α, β) + za3(α, β), (4.24)

where a3 is the unit vector normal to the tangent plane. Then, the mid-

surface S of the cylindrical shell is described by the following 2D chart:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ1(α, β) = α,

φ2(α, β) = R sin(β/R),

φ3(α, β) = R cos(β/R).

(4.25)

With this choice, the region Ω ⊂ R2 corresponding to the mid-surface S is

the rectangle:

Ω = {(α, β) : −L/2 < α < L/2, −Rπ < β < Rπ}. (4.26)

Using these geometrical assumptions, the strain–displacement relations can

be obtained by considering the linear part of the 3D Green–Lagrange strain

tensor. Remembering that in the unified formulation the unknowns are

the components of the displacement uτ (α, β), vτ (α, β), and wτ (α, β), for

τ = 0, 1, . . . , N , the geometrical relations for the kth layer of a multilayer

cylindrical shell can be written as follows:

εkαα = Fτu
k
τ,α,

εkββ = Fτ

[(
1 +

zk
Rk

)
wkτ
Rk

+

(
1 +

zk
Rk

)
vkτ,β

]
,

εkαβ = Fτ

[
ukτ,β +

(
1 +

zk
Rk

)
vkτ,α

]
,

εkαz = wkτ,αFτ + ukτFτ,z,

εkβz = Fτ

[
wkτ,β − vkτ

Rk

]
+ Fτ,z

[(
1 +

zk
Rk

)
vkτ

]
,

εkzz = wkτFτ,z,

(4.27)

where Rk is the radius of the mid-surface of the layer k. The thickness

functions Fτ are Taylor functions (1, z, z2, . . .) if the approach used is

ESL or combinations of Legendre polynomials if the approach is LW
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(see Eqs. (4.16)). For more details of the geometrical description and the

procedure to obtain the strain–displacement relations, the reader can refer

to [87].

The previous geometrical relations can be expressed in matrix form as

follows:
εkp = (Dk

p +A
k
p)u

k,

εkn = (Dk
nΩ +Dk

nz −Ak
n)u

k,
(4.28)

where subscripts (p) and (n) indicate in-plane and normal components,

respectively, and the differential operators are defined as follows:

Dk
p =

⎡
⎢⎣
∂α 0 0

0 Hk∂β 0

∂β Hk∂α 0

⎤
⎥⎦, Dk

nΩ =

⎡
⎢⎣
0 0 ∂α

0 0 ∂β

0 0 0

⎤
⎥⎦,

Dk
nz = ∂z ·Ak

nz = ∂z

⎡
⎢⎣
1 0 0

0 Hk 0

0 0 1

⎤
⎥⎦, (4.29)

Ak
p =

⎡
⎢⎣
0 0 0

0 0 1
Rk
Hk

0 0 0

⎤
⎥⎦, Ak

n =

⎡
⎢⎣
0 0 0

0 1
Rk

0

0 0 0

⎤
⎥⎦, (4.30)

where Hk = (1 + zk/Rk).

4.9.2. MITC method

Considering the components of the strain tensor in the local coordinate

system (ξ, η, z), the MITC shell elements are formulated using — instead

of the strain components directly computed from the displacements —

an interpolation of these strain components within each element using

a specific interpolation strategy for each component. The corresponding

interpolation points — called the tying points — are shown in Fig. 4.8 for

a nine-node shell element (MITC9 shell element). For more details see [87].

The interpolating functions are arranged in the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1],

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2], (4.31)

Nm3 = [NP , NQ, NR, NS].

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



180 E. Carrera, M. Cinefra & M. Petrolo

ξ

η

A1

C1

E1 F1

D1

B1

εε dnastnenopmoC αα αz εε dnastnenopmoC ββ βz Component εαβ

ξ

η

A2

B2

C2

D2 F2

E2
ξ

η

P

R S

Q

Fig. 4.8. Tying points for MITC9 shell finite element.

For convenience, we will indicate with the subscripts m1, m2, and

m3 the quantities calculated for the points (A1, B1, C1, D1, E1, F1),

(A2, B2, C2, D2, E2, F2), and (P,Q,R, S), respectively.

According to the MITC method, the strain components are interpolated

on the tying points as follows:

εkp =

⎡
⎢⎢⎢⎣
εk11

εk22

εk12

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣
Nm1 0 0

0 Nm2 0

0 0 Nm3

⎤
⎥⎦
⎡
⎢⎢⎢⎣
εk11m1

εk22m2

εk12m3

⎤
⎥⎥⎥⎦ = [N1]

⎡
⎢⎢⎢⎣
εk11m1

εk22m2

εk12m3

⎤
⎥⎥⎥⎦

εkn =

⎡
⎢⎢⎢⎣
εk13

εk23

εk33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣
Nm1 0 0

0 Nm2 0

0 0 1

⎤
⎥⎦
⎡
⎢⎢⎢⎣
εk13m1

εk23m2

εk33

⎤
⎥⎥⎥⎦ = [N2]

⎡
⎢⎢⎢⎣
εk13m1

εk23m2

εk33

⎤
⎥⎥⎥⎦,

(4.32)

which define the matrixes N1 and N2.

Applying the finite element method, the unknown displacements are

interpolated on the nodes of the element by means of the Lagrangian shape

functions Ni (for i = 1, . . . , 9):

uk = FτNiq
k
τi , (4.33)

where qkτi are the nodal displacements and the unified formulation is

applied. Substituting in Eqs. (4.28) the geometrical relations become:

εkp = Fτ (D
k
p +A

k
p)(NiI)q

k
τi

εkn = Fτ (D
k
nΩ −Ak

n)(NiI)q
k
τi + Fτ,zA

k
nz(NiI)q

k
τi ,

(4.34)

where I is a 3× 3 identity matrix.
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If the MITC technique is applied, the geometrical relations are

rewritten as follows:

εkτpim = Fτ [C
k
3im ]qkτi ,

εkτnim
= Fτ [C

k
1im ]qkτi + Fτ,z [C

k
2im ]qkτi ,

(4.35)

where the introduced matrixes are as follows:

[Ck
1im ] = [N2]

⎡
⎢⎢⎢⎣
[(Dk

nΩ −Ak
n)(NiI)]m1(1, :)

[(Dk
nΩ −Ak

n)(NiI)]m2(2, :)

[(Dk
nΩ −Ak

n)(NiI)](3, :)

⎤
⎥⎥⎥⎦,

[Ck
2im ] = [N2]

⎡
⎢⎢⎢⎣
[Ak

nz(NiI)]m1(1, :)

[Ak
nz(NiI)]m2(2, :)

[Ak
nz(NiI)](3, :)

⎤
⎥⎥⎥⎦, (4.36)

[Ck
3im ] = [N1]

⎡
⎢⎢⎢⎣
[(Dk

p +A
k
p)(NiI)]m1(1, :)

[(Dk
p +A

k
p)(NiI)]m2(2, :)

[(Dk
p +A

k
p)(NiI)]m3(3, :)

⎤
⎥⎥⎥⎦.

(1, :), (2, :), and (3, :), respectively, indicate that the first, second, or

third line of the relevant matrix is considered.

4.9.3. Governing equations

This section presents the derivation of the governing equations based on the

principle of virtual displacements (PVD) for a multilayered shell subjected

to mechanical loads. CUF can be used to obtain the so-called fundamental

nuclei, which are simple matrices representing the basic elements from

which the stiffness matrix of the whole structure can be computed.

The PVD for a multilayered shell with Nl layers is

Nl∑
k=1

∫
Ωk

∫
Ak

{
δεkpG

T
σkpC + δεknG

T
σknC

}
dΩkdzk =

Nl∑
k=1

δLke , (4.37)

where Ωk and Ak are the integration domains in the plane (α,β) and

the z-direction, respectively, and T indicates the transpose of a vector.

The first member of the equation represents the variation of internal work

δLkint and δL
k
e is the external work. G means geometrical relations and C

constitutive relations. The first step in deriving the fundamental nuclei
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is the substitution of the constitutive equations (C) in the variational

statement of PVD, which are as follows:

σkpC = σkspjn = Ck
pp ε

ks
pjn +Ck

pn ε
ks
njn

,

σknC = σksnjn
= Ck

np ε
ks
pjn +Ck

nn ε
ks
njn

(4.38)

with

Ck
pp =

⎡
⎢⎢⎢⎣
Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

⎤
⎥⎥⎥⎦ Ck

pn =

⎡
⎢⎢⎢⎣
0 0 Ck13

0 0 Ck23

0 0 Ck36

⎤
⎥⎥⎥⎦,

Ck
np =

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

Ck13 Ck23 Ck36

⎤
⎥⎥⎥⎦ Ck

nn =

⎡
⎢⎢⎢⎣
Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33

⎤
⎥⎥⎥⎦,

(4.39)

and C are the material coefficients.

Then, one substitutes the geometrical relations (4.35) and the

constitutive equations (4.38) into the variational statement (4.37) to obtain

the governing equation system:

δukτi
T
:Kkτsij

uu uksj = P
k
uτi, (4.40)

where Kkτsij
uu is the fundamental nucleus of the stiffness array, which is

expanded according to the indexes τ , s and i, j in order to obtain the

matrix for the whole shell. P k
uτ is the fundamental nucleus of the external

mechanical load. The explicit form of the stiffness fundamental nucleus is

the following:

Kkτsij
11 = Ck55Nim1 �Nm1Nn1 �Ωk

Njn1 � Fτ,zFs,z �Ak

+Ck11Ni,αm1 �Nm1Nn1 �Ωk
Nj,αn1 � FτFs �Ak

+Ck16Ni,βm3 �Nm3Nn1 �Ωk
Nj,αn1 � FτFs �Ak

+Ck16Ni,αm1 �Nm1Nn3 �Ωk
Nj,βn3 � FτFs �Ak

+Ck66Ni,βm3 �Nm3Nn3 �Ωk
Nj,βn3 � FτFs�Ak

,

Kkτsij
12 = −Ck45

1

Rk
Nim1 �Nm1Nn2 �Ωk

Njn2 � Fτ,zFs �Ak

+Ck45Nim1 �Nm1Nn2 �Ωk
Njn2 �HkFτ,zFs,z�Ak
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+Ck12Ni,αm1 �Nm1Nn2 �Ωk
Nj,βn2 �HkFτFs �Ak

+Ck16Ni,αm1 �Nm1Nn3 �Ωk
Nj,αn3 �HkFτFs �Ak

+Ck26Ni,βm3 �Nm3Nn2 �Ωk
Nj,βn2 �HkFτFs �Ak

(4.41)

+Ck66Ni,βm3 �Nm3Nn3 �Ωk
Nj,αn3 �HkFτFs�Ak

,

Kkτsij
13 = Ck13Ni,αm1 �Nm1Nj �Ωk

�FτFs,z �Ak

+Ck36Ni,βm3 �Nm3Nj �Ωk
�FτFs,z �Ak

+Ck12
1

Rk
Ni,αm1 �Nm1Nn2 �Ωk

Njn2 �HkFτFs �Ak

+Ck26
1

Rk
Ni,βm3 �Nm3Nn2 �Ωk

Njn2 �HkFτFs �Ak

+Ck55Nim1 �Nm1Nn1 �Ωk
Nj,αn1 � Fτ,zFs �Ak

+Ck45Nim1 �Nm1Nn2 �Ωk
Nj,βn2 � Fτ,zFs�Ak

,

Kkτsij
21 = −Ck45

1

Rk
Nim2 �Nm2Nn1 �Ωk

Njn1 � FτFs,z �Ak

+Ck45Nim2 �Nm2Nn1 �Ωk
Njn1 �HkFτ,zFs,z �Ak

+Ck12Ni,βm2 �Nm2Nn1 �Ωk
Nj,αn1 �HkFτFs �Ak

+Ck16Ni,αm3 �Nm3Nn1 �Ωk
Nj,αn1 �HkFτFs �Ak

+Ck26Ni,βm2 �Nm2Nn3 �Ωk
Nj,βn3 �HkFτFs �Ak

+Ck66Ni,αm3 �Nm3Nn3 �Ωk
Nj,βn3 �HkFτFs�Ak

,

Kkτsij
22 = Ck22Ni,βm2 �Nm2Nn2 �Ωk

Nj,βn2 �H2
kFτFs �Ak

+Ck26Ni,βm2 �Nm2Nn3 �Ωk
Nj,αn3 �H2

kFτFs �Ak

+Ck26Ni,αm3 �Nm3Nn2 �Ωk
Nj,βn2 �H2

kFτFs �Ak

+Ck66Ni,αm3 �Nm3Nn3 �Ωk
Nj,αn3 �H2

kFτFs �Ak
(4.42)

+Ck44
1

R2
k

Nim2 �Nm2Nn2 �Ωk
Njn2 � FτFs �Ak

−Ck44
1

Rk
Nim2 �Nm2Nn2 �Ωk

Njn2 �HkFτFs,z �Ak

−Ck44
1

Rk
Nim2 �Nm2Nn2 �Ωk

Njn2 �HkFτ,zFs �Ak

+Ck44Nim2 �Nm2Nn2 �Ωk
Njn2 �H2

kFτ,zFs,z�Ak
,
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Kkτsij
23 = Ck22

1

Rk
Ni,βm2 �Nm2Nn2 �Ωk

Njn2 �H2
kFτFs �Ak

+Ck23Ni,βm2 �Nm2Nj �Ωk
�HkFτFs,z �Ak

+Ck26
1

Rk
Ni,αm3 �Nm3Nn2 �Ωk

Njn2 �H2
kF τFs �Ak

+Ck36Ni,αm3 �Nm3Nj �Ωk
�HkFτFs,z �Ak

−Ck45
1

Rk
Nim2 �Nm2Nn1 �Ωk

Nj,αn1 � FτFs �Ak

−Ck44
1

Rk
Nim2 �Nm2Nn2 �Ωk

Nj,βn2 � FτFs �Ak

+Ck45Nim2 �Nm2Nn1 �Ωk
Nj,αn1 �HkFτ,zFs �Ak

+Ck44Nim2 �Nm2Nn2 �Ωk
Nj,βn2 �HkFτ,zFs�Ak

,

Kkτsij
31 = Ck55Ni,αm1 �Nm1Nn1 �Ωk

Njn1 � FτFs,z �Ak

+Ck45Ni,βm2 �Nm2Nn1 �Ωk
Njn1 � FτFs,z �Ak

+Ck12
1

Rk
Nim2 �Nm2Nn1 �Ωk

Nj,αn1 �HkFτFs �Ak

+Ck13 �NiNn1 �Ωk
Nj,αn1 � Fτ,zFs �Ak

+Ck26
1

Rk
Nim2 �Nm2Nn3 �Ωk

Nj,βn3 �HkFτFs �Ak

+Ck36 �NiNn3 �Ωk
Nj,βn3 � Fτ,zFs�Ak

,

Kkτsij
32 = Ck22

1

Rk
Nim2 �Nm2Nn2 �Ωk

Nj,βn2 �H2
kFτFs �Ak

+Ck23 �NiNn2 �Ωk
Nj,βn2 �HkFτ,zFs �Ak

+Ck26
1

Rk
Nim2 �Nm2Nn3 �Ωk

Nj,αn3 �H2
kFτFs �Ak

+Ck36 �NiNn3 �Ωk
Nj,αn3 �HkFτ,zFs �Ak

−Ck45
1

Rk
Ni,αm1 �Nm1Nn2 �Ωk

Njn2 � FτFs �Ak
(4.43)

−Ck44
1

Rk
Ni,βm2 �Nm2Nn2 �Ωk

Njn2 � FτFs �Ak

+Ck45Ni,αm1 �Nm1Nn2 �Ωk
Njn2 �HkFτFs,z �Ak

+Ck44Ni,βm2 �Nm2Nn2 �Ωk
Njn2 �HkFτFs�Ak

,
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Kkτsij
33 = Ck22

1

R2
k

Nim2 �Nm2Nn2 �Ωk
Njn2 �H2

kFτFs �Ak

+Ck23
1

Rk
Nim2 �Nm2Nj �Ωk

�HkFτFs,z �Ak

+Ck23
1

Rk
�NiNn2 �Ωk

Njn2 �HkFτ,zFs �Ak

+Ck33 �NiNj �Ωk
�Fτ,zFs,z �Ak

+Ck55Ni,αm1 �Nm1Nn1 �Ωk
Nj,αn1 � FτFs �Ak

+Ck45Ni,βm2 �Nm2Nn1 �Ωk
Nj,αn1 � FτFs �Ak

+Ck45Ni,αm1 �Nm1Nn2 �Ωk
Nj,βn2 � FτFs �Ak

+Ck44Ni,βm2 �Nm2Nn2 �Ωk
Nj,βn2 � FτFs�Ak

,

where � · · ·�Ωk
indicates

∫
Ωk
. . . dΩk and � · · ·�Ak indicates

∫
Ak
. . . dzk.

4.10. Numerical Examples

The model introduced does not involve an approximation of the geometry

of the shell and it accurately describes the curvature of the shell. However,

the locking phenomenon is still present. In this work, the model is combined

with a simple displacement formulation. The CUF, coupled with the MITC

method, allows us to increase the degree of approximation by increasing

the order of expansion of the displacements in the thickness direction

and the number of elements used. Firstly, the reliability of the model is

analyzed. Two classical discriminating test problems are considered: the

pinched cylinder with a diaphragm [80], which is the most severe test for

both inextensional bending modes and complex membrane states; and the

Scordelis–Lo problem [81], which is extremely useful for determining the

ability of a finite element to accurately solve complex states of a membrane

strain.

The pinched shell has been analyzed in [32] and the essential shape is

shown in Fig. 4.9. It is simply supported at each end by a rigid diaphragm

and singularly loaded by two opposing forces acting at the midpoint of

the shell. Due to the symmetry of the structure the computations have

been performed, using a uniform decomposition, on an octave of the shell.

The physical data given in Table 4.2 have been assumed. The following
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186 E. Carrera, M. Cinefra & M. Petrolo

Fig. 4.9. Pinched shell.

Table 4.2. Physical data for pinched shell.

Young’s modulus E 3× 106 psi = 20.684 × 109 N/m2

Poisson’s ratio ν 0.3
Load P 1 lb = 0.154 Kg

Length L 600 in = 15.24 m
Radius R 300 in = 7.62 m
Thickness h 3 in = 0.0762 m

symmetry conditions and boundary conditions are applied:

vs(α, 0) = 0,

us(0, β) = 0,

vs(α,Rπ/2) = 0,

vs(L/2, β) = ws(L/2, β) = 0

(4.44)

with s = 0, 1, . . . , N .

In Table 4.3, the transversal displacement at the loaded point C is

presented for several decompositions [n × n] and different theories. The

high-order equivalent single-layer theories in the CUF are indicated with

the acronym ESLN , where N is the order of expansion. The exact solution

is given by Flügge in Ref. [88] 1.8248× 10−5 in. The table shows that the
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Table 4.3. Pinched shell. Transversal displacement
w in ×105.

Theory [4× 4] [10× 10] [13× 13]

Koiter 1.7891 1.8231 1.8253
Naghdi 1.7984 1.8364 1.8398
ESL1 1.9212 1.9583 1.9617
ESL2 1.7805 1.8361 1.8408
ESL3 1.7818 1.8380 1.8428
ESL4 1.7818 1.8380 1.8428

Fig. 4.10. Scordelis–Lo roof.

MITC9 element has good convergence and robustness on increasing the

mesh size. According to Reddy [21], the results obtained with high-order

theories are greater than the reference value because Flügge uses a classical

shell theory. Indeed, the solution calculated with the Koiter model for mesh

[13× 13] is very close to the exact solution, while the Naghdi model, which

takes into account the shear energy, gives a higher value, as one would

expect. The ESL theory with linear expansion (ESL1) produces such a high

value because a correction for Poisson locking has been applied (for details

of Poisson locking one can refer to [90]), but for cylindrical shell structures

this correction causes problems. The remaining theories give almost the

same results and they converge to the same value (1.842× 10−5 in) by

increasing the order of expansion and the number of elements used.

The second problem (the Scordelis–Lo problem [89]) concerns a

cylindrical shell known in the literature as a barrel vault, see Fig. 4.10.

The shell is simply supported on diaphragms, is free on its other sides, and
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Table 4.4. Physical data for barrel vault.

Young’s modulus E 4.32× 106 lb/h2 = 20.684× 109 N/m2

Poisson’s ratio ν 0.0

Load P 90 lb/ft2 = 4309.224 N/m2

Length L 50 ft = 15.24 m
Radius R 25 ft = 7.62 m
Thickness h 0.25 ft = 0.0762 m
Angle θ0 2π/9 rad

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 0.31

 4  5  6  7  8  9  10  11  12  13

w
[ft

]

n

exact
ESL4(s)

ESL4(m+)

Fig. 4.11. Scordelis–Lo problem. Transversal displacement w [ft] at the point B of the
mid-surface S.

is loaded by its own weight P . The physical data given in Table 4.4 have

been assumed. The computations were performed only on a quarter of the

shell, using a uniform decomposition.

The exact solution for this problem is given by McNeal and Harder

in [91] in terms of the transversal displacement at the point B: 0.3024 ft.

In Fig. 4.11, the solution is given for several decompositions [n × n]. The

performance of the MITC9 element in which a correction for both shear

and membrane locking has been applied (m+) is compared with an element

in which only shear locking has been corrected (s). The figure confirms the

conclusions for the pinched shell: the results converge to the exact solution

on increasing the number of elements used. Moreover, the figure shows that

for thin shells (h/R = 0.01) the correction for membrane locking is essential

because for coarse meshes the solution (m+) is much higher than the (s)

solution. One can conclude that the MITC9 element is completely locking
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free. The theory used for this analysis is ESL4 but the behavior is the same

as for the other models.

Finally, a multilayered shell was analyzed in order to show the

superiority of LW and the zig-zag models compared to ESL models. The

orthotropic cylindrical shell studied by Varadan and Bhaskar in [92] is

considered. The ends are simply supported. The loading is an internal

sinusoidal pressure, applied normal to the shell surface, given by:

p+z = p̂+z sin
(mπα

a

)
sin

(
nπβ

b

)
, (4.45)

where the wave numbers are m = 1 and n = 8. The amplitude of the

load p̂+z is assumed to be 1. a is the length and b the circumference of the

cylinder.

The cylinder is made up of three equal layers with lamination

(90◦/0◦/90◦). Each layer is assumed to be made of a square symmetric

unidirectional fibrous composite material with the following properties:

EL/ET = 25,

GLT /ET = 0.5,

GTT /ET = 0.2,

νLT = νTT = 0.25,

(4.46)

where L is the direction parallel to the fibers and T is the transverse

direction. The length a of the cylinder is assumed to be 4Rβ, and the

radius Rβ , referred to the mid-surface of the whole shell, is 10. Since

the cylinder is a symmetric structure and it is symmetrically loaded, the

computations were performed only on an octave of the shell, using a uniform

decomposition.

The solution is given in terms of the transversal displacement w for

different values of the thickness ratio Rβ/h, where h is the global thickness

of the cylinder. According to [92], the following dimensionless parameter is

used:

w̄ = w
10ELh

3

p̂+z R4
β

. (4.47)

The results are presented in Table 4.5 and are compared with the

3D-elasticity solution given by Varadan and Bhaskar in [92]. The transversal

displacement is calculated on the mid-surface of the multilayered shell

(z = 0), at the max-loading point. An [8 × 8] mesh was used, which is
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Table 4.5. Varadan and Bhaskar. Dimensionless transversal displacement at
the max-loading point in z = 0.

Rβ/h 2 4 10 50 100 500

3D 10.1 4.009 1.223 0.5495 0.4715 0.1027

ESL4 9.682 3.782 1.1438 0.5456 0.4707 0.1029

ESL3 9.664 3.785 1.1439 0.5456 0.4707 0.1029

ESL2 8.280 2.971 0.9540 0.5378 0.4692 0.1029

ESL1 8.925 3.015 0.9559 0.5380 0.4696 0.1034

Naghdi 8.421 2.872 0.9382 0.5370 0.4688 0.1029

Koiter 0.4094 0.4796 0.5205 0.5209 0.4656 0.1029

ESLZ3 9.791 3.987 1.224 0.5493 0.4715 0.1029

ESLZ2 9.596 3.866 1.191 0.5479 0.4712 0.1029

ESLZ1 10.228 3.901 1.191 0.5457 0.4694 0.1028

LW4 10.267 4.032 1.225 0.5493 0.4715 0.1029

LW3 10.256 4.031 1.225 0.5493 0.4715 0.1029

LW2 9.789 3.971 1.223 0.5493 0.4715 0.1029

LW1 9.689 3.874 1.191 0.5477 0.4710 0.1029

sufficient to ensure numerical convergence. Equivalent single-layer (ESLN),

zig-zag (ESLZN), and layer-wise (LWN) theories in the CUF are employed

for the analysis. The classical Koiter’s and Naghdi’s models were also

used for comparison. One can note that the solution obtained with the

classical models is completely wrong, while the ESL theories give a more

accurate solution by increasing the order of expansion N , especially for

high-thickness ratios. If one also takes into account the zig-zag effects in

the displacements using Murakami’s zig-zag function (ESLZ models), the

results improve again and the ESLZ3 theory provides approximately the

3D solution even for very thick shells. Finally, the table shows that the LW

theories give the best results even when the order of expansion is not high

(N = 2, 3), according to the assertions made in the introduction of this

chapter about C0
z -requirements. This behavior is particularly visible for

thick shells (Rβ/h = 2, 4). For very thin shells (Rβ/h = 500) all the theories

converge to the 3D solution and this fact demonstrates once again the

numerical efficiency of the new approach. Note that the LW3 and LW4

models give a solution slightly higher than the 3D solution for very thick

shells. This is due to a curvature approximation along the thickness, which

can be easily eliminated by considering the shell to be composed of thinner

fictitious layers with the same properties.
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4.11. Best Theory Diagrams

4.11.1. Plates

Two plates were considered with symmetric and asymmetric laminations.

The material properties are the following: EL = 40 × 109 Pa, ET = Ez =

1 × 109 Pa, GLT = 0.5 × 109 Pa, Gz = 0.6 × 109 Pa, ν = 0.25. The ply

sequences considered are 0◦/90◦/0◦ for the symmetric plate and 0◦/90◦

for the asymmetric plate; each layer has the same thickness. A transverse

pressure was applied to the top surface of the plate,

pz = p0z sin
(mπ

a
x
)
sin

(
nπ

b
y

)
, (4.48)

where m = n = 1. All the reduced models are developed for stress σxx,

which is computed at [a/2, b/2, z] with −h
2 ≤ z ≤ h

2 , where h is the total

thickness of the plate.

First, BTDs were obtained using the ESL4 model baseline and LW4 as

the reference to evaluate the accuracy of the models. Figure 4.12 shows the

assessment of the genetic algorithm to compute the BTD. In fact, all the

215 models given by the combinations of the 15 terms of the ESL4 were

evaluated. The BTD evaluated by the genetic algorithm perfectly matches

the lower boundary of the cloud of points representing all the possible plate

2

4

6

8

 10

 12

 14

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

N
D

O
F

s

Error

Fig. 4.12. BTD for the asymmetric plate, a/h = 2.5.
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(a)

(b)

Fig. 4.13. BTDs for a simply-supported symmetric laminated plate.

models given by the ESL4 baseline. The ESL4 model BTDs for different

plate geometries are reported in Figs. 4.13 and 4.14, for a symmetric and

an asymmetric plate, respectively. Four theories from the literature are also

reported in the same graphs, that is, the CLT and FSDT theories and the

theories of Pandya [93] and Kant [94]. Pandya’s model is given by

u = u0 + z u1 + z2 u2 + z3 u3,

v = v0 + z v1 + z2 v2 + z3 v3,

w = w0,

(4.49)
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(a)

(b)

Fig. 4.14. BTDs for a simply-supported asymmetric laminated plate.

whereas, Kant’s one is

u = u0 + z u1 + z2 u2 + z3 u3,

v = v0 + z v1 + z2 v2 + z3 v3,

w = w0 + z w1 + z2 w2 + z3 w3.

(4.50)

Table 4.6 shows the best plate models with seven degrees of freedom and

their accuracy. For instance, the best model for the thin, symmetric plate

is the following:
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Table 4.6. Best plate models with seven unknown variables for
the simply-supported plate.

0◦/90◦/0◦ 0◦/90◦
a/h = 50

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 2.0339 × 10−2 % 4.0673 × 10−2 %
a/h = 5

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 1.7773% 2.8403%

u = u0 + z u1 + z3 u3,

v = z v1,

w = w0 + z w1 + z2 w2.

(4.51)

The analysis of the results suggests that:

• In most cases, many variables of the ESL4 models can be discarded

without accuracy penalties. In particular, some 10–12 out of 15 ESL4

variables are generally enough to obtain the best accuracy the ESL4 can

provide.

• In the case of thick plates, classical models and those from literature do

not belong to the BTD. In other words, their accuracy can be obtained

with fewer degrees of freedom; or, conversely, there exist models based

on the same number of degrees of freedom that are more accurate.

• For thin shells, ESL4 can be as accurate as LW4 for σxx. On the other

hand, in the case of thick shells, the best accuracy of ESL4 is 98–99% of

the LW4.

• The use of a genetic algorithm is an efficient and reliable approach to

obtaining BTDs with reduced computational costs.

More results on the BTD for composite plates can be found in [53].

4.11.2. Shells

BTDs for laminated shells are presented in this section. The material

properties are EL/ET = 25, ν = 0.25, GLT /ET = GTT /ET = 0.5,

GLz/ET = 0.2 and the dimensions of the shell are a = 4Rβ and b = 2 πRβ .

The transverse pressure load (see Eq. (4.48)) is applied internally, m and
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Fig. 4.15. BTD based on σαα for the symmetric composite shell, Rβ/h = 4.

n are equal to 1 and 4, respectively. BTDs were obtained using the ESL4

baseline, whereas the LW4 was used as reference solution.

A symmetric lamination was considered first, 90◦/0◦/90◦. Figure 4.15

shows the BTD for the σαα in the thick shell case. The BTD was obtained

by means of the genetic algorithm, and it perfectly matches the boundaries

of the best accuracy models that were computed by considering all the

combinations (215) of the ESL4. Figure 4.16 shows the BTDs that were

obtained by considering uz and σαα, thin and thick shells were investigated.

The accuracy of CLT, FSDT, and Pandya models are compared with BTD

in Fig. 4.17. Table 4.7 shows the accuracy and computational cost of the

classical models and of the BTD models that have the same amount of

DOFs.

A 0◦/90◦ stacking sequence was considered as the second assessment

for the composite shell case, and, again, LW4 was used as the reference

solution. Figure 4.18 shows BTD for σαα.

Figure 4.19 present a comparison between the BTD for σαα and the one

for uz. Table 4.8 shows the accuracy and computational cost of the classical

models and of the BTD models that have the same amount of DOFs. The

results suggest the following:

• Geometry, stacking sequence, and the displacement/stress variable

influence the BTD to a great extent.
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Fig. 4.16. BTDs for uz and σαα, symmetric composite shell.

• Classical models are often quite distant from the BTD curve. This means

that they can be improved both in accuracy and computational cost

standpoint.

• The BTD can provide insightful guidelines for the development of refined

models. For instance, the accuracy of the FSDT model in detecting σαα
for a thin, symmetric shell can be improved by considering a third-order

term instead of a first-order term (i.e., uβ4 instead of uβ2).

More results on the BTD for composite shells can be found in [54].
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Fig. 4.17. Comparison among BTD and other theories for the symmetric composite
shell, σαα.

4.12. Conclusions

In this chapter, it has been shown that there are three independent ways

of introducing “zig-zag” theories for the analysis of multilayered plates and

shells. In particular, it has been established that:

• Lekhnitskii [22] was the first to propose a theory for multilayered

structures that describes the zig-zag form of a displacement field in

the thickness direction and the interlaminar equilibrium of transverse

stresses.
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Table 4.7. Accuracy and computational cost of classical and BTD ESL models for the symmetric composite shell.

σαα uz

Rβ/h = 100
Me/M = 9/15

Pandya BTD Pandya BTD

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 0.1201% 0.0547% 0.2485% 0.0771%

Rβ/h = 4
Me/M = 9/15

Pandya BTD Pandya BTD

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 10.6406% 2.4431% 9.6671% 6.7721%
Me/M = 5/15

FSDT BTD FSDT BTD

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 13.9300% 10.6558% 27.6149% 8.5433%
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Fig. 4.18. BTD for the asymmetric composite shell, σαα.

• Three different and independent theories are proposed in the literature.

Apart from the one by Lekhnitskii [22], the other two approaches were

based on work by Ambartsumian [62, 73] and Reissner [66], respectively.

• Based on the authors’ historical considerations, which are documented

in this chapter, it is suggested that these three approaches are called

the Lekhnitskii–Ren, Ambartsumian–Whitney–Rath–Das, and Reissner–

Murakami–Carrera theories, respectively.

• As far as the Ambartsumian–Whitney–Rath–Das theory is concerned,

it should be underlined that other developments, even though derived

independently by other authors (such as those originated by Yu [95],
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Fig. 4.19. BTD for the asymmetric composite shells, σαα and uz .

Chou and Carleone [96], Disciuva [97], Bhaskar and Varadan [98], Cho

and Parmerter [99], among others), are applications of the AWRD theory.

Even though most of this discussion has been about the so-called ESLMs,

these being more relevant for the subject of this chapter, a brief outline of

LWMs was given in Section 4.7.

The author would encourage scientists who are working on the

analysis of multilayer structures to return to the fundamental work by

Lekhnitskii [22], Ambartsumian [62, 63], and Reissner [66]. There is, in

fact, a significant amount to learn from these works and probably more
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Table 4.8. Accuracy and computational cost of classical and
BTD models for the asymmetric composite shell, σαα.

Rβ/h = 100
Me/M = 9/15

Pandya BTD

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 0.0389% 0.0279%

Rβ/h = 4
Me/M = 9/15

Pandya BTD

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 6.9251% 2.6671%
Me/M = 5/15

FSDT BTD

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

Error 8.4968% 8.4968%

could be done, on the basis of these fundamental works, to obtain a better

understanding of the mechanics of multilayered structures. In particular,

future developments could be to extend Lekhnitskii’s theory as well as the

Reissner theorem. This latter, in the authors’ opinion, is the natural tool

for the analysis of multilayered structures.

As a final remark, the authors are clearly aware that this historical

review may be not complete. The authors are aware that other significant

articles and papers could exist on this subject that have not been

considered. However, what has been quoted in this chapter will help to

assign the right credit concerning the contributions and contributors to

multilayered theory.

The second part of this chapter discussed the development of a refined

shell finite element approach based on the Carrera Unified Formulation.

The CUF has been coupled to the MITC method to overcome the

locking phenomenon that affects finite element analysis. The reliability

of the approach has been tested by considering classical discriminating

problems, such as the pinched cylinder studied in [88] and the Scordelis–Lo

problem analyzed in [89], and the approach has shown good convergence

and robustness on growing the mesh size. Moreover, the accuracy of
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Table 4.9. Available theories for laminated structures.

Theory σnM ZZ IC εzz σzz

Classical [1–6]
CUF-ESL [9, 27] • •
L [22] • • •
LR [56–58] • •
AWRD [59–64] • •
RMC [65–71] • • • • •
CUF-LW-D [78] • • •
CUF-LW-M [72–78] • • • • •

the solution has been demonstrated to improve by increasing the order

of expansion of the displacements in the thickness direction. Finally,

the orthotropic multilayered cylinder studied by Varadan and Bhaskar

in [92] was considered. From this analysis one can conclude that for

the study of multilayered structures it is mandatory to consider zig-zag

effects in the displacements in order to obtain the 3D solution. This is

possible by introducing Murakami’s zig-zag function in the ESL models

or by using the LW models briefly discussed in this chapter, which

allow us to use independent variables in each layer. This gives the best

results.

For clarity, Table 4.9 summarizes the features of the theories cited in

this chapter for the analysis of laminated structures:

• Classical = classical models such as Kirchoff–Love, Reissner–Mindlin, and

so on;

• CUF-ESL = equivalent single-layer theories contained in the CUF, in

which a high order of expansion in the thickness direction is used for

both the in-plane and ransversal displacements;

• L = Lekhnitskii theory;

• LR = Lekhnitskii–Ren theory;

• AWRD = Ambartsumian–Whitney–Rath–Das theory;

• RMC = Reissner–Murakami–Carrera theory, based on ESL approach for

displacement variables;

• CUF-LW-D = layer-wise models contained in the CUF, based on the

principle of virtual displacements (PVD);

• CUF-LW-M = layer-wise models contained in the CUF, based on the

Reissner mixed variational theorem (RMVT).
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The features, considered in the table, are as follows:

• σnM =the transverse shear and normal stresses are unknown variables

with the displacements;

• ZZ = zig-zag effects are considered in the displacements;

• IC = interlaminar continuity of the transverse stresses is fulfilled;

• εzz =thickness stretching effects are considered, εzz �= 0;

• σzz = Koiter’s recommendation is fulfilled, σzz �= 0.

The symbol • indicates that the theory satisfies the corresponding feature.

The last part of this chapter has presented some results related to the

Axiomatic/Asymptotic Method (AAM). The AAM evaluates the influence

of each unknown variable of a structural theory on the solution of a given

problem. In particular, the AAM can be used to build the Best Theory

Diagram. A structural model belonging to the BTD is the one that provides

the best accuracy for a given number of unknown variables. Results on ESL

plates and shells have been presented and proved that

• In most cases, the computational cost of refined models can be reduced

significantly without undermining their accuracy.

• Often, classical models and refined models from literature do not belong

to the BTD. In other words, there exist models that can provide better

accuracies with the same computational costs and models as accurate

but computationally less expensive.

• The construction of BTD is problem dependent. In fact, many

characteristic parameters, such as the thickness or the stacking sequence,

can modify the BTD significantly. Furthermore, the output control

variable adopted to build the BTD influences it as well.

• The BTD can be easily built by coupling the CUF, the AAM, and genetic

algorithms.

• The systematic use of BTD can be seen as a tool to evaluate the

accuracy of any given structural model. In other words, the BTD can

be a powerful method to develop structural models that, for a given

number of variables, can provide the best accuracy.
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[2] Poisson S.D., 1829. Mémoire sur l’équilibre et le mouvement des corps
elastique, Mem. Acad. Sci., 8, 357.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



204 E. Carrera, M. Cinefra & M. Petrolo
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Abstract

The onset and development of instabilities and failure in thin-walled composite
structures can limit their incorporation in different engineering systems. In
this chapter, a robust modeling framework to account for such events is
presented. On the shell theory side, a thorough revision with regard to different
continuum-based shell parametrizations, and the corresponding extension for
composite structures is performed. With reference to delamination modeling,
a nonlinear cohesive interface element which incorporated geometric and
material nonlinear effects is herein considered. A consistent variational
formulation and the corresponding finite element discretization are accordingly
derived. Both numerical strategies are combined for the nonlinear analysis
of different composite structures. The results obtained are compared with
experimental data and previous semi-analytical investigations, demonstrating
the reliability of the proposed methodology for the analysis of complex thin-
walled composite applications involving instabilities.
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5.1. Introduction

5.1.1. Review of shell formulations

Thin-walled structures (shells) are abundantly found in nature and in a

wide range of engineering systems. From the practical standpoint, they have

been used for the production of fuselage components in aircraft and wing

designs, car body constructions, bioengineering systems, recent stretchable

electronic devices, among many other applications.

The thorough analysis of shells frequently presents several challenging

tasks. The main difficulties arise from their curved and slender character.

The curvature effect is utilized to carry transverse external actions in an

optimal manner by in-plane actions. Due to their intrinsic peculiarities, the

development of theories and models for shells has attracted the attention of
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many authors over the last two centuries aiming at exploiting their excellent

load-deflection performances. In this context, names like Euler, Bernoulli,

Kirchhoff, Timoshenko, Love, Reissner, Mindlin, Naghdi are worth to be

mentioned due to their notable contributions in the topic. In the last

decades, one of the driving forces promoting the advance in the structural

analysis of shells is the development of computer-based discretization

methods, where the finite element method (FEM) is certainly predominant.

The basic ingredient for the development of shell theories regards the

introduction of mechanical assumptions in order to simplify the complex

three-dimensional behavior to condensed states. This procedure is usually

denominated as dimensional reduction concept [1, 2], where the static

(stress) and kinematic-derived (strains) quantities are usually referred to

the midsurface of the body. Inspired by this idea, the so-called classical

shell models relying on the Kirchhoff–Love and Reissner–Mindlin theories

were proposed.

However, in a general sense, shells models can be classified following

different criteria [2]. One possible categorization can be established

according to the number of independent kinematic parameters involved,

which are directly associated with the mechanical assumption across the

thickness. In this context, the so-called Kirchhoff–Love shell theory only

considers two in-plane displacements and the transverse deflection as

independent kinematic parameters, and is referred as the 3-parameter (3-p)

model. Based on its kinematic hypothesis, the normal direction is coupled

with the deformation of the shell midsurface, and therefore the director

vector remaining straight and normal to the shell midsurface along the

deformation process. The consistency of the 3-p model is preserved through

the modification of the constitutive law equations assuming a plane stress

state. Note also that the neglecting the transverse shear strains limits the

use of this formulation to thin shells. Moreover, one of the main difficulties

for their computational implementation into FE codes is the requirement

of C1-continuity order of the shape functions for the interpolation of the

geometry and the kinematic field. This latter condition can be overcome

using recent higher order continuity formulations based on isogeometric

procedures [3], see in particular the contributions by Kiendl et al. [4] and

Bischoff and coworkers [5, 6].

The consideration of the transverse shear effects leads to the Reissner–

Mindlin shell models, where five independent kinematic parameters are

defined, i.e., three displacements and two rotations. This formulation

is sometimes denominated as First-Order Shear Deformation Theory

(FOSDT) in the related literature, which attains independent rotation of
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the shell director vector with respect to the midsurface. In comparison

to the 3-p models, 5-p approaches reduce the error with respect to

three-dimensional body, becoming well suited for the analysis of moderately

thick shells and dynamic problems.

Standard formulations relying on the previous 3-p and 5-p models

and their corresponding FE formulations have been extensively used in

applications involving small strains. Nevertheless, the inextensibility of the

shell director vector in both theories precludes again the use of unmodified

three-dimensional constitutive formulations.

Focusing the attention on laminated shells, a straightforward manner

to present the different models is the Carrera’s unified formulation (CUF)

[7–9], which considers a basic kernel for the development of different models.

Assuming the previously referred hypothesis concerning the kinematics

(3-p or 5-p models) through the thickness, classical so-called equivalent

single layer (ESL) approaches can be developed, see Chapter 5 in [10]

and [11] and the references therein given. ESL approaches, whereby a

weighted average of the physical properties of each ply over the thickness

direction is recalled [11, 12], are especially suitable for laminates with

similar mechanical properties for adjacent layers. This is the case of many

Carbon Fibre Reinforced Polymeric (CFRP) composite laminates, for which

such formulations provide sufficient accurate global results at laminate level

for thin and moderately thick laminates.

Holistic ESL models (which are based on the assumed Cnz -continuity,

i.e., Cn-continuity along the thickness direction) do not generally fulfill

equilibrium conditions at the interfaces between layers, also referred

as interlaminar continuity of transverse stresses (IC) [7]. More reliable

estimations of such stress components can be obtained via a posterior

equilibrium considerations, though notable deviations can arise for thick

laminates [10]. IC of the transverse stress components together with the

material discontinuity along the interfaces originate the well-known zig-zag

(ZZ) effect. In this concern, a possible method to approximate such effect

into ESL models is the Murakami’s zig-zag function (MZZF) [13], which

has been comprehensively assessed in [8, 9, 14].

However, the aforementioned 3-p and 5-p models turned out to be

rather inaccurate in cases where finite strains might lead to considerable

thickness variation are involved. In these situations, the effects of transverse

shear and normal strains are not negligible any longer, playing a pivotal role

in composite structures, where interlaminar stresses undoubtedly contribute

to the initiation and growth of delamination events. The inaccuracy of such

formulations have been revealed in estimating the 3D stress field using
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1

3

2

shell midsurface

Fig. 5.1. Parametrization of the shell body in the reference configuration.

Classical Laminate Theory (CLT) adopting the 3-p kinematics, FOSDT,

and Higher Order Shear Deformation Theories (HOSDT) [11].

A potential alternative to overcome these limitations with a

mathematical root is the interpretation of the shell theory as a certain

approximation of the three-dimensional equations. This approach is based

on the seminal works performed by Ericksen and Truesdell [15] and

Nagdhi [16] and can be interpreted as a step back into the 3D continuum,

allowing the use of constitutive laws without any additional manipulation.

The point of departure concerns with the parametrization of the

three-dimensional shell body by the curvilinear coordinates ξ = {ξ1, ξ2, ξ3},
where A(ξ1, ξ2, ξ3) = A(ξ) = M × F ⊂ R3 is the manifold of the body:

M(ξ1, ξ2) ⊂ R2 denoting the parameter space of the shell reference surface

and F (ξ3) ⊂ R standing for the thickness space (Fig. 5.1). The previous

parametrization is defined within the bi-unit cube � = [−1, 1]× [−1, 1]×
[−1, 1]. In this setting, the representation of any arbitrary point in the

reference, X, and current, x, configurationsa can be expressed as an infinite

sum of functions of the in-plane coordinates expanded in thickness direction:

X (ξ) =

∞∑
N=0

(
ξ3
)N

R(N)
(
ξ1, ξ2

)
, (5.1)

x (ξ) =

∞∑
N=0

(
ξ3
)N

r(N)
(
ξ1, ξ2

)
. (5.2)

aIn the subsequent developments, the capital letters refer to the reference configuration
of the shell, whereas the small letters are associated with the current configuration. The
Latin indices range from 1 to 3, whereas the Greek indices vary from 1 to 2.
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In Eqs. (5.1) and (5.2), the terms R(0), r(0), corresponding to index

N =0 and respectively denoted as R and r in the sequel, identify the

position vectors of the shell midsurface in the reference and current

configurations; R(N), r(N) (index N ≥ 1) denote the directors vectors

into the three-dimensional shell space for the reference and current

configurations, respectively; andN in
(
ξ3

in r(N) and R(N) stands for a superscript.

)N
indicates an exponent, whereas

The displacement field for a particular shell model, whose definition

reads u (ξ) := x (ξ) − X (ξ), can be expressed in terms of the thickness

coordinate as

u (ξ) =

∞∑
N=0

(
ξ3
)N

v(N)
(
ξ1, ξ2

)
. (5.3)

The approximation of the displacement field given in Eq. (5.3) enables

choosing a different interpolation order for the in-plane and transverse

displacements. Moreover, the use of additional kinematic restrictions with

regard to the inextensibility of the shell direction vector, R(1) (also

identified by D) can lead to Kirchhoff–Love and Reissner–Mindlin-type

models [2].

Restricting the series expansion up to the first-order term in ξ3, the

6-parameter formulation renders a linearly varying displacement field along

the thickness direction:

u(ξ) = v(ξ1, ξ2) +
H

2
ξ3w

(
ξ1, ξ2

)
, (5.4)

where v and w respectively identify v(0) and v(1) according to the

series expansion given in Eq. (5.3). In Eq. (5.4), v and w stand for the

displacement field of the shell midsurface and the difference vector between

the reference and deformed shell director vectors, respectively, and H

denotes the reference shell thickness. As was amply discussed in the related

literature, see [2, 17, 18] where the authors developed the so-called 7-p

model, 6-p formulations suffer from the so-called Poisson thickness locking

pathology due to the presence of spurious transverse normal stresses. This

deficiency has been usually tackled using two methodologies:

• Through the assumption of a quadratic interpolation of the transverse

displacement, see [19]:

u (ξ) = v
(
ξ1, ξ2

)
+
H

2
ξ3w

(
ξ1, ξ2

)
+
H

2

(
ξ3
)2

w̄
(
ξ1, ξ2

)
, (5.5)
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being w̄ = v(2) the one component vector which accounts for the

thickness stretching in line with Eq. (5.3).

• Using a hybrid-mixed variational formulation that includes the necessary

seventh parameter as an internal degree of freedom at the element level.

This latter approach constitutes the basis of the shell model introduced

by Bischoff, Ramm and coauthors [12, 17, 20, 21], whose formulation will

be used in the sequel using two different parametrizations, see Section 5.2.

Further elaborations of the kinematic scheme given in Eq. (5.3) can

lead to refined formulations, usually called as multi-director approaches

(relying on the concept of p–refinement). The general displacement field for

p-refinement formulations reads

u (ξ) = v
(
ξ1, ξ2

)
+

∞∑
N=1

(
ξ3
)N

w(N)
(
ξ1, ξ2

)
. (5.6)

The truncation of the Taylor series in terms of the coordinate ξ3 up to

cubic order leads to the recently developed 12-parameter formulation [22],

whose displacement field is given by

u(ξ) = v
(
ξ1, ξ2

)
+
H

2
ξ3w

(
ξ1, ξ2

)
+
H

2

(
ξ3
)2
w̄
(
ξ1, ξ2

)
+
H

2

(
ξ3 ˆ
)3
w
(
ξ1, ξ2

)
,

(5.7)

with ŵ corresponding to vector v(3) of the series expansion introduced

in Eq. (5.3). Note that in Eq. (5.7), w̄ and ŵ are vectors with three

components, which contribute to the alleviation of Poisson thickness

locking. This form of the 12-p model allows the use of C0-continuity order

of the shape functions for the corresponding FE discretization, making it

amenable from the numerical point of view.

However, it is clearly perceivable the dramatic increase of the

computational cost of p-refinement formulations at the element level in

conjuction with the difficulties to provide a clear mechanical interpretation

of the model higher order parameters.

Alternatively to the previous refinement scheme, h-refinement models

can be considered as potential modeling methods, which generally

correspond to the Layer–Wise (LW) approaches, see Chapter 12 in [10]

and [11] among many others. These models encompass the subdivision of

the shell body into several kinematic layers over the thickness and assume

separate displacement field expansions for each of them. Therefore, the

resulting displacement field exhibits a C0
z -continuity (i.e., C0-continuity
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along the thickness direction). As was amply discussed in the related

literature, LW formulations are especially suitable for modeling laminates

with significant stiffness difference between the adjoining layers as is the

case of sandwich structures, see [12] and the references therein given.

According to this approach, the interpolation of the displacement field

presents the following scheme:

u (ξ) =

nKL∑
N=1

ΦN
(
ξ3
)
w(N)

(
ξ1, ξ2

)
, (5.8)

where nKL is the number of kinematic layers (several kinematic layers

can be defined in each material layer) through the shell thickness, ΦN
are known functions in the thickness coordinate (ξ3). The resulting

model significantly increases the number of unknowns of the system and

additionally requires the establishment of the displacement continuity

and equilibrium conditions across the interfaces between layers via a

set of constraint equations. It is also worth noting that each of the

composing layers has its own kinematics model (5-p, 6-p, etc.), therefore

the zig-zag effect over the thickness can be properly represented. Based

on their intrinsic nature, LW models incur into higher numerical costs

comparing with ESL models, this aspect becomes of notable matter in

the case of nonlinear FE analysis and for the generation of the meshes.

Nevertheless, the applicability and reliability of LW formulations have been

proved through their application to different laminate configurations using

standard FE [23–26] and isogeometric parametrizations [27].

5.1.2. Finite element formulations for shells

From the numerical perspective, several shell finite elements have been

proposed in the last decades. Focusing the attention on those allowing

the use of 3D constitutive relations, two basic shell formulations can

be distinguished: (i) three-dimensional shell elements (surface-based FE

meshes), which model a reference surface of the body [19, 20, 28–30], and

(ii) solid shell elements (solid-based FE meshes) which accounts for the

parametrization of the top and bottom surfaces of the body and completely

avoid the use of rotational degrees of freedom for updating the shell normal

along the deformation process, see [31–37] to quote a few of them.

The improvement of the accuracy of the previous elements based on

low-order kinematic interpolations can be accomplished through hybrid-

mixed formulations. One popular approach to alleviate several locking
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deficiencies is the use of the Enhanced Assumed Strain (EAS) method.

This methodology was introduced by Simo and Rifai [38] relying on the

multi-field Hu–Washizu variational principle, and subsequently exploited

in [17, 35, 39–42] among many others. In particular, the three-field

functional, where the displacement, the enhanced strain and the stress fields

are primary variables, is reduced to a two-field functional by recalling the

orthogonality condition between the incompatible strains and the stress

field [40]. This leads to the elimination of the stress field from the discrete

FE equations.

Stress interpolations which are not removed at the element level leads

to hybrid stress elements [43], which are based on the two-field Hellinger–

Reissner variational form. Alternative mixed-element formulations on the

basis of the Hu–Washizu principle consider the approximation of the

displacements, the strains and the stresses as independent primary fields,

see [44–48]. In this latter element topology, the independent stress and

the enhanced strain interpolations are not assumed to be orthogonal

(Hybrid-EAS formulations), and therefore the stress field is not removed

from the resulting FE equations. This methodology has been exploited

by Klinkel and coauthors [47] through a solid shell approach for linear

and nonlinear problems showing a superior in-plane bending performance.

Recently, a different Hybrid-EAS model solid shell formulation was

proposed by Vu-Quoc and Tan [48] for the analysis of thick laminated

structures, which exhibits an excellent level of accuracy with regard to the

estimation of the interlaminar stress field.

The previous EAS- and hybrid-based formulations have been also

combined with alternative strategies in order to remove additional locking

effects. This is the case of the Assumed Natural Strain (ANS) [49, 50]

method to alleviate transverse shear and trapezoidal locking deficiencies,

and Reduced Integration (RI) [31, 37, 51] techniques, among other different

alternatives.

5.1.3. Instabilities in thin-walled composite engineering systems

Structural behavior of shells may be extremely sensitive to different

parameters such as supporting conditions, material defects and orientations

in composites, geometrical imperfections, among other effects. These

aspects can greatly affect their mechanical responses and might becoming

undesired and unexpected or even chaotic [2]. Nonlinear effects in shells

involving finite strains, material nonlinearities, buckling and postbuckling
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including features with regard to Ruga mechanics, which analyzes

wrinkling, folding and creasing phenomena among other effects, have been

extensively analyzed in the last years.

With special interest in the aerospace and aeronautical industries, the

use of CFRP composites in the construction of stiffened panels has received

a notable attention in the last two decades, see [52–55] and the references

therein given. In these applications, due to the high slenderness of such

components, the applied external loadings can promote the appearance

and development of structural instabilities (postbuckling evolution) once

the local buckling load of the specimen has been overcome. However, these

panels exhibit an additional significant load carrying capacity prior to

the corresponding collapsing point. With the aim of the fully exploitation

of this reserve of strength, several numerical studies reproduced the

overall postbuckling response using different shell formulations [53, 54].

Focusing on the investigation of the collapsing mechanisms associated with

damage, inter-laminar failure events have been triggered using the so-called

Virtual Crack Closure Technique (VCCT) [56] and Cohesive Zone Models

(CZMs) [57] strategies, whereas the simulation of intra-laminar damage has

been mostly performed using continuum damage-based techniques [58].

An additional application for thin-walled structures concerns with

Ruga mechanics in thin layer–substrate systems. One of the configurations

most used in practice comprises a flexible thick substrate and a thin

coating, usually with a functionality such a protecting layer against

impact, including an electronic device, among others. There exists a wide

range of applicability of thin layer–substrate systems such as printable

solar cells, flexible tilt sensors [59], thermal barrier coatings [60, 61],

among many others. As stated above, failure of such systems generally

involves the formation of creasing, folding, wrinkling, which can originates

the initiation and evolution of delamination events at the thin layer–

substrate interface due to the notable mismatch between the corresponding

mechanical properties [62–64]. These complex scenarios have been observed

in experimental investigations, see [63, 65]. The analysis of the mechanical

performance of these systems has been carried out using semi-analytical

procedures based on perturbation analysis in order to estimate the critical

membrane force and wrinkles wave-length that provokes the delamination

of the layer. Subsequent investigations have also incorporated the use of

FE-based simulations in order to estimate the postbuckling evolution along

with delamination events predominantly using CZMs as a consequence of

their versatility [60, 66, 67].
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5.1.4. Overview

The chapter is organized as follows. Section 5.2 outlines the principal

aspects of the 7-parameter shell model. The composite material models

considered in this research are given in Section 5.3. The interface cohesive

model is described in Section 5.4. The variational basis and specific details

of the corresponding FE formulation of the proposed modeling framework

are addressed in Section 5.5. The assessment of the proposed methodology

by means of several applications is presented in Section 5.6. Finally, the

main conclusions are summarized in Section 5.7.

5.2. Shell Formulation: 7-Parameter Model

This section outlines the basic aspects of the structural model herewith

considered for the simulation of thin-walled composite structures. Two

different kinematic parametrization are considered: (i) the three-

dimensional shell model (surface-based FE meshes) [18, 20], which is

presented in Section 5.2.2, and (ii) the solid shell model [33], whose

fundamental aspects are given in Section 5.2.3.

5.2.1. Differential geometry and fundamental equations

For the derivation of three-dimensional seven-parameter shell model, let us

consider a shell body that occupies a region in the Euclidean space B0 ∈ R
3

in the reference configuration and Bt ∈ R3 in the current configuration. The

deformation of the shell is considered through a nonlinear mapping ϕ(X, t),

which transforms any material point X ∈ B0 onto spatial points x ∈ Bt:
ϕ(X, t) : B0 × [0, t] → R3, where [0, t] is the time step interval, see Fig. 5.2.

The displacement derived deformation gradient is defined as follows: Fu :=

∂Xϕ(X, t), where J = det[Fu] is the Jacobian of the transformation, and

∂X identifies the partial derivative with respect to the Lagrangian frame.

The curvilinear basis vectors Gi and gi in the reference and current

configurations, respectively, are given by:

Gi =
∂X(ξ)

∂ξi
; gi =

∂x(ξ)

∂ξi
= Gi +

∂u(ξ)

∂ξi
; i = 1, 2, 3. (5.9)

The contravariant basis vectors are defined using the following standard

relationships: Gi ·Gj = δji and gi ·gj = δji , where δ
j
i is the Kronecker delta.

The metric coefficients are given by: gij = gi · gj and Gij = Gi ·Gj .
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3

1

2

1

3

2

1

3

2

Fig. 5.2. Description of the shell body in the curvilinear setting. The coordinate
systems for the reference B0 and current Bt configurations are denoted by {Ei}i=1,3

and {ei}i=1,3, respectively; the points in the reference and current configurations are
denoted by X and x respectively, whereas the corresponding Jacobi matrices are given
by J and j.

The Jacobi matrices referred to the transformations between the

parametric space in the reference, J(ξ), and in the current, j(ξ),

configurations read:

J(ξ) = [G1,G2,G3]
T , j(ξ) =

[
g1,g2,g3

]T
. (5.10)

The respective covariant basis vectors on the shell midsurface (ξ3 = 0)

are obtained by particularizing Eq. (5.9):

Aα =
∂R(ξ1, ξ2)

∂ξα
= R,α ; aα =

∂r(ξ1, ξ2)

∂ξα
= r,α ; α = 1, 2, (5.11)

where R(ξ1, ξ2) and r(ξ1, ξ2) denote the mid-surface shell position vectors

in the reference and in the current configurations, respectively. The shell

director vector in the reference configuration A3 is defined perpendicular

to the covariant in-plane vectors A1 and A2:

A3(ξ
1, ξ2) =

H

2

A1 ×A2

|A1 ×A2| , (5.12)

where H is the initial shell thickness that is used for normalizing A3.
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Through the previous definitions, the position vector of an arbitrary

point in the reference and in the current configurations are accordingly

given by

X(ξ) = R(ξ1, ξ2) + ξ3
H

2
A3(ξ

1, ξ2), (5.13)

x(ξ) = r(ξ1, ξ2) + ξ3
h

2
A3(ξ

1, ξ2), (5.14)

where h is the updated shell thickness. The kinematic field, u(ξ), can be

expressed as follows:

u(ξ) =
[
r(ξ1, ξ2)−R(ξ1, ξ2)

]
+ ξ3

[
a3(ξ

1, ξ2)−A3(ξ
1, ξ2)

]
, (5.15)

decomposing u = v + ξ3w into

v(ξ1, ξ2)= r(ξ1, ξ2)−R(ξ1, ξ2); w(ξ1, ξ2)=a3(ξ
1, ξ2)−A3(ξ

1, ξ2).

(5.16)

In the previous definitions, v(ξ1, ξ2) is the displacement of the shell

midsurface, whereas the vector w(ξ1, ξ2) (difference vector) accounts

for the update the shell director along the deformation process, whose

computations depend on the particular parametrization.

The definition of the displacement derived Green–Lagrange strain

tensor reads:

Eu :=
1

2

[
(Fu)TFu − I2

]
=

1

2
[gij −Gij ]G

i ⊗Gj , (5.17)

where I2 is the material covariant metric. The compatible Green–Lagrange

strain tensor admits the following decomposition:

Euij = pij +
H

2
ξ3qij +

H2

4
(ξ3)2sij , with i, j = 1, 2, 3, (5.18)

where pij , qij and sij are the constant, linear and quadratic strain

components in the thickness coordinate ξ3. It is noted that the contributions

of the components sij are usually neglected in thin-walled applications due

to their minor role regarding the mechanical performance [20] in small strain

conditions.
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The constant strain components in Eq. (5.18) are defined as follows:

pαβ :=
1

2

[
aα · aβ −Aα ·Aβ

]
, (5.19)

pα3 :=
1

2

[
aα ·A3 −Aα ·A3

]
, (5.20)

p33 :=
1

2

[
a3 · a3 −A3 ·A3

]
, (5.21)

where pαβ denote the membrane terms of the Kirchhoff–Love model, pα3
stem from the Reissner–Mindlin shear forces hypothesis, and p33 is the

component associated with normal strains along the thickness direction.

Accordingly, the linear strain components take the form:

qαβ :=
1

H

[
aα · a3,β + aβ · a3,α −Aα ·A3,β −Aβ ·A3,α

]
, (5.22)

qα3 :=
1

H

[
a3,α · a3 −A3,α ·A3

]
, (5.23)

q33 := 0, (5.24)

where qαβ stand for the curvature changes (q11 and q22) associated with the

Kirchhoff–Love model, q12 is the twisting strain component of Kirchhoff–

Love formulation and qα3 identify the transverse shear curvatures.

Recalling [12, 20, 21], the previous parametrization (6-p model) yields

to constant transverse normal strain components for pure bending

applications since p33 �= 0 and q33 = 0. However, under such conditions

and according to the Theory of Elasticity, the transverse normal strain

is linearly varying over the thickness. Consequently the 6-p formulation

suffers from the well-known Poisson thickness locking, incurring in an error

of the order ν2 (being ν the Poisson ratio of the material) when unmodified

3D constitutive laws are employed. To alleviate this deficiency, two main

models can be adopted: (i) the use of a quadratic interpolation for the

displacement field over the shell thickness as proposed in [19, 68], and

(ii) the advocation of the enhanced assumed strain concept [12, 20, 21, 35],

which mathematically can be expressed as follow:

E33 = Eu33 + ξ3β̃33(ξ
1, ξ2), (5.25)

where ξ3β̃33(ξ
1, ξ2) is the linear strain term in the transverse direction.

From the operative standpoint, this latter option is particularly

interesting due to several reasons: (1) the incompatible modes can be

condensed out at the element level, so that the computational efficiency is
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preserved, (2) it can be directly implemented into commercial and research

FE codes, (3) it allows the use of standard meshing techniques without any

additional feature for considering the intermediate node along the thickness

direction that the formulation developed in [19, 68] required. Consequently,

highly efficient and locking free shell elements can be formulated.

The corresponding second Piola–Kirchhoff static quantities nij andmij

energetically conjugated to pij and qij , respectively, are defined as follows:

nij :=

∫ +1

−1

Sij μ̂ dξ3; mij :=

∫ +1

−1

Sijξ3μ̂ dξ3. (5.26)

The terms nij and mij denote the constant (forces) and linear

(moments) stress resultants per unit length. The constitutive tensor of the

shell, C (with components Cijkl), is also referred to the shell mid-surface

via the numerical integration across the thickness:

Dijkl
k =

∫ +1

−1

(ξ3)kCijkl
(
H

2

)k+1

μ̂ dξ3, k = 0, 1, 2, (5.27)

where μ̂ regards the transformation of the volume integrals into an

integration over the shell mid-surface through the shifter tensor Z :=Gi

⊗Ai [20]. The constitutive operator can be obtained performing the

consistent linearization of the stress tensor via the directional derivative

concept [69, 70]:

ΔS =
∂S

∂E
: ΔE = C : ΔE. (5.28)

The constitutive tensor C for composite structures can be expressed

as a function of the thickness coordinate ξ3, whose integration along this

direction, Eq. (5.27), is generally carried out using numerical methods. The

constitutive relation referred to the shell midsurface takes the form:[
nij

mij

]
=

[
Dijkl

0 Dijkl
0

Dijkl
1 Dijkl

2

][
pij
qij

]
, (5.29)

where the stress and strain components of the model are arranged in the

following vectors:[
nij ,mij

]
=
[
n11, n12, n13, n22, n23, n33,m11,m12,m13,m22,m23,m33

]T
,

(5.30a)[
pij , qij

]
=
[
p11, p12, p13, p22, p23, p33, q11, q12, q13, q22, q23, q33

]T
.

(5.30b)
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Note that differing from alternative shell formulations, the current

approach embodies a complete description of the Green–Lagrange strain

tensor, Eu, and its energetically conjugated second Piola–Kirchhoff stress

tensor S. This aspect yields to the use of unmodified of three-dimensional

material laws.

The mechanical significances of the static
[
nij ,mij

]
and kinematic

quantities [pij , qij ] of the current 7-p model have been comprehensively

described in [18], providing a clear and engineering interpretation to such

components.

5.2.2. Three-dimensional shell parametrization

The first possible shell parametrization of the 6-p model herein considered

is outlined in Fig. 5.3. The deformation of the reference shell surface is

accounted for using six local degrees of freedom, which are arranged by

a displacement vector of the shell surface v(ξ1, ξ2) and a difference vector

w(ξ1, ξ2) to update the shell director. This kinematic representation induces

the following relationships:

r(ξ1, ξ2) = R(ξ1, ξ2) + v(ξ1, ξ2); a3(ξ
1, ξ2) = A3(ξ

1, ξ2) +w(ξ1, ξ2).

(5.31)

The current parametrization offers several appealing aspects, which as

summarized as follows: (i) the simple linear structure of the kinematic field,

Eq. (5.31), (ii) the avoidance of rotational degrees of freedom for arbitrary

large displacements differing from alternative parametrizations [30], and

(iii) the stretching of the shell director vector. However, note that a careful

attention should be paid to the fact that the boundary conditions associated

with the shell director vector should be accordingly defined, see [18, 55] for

a comprehensive discussion.

Fig. 5.3. Three-dimensional shell parametrization: linear parametrization of the shell
midsurface and the director vector.
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5.2.3. Solid shell parametrization

The second parametrization complies with the so-called solid shell

concept [33], which considers two displacements fields v(ξ1, ξ2) and

w(ξ1, ξ2) for the description shell kinematics, relating a pair of material

points on the top and bottom surfaces of the shell, see Fig. 5.4. Complying

with this parametrization, the position vector of any reference material

point is given by

X(ξ) =
1

2

[
1 + ξ3

]
Xt(ξ

1, ξ2) +
1

2

[
1− ξ3

]
Xb(ξ

1, ξ2), (5.32)

where the position vectors Xt and Xb correspond to the top and bottom

surfaces of the shell in the reference configuration, respectively. This

expression, Eq. (5.32), can be rearranged as follows:

X(ξ) =
1

2

[
Xt(ξ

1, ξ2) +Xb(ξ
1, ξ2)

]
+

1

2
ξ3
[
Xt(ξ

1, ξ2)−Xb(ξ
1, ξ2)

]
, (5.33)

with

R(ξ1, ξ2) =
1

2

[
Xt(ξ

1, ξ2) +Xb(ξ
1, ξ2)

]
. (5.34)

A3(ξ
1, ξ2) =

1

2
ξ3
[
Xt(ξ

1, ξ2)−Xb(ξ
1, ξ2)

]
. (5.35)

A similar parametrization can be also performed for the position vector

in the current configuration:

x(ξ) = r(ξ1, ξ2) + ξ3a3(ξ
1, ξ2). (5.36)

Therefore, the kinematic field is again expressed according to the

following relationship:

u(ξ) = X(ξ)− x(ξ) = v(ξ1, ξ2) + ξ3w(ξ1, ξ2), (5.37)

Fig. 5.4. Solid shell parametrization: linear parametrization based on the displacements
corresponding to two points located on the top and bottom surfaces of the shell.
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where v and w denote the displacement vectors of the shell midsurface and

the director vector, respectively. These vectors take the following particular

form:

v(ξ1, ξ2) =
1

2

[
ut(ξ

1, ξ2) + ub(ξ
1, ξ2)

]
, (5.38)

w(ξ1, ξ2) =
1

2

[
ut(ξ

1, ξ2)− ub(ξ
1, ξ2)

]
, (5.39)

where ut and ub are the displacement vectors of the top and bottom surfaces

of the shell, respectively.

From the operative standpoint, the current solid shell model offers some

advantages with respect to the surface-based parametrization discussed in

Section 5.2.2. The most interesting aspects are as follows: (i) the prevention

of material overlapping in highly complex structures, especially in corner

locations where surface-based shell parametrizations can present severe

difficulties, (ii) the simpler adaption of FE models from geometrical data

using CAD packages, (iii) the suitable use in applications concerning

double-sided contact, (iv) the improvement with regard to the connection

between thin and thick regions in the model, among many others. Based on

the previous considerations, the solid shell parametrization has been one of

the most used approaches for the development of new shell elements in the

last two decades [31, 35–37].

5.3. Constitutive Formulations for the Shell

In this investigation, two basic constitutive models for composite materials

complying with the Kichhoff–Saint–Venant formulation (with a linear

relationship S = C : E) are considered. The first material type is

used to model layered composite shells (Section 5.3.1), whereas the

second material formulation concerns with power-based functionally graded

materials (Section 5.3.2).

5.3.1. Layered composite shells

The first type of composite structures under consideration concerns

laminated CFRP composites advocating the ESL model. In particular, for

such applications, an orthotropic material law for each lamina and perfectly

bonded behavior are assumed, i.e., no delamination events are taken into

consideration.
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+1

-1

+1

-1Layer midsurface

Fig. 5.5. Sketch of the laminated shell structure: local layer setting and definition of
auxiliary natural coordinates over the shell thickness ξ̄3i .

In line with the ESL approach, the computation of the resulting

constitutive tensor for laminates can be carried out by considering

the dependency of the laminate disposal with respect to the thickness

coordinate ξ3 (Fig. 5.5) in the form:

C(ξ3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CNL ξ̄3NL
≤ ξ3 ≤ ξ̄3NL+1 = +1

CNL−1 ξ̄3NL−1 ≤ ξ3 ≤ ξ̄3NL

.... .....

C2 ξ̄32 ≤ ξ3 ≤ ξ̄33

C1 − 1 = ξ̄31 ≤ ξ3 ≤ ξ̄32 .

(5.40)

The thickness coordinate in Eq. (5.40) varies from ξ3 ∈ [−1,+1] after

being scaled by the total laminate thickness H , which is given by H =

i=1Hi, identifying NL the total number of laminas and Hi the individual
∑NL

thickness of each ply. The bottom and top coordinates surfaces of each

lamina i are denoted by ξ̄3i and ξ̄3i+1, respectively, with −1 ≤ ξ̄3i ≤ +1 at

the lamina level. Accordingly, the definition of ξ̄3i reads:

ξ̄3i = −1 +
2

H

i−1∑
j=1

Hj i = 2, . . . , NL. (5.41)

The shell coordinate midsurface of each layer is denoted as ξ3i , which

reads

ξ3i = −1 +
Hi

H
+

2

H

i−1∑
j=1

Hj i = 1, . . . , NL. (5.42)
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The modified version of Eq. (5.27) for laminates can be expressed as

follows:

Dmnop
k =

NL∑
i=1

Hi

Hk+1

∫ 1

−1

μ̂ζi

⎡
⎣−H −Hi(1− ζi) + 2

i∑
j=1

Hj

⎤
⎦C

mnop
i dζL,

(5.43)

with k = 0, 1, 2 and where i stands for the current lamina, and ξ3 renders:

ξ3 = −1 +
1

H

[
−HL(1 − ζL) + 2

L∑
i=1

Hi

]
. (5.44)

5.3.2. Functionally graded isotropic shells

Metal-ceramic functionally graded (FG) shells have been extensively used

as thermal barrier coatings (TBCs), nuclear fusion reactors, among many

applications. In these materials, the volume fractions of two or more

constituents vary continuously and smoothly within the structure, usually

along the thickness direction. From the modeling standpoint, in agreement

with [66, 71], for two-constituent FG shells, a variation of the material

properties over the shell thickness is assumed to obey the following power-

based relationship:

ι(ξ3) = ιmfm + ιcfc, (5.45)

where the subscripts m and c identify the metallic and the ceramic

components, respectively, f is the volume fraction of the corresponding

phase, and ι is a generic material property. The volume fraction of each

constituent can be determined as follows:

fc =

[
ξ3

H
+

1

2

]n
, (5.46)

fm = 1− fc, (5.47)

where n represents a volume fraction exponent. Invoking the standard

Coleman–Noll approach [72], the second Piola–Kirchhoff stress tensor,

S(ξ3), and the constitutive tensor, C(ξ3), as a function of ξ3 read

S(ξ3) = ∂EΨ(ξ3) = Sij(ξ3)Gi ⊗Gj , (5.48)

C(ξ3) = ∂EEΨ(ξ3) = Cijkl(ξ3)Gi ⊗Gj ⊗Gk ⊗Gl. (5.49)
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Fig. 5.6. Functionally graded composites based on power-based variation of the volume
fraction of ceramic material fc through the thickness.

Based on the variation law given in Eqs. (5.46)–(5.47), the constitutive

operator (assuming a constant Poisson ratio over the shell thickness) can

be expressed as

C
ijkl(ξ3) = C

ijkl
c fc + C

ijkl
m fm. (5.50)

In the current investigation, for metal–ceramic FG shells, the case in

which the exponent n is equal to zero identifies a fully ceramic structure,

whereas when n tends to infinity a fully metallic body is obtained. Figure 5.6

depicts the evolution of the ceramic constituent volume fraction within the

shell body for different values of n.

5.4. Cohesive Interface for Large Deformation Analysis

This section briefly revisits the fundamental aspects of the large

deformation finite interface formulation henceforth employed. The

development of interface elements adopting different nonlinear cohesive

traction separation laws (TSL) between the two flanks of a crack has been

an intensively covered topic in the last years, see [57, 73, 74] to quote a few

of them. Recently, further contributions have also incorporated the role of

geometrically nonlinear effects concerning the description of the interface

performance, see [75–77] and the references therein given.
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X

Y
Z

cohesive
interface

Substrate

Thin film

Element  nodee1

e2

e3

Thin film

Substrate

Fig. 5.7. Description of the thin layer–substrate systems: solid shell parametrization is
used for the thin layer, whereas a large deformation cohesive zone model is included at
the interface layer–substrate for triggering delamination events.

The current interface formulation is included into the applications with

regard to postbuckling delamination of thin film substrate systems and

relies on the formulation developed in [77, 78]. It is noting that the proposed

interface model is fully compatible to the solid shell parametrization

addressed in Section 5.2.3, and consequently no further considerations

associated with the kinematic coupling between both element topologies

are required. This fact contracts with alternative models, which need the

implementation of additional features as is the use of first-order shear

deformation theory to compute the gaps at the interface elements [79].

The starting point of the interface derivation concerns with the

assumption of the existence of an interface between the two primary bodies

in the reference configuration B(1)
0 , B(2)

0 ⊂ R3, which is identified between

the thin film and the substrate in Fig. 5.7. The assumed cohesive interface

occupies the surface S0 ⊂ R
2 in the reference configuration, and is mapped

along the deformation process onto the current surface s0 ⊂ R2.

The relation between the second Piola–Kirchhoff traction vector T =

(τ1, τ2, σ) and the interface gaps gloc = (gloc,t1, gloc,t2, gloc,n) in the local

reference system, where the corresponding TSL is defined, follows the

cohesive interface model proposed in [80]. In particular, τ1 and τ2 identify

the in-plane tractions associated with shear fracture events, respectively,

whereas σ denotes traction component associated with fracture Mode I.

Their respective energetically conjugated variables are the displacement

gaps between the two flanks of the interface, which are denoted by gloc,t1,

gloc,t2, and gloc,n.
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The postulation of the cohesive TSL is given by the following

relationship:

τ1 = τmax,1
gloc,t1
lt1c

P (λ); τ2 = τmax,2
gloc,t2
lt2c

P (λ); σ = σmax
gloc,n
lnc

P (λ),

(5.51)

where σmax, τmax,1 and τmax,2 are the critical cohesive tractions

corresponding to the fracture Mode I, and shear, respectively; lnc, lt1c, and

lt2c identify the respective critical relative displacements. The dimensionless

separation parameter λ allows mixed mode fracture to be modeled. This

factor and the parameter P (λ) are defined as follows:

λ =

√(
gloc,n
lnc

)2

+

(
gloc,t1
lt1c

)2

+

(
gloc,t2
lt2c

)2

, (5.52)

P (λ) =

⎧⎨
⎩

27

4

(
1− 2λ+ λ2

)
, for 0 ≤ λ ≤ 1,

0, otherwise.
(5.53)

A schematic representation of this TSL for mixed mode in-plane

conditions is shown in Fig. 5.8.

In order to incorporate the current interface model within the context of

implicit nonlinear finite elements the tangent operator is derived according

Fig. 5.8. Mixed-mode TSL for the polynomial-based law according to [80], τ/τmax

identifying an equivalent critical traction that accounts for mixed fracture conditions.
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to standard arguments. The particular form of this operator reads

Cc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂τ1
∂gloc,t1

∂τ1
∂gloc,t2

∂τ1
∂gloc,n

∂τ2
∂gloc,t1

∂τ2
∂gloc,t2

∂τ2
∂gloc,n

∂σ

∂gloc,t1

∂σ

∂gloc,t2

∂σ

∂gloc,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.54)

A detailed derivation of the terms arising in Eq. (5.54) are reported

in [77], which are omitted here for the sake of brevity.

5.5. Computational Framework and Finite Element Formulation

This section is devoted to present the variational basis of the current

modeling framework. For the shells under consideration, the proposed

formulation uses the multi-field Hu–Washizu principle, which is the

fundamental basis of the EAS method. This variational principle holds

for both of shell parametrizations herein considered, namely the three-

dimensional shell (Section 5.2.2) and the solid shell (Section 5.2.3)

formulation. The corresponding FE discretizations of both models are

covered in Section 5.5.2 based on first-order shell elements.

5.5.1. Variational basis

The central result for the construction of the FE formulation of the proposed

modeling framework concerns with the weak form of the balance of linear

momentum of the complete system by means of the standard Galerkin

procedure:

intδΠint−δΠext = δΠint,b+δΠint,c+δΠext = R −Rext = 0, ∀δu ∈ V , (5.55)

where δΠint stands for the internal contribution, which includes the

terms associated with the bulk bodies δΠint,b, whereas δΠint,c identifies

the contribution of the cohesive interface; the term δΠext denotes the

contribution of the external actions applied to the system (body and surface

actions), and V =
{
δu ∈ [H1(B0)] : δu = 0 on ∂B0,u

}
is any kinematic

admissible virtual displacements, which satisfy the essential boundary

conditions.
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The Lagrangian version of the internal contributions of the continuum

shell body and the cohesive interface can be expressed as:

int,b = δΠint,b(u, δu) =R
∫
B0

S : δE dΩ, (5.56)

Rint,c = δΠint,c(u, δu) =

∫
S0

δgT
locTdS. (5.57)

Through the directional derivative concept, the standard linearization

of Eqs. (5.56)–(5.57) for the case of pure-displacement formulation is

given by

int,b = ΔδΠint,b(u, δu,Δu)ΔR

=

∫
B0

ΔS : δE dΩ +

∫
B0

S : ΔδE dΩ, (5.58)

int,c = ΔδΠint,c(u, δu,Δu)ΔR

=

∫
S0

ΔδgT
locTd∂Ω +

∫
S0

δgT
locΔTd∂Ω. (5.59)

Recalling the Hu–Washizu variational principle, we adopt the additive

decomposition of E into displacement derived Eu, and an incompatible

Ẽ, counterparts [20, 35]: E = Eu + Ẽ. Therefore, for the shell body, the

following internal contribution to the weak form, with Rint,b = Rint,s, can

be recast:

int,s = δΠint,s(u, δu, Ẽ, δẼ)R
=

∫
B0

S : δEu dΩ +
˜

∫
B0

S : δẼ dΩ, ∀δu ∈ V , δẼ ∈ VE , (5.60)

˜
where VE = [L2(B0)] is the admissible space corresponding to the

incompatible strains. Note that the stress field is eliminated from Eq. (5.60)

by imposing the so-called orthogonality condition between the interpolation

spaces associated with the stress and the enhanced strain fields [38, 40].

Accordingly, assuming a field of incremental deformation in terms of the

displacement field and the enhanced strains, the linearization of Eq. (5.60)

results in:

ΔδΠint,s(u, δu,Δu, Ẽ, δẼ,ΔẼ)

=

∫
B0

ΔS : δEu dΩ +

∫
B0

S : ΔδEu dΩ +

∫
B0

ΔS : δẼ dΩ, (5.61)
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where the linearization of the stress field including the incompatible strains

takes the form:

ΔS =
∂S

∂Eu
: ΔEu +

∂S

∂Ẽ
: ΔẼ. (5.62)

The linearized virtual Green–Lagrange strain tensor that is derived from

the displacement field reads:

ΔδEu =
1

2
[δgi ·Δgj +Δgi · δgj]Gi ⊗Gj . (5.63)

5.5.2. Shell finite element discretization

In this section, the FE discretization schemes of the shell models outlined

in Sections 5.2.2 and 5.2.3 are derived. The discretization is constructed in

the sense of ne non-overlapping elements defined in the Lagrangian setting,

such that B0 ≈ ⋃ne

e=1 B(e)
0 .

5.5.2.1. Displacement formulation supplemented by EAS

The standard shape functions defined on the shell midsurface for linear

interpolation strategy read

NA =
1

4

(
1 + ξ1Aξ

1
) (

1 + ξ2Aξ
2
)
, with ξ1A, ξ

2
A = ±1. (5.64)

Recalling the isoparametric concept, both the three-dimensional shell

and the solid shell parametrizations adopt the following scheme for the

discretization of the geometry in the reference and current configurations:

X = R+ ξ3A3 ≈
4∑
I=1

N IRI + ξ3N IAI
3 = NRe + ξ3NAe

3, (5.65)

x = r+ ξ3a3 ≈
4∑
I=1

N IrI + ξ3N IaI3 = Nre + ξ3Nae3. (5.66)

In Eqs. (5.65)–(5.66), the discrete midsurface position vectors in the

reference and in the current configurations are identified by RI and rI,

respectively, which are collected by their corresponding operators at element

level Re and re; AI
3 and aI3 stand for the nodal director vectors in the

reference and current configurations, respectively, which are arranged into

the operators at element level Ae
3 and ae3; finally, the operator N contains

the shape functions at the element level.
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In this concern, it is worth mentioning that, whereas the three-

dimensional shell formulation leads to a 4-node shell element, the solid

shell parametrization results in a 8-node shell element. Note also that in

contrast to standard 3D continuum elements, the solid shell parametrization

assumes a particular orientation, where ξ3 defines the thickness direction.

The interpolation of the displacement field u, its variation δu and its

increment Δu read:

u ≈ Ñd; δu ≈ Ñδd; Δu ≈ ÑΔd, (5.67)

with

Ñd = Nv + ξ3Nw. (5.68)

The interpolation scheme given in Eq. (5.68) also holds for the variation

and increment of the displacement field. In the previous expressions,

d represents the nodal displacement vector at the element level, whilst

the operator Ñ also depends upon the particular shell parametrization,

see [55, 81] for further details. The displacement derived strain field (Eu),

its variation (δEu) and its increment (ΔEu) are interpolated through a

suitable compatibility operator (B) as follows:

Eu ≈ B(d)d, δEu ≈ B(d)δd, ΔEu ≈ B(d)Δd. (5.69)

The operator B contains the derivatives of the shape functions with respect

to the global coordinate setting, and again its particular form depends on

the chosen shell parametrization.

The interpolation of the incompatible strain field is expressed in

terms of the operator M that contains the trial functions to alleviate

the following pathologies: (i) membrane and in-plane shear locking,

(ii) volumetric locking and (iii) Poisson thickness locking. The interpolation

of the enhanced strain field Ẽ, its variation δẼ and its increment ΔẼ renders

Ẽ ≈ M(ξ)ς, δẼ ≈ M(ξ)δς, ΔẼ ≈ M(ξ)Δς. (5.70)

Note that since the operator M is defined in the parametric space,

a posterior transformation into the global setting is required, see

Section 5.5.2.2.

The insertion of the previous discretization scheme into the linearized

system outlined in Eq. (5.61) leads to the following coupled algebraic
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system: [
kdd kdς
kςd kςς

] [
Δd

Δς

]
=

[
fext
0

]
−
[
fint
fEAS

]
, (5.71)

where fext identifies the external force vector, whereas fint and fEAS stand

for the internal force vectors associated with the kinematic and enhanced

strain fields, respectively:

fint =

∫
B0

BTS dΩ; fEAS =

∫
B0

MTS dΩ. (5.72)

The resulting matrices take the form:

kdd =

∫
B0

(
BT

CB+

[
∂B

∂d

]T
S

)
dΩ; kdς =

∫
B0

BT
CM dΩ; (5.73)

kςd =

∫
B0

MT
CB dΩ; kςς =

∫
B0

MT
CM dΩ. (5.74)

Eliminating the enhanced strains due to their discontinuity across the

the element boundaries [20], the final element stiffness matrix and internal

residual vector have the following form:

k̃dd = kdd − kdς [kςς ]
−1

kςd, f̃int = fint − kdς [kςς ]
−1

fEAS. (5.75)

The numerical implementation of the current EAS strategy in the

commercial FE package ABAQUS has been amply discussed by the authors

in [55], therefore particular details are omitted here for the sake of brevity.

5.5.2.2. Interpolation of the incompatible strains

As a consequence of its versatility, different designs with regard to the

interpolation of the incompatible strain field has been proposed in the last

years, see [34, 41, 55, 82] and the references therein given.

The enhanced part of the strain field is expressed in different basis as

Ẽ = Ẽij(G
i ⊗Gj) = ε̃0kl(A

k
0 ⊗Al

0), (5.76)

where ε̃0kl represent these components at the element center with the internal

basis A0 at this location. Operating in equation Eq. (5.76), one obtains:

Ẽij = ε̃0kl(A
k
0 ·Gi)(A

l
0 ·Gj) → Ẽ = (T0)

−Tε̃0, (5.77)

denoting T0 a transformation matrix between the basis at the element

centre and the contravariant basis system at the integration points.
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The strain field at the element centre is interpolated as

ε̃0 =

[
detJ0

detJ

]
M̃ς, (5.78)

where M̃ is the interpolation matrix for the additional strain fields which

are defined in the isoparametric space of the element; ς is the vector of the

internal strain parameters at the element level, whereas J and J0 identify

the Jacobian and its evaluation at the element center, respectively. After

some manipulations, the enhanced strain tensor takes the form

Ẽ = (T0)
−T

[
detJ0

detJ

]
M̃ς = Mς. (5.79)

In the current research, a particular version of the matrix M through

the consideration of 22 enhanced strains is chosen. According to the

strain arrangement given in Eq. (5.30), This matrix adopts the following

representation in a condensed format:

M̃ =

[
M̃p

M̃q

]
=

[
M̃7 07 04 04

07 M̃7 M̃q33
4 M̃4

]
, (5.80)

with

M̃7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 0 0 0 ξ1ξ2 0 0

0 0 ξ1 ξ2 0 0 ξ1ξ2

0 0 0 0 0 0 0

0 ξ2 0 0 0 ξ1ξ2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.81)

M̃4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

ξ1 ξ1ξ2 0 0

0 0 0 0

0 0 ξ2 ξ1ξ2

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̃q33
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 ξ1 ξ2 ξ1ξ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.82)

being 0n null matrix of order 6×n. Note that the matrix M̃q33
4 only affects

the strain component q33, as is described in [18].

It is noting that the implementation of the EAS method requires

the computation of [kςς ]
−1

for each iteration at each time step along

the solution process. This fact significantly increases the time cost
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associated with the current computational methodology to alleviate locking

pathologies [55]. Based on these previous considerations concerning the

computational costs, it is interesting to optimize the number of EAS

parameters depending on the application under analysis. In this concern,

according to [41], an alternative option for the strain components pαβ and

qαβ for structured meshes is reducing the 7-in-plane EAS parameters to 4.

This leads to the substitution of the matrix M̃7 in Eq. (5.80) by M̃∗
4. The

form of M̃∗
4 is given by

M̃∗
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 0 0 0

0 0 ξ1 ξ2

0 0 0 0

0 ξ2 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.83)

For structured meshes, the bilinear terms can be also eliminated from M̃4

and M̃q33
4 leading to M̃∗

2 and M̃q33
3 , respectively:

M̃∗
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

ξ1 0

0 0

0 ξ2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̃q33
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 ξ1 ξ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.84)

Through the insertion of M̃∗
4, M̃

∗
2 and M̃q33

3 replacing M̃7, M̃4 and M̃q33
4

respectively, the size of M̃ can be reduced to 13:

M̃ =

[
M̃p

M̃q

]
=

[
M̃∗

4 04 03 02

04 M̃∗
4 M̃q33

3 M̃∗
2

]
. (5.85)

This option employs 13 EAS parameters and it has been also examined

in the current research. The corresponding results to this latter choice,

which are omitted here for brevity reasons, were very satisfactory since

meshes created were very uniform and had good in-plane aspect element

ratio.

In addition, alternative EAS scheme proposed by Rah et al. [83]

to alleviate volumetric locking and for highly distorted meshes have

been also numerically implemented and assessed via standard benchmark

problems. However, for the applications under analysis in this research, the
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enhancement scheme given in [83] did not offer significant improvements of

the numerical results since compressible materials and regular FE meshes

were considered.

Finally, it is worth noting that complete polynomials regarding the

strain interpolations can be achieved following the scheme proposed by

Andelfinger and Ramm [82], though this option notably increases the

numerical demands.

5.5.2.3. The ANS method

This methodology alleviates typical locking effects in brick elements in the

thin limit, which arise from the poor displacement interpolation over the

thickness.

According to the Dvorkin–Bathe procedure [49], the ANS interpolation

of the transverse shear components considers four collocation points, which

are defined in the natural space as (Fig. 5.9): ξA = (0,−1, 0), ξB = (1, 0, 0),

ξC = (0, 1, 0) and ξD = (−1, 0, 0). Consequently, the modified interpolation

reads:

pANS

[
pANS13

23

]
=

[
(1 − ξ2)p13(ξA) + (1 + ξ2)p13(ξC)

(1 + ξ1)p23(ξB) + (1− ξ1)p13(ξD)

]
. (5.86)

The assumed strain interpolations proposed in [50] for the treatment

of the thickness strain component q33 account for the definition of four

shell midsurface

A
B

C

D

M

N

O

P

Fig. 5.9. Application of ANS method: identification of collocation points for the
alleviation of transverse shear (ξA = (0,−1, 0), ξB = (1, 0, 0), ξC = (0, 1, 0) and ξD =
(−1, 0, 0)), and trapezoidal locking (ξM = (−1,−1, 0), ξN = (1,−1, 0), ξO = (1, 1, 0)
and ξP = (−1, 1, 0)) pathologies.
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collocation points located on the corners of the shell midsurface (Fig. 5.9):

ξM = (−1,−1, 0), ξN = (1,−1, 0), ξO = (1, 1, 0) and ξP = (−1, 1, 0). The

modified interpolation scheme associated with this component is given by

pANS33 =

4∑
m=1

Nm(ξ1, ξ2)p33, m =M,N,O, P

Nm(ξ1, ξ2) =
1

4

(
1 + ξ1mξ

1
) (

1 + ξ2mξ
2
)
, with ξ1m, ξ

2
m = ±1.

(5.87)

Following [20], the ANS method is combined with the EAS method in the

current formulation in order to modify the interpolation associated with

the transverse shear strains components p13 and p23, and the transverse

normal component p33 in both shell parametrizations under consideration.

5.5.3. Interface finite element discretization

In this section, the FE formulation of the cohesive interface model

previously introduced (Section 5.4) is derived. As customary in interface

formulations, the definition of a reference surface (usually the interface

midsurface) is required [78]. The reference Xc and current xc position

vectors along the midsurface of the interface are computed according to

the following interpolation scheme:

Xc ≈ X
e

c = NMcX
n
c ; xc ≈ xec = NMcx

n
c , (5.88)

where Mc stands for a suitable averaging operator; X
e

c and xec denote

the reference and current discrete nodal positions at the element level,

respectively, whilst the nodal positions are given by Xn
c and xnc ; N is

the operator collecting isoparametric shape functions in the natural space{
ξ1, ξ2

} ∈ [−1, 1]× [−1, 1], where ξ1, ξ2 identify the natural coordinates of

the interface.

The displacement field of the interface, uc, is interpolated as follows:

uc ≈ uec = NMcdc, (5.89)

where uec identifies the discrete nodal displacements at the element level,

and dc denotes the nodal displacement vector of the interface.

The global gap vector gglob reads:

gglob ≈ geglob = NLcdc = Bcdc, (5.90)

where Lc is the so-called difference operator to compute the relative

displacements at the interface between the two flanks, and Bc denotes the
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strain operator of the interface. The global gap vector is then referred to a

local setting in order to evaluate the cohesive law by means of the rotation

operator Rc as follows:

geloc = Rc(dc)g
e
glob. (5.91)

The virtual local discrete gaps, δgeloc, and the increment of this

variation, Δδgeloc, can be expressed as follows:

δgeloc =

[
RcBc +

∂Rc

∂dc
Bcdc

]
δdc; Δδgeloc =

[
2
∂Rc

∂dc
Bcδdc

]
Δdc. (5.92)

The increment of the cohesive tractions, which is required for the

computation of the element stiffness matrix, reads:

ΔTe = Cc

[
RcBc +

∂Rc

∂dc
Bcdc

]
Δdc, (5.93)

where Cc stands for the constitutive tangent tensor, see Eq. (5.54).

With the previous definitions at hand and after some additional

operations, the interface element formulation proposed in [77] for large

deformation analysis can be obtained.

5.6. Representative Applications

The modeling framework described above has been implemented into the

FE package ABAQUS by means of the user-defined capability UEL. The

objective of this section is to assess the performance of the proposed

formulation involving geometric instabilities and buckling delamination

events in different engineering systems. We focus the study on the following

applications: (i) the postbuckling response of a CFRP composite stiffened

panel up to collapse (Section 5.6.1), which is modeled using the three-

dimensional shell parametrization complying with the ESL approach,

(ii) the wrinkling-delamination analysis of thin layer–substrate systems,

which are discretized using the solid shell element and the large deformation

cohesive element previously outlined (Section 5.6.2).

5.6.1. Postbuckling analysis of composite stiffened panel

The first application is concerned with the analysis of the postbuckling

evolution of a CFRP cylindrical composite stiffened panel under uniform

pressure loading conditions up to failure [53, 55, 84]. This panel is part of an

actual fairing of an aeronautical engine, satisfying the demanded tolerances
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hat of Ω (2)

hat of Ω (1)

web of Ω

skin (5)

skin (4)

foot of Ω

transition zone 
from skin (4) 
to skin (5)

r

z

θ
0o

90o

−45o

45o

R = 1520 mm

D = 595 mm

L = 615 mm

T1
T2

Fig. 5.10. Geometric definition of composite stiffened panel, where different laminate
disposals and material orientations are identified.

Table 5.1. Mechanical properties of tape and fabric materials.

Material E1 (GPa) E2 (GPa) G12, G13 (GPa) G23 (GPa) ν12

Tape 131 9.75 4.65 3 0.3
Fabric 61 61 4.9 3 0.05

in terms of geometry, material properties, flaws, among other aspects. The

experimental program is conducted in the test facilities of the Grupo de

Elasticidad y Resistencia de Materiales, Universidad de Sevilla, Spain.

Figure 5.10 portrays a sketch of the panel, whose main dimensions

are: radius 1520 mm, arc length 615 mm, and width 594 mm. Two

circumferential stringers with Ω-transverse section are symmetrically

disposed (height 55 mm, with hat and flange widths of 60 and 25 mm,

respectively), with a separation of 235 mm between their closer flanges.

Table 5.1 reports the mechanical properties of the unidirectional and fabric

plies carbon-epoxy laminates, whose nominal lamina thickness are equal

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



A Modeling Framework for Instabilities and Delamination in Composite Shells 243

Table 5.2. Lay-ups of each zone of the panel, where the subscript $ denotes
perfect symmetric laminate except for the last layer (one less ply).

Ω hat(1) Tape(0), Fabric (0,45) [45/0/0/0/0/0/45]
Ω hat(2) Tape(0), Fabric(0,45) [45/0/0/0/0/0/0/0/45]
Ω web/flange Fabric [45/0/45]
Skin (4) Tape [45/−45/0/90/90/−45/45/0/0]$
Skin (5) Tape [45/−45/0/90/0/−45/45]

to 0.184 and 0.28 mm, respectively. The circumferential direction identifies

the reference material orientation, see Fig. 5.10. The stringer-skin pairs

were co-bonded using and adhesive layer of 0.184 mm in thickness, with

mechanical properties: E = 3.216 GPa, ν = 0.3.

The laminate disposition at each zone of the panel is reported in

Table 5.2. The stringers are manufactured from fabric material with a

stacking sequence [45/0/45], being reinforced at the top hats. The stacking

sequence of the skin corresponds to [45/−45/0/90/0/−45/45] in the region

skin (5), being the number of plies is increased up to 17 at the region

skin (4). Therefore, there exists a transition zone between both regions with

steps of two laminas.

The external pressure is applied by means of a combination of gas and

liquid using an external hermetic box. The panel is fastened to the hermetic

box, which is specifically designed for this purpose. The mechanical response

of the specimen during the test is recorded using 28 strain gages and two

displacement transducers LVDT (locations T1 and T2 in Fig. 5.10) [84].

The experimental program is conducted in several stages with a final

test up to the collapsing point of the specimen [84], which occurs at around

0.41 bars. Figure 5.11 shows the evolution of the displacement transducer

at location T1 against the applied external loading. In this graph, a clear

nonlinear evolution is observed once the buckling load of the specimen is

overcome (which is estimated around 0.1 bar).

The numerical analysis of this specimen is performed using the

layered version of the 7-p shell model based on the three-dimensional

parametrization. The corresponding numerical model of the panel consists

of a monolithic approach for the skin-stringers pairs with the following mesh

characteristics: 3600 elements for each of the stringers and 6600 elements for

the skin of the panel. The numerical analysis comprises: (i) linear buckling

simulations, and (ii) subsequent general nonlinear static analyses. Fully

clamped boundary conditions are set to the external boundaries of the

model with the aim of reproducing the actual gripping system.
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-2 0 2 4

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7

Fig. 5.11. Experimental evolution of the displacement transducer at the location T-1.

The geometric imperfections of the specimen are incorporated into

the simulations through considering a perturbed geometry, which is based

on the adjustment of the actual geometry of the panel by means of a

certain combination of the previously estimated buckling modes [53]. With

this information at hand the least square method (LSM) is employed to

perform the best adjustment. The general scheme of this methodology can

be expressed according to the following expression:

Xi(n) = Xo
i (n) +

k=M∑
k=1

aku
k
i (n), (5.94)

where the perturbed position of node n, Xi(n) can be obtained through

combining the lowest M buckling modes; Xo
i (n), i = 1, 2, 3 denote the

nominal coordinates of node n; uki (n) identify the components of the

displacement of the node n corresponding to the kth numerical buckling

mode.

In [53], from 2 to 30 buckling mode shapes were used for the application

of the proposed methodology. The coefficients ai in Eq. (5.94) when 2

(label P02) and 5 (label P05) modes are combined are given in Table 5.3.

Examining the reported data, it can be seen that the initial maximum

geometric imperfections are about 50% of the nominal skin thickness.

Figure 5.12 shows a zoom of the experimental-numerical correlation at

the location T-1 [84]. In this graph, it can be seen the strong dependency

of the final deformed shape of the panel upon the number of buckling
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Table 5.3. Adjusted combination using 2 (P02) and 5 (P05)
buckling mode shapes.

Label a1 a2 a3 a4 a5

P02 –4.02E-4 4.09E-4

P05 –4.59E-4 2.52E-4 –6.59E-4 –1.55E-4 2.14E-4

-2 0 2 4

Test 1 Test 2
Test 3 Test 4
Test 5 Test 6
Test 7 P02
P03 P05
P06 P07
P08 P10

Fig. 5.12. Evolution for the transducer T-1: experimental-numerical correlation.

modes selected to perturb the nominal geometry of the panel. Note that

a satisfactory adjustment to the experimental data up to around the first

buckling load predicted (Pcr = 0.1 bar) is obtained for all the combinations

herein shown. Nevertheless, beyond this load level, the best agreement

between the numerical and the experimental data is achieved when the

first 5 (P05) or 6 (P06) buckling modes are combined in order to perturb

the nominal geometry. These data are in accordance with respect to those

reported in [53]. These differences (Fig. 5.12) are very similar to those

obtained using the built-in ABAQUS shell formulations S4R and SC8R,

and they are mainly attributed to lack of precise information regarding

the actual surface of the panel via experimental techniques. A possible

manner to reduce such discrepancies would concern the use of scanning

systems or alternative procedures to measure the complete surface of the

specimen. Future research actions are planned in order to shed light to

the role of the geometrical imperfections in the postbuckling evolution of

slender composites structures.
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Fig. 5.13. Postbuckling radial displacements estimations using the ESL version of the
7-p three-dimensional shell element.

Finally, Fig. 5.13 depicts the estimated radial displacement along the

postbuckling evolution using the proposed layered 7-p formulation. The

final deformed shape is predicted to be characterized by two main half-

waves, where one of them is subsequently subdivided into two sub-waves.

These deformation patterns satisfactorily agree with the experimental

observations, showing the reliability of the proposed approach [55, 84].

5.6.2. Wrinkling–delamination analysis of composite systems

In what follows, the analysis of wrinkling–delamination in composite

systems is carried out using the proposed computational framework.

In particular, the numerical investigation comprises the following stages

combining the solid shell element and the cohesive interface for large

deformation analyses: (i) the estimation of the wrinkling loadings by

means of linear buckling analysis; (ii) postbuckling analyses assuming

perfect interfaces for the thin layer–substrate, i.e., no delamination failure

is considered; and (iii) postbuckling simulations including the potential

development of delamination events.

Wrinkling and buckling-induced delamination of FG TBCs bonded

to soft substrates has been investigated using perturbation-based semi-

analytical procedures, whose results are used in order to calibrate

subsequent FE simulations [60].

The system herein analyzed is composed by a substrate and a thin

layer, whose respective thicknesses are denoted by H̄ and h, whereas L and

B identify their span and width, respectively, see Fig. 5.14. The following

boundary conditions (Fig. 5.15) are defined in order to reproduce the
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X

Y
Z

Substrate (s)

Thin film (f)

Fig. 5.14. Mechanical system FG thin layer over soft substrate under uniform
compression loading: geometric definitions.

X

Y
Z

Fig. 5.15. Mechanical system FG thin layer over soft substrate under uniform
compression loading: supporting conditions.

ˆ

conditions in [60]: (i) the vertical displacement is restrained at the surface

z = 0; (ii) the horizontal displacement at the surface x = 0 in x-direction

is constrained; (iii) the displacements in y-direction are restrained at the

surfaces y = 0, B; (iv) the applied external displacement in x-axis (u) is

imposed on the plane x = L, leading to uniform strain conditions strain

ε = û/L within the domain.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



248 J. Reinoso, M. Paggi & A. Blázquez

In the current investigation, the analysis of FG thin layer–substrate

systems is performed considering a significant mismatch between the

mechanical properties. In particular, we set the following ratio between the

Young’s moduli of the layer, Ef , and the substrate, Es: Ef/Es ≥ 1000.

Kirchhoff–Saint–Venant material law is assigned to the thin layer and

substrate, whilst the nonlinear CZM discussed in Section 5.4 is employed for

modeling delamination failure at the interface between both entities. The

system is discretized using conforming meshes in terms of mesh density and

order of displacements interpolation. Regarding the FE-topology, solid shell

finite elements correspond to the thin layer, whereas cohesive elements and

standard continuum elements are used for the interface and the substrate,

respectively.

The first stage of the simulation regards the computation of linear

buckling analysis. Derived from analytical techniques [60], the estimation

critical strain εc, at which wrinkling is predicted to take place, reads

εc =
1

4

[
3Es

Ef

]2/3 [
1− 1

4

(
1− 2νs
1− νs

)2
]−2/3

, (5.95)

where Es and Ef are the plane strain Young’s moduli of the substrate and

of the film, respectively.

Figure 5.16 shows the evolution of the numerically estimated critical

strain εc with respect to the thickness ratio H̄/h in comparison with the

analytical values [60]. In this graph, a satisfactory agreement between

both the current FE framework and the semi-analytical approaches can be

observed. This linear buckling analysis is further employed for FG coating,

whose stiffness ratios between the film Ef,x, x meaning the grading ratio,

and the substrate Es are reported in Table 5.4. Figure 5.17 depicts the

comparison between semi-analytical critical strain (using the equivalent

Young’s moduli averaged over the FG thickness) and the lowest numerically

estimated eigenvalue for an infinitely thick substrate H̄/h > 20. Again,

a good adjustment between both methods with a maximum deviation of

1.4% between the corresponding data is achieved.

The postbuckling and the postbuckling-delamination analyses of the

current system complete the current application. In particular, the

postbuckling evolution beyond the critical strain is conducted assuming

perfectly bonded layer–substrate interface (without damage capabilities).

The nominal geometry is perturbed using the lowest numerically computed

eigenmode according to the scheme given in Eq. (5.94). For the particular
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Fig. 5.16. Estimation of the critical strain: Effect of the H/h ratio on the FE analysis
of wrinkling for Ef/Es = 1000, see Eq. (5.46).

Table 5.4. Elastic property ratios using an equivalent Young’s modulus over the shell
thickness for FG coatings. Ef,m and Ef,c denote the Young’s moduli for pure metallic and
ceramic fractions, respectively; Ef,x denotes the equivalent value after the integration of
the variable Young’s modulus over the thickness, where x denotes the grading exponent,
see Eq. (5.46).

Ef,m/Es Ef,5/Es Ef,2/Es Ef,1/Es Ef,0.5/Es Ef,0.2/Es Ef,0.1/Es Ef,c/Es

1000 1193 1386 1579 1771 1964 2052 2154

case of n = 0.1, Eq. (5.46), Fig. 5.18 shows the wrinkle amplitude for

different imperfection magnitudes as a function of the nominal strain in

comparison with the semi-analytical procedure presented in [60], where ∗h
identifies the perturbation magnitude being the coefficient ∗ the scaling

value with respect to the thin layer. The semi-analytical value for wrinkle

amplitude obtained by Mei et al. [60] beyond the critical strain reads

Aw(λ) =
λ

π

√
ε− εc, (5.96)

where λ denotes the wrinkle wavelength.

Analyzing the data shown in this graph and setting λc/h = 50 and

εc = 0.00336213, it can be seen that, as expected, the FE results depend on
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Fig. 5.17. Comparison between the FE and semi-analytical critical strain predictions
for several grading exponent values, see Eq. (5.46).

Fig. 5.18. Comparison between the FE and semi-analytical results for wrinkle
amplitude-nominal strain evolution with n = 0.1 using different magnitudes of the
geometric imperfection.

the magnitude of the initial imperfection. Thus, the lower the scaling value

is set, the closer agreement with the semi-analytical results is achieved.

Nevertheless, it is noting that the FE data slightly overestimate the value

of semi-analytical data at mid postbuckling stages.
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¯

Fig. 5.19. Wrinkle amplitude-nominal strain evolution for n = 0.1 for different value of
the peak interface strength σmax using an initial imperfection of about 10% of the film
thickness.

Finally, postbuckling-delamination computations using the proposed

CZ formulation is performed using the previous configuration. In this

concern, we analyze the role of the maximum interfacial normal traction

(σmax), which can originate delamination events. Mei et al. [60] estimated a

closed-form for the maximum normal traction which provokes the initiation

of the wrinkle induced delamination as

σmax =
4(1− νs)

2Es
3− 4νs

√
ε− εc. (5.97)

The previous expression is taken as the peak Mode I CZM traction

for the interface model and particularizes for the corresponding material

properties of the system. Figure 5.19 depicts the wrinkle amplitude

evolution as a function of the nominal strain for different values of σmax and

using an initial imperfection magnitude of about 10% of the film thickness.

In this evolution, it can be observed that the delamination is predicted to

be initiated immediately prior to the occurrence of wrinkling. This effect is

a direct consequence of the notable elastic mismatch between both entities

of the system, namely the thin layer and the substrate. This trend can be

more clearly observed for lower values of the interface strength, leading

to higher wrinkle amplitudes. Moreover, note that beyond the nominal

strain of delamination initiation, both nonlinear phenomena (delamination

and wrinkling) concomitantly evolve [60]. In order to illustrate this aspect,
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Fig. 5.20. Postbuckling deformation pattern and layer–substrate delamination detail.

Fig. 5.20 shows the postbuckling deformation pattern at an intermediate

stage and a layer–substrate delamination detail at one of the corners of the

system.

5.7. Concluding Remarks

In this chapter, a modeling framework for instabilities and delamination

in composite shells has been presented. On the side of shell theory, several

possible continuum-based parametrizations were comprehensively revisited.

In particular, two shell models have been considered and extended to

deal with composite layers: (i) the three-dimensional shell parametrization

complying with the ESL for layered CFRP structures, and (ii) the solid shell

parametrization, which has been used for the instability and delamination

analysis of thin layer–substrate systems. Specific aspects with regard to

the variational basis and the corresponding FE formulation have been

addressed.

The performance of the present methods has been assessed by means

of two applications. Nonlinear finite element simulations comprising linear

buckling, postbuckling and postbuckling-delamination analyses have been

successfully carried out. The corresponding results for the applications

under consideration have demonstrated the applicability and reliability

of the proposed approach in comparison with alternative semi-analytical

procedures and experimental data.

Further research activities are currently being considered for the

analysis of similar phenomena in complex multi-layered systems. In

particular the use of structured interfaces to optimized the inter-laminar
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behavior, 3D roughness induced imperfections and the combination of intra-

laminar and inter-laminar failure events are under investigation. These

developments feature a new frontier regarding modeling instabilities and

failure in composite structures.
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Abstract

The occurrence of a bifurcation in a multilayer structure during loading
sets a limit on its deformability, and therefore represents an important
factor in the design of composites. Since bifurcation is strongly influenced by
the contact conditions at the interfaces between the layers, the mechanical
modeling of these conditions is crucial. The theory of incremental bifurcation
is reviewed for elastic multilayers, when these are subject to a finite strain
before bifurcation, corresponding to uniform tension/compression and finite
bending. The interlaminar contact is described by introducing linear imperfect
interfaces. Results are critically discussed in view of applications and available
experiments.
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6.1. Introduction

Natural geological formations, biological materials and human-made

structures, such as sandwich panels, submarine coatings, microelectronic

devices, ceramic capacitors, are often made of layers of different materials

bonded together, to form so-calledmultilayers. Large strains are imposed on

these structures (i) as an industrial need (for instance when forming metallic

multilayers [1], ‘wrapping’ engineered tissues around tubular supports to

create artificial blood vessels [2] or bending of multilayer flexible solar

cells [3]), (ii) under working conditions (for instance when multilayer

films are employed for flexible packaging) or (iii) as a natural process

(for instance during morphogenesis of arteries or geological formations or

when the leaf of a plant bends to trap an insect, to disperse seeds or

to resist dehydration). In all these cases, the occurrence of various

forms of bifurcation sets limits to deformation performance. For instance

compressive strain is limited by buckling and subsequent folding (see the

example on the left-hand side of Fig. 6.1), uniform tensile strain may

terminate with shear band formation and growth, while uniform flexure may
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Bifurcation of Elastic Multilayers 261

Fig. 6.1. Left: A stiff (30mm thick, neoprene) layer bonded by two compliant (100mm
thick foam) layers in a rigid-wall, confined compression apparatus (note that separation
between sample and wall has occurred on the right upper edge of the sample).
Center: Creases on the compressive side of a rubber strip, coated on the tensile side with
a 0.4mm thick polyester transparent film, subject to flexure. Right: Bifurcation of a two-
layer rubber block under finite bending, evidencing long-wavelength bifurcation modes
(the stiff layer, made of natural rubber, is on the compressive side of a neoprene block).

lead to the formation of bifurcation modes such as creases and undulations

(see the example in the center and on the right-hand side of Fig. 6.1).

Bifurcation is therefore an important factor in the design of multilayered

materials, and so it has been the focus of a thorough research effort, initiated

by Maurice A. Biot [4] and continued by many others. In particular, elastic

layered structures deformed in plane strain and subject to a uniform state

of stress have been analyzed by Dorris and Nemat-Nasser [5], Steif [6–9],

Papamichos, Vardoulakis and Muhlhaus [10], Dowaikh and Ogden [11],

Benallal, Billardon and Geymonat [12], Triantafyllidis and Lehner [13],

Triantafyllidis and Leroy [14], Shield, Kim and Shield [15], Ogden and

Sotiropoulos [16] and Steigmann and Ogden [17] as a bifurcation problem

of an isolated layer subject to uniform tension or compression [18–20]. A

perturbative approach for a layered structure idealized as a constrained

Cosserat material near failure of ellipticity has been introduced by Bigoni

and Gourgiotis [21]. Layered structures subject to finite bending have been

considered by Roccabianca, Bigoni and Gei [22, 23], who found solutions

both for the non-uniform state of stress that develops during flexurea and

for the related incremental bifurcation problem. These findings relied on a

aThe solution of finite flexure of an elastic multilayered structure is interesting from
different points of view, since the stress state induced by bending is complex (it may
involve for instance the presence of more than one neutral axis) and strongly influences
bifurcation.
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Fig. 6.2. Bifurcation through compression of a finely layered metamorphic rock has
induced severe folding. This is an example of a so-called accommodation structure
(Trearddur Bay, Holyhead, N. Wales, UK; the coin in the photo is a pound).

generalization of previous results for plane-strain bending of an elastic block

given by Rivlin [24] and on analyses of incremental bifurcations [25–31].

The bifurcation loads and modes are strongly sensitive to the bonding

conditions between the layers, which may be perfect (as in the case of the

rock shown in Fig. 6.2), but often may involve the possibility of slip and

detachments, resulting in so-called delaminations (as in the cases shown in

Fig. 6.3). A simple way to account for this crucial behavior is to introduce

interfacial laws at the contact between layers. The simplest model of these

laws is linear and can be formulated by assuming that the interface has

null [32–35] or finite [36–38] thickness. We will limit our attention to zero-

thickness linear interfaces, across which the nominal traction increment

remains continuous, but linearly related to the jump in incremental

displacement, which is unrestricted. For simplicity, the materials forming

the multilayer are assumed hyperelastic and incompressible, according to

the general framework laid out by Biot [4], in which Mooney–Rivlin and

Ogden materials [39], as well as the J2-deformation theory of plasticity

materials, are particular cases. Therefore, the constitutive laws are broad

enough to embrace the behavior of rubber, plastics, and geological

materials, but also of ductile metals subject to proportional loading, as

they can be represented in terms of the J2-deformation theory.

After the introduction of the constitutive laws for the material and

the interfaces (Section 6.2), we start with the problem of an elastic

incompressible structure made of straight layers connected through linear
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Bifurcation of Elastic Multilayers 263

Fig. 6.3. Bifurcation through compression with detachment of layers. Upper part, left:
A stiff (1mm thick) plastic coating has detached from the foam substrate to which it
was initially glued. Upper part, right: Three layers of foam subject to compression show
folding with detachment, clearly visible near the edges of the sample. Lower part: A
severely bent layer in a folded rock formation near Millook Haven (UK) where detachment
has occurred.

interfaces and deformed in a state of uniform biaxial stress, for which

incremental bifurcations are sought (Section 6.3). We conclude with the

case of finite bending of a layered elastic block, deformed under plane strain

(Section 6.4).

6.2. Notations and Governing Equations

The notations employed in this chapter and the main equations governing

equilibrium in finite and incremental elasticity are now briefly reviewed

(see [40]). Let x 0 denote the position of a material point in some stress-free

reference configuration B0 of an elastic body. A deformation ξ is applied,

mapping points of B0 to those of the current configuration B indicated by

x = ξ(x 0). We identify its deformation gradient by F , i.e., F = grad ξ, and
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we define the right C and the left B Cauchy–Green tensors as C = FTF

and B = FFT .

For isotropic incompressible elasticity, the constitutive equations can

be written as a relationship between the Cauchy stress T and B as follows:

T = −πI + α1B + α−1B
−1, detB = 1, (6.1)

where π is an arbitrary Lagrange multiplier representing hydrostatic

pressure, and α1 and α−1 are coefficients (such that α1 > 0 and α−1 ≤ 0),

which may depend on the deformation.

Alternatively, the principal stresses Ti (i = 1, 2, 3), which are aligned

with the Eulerian principal axes, can be obtained in terms of a strain-energy

function W , which can be viewed as a function of the principal stretches

λi (i = 1, 2, 3). For an incompressible material, these relationships take the

form (index i not summed)

Ti = −π + λi
∂W (λ1, λ2, λ3)

∂λi
, λ1λ2λ3 = 1. (6.2)

Equations (6.1) and (6.2) are linked through the following equations [34]:

α1 =
1

λ21 − λ22

[
(T1 − T3)λ

2
1

λ21 − λ23
− (T2 − T3)λ

2
2

λ22 − λ23

]
,

α−1 =
1

λ21 − λ22

[
T1 − T3
λ21 − λ23

− T2 − T3
λ22 − λ23

]
,

(6.3)

which express the coefficients α1 and α−1 in terms of the strain-energy

function of the material.

In the absence of body forces, equilibrium is expressed in terms of the

first Piola–Kirchhoff stress tensor S = TF−T (note that for incompressible

materials detF = 1) as div S = 0, an equation defined on B0.

The loss of uniqueness of plane-strain incremental boundary-value

problems is investigated, so that the incremental displacements are given by

u(x ) = ξ̇(x 0), (6.4)

where, as in the following, a superposed dot is used to denote a first-

order increment and an updated Lagrangian formulation (where the

governing equations are defined in the current configuration B) is adopted.
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The incremental counterpart of equilibrium is expressed by div Σ = 0,

where the updated incremental first Piola–Kirchhoff stress is given by

Σ = ṠFT , Ṡ = ṪF−T −TLTF−T . (6.5)

The linearized constitutive equation is

Σ = CL− π̇I , (6.6)

where L = grad u and C is the fourth-order tensor of instantaneous elastic

moduli (possessing the major symmetries). Incompressibility requires that

tr L = 0. Since Σ = Ṫ − TLT (see Eq. (6.5)), the balance of rotational

momentum yields Σ12 − Σ21 = T2L12 − T1L21, and a comparison with

Eq. (6.6) shows that (no sum on indices i and j)

Cijji + Ti = Cjiji (i �= j). (6.7)

For a hyperelastic material, the components of C can be defined in terms

of the strain-energy function W .

For the plane problem addressed here, they depend on two incremental

moduli [4], namely

μ =
λ

2

(
λ4 + 1

λ4 − 1

ˆdW

dλ

)
, μ∗ =

λ

4

(
ˆ ˆdW

dλ
+ λ

d2W

dλ2

)
, (6.8)

where Ŵ =W (λ, 1/λ, 1), due to incompressibility. In the following,

examples are given for two specific materials both of which are initially

isotropic elastic solids. One is the Mooney–Rivlin material, for which

W =
μ0

2
(λ21 + λ22 − 2), (6.9)

where λ1 and λ2 are the principal in-plane stretches and μ0 is the shear

modulus in the undeformed configuration. Due to incompressibility λ = λ1
and λ2 = 1/λ, so that

T1 = μ0(λ
2 − λ−2) and μ = μ∗ =

μ0

2
(λ2 + λ−2), (6.10)

where the former is the uniaxial tension law (along axis x1). Notice that

the ratio between T1 and μ is

T1
μ

=
2(λ2 − λ−2)

λ2 + λ−2
, (6.11)
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and its value always ranges between−2 (infinite compression) and 2 (infinite

tension). The other material analyzed in this section is the J2-deformation

theory solid introduced by Hutchinson and Neale [41], for which

W =
K

N + 1
εN+1, μ =

KεN coth(2ε)

2
, μ∗ =

KNεN−1

4
, (6.12)

where K is a material parameter, N ∈ ]0, 1] is the hardening exponent

and ε is the maximum principal logarithmic strain (ε = lnλ). The uniaxial

stress–strain law turns out to be T1 = KεN . For this material, the governing

equilibrium equations become hyperbolic when [42]

εsb =
√
N [2εsb coth(2εsb)−N ], (6.13)

a threshold which corresponds to the emergence of shear bands in the

deformed solid.

At the interfaces between layerswe employ the compliant interfacemodel

of Suo, Ortiz and Needleman [32] and Bigoni, Ortiz and Needleman [33] for

which the jumpbetween incremental stress and incremental displacement can

be written, in components (in a reference systemwith the axis 1 orthogonal to

the interface), as

mΣ11 = S1m(u+ − u−m), Σ21 = S2m(u+m − u−m); (6.14)

here Sij , the instantaneous stiffness of the interface, is a 2 × 2 constant

matrix which components have dimension [stress/length]. It is important

to notice that the model depends on the situation, as in the present case, in

which the stress vector at the interface is null for the fundamental path. The

limiting cases of a traction-free and perfectly bonded interface correspond

to Sij ≡ 0 and to Sij → ∞, respectively. S11 represents the normal stiffness

and S22 the shear stiffness of the interface. S12 and S21 are the coupling

between the normal and shear responses and, in the applications, will be

chosen equal to zero. In (6.14), the terms ()+ and ()− indicate quantities for

the two sides of the interface. In addition to (6.14), continuity of traction

across the interface has to be imposed, namely

Σ+n = Σ−n . (6.15)

6.3. Uniaxial Tension/Compression of an Elastic Multilayer

In this section, bifurcation is analysed for a multilayered elastic structure

with straight interfaces separating orthotropic, incompressible layers
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Bifurcation of Elastic Multilayers 267

deformed in plane-strain tension and compression. The fundamental path

is characterized by finite, uniform deformations, and the loss of uniqueness

in the form of waves of vanishing velocity is considered. The materials

in the layers obey a general hyperelastic incompressible constitutive law

and specific results are presented for Mooney–Rivlin and J2-deformation

theory materials. Different boundary conditions are imposed at the external

surfaces of the multilayered structure, namely, traction free, and bonding

to an elastic or undeformable substrate. The possibility of shear-band

instability, due to the loss of ellipticity as seen in the equilibrium equations,

is also analyzed.

6.3.1. Equations for a layer

A laminated structure composed of n-layers is considered, subject

to homogeneous large deformation in the fundamental path, so that

equilibrium and compatibility are trivially satisfied. Plane-strain conditions

are assumed with the principal directions of deformation aligned normal and

parallel to the layers (Fig. 6.4), with the additional assumption that each

layer, along the fundamental path, is subjected to a uniaxial stress along

direction x2. The possibility of bifurcation from the homogeneous state is

investigated by adopting an updated Lagrangian formulation of the field

equations where the current configuration is taken as a reference.

The material is a nonlinear, orthotropic, incompressible elastic solid

and obeys the incremental constitutive equation (6.6). In the absence of

body forces, incremental equilibrium requires div Σ = 0. In each layer,

layer 1

layer n

x1

x2

layer p-1

layer p

layer p+1

Fig. 6.4. Sketch of the laminated structure. Note that a linear interface is present at
each junction between layers.
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268 D. Bigoni, M. Gei & S. Roccabianca

non-homogeneous incremental solutions are considered in the form

uj = wj(x1)e
ikx2(j = 1, 2), ṗ = q(x1)e

ikx2. (6.16)

The functions wj(x1) and q(x1) will, in general, differ from layer to layer,

but the wave number k is taken to be the same for all layers. A chain

substitution of Eq. (6.16) into the constitutive law (6.6) and, finally, into

the incremental equilibrium equations yields a system of three constant-

coefficient ordinary differential equations for the three unknown functions

wj(x1) and q(x1). The solution is

w1(x1) = b1e
τ1x1 + b2e

τ2x1 + b3e
τ3x1 + b4e

τ4x1,

w2(x1) =
i

k
[τ1b1e

τ1x1 + τ2b2e
τ2x1 + τ3b3e

τ3x1 + τ4b4e
τ4x1 ],

q(x1) =
1

2
[(C2222 − C1111 +M)(τ1b1e

τ1x1 + τ2b2e
τ2x1)

+ (C2222 − C1111 −M)(τ3b3e
τ3x1 + τ4b4e

τ4x1)],

(6.17)

in whichM =
√
L2 − 4C1212C2121 and L = 2C1221+2C1122−C1111−C2222.

Coefficients τs (s = 1, . . . , 4, τ2 = −τ1, τ4 = −τ3) are the eigenvalues

of the equilibrium equations and depend on k, μ, μ∗ and T2. Using the

standard classification of regimes, coefficients τs may be: (i) real numbers

in the elliptic imaginary regime, (ii) two complex conjugate pairs in the

elliptic complex regime, (iii) purely imaginary numbers in the hyperbolic

regime and (iv) two purely imaginary and two real numbers in the parabolic

regime. Departure from the elliptic range corresponds to the occurrence

of shear bands. In the following, examples are given for two previously

introduced materials, namely, the Mooney–Rivlin and the J2-deformation

theory constitutive models.

Focusing now on the conditions at the interface between layers p and

p + 1 in Fig. 6.4, a substitution of wj(x1) and q(x1) into Eqs. (6.14) and

(6.15) yields the interfacial conditions in terms of coefficients bps and b
(p+1)
s .

In matrix form these are

H p−bp = H (p+1)+b(p+1), (6.18)

where vectors bp and b(p+1) collect coefficients bs for the two layers sharing

the interface, while H p− and H (p+1)+ are the interfacial matrices for layer

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
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− and +, respectively

H p− =⎡
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

(eτx1τΓ)p
−

1 (eτx1τΓ)p
−

2 (eτx1τΓ)p
−

3 (eτx1τΓ)p
−

4

(eτx1Δ)p
−

1 (eτx1Δ)p
−

2 (eτx1Δ)p
−

3 (eτx1Δ)p
−

4

(eτx1 [τΓ + Θ])p
−

1 (eτx1 [τΓ + Θ])p
−

2 (eτx1 [τΓ + Θ])p
−

3 (eτx1 [τΓ + Θ])p
−

4

(eτx1 [ikΔ + Ξ])p
−

1 (eτx1 [ikΔ + Ξ])p
−

2 (eτx1 [ikΔ + Ξ])p
−

3 (eτx1 [ikΔ + Ξ])p
−

4

⎤
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦
,

H (p+1)+ =⎡
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎣

(eτx1τΓ)
(p+1)+

1 (eτx1τΓ)
(p+1)+

2 (eτx1τΓ)
(p+1)+

3 (eτx1τΓ)
(p+1)+

4

(eτx1Δ)
(p+1)+

1 (eτx1Δ)
(p+1)+

2 (eτx1Δ)
(p+1)+

3 (eτx1Δ)
(p+1)+

4

(eτx1Θ)
(p+1)+

1 (eτx1Θ)
(p+1)+

2 (eτx1Θ)
(p+1)+

3 (eτx1Θ)
(p+1)+

4

(eτx1Ξ)
(p+1)+

1 (eτx1Ξ)
(p+1)+

2 (eτx1Ξ)
(p+1)+

3 (eτx1Ξ)
(p+1)+

4

⎤
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎦
, (6.19)

where the entries in the matrices are

(eτx1τΓ)p
−
s = eτ

p
s x

p−
1 τps Γ

p
s, (eτx1Δ)p

−
s = eτ

p
s x

p−
1 Δp

s ,

(eτx1 [τΓ + Θ])p
−
s = eτ

p
s x

p−
1 [τps Γ

p
s +Θp

−
s ],

(eτx1 [ikΔ+ Ξ])p
−
s = eτ

p
s x

p−
1 [ikΔp

s + Ξp
−
s ],

(6.20)

and the expressions for Γps, Δ
p
s, Θ

p−
s and Ξp

−
s are, respectively,

Γp1 = Γp2 =

[
Cp1111
2

+
Cp2222
2

− Cp1122 +
Mp

2

]
,

Γp3 = Γp4 =

[
Cp1111
2

+
Cp2222
2

− Cp1122 −
Mp

2

]
,

Δp
s =

[
Cp1221 + Cp1212

(
τps
k

)2
]
,

Θp
−
s = Sp−11 + iSp−12

τps
k
, Ξp

−
s = Sp−21 + iSp−22

τps
k
.

(6.21)

Relation (6.18) holds at every interface. To complete the analysis, the

boundary conditions at the external surfaces 1+ and n− need to be set.
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270 D. Bigoni, M. Gei & S. Roccabianca

6.3.1.1. Traction free at the external surface of the multilayer

With reference to the external surface 1+ of the multilayer, vanishing of

the nominal tractions requires

Σ1+

11 = 0, Σ1+

21 = 0, (6.22)

which can be written in matrix form as

C 1+b1 = 0,

C 1+ =

[
(eτx1τΓ)1

+

1 (eτx1τΓ)1
+

2 (eτx1τΓ)1
+

3 (eτx1τΓ)1
+

4

(eτx1Δ)1
+

1 (eτx1Δ)1
+

2 (eτx1Δ)1
+

3 (eτx1Δ)1
+

4

]
.

(6.23)

A similar result can be obtained for the free boundary n−.

6.3.1.2. Bonding to an elastic half-space at the external surface of

the multilayer

When an elastic half-space is coated with a multilayer, the elastic solution

has to decay within it with depth x1 → +∞ (or x1 → −∞), a

condition implying vanishing of the two coefficients bs corresponding to the

eigenvalues τs with positive (or negative) real part. Therefore, the interfacial

matrices for half-spaces at the upper (label 1) and lower (label n) external

surfaces of the multilayer are

H 1− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(eτx1τΓ)1
−

1 (eτx1τΓ)1
−

3

(eτx1Δ)1
−

1 (eτx1Δ)1
−

3

(eτx1[τΓ + Θ])1
−

1 (eτx1[τΓ + Θ])1
−

3

(eτx1 [ikΔ+ Ξ])1
−

1 (eτx1 [ikΔ+ Ξ])1
−

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦,

H (n+1)+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(eτx1τΓ)
(n+1)+

2 (eτx1τΓ)
(n+1)+

4

(eτx1Δ)
(n+1)+

2 (eτx1Δ)
(n+1)+

4

(eτx1Θ)
(n+1)+

2 (eτx1Θ)
(n+1)+

4

(eτx1Ξ)
(n+1)+

2 (eτx1Ξ)
(n+1)+

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.24)
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Bifurcation of Elastic Multilayers 271

6.3.1.3. Bonding to an undeformable substrate at the external

surface of the multilayer

In the case when the external surface of the multilayer is jointed to a smooth

undeformable constraint, the normal component of the velocity and the

tangential nominal traction have to vanish. With reference to the surface

1+ these conditions are

v1
+

1 = 0, Σ1+

21 = 0, (6.25)

which in matrix form become

C 1+b1 = 0,

C 1+ =

⎡
⎣ eτ

1
1x

1+

1 eτ
1
2x

1+

1 eτ
1
3x

1+

1 eτ
1
4x

1+

1

(eτx1Δ)1
+

1 (eτx1Δ)1
+

2 (eτx1Δ)1
+

3 (eτx1Δ)1
+

4

⎤
⎦. (6.26)

6.3.1.4. Bonding to an undeformable substrate with a compliant

interface at the external surface of the multilayer

In this case, the interfacial constitutive law, Eq. (6.14), is used between the

external elastic layer of the multilayer and an undeforming substrate, which

behaves as a rigid constraint. At the external surface 1+, this boundary

condition is

C 1+b1 = 0,

C 1+ =⎡
⎣ (eτx1 [τΓ − Θ])1

+

1 (eτx1 [τΓ − Θ])1
+

2 (eτx1 [τΓ − Θ])1
+

3 (eτx1 [τΓ − Θ])1
+

4

(eτx1 [ikΔ − Ξ])1
+

1 (eτx1 [ikΔ − Ξ])1
+

2 (eτx1 [ikΔ − Ξ])1
+

3 (eτx1 [ikΔ − Ξ])1
+

4

⎤
⎦,

(6.27)

whilst when imposed at the external surface n−, it becomes

Cn−
bn = 0,

Cn−
=⎡

⎣ (eτx1 [τΓ + Θ])n
−

1 (eτx1 [τΓ + Θ])n
−

2 (eτx1 [τΓ + Θ])n
−

3 (eτx1 [τΓ + Θ])n
−

4

(eτx1 [ikΔ + Ξ])n
−

1 (eτx1 [ikΔ + Ξ])n
−

2 (eτx1 [ikΔ + Ξ])n
−

3 (eτx1 [ikΔ + Ξ])n
−

4

⎤
⎦.

(6.28)
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272 D. Bigoni, M. Gei & S. Roccabianca

6.3.2. Bifurcation criterion

The set of equations for interfacial and boundary conditions forms a linear

system, where the coefficients bs of all layers are the unknowns. When elastic

half-spaces are not present, the dimension of the linear system is 4n× 4n.

When one elastic half-space or two half-spaces are considered as external

boundary conditions, the order of the linear system becomes 2(2n− 1) or

4(n− 1), respectively.

A critical bifurcation condition is attained when a non-trivial solution

is possible. This occurs when the system is singular. In terms of interfacial

matrices, the system can be written as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 1+
... 0

H 1− −H 2+
...

· · · · · · · · · · · · · · ·
... H (n−1)− −H n+

0
... −Cn−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

..

b1

b2

.

bn−1

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 ⇒ Yb = 0, (6.29)

and the bifurcation criterion becomes det(Y ) = 0. The system can be

reduced using the transfer matrix method [43, 44]. In particular, using the

interfacial condition (6.18), the vector bp can be expressed in terms of

bp+1 as

bp = (H p−)−1H (p+1)+bp+1, (6.30)

so that, as a consequence, b1 can be given as a function of bn

b1 = Ωbn, Ω = (H 1−)−1H 2+(H 2−)−1H 3+ . . . (H (n−1)−)−1H n+

, (6.31)

where Ω is the transfer matrix. The linear system is therefore reduced to

four equations in four unknowns:

C 1+b1 = 0

C n−
bn = 0

⇒
C 1+Ωbn = 0

C n−
bn = 0

⇒
⎡
⎣C 1+Ω

Cn−

⎤
⎦ bn = 0 ⇒ Xbn = 0,

(6.32)

and the bifurcation criterion becomes det(X ) = 0. Finally notice that,

when the number of the layers increases, numerical difficulties due to
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Bifurcation of Elastic Multilayers 273

ill-conditioning may be encountered using the transfer matrix method. An

investigation of these problems, well known in the case of infinitesimal

elasticity [45–47], would be interesting, but falls beyond the scope of this

chapter.

6.3.3. Results and discussion

The above-described general formulation is applied now to a few simple

bifurcation problems. As already remarked, S12 = S21 = 0 is assumed.

Moreover, the analysis is limited for simplicity to S11 = S22. Results for

different interfacial compliances are calculated in terms of the ratio c/h,

where h is the thickness of a representative layer and c is given by

c =
μ∗
1

S11
, (6.33)

where μ∗
1 is for layer 1. Parameter c/h is zero for perfect bonding and infinite

when the interface becomes a separation surface between two disjointed

layers.

In Figs. 6.5 and 6.8, the logarithmic strain ε versus k̄h (where k̄ = k/2π

is the inverse of the wavelength of the bifurcation mode) is shown for a

J2-deformation theory material. Cauchy stress replaces ε in Fig. 6.6 for the

Mooney–Rivlin material. A null transversal stress T1 = 0 has been imposed

in the fundamental path for all analyzed cases. For the J2-material, loss of

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.2 0.4 0.6 0.8 1 1.2 1.4
kh

c/h = 0

c/h = 0.1

c/h = 1

c/h = 10
Nlay = 0.1, Nsub = 0.4
Ksub/Klay = 2

0.3216, loss of ellipticity in the layer

single layer

Fig. 6.5. Bifurcation logarithmic strain for a layer bonded to a half-space and loaded
under plane-strain uniaxial tension for a J2-deformation theory material.
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0

0.20

0.40

0.60

0.80

1

1.20

1.40

1.60

1.80

2.00

T/

c/h = 0

c/h = 1

c/h = 0.1

c/h = 100

c/h = 10

a/ b = 3single layer

0 0.2 0.4 0.6 0.8 1 1.2 1.4
kh

Fig. 6.6. Bifurcation stress for a periodic multilayer in which the representative cell is
made of three layers jointed through an imperfect interface and externally bonded to
a smooth undeformable substrate. The structure, made of Mooney–Rivlin material, is
loaded under plane-strain uniaxial compression.

ellipticity may occur before bifurcation into a diffuse mode. In particular,

condition (6.13) gives εsb = 0.3216 for N = 0.1.

6.3.3.1. Layer bonded to a half-space

The compression case was analyzed by Bigoni, Ortiz and Needleman [33]

and therefore only the behavior under tension is investigated here, for a

J2-deformation theory material (Fig. 6.5). The substrate is stiffer than the

layer: Ksub/Klay = 2, Nsub = 0.4, Nlay = 0.1. The effect of the interfacial

compliance gives a strong reduction in the bifurcation critical strain. In the

short wavelength limit (k̄h→ ∞), all curves tend to the surface instability

value for the layer (ε = 0.2524). For sufficiently large wavelength modes

shear bands occur in the layer.

6.3.3.2. Periodic multilayered structures

Following [7, 13], a periodic multilayered structure can be analyzed under

certain restrictions as a bifurcation problem of a representative cell

(Fig. 6.7), subject to the boundary conditions of contact with smooth

undeformable substrates. We consider the layers joined with the imperfect

interface defined by Eq. (6.14).
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a

b

a

b

a

b

a

b

Fig. 6.7. Periodic multilayer structure and representative cell.

0
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0.20

0.30

0.40

0.50

0.60

c/h = 0

c/h = 0.1

c/h = 1

c/h = 10

Na = 0.4, Nb = 0.1
Ka/Kb = 2

0.3216 loss of ellipticity in b

single layer

0 0.2 0.4 0.6 0.8 1 1.2 1.4
kh

Fig. 6.8. Bifurcation logarithmic strain for a periodic multilayer in which the
representative cell is made of three layers jointed through an imperfect interface and
externally bonded to a smooth undeformable substrate. The representative cell analyzed
to model a periodic multilayer is made of J2-deformation theory material and is loaded
under plane-strain uniaxial compression.

In the example, a ratio μa/μb = 3 is assumed for the Mooney–Rivlin

material (Fig. 6.6, where T replaces the uniaxial stress T2). In the case of

perfect bonding, bifurcation is impossible when k̄h < 1.1 and the interface

instability (T/μ = −1.9216) is approached when k̄h → ∞. When the

interfacial compliance increases, the bifurcation load reduces, and the single

layer solution [18] is recovered in the limit case of complete separation.

The case of compression for J2-deformation theory material is analyzed for

the values Ka/Kb = 2, Na = 0.4, Nb = 0.1 (Fig. 6.8). In all cases, a portion
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of the curves falls beyond the loss of ellipticity threshold. This portion, in

which homogeneous deformation is terminated by strain localization in the

weaker layer, becomes larger as the interface becomes stiffer.

6.4. Bending of Elastic Multilayers with Imperfect Interfaces

In this section, we consider elastic multilayers subject to finite flexure, in

which the different layers are jointed with imperfect interfaces allowing for

full transmission of normal traction and imperfect transmission of shear

traction, which are linearly related to a possible jump in the tangential

incremental displacement. These conditions are again given by Eqs. (6.14),

written now in a cylindrical coordinate system, but with normal stiffness

Sr→∞. Note that such an interface is not ‘activated’ during finite

bending of a multilayer (since shear tractions are not present at the

interfaces between different layers), so that the solution for finite flexure is

identical both for perfect and imperfect bonding when Sr → ∞, but the

bifurcation thresholds are strongly affected by the tangential stiffness of the

interface Sθ.
The solution for pure bending of an elastic layered thick plate (of initial

‘global’ dimensions l0×h0, see Fig. 6.9) made up ofN layers jointed through

interfaces, which allow complete transmission of normal tractions, follows

from an ‘appropriate assembling’ of solutions relative to the bending of all

layers taken separately, a problem analyzed by Rivlin [24]. This solution

h
(1

)

h(3)
0

l 0

e r

r

e

x1x0
1

x2

h
(2

) h
(3

)

r
i

h

x0
2

h(2)
0h(1)

0

h0

Reference
configuration

Deformed
configuration

xx0

Fig. 6.9. Sketch of a generic layered elastic thick plate subject to finite bending.
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is now briefly explained, with reference to a generic layer (the sth) of the

considered multilayer (see [22] for more details).

6.4.1. Kinematics

With reference to Fig. 6.9, the generic layer, denoted by the superscript

‘(s)’ (s = 1, . . . , N), is considered in the reference stress-free configuration

of a Cartesian coordinate system O
(s)
0 x

0(s)
1 x

0(s)
2 x

0(s)
3 , centered at its

centroid, with basis vectors e0
i (i = 1, 2, 3), x

0(s)
1 ∈ [−h(s)0 /2, h

(s)
0 /2],

x
0(s)
2 ∈ [−l0/2, l0/2], and with x

0(s)
3 denoting the out-of-plane coordinate.

The deformed configuration of each layer is a sector of a cylindrical tube

of semi-angle θ̄, which can be referred to as a cylindrical coordinate system

O(s)r(s)θ(s)z(s), with basis vectors er, eθ and ez, r
(s) ∈ [r

(s)
i , r

(s)
i + h(s)],

θ(s) ∈ [−θ̄,+θ̄], and with out-of-plane coordinate z(s) (Fig. 6.9).

The deformation is prescribed so that a line at constant x
0(s)
1 transforms

to a circular arc at constant r(s), while a line at constant x
0(s)
2 remains

straight but inclined at constant θ(s). The out-of-plane deformation is null,

so that x
0(s)
3 = z(s). The incompressibility constraint means that

r
(s)
i =

l0h
(s)
0

2θ̄h(s)
− h(s)

2
, (6.34)

where h(s) is the current thickness of the circular sector, to be determined.

The deformation is described by the functions

r(s) = r(s)(x
0(s)
1 ), θ(s) = θ(s)(x

0(s)
2 ), z(s) = x

0(s)
3 , (6.35)

so that the deformation gradient takes the form

F (s) =
dr(s)

dx
0(s)
1

er ⊗ e0
1 + r(s)

dθ(s)

dx
0(s)
2

eθ ⊗ e0
2 + ez ⊗ e0

3, (6.36)

and we can therefore identify the principal stretches as

λ(s)r =
dr(s)

dx
0(s)
1

, λ
(s)
θ = r(s)

dθ(s)

dx
0(s)
2

and λ(s)z = 1. (6.37)

Imposition of the incompressibility constraint with Eq. (6.35) yields

r(s) =

√
2

α(s)
x
0(s)
1 + β(s), θ(s) = α(s)x

0(s)
2 , (6.38)
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so that, using Eq. (6.37), the principal stretches can be evaluated as

λ(s)r =
1

α(s)r(s)
, λ

(s)
θ = α(s)r(s) and λ(s)z = 1, (6.39)

where α(s) and β(s) (Eq. (6.38)) are constants which can be determined

by imposing the boundary conditions, which for the sth layer, are the

following:

• At x
0(s)
2 = ±l0/2, θ(s) = ±θ̄, which from Eq. (6.38)2, θ

(s) = ±α(s)l0/2,

yield

α(s) =
2θ̄

l0
, (6.40)

where it is worth noting that α(s) is now independent of the index s;

• At x
0(s)
1 =−h(s)0 /2, r(s) = r

(s)
i , which from Eqs. (6.34) and (6.38)1, r

(s)
i =

r(s)(−h(s)0 /2), yield

β(s) = r
(s)2

i +
l0h

(s)
0

2θ̄
. (6.41)

The N layers are assumed to be imperfectly bonded to each other

as previously explained, so that continuity of the radial displacements is

preserved, and therefore the interfaces do not affect the bending solution.

Therefore, we have

r
(s)
i = r

(s−1)
i + h(s−1) (s = 2, . . . , N), (6.42)

with r
(1)
i given by r

(1)
i = l0h

(1)
0 /(2θ̄h(1))−h(1)/2 (see Eq. (6.34)). Repeated

use of Eqs. (6.34) and (6.42) can be employed to express all thicknesses

h(s) (s = 2, . . . , N) in terms of the thickness of the first layer h(1), which

remains the sole kinematical unknown of the problem. In particular, since

Eq. (6.42) is imposed at each of the N − 1 interfaces between layers,

all radial coordinates r(s) share the same origin O of a new cylindrical

coordinate system Orθz, common to all deformed layers (Fig. 6.9 on the

right); therefore, the index s on the local current coordinates will be omitted

in the following, so that the deformed configuration of the multilayer will be

described in terms of the global system Orθz. From the kinematic analysis,

all the stretches are obtained in the multilayer and represented as

λr =
l0

2θ̄r
, λθ =

2θ̄r

l0
and λz = 1; (6.43)
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moreover, the current thickness of the sth layer h(s) becomes a function of

h(s−1), namely

h(s) = − l0h
(s−1)
0

2θ̄h(s−1)
− h(s−1)

2
+

√√√√√( l0h
(s−1)
0

2θ̄h(s−1)
+
h(s−1)

2

)2

+
l0h

(s)
0

θ̄

(s = 2, . . . , N). (6.44)

We may conclude that all current thicknesses are known once the thickness

of the first layer h(1) is known (and this will be determined from the solution

of the boundary-value problem described in the following section).

6.4.2. Stress

Let us analyze now the stress state within the multilayer and consider that

the Cauchy stress tensor in a generic layer s can be written as

T (s) = T (s)
r er ⊗ er + T

(s)
θ eθ ⊗ eθ + T (s)

z ez ⊗ ez, (6.45)

where, from the constitutive equations (6.2),

T (s)
r = −π(s) + λr

∂W (s)

∂λr
, T

(s)
θ = −π(s) + λθ

∂W (s)

∂λθ
, (6.46)

T (s)
z = −π(s) +

∂W (s)

∂λz

∣∣∣∣∣∣
λz=1

.

Since the stretches only depend on r, the chain rule of differentiation

d ·
dr

=
∂ ·
∂λr

dλr
dr

+
∂ ·
∂λθ

dλθ
dr

, (6.47)

together with Eqs. (6.46) and the derivatives of stretches with respect to r

(calculated from Eq. (6.39)), can be used in the equilibrium equations

∂T
(s)
r

∂r
+
T

(s)
r − T

(s)
θ

r
= 0,

∂T
(s)
θ

∂θ
= 0, (6.48)

to obtain the identities

dW (s)

dr
= −T

(s)
r − T

(s)
θ

r
=
dT

(s)
r

dr
. (6.49)
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Therefore, identifying λθ with λ, for a Mooney–Rivlin material

(Eq. (6.9)), we arrive at the expressions

T (s)
r = Ŵ (s) + γ(s) =

μ
(s)
0

2

(
λ2 +

1

λ2

)
+ γ(s),

T
(s)
θ = ˆ

(
λW (s)

)′
+ γ(s) =

μ
(s)
0

2

(
3λ2 − 1

λ2

)
+ γ(s),

(6.50)

where Ŵ (s)(λ) = W (s)(1/λ, λ, 1), γ(s) is an integration constant and ()′

denotes differentiation with respect to the stretch λ. The component T
(s)
z

can be inferred from Eq. (6.46).

Constants γ(s) (s = 1, . . . , N) and thickness h(1) can be calculated

by imposing (i) continuity of tractions at interfaces between layers (N − 1

equations), and (ii) traction-free boundary conditions at the external

boundaries of the multilayer (two equations). Considering N layers, the

traction continuity at the interfaces is

T (s−1)
r (r

(s−1)
i + h(s−1)) = T (s)

r (r
(s)
i ) (s = 2, . . . , N), (6.51)

while null traction at the external surfaces of the multilayer yields

T (1)
r (r

(1)
i ) = 0, T (N)

r (r
(N)
i + h(N)) = 0. (6.52)

Therefore, γ(N) can be calculated from Eq. (6.52)2 and specified for a

Mooney–Rivlin strain-energy function as

γ(N) = −μ
(N)
0

2

[
(αr(N)

e )2 +
1

(αr
(N)
e )2

]
, (6.53)

while employing Eq. (6.51), the following recursive formulas are obtained

γ(s−1) =
μ
(s)
0 − μ

(s−1)
0

2

[
(αr(s−1)

e )2 +
1

(αr
(s−1)
e )2

]
+ γ(s) (s = 2, . . . , N),

(6.54)

where r
(s)
i = r

(s−1)
e (see Eq. (5.42)).
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Bifurcation of Elastic Multilayers 281

Considering now Eq. (6.52)1 and evaluating γ(1) from Eq. (6.54) written

for s = 2, we obtain an implicit expression to be solved for h(1)

μ
(1)
0

2

[
(αr

(1)
i )2 +

1

(αr
(1)
i )2

]
+
μ
(2)
0 − μ

(1)
0

2

[
(αr(1)e )2 +

1

(αr
(1)
e )2

]
+ γ(2) = 0,

(6.55)

in which r
(1)
i , r

(1)
e and γ(2) are all functions of h(1), through Eqs. (6.44) and

(6.54).

The obtained solution allows determination of the complex stress and

strain fields within a thick, multilayered plate, when subject to finite

bending. For instance, we show in Fig. 6.10 the deformed geometries

for a four-layer structure (with l0/h0=1, thickness ratios: h
(b)
0 /h

(a)
0 =2,

h
(c)
0 /h

(a)
0 =3 and h

(d)
0 /h

(a)
0 =4 and stiffness ratios: μ(a)/μ(d)=27,

μ(b)/μ(d)=9 and μ(c)/μ(d)=3), together with graphs of the dimensionless

Cauchy principal stresses Tr(r)/μ
(a) (the transverse component) and

Tθ(r)/μ
(a) (the circumferential component).

Note that the transverse stress is always compressive, while the

distribution of Tθ(r) strongly depends on the stiffness of the layer under

consideration and always has a null resultant, so that it is equivalent to the

bending moment loading the plate. For all cases, the neutral axis (the line

corresponding to vanishing circumferential stress) is drawn. Note that in

h /h =2
l /h =10 0

0 0
(b) (a)

h /h =3
h /h =4

0 0

0 0

(c) (a)

(d) (a)

T / , T /a) a)
r

1T / (a)

T /r
(a)

material (a)
material (b)
material (c)
material (d)

(a) (d)/ =27
(b) (d)

(c) (d)
/ =9
/ =3

T / (a)

T / (a) T /r
(a)

+ -

-

/4= rad = /2 rad = rad

T /r
(a)

neutral axesneutral axes

Fig. 6.10. Undeformed and deformed shapes and internal stress states for finite bending

of a Mooney–Rivlin four-layer structure with l0/h0 = 1, thickness ratios: h
(b)
0 /h

(a)
0 = 2,

h
(c)
0 /h

(a)
0 = 3 and h

(d)
0 /h

(a)
0 = 4 and stiffness ratios: μ(a)/μ(d) = 27, μ(b)/μ(d) = 9 and

μ(c)/μ(d) = 3. Dashed lines represent the neutral axes. Note that two neutral axes are
visible in the figure on the right.
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the sketch on the right two neutral axes are visible, an interesting feature

which may occur, depending on the geometry and on the properties of

layers, for a multilayered plate under finite bending (see [23] for details).

6.4.3. Incremental bifurcations superimposed on finite

bending of an elastic multilayered structure

We address in this section the plane-strain incremental bifurcation problem

of the multilayered thick plate subject to the previously solved (Section 6.4)

finite bending deformation. For simplicity we consider the problem of a

bilayered structure made of Mooney–Rivlin material, but consideration

of additional layers or different constitutive equations is straightforward.

The incremental equilibrium is again expressed in terms of the updated

incremental first Piola–Kirchhoff stress Σ by

divΣ = 0, (6.56)

where Σ is given by Eq. (6.5) in terms of the gradient of incremental

displacements L, which in cylindrical components can be written as

L = ur,rer ⊗ er +
ur,θ − uθ

r
er ⊗ eθ + uθ,reθ ⊗ er +

ur + uθ,θ
r

eθ ⊗ eθ,

(6.57)

and is subject to the constraint tr L = 0 (incremental incompressibility),

namely,

rur,r + ur + uθ,θ = 0. (6.58)

The linearized constitutive equation is given by Eq. (6.6), and for a

Mooney–Rivlin material, the components of C can be written as functions of

two incremental moduli, denoted by μ and μ∗, Eq. (6.10), and depending on

the value of the current strain. In cylindrical coordinates, the non-vanishing

components of C are [18, 48]

Crrrr = Cθθθθ = 2μ∗ + p, Cθrθr = μ− Γ,

Crθrθ = μ+ Γ, Crθθr = Cθrrθ = μ+ p,
(6.59)

where Γ and p are given by

Γ =
Tθ − Tr

2
, and p = −Tθ + Tr

2
, (6.60)
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describing the state of prestress. Therefore, the incremental constitutive

equations (6.6) take, for each layer, the explicit form

Σrr = −π̇ + (2μ∗ + p)ur,r,

Σθθ = −π̇ + (2μ∗ + p)
ur + uθ,θ

r
,

Σrθ = (μ+ Γ)
ur,θ − uθ

r
+ (μ+ p)uθ,r,

Σθr = (μ+ p)
ur,θ − uθ

r
+ (μ− Γ)uθ,r.

(6.61)

We seek bifurcations represented by an incremental displacement field

in the form ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ur(r, θ) = f(r) cosnθ,

uθ(r, θ) = g(r) sin nθ,

π̇(r, θ) = k(r) cosnθ,

(6.62)

so that Eq. (6.58) can be reformulated as

g = − (f + rf ′)
n

, (6.63)

and the incremental equilibrium equations as

k′ = Df ′′ +
(
C,r +D,r +

C + 2D

r

)
f ′ +

E(1− n2)

r2
f,

k =
r2C

n2
f ′′′ +

F + 3C

n2
rf ′′ +

(
F

n2
−D

)
f ′ − 1− n2

n2

F

r
f,

(6.64)

where coefficients C, D, E and F can be expressed (for a Mooney–Rivlin

material) as

C = μ− Γ =
μ0

λ2
, D = 2μ∗ − μ =

μ0

2

λ4 + 1

λ2
,

E = μ+ Γ = μ0λ
2, F = rC,r + C = −μ0

λ2
.

(6.65)

By differentiating Eq. (6.64)2 with respect to r and substituting the

result into Eq. (6.64)1, a single differential equation in terms of f(r) is

obtained

r4f ′′′′ + 2r3f ′′′ − (3 + n2(λ4 + 1))r2f ′′

+(3 + n2(1− 3λ4))rf ′ + (n2 − 1)(3 + n2λ4)f = 0,

(6.66)
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defining the function f(r) within a generic layer. Once f(r) is known

for each layer, the other functions, g(r) and k(r), can be calculated by

employing Eqs. (6.63) and (6.64)2, respectively, so that function f(r)

becomes the primary unknown.

The differential equation (6.66) for the functions f (s)(r) (s = 1, . . . , N)

is complemented by the following boundary conditions:

• Continuity of incremental tractions at interfaces:

Σ(s)
rr

∣∣∣
r=r

(s)
e

= Σ(s+1)
rr

∣∣∣
r=r

(s+1)
i

, Σ
(s)
θr

∣∣∣
r=r

(s)
e

= Σ
(s+1)
θr

∣∣∣
r=r

(s+1)
i

; (6.67)

• Continuity of the radial component of the incremental displacement at

the interfaces:

u(s)r
∣∣∣
r=r

(s)
e

= u(s+1)
r

∣∣∣
r=r

(s+1)
i

; (6.68)

• Imperfect ‘shear-type’ interface (obtained from Eq. (6.14) taking

Sr→∞)

Σ
(s)
θr

∣∣∣
r=r

(s)
e

= Sθ
(
u
(s+1)+

θ − u
(s)−

θ

)
, (6.69)

where Sθ is a positive shear stiffness coefficient, so that perfect bonding

is recovered in the limit Sθ → ∞;

• For dead-load tractions on the external surfaces, the boundary conditions

at r = r
(1)
i and r = r

(N)
e are

Σ(1),(N)
rr

∣∣∣
r=r

(1)
i ,r

(N)
e

= 0, Σ
(1),(N)
θr

∣∣∣
r=r

(1)
i ,r

(N)
e

= 0. (6.70)

On the boundaries θ = ±θ̄ we require that shear stresses and

incremental normal displacements vanish

Σ
(s)
rθ

∣∣∣
θ=±θ̄ = 0, u

(s)
θ

∣∣∣
θ=±θ̄ = 0, (6.71)

a condition which is achieved if sinnθ̄ = 0 (see Eq. (6.62)) or equivalently

using Eq. (6.40), if

n =
2mπ

αl0
(m ∈ N). (6.72)

6.4.4. An example: Bifurcation of a bilayer

The critical angle θ̄cr and the critical stretch λcr (on the compressive side

of the specimen) for a bilayer at bifurcation are shown in Fig. 6.11 as

functions of the aspect ratio l0/h0 (the unloaded height of the specimen is
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l /h0 0

l /h0 0

cr

annular configuration

surface instability

su
rfa

ce
insta

bilit
y

h / =100
(lay) h0

coated layer:
(coat) (lay)/ =20

(coat)

Fig. 6.11. Critical angle θ̄cr and critical stretch λcr (evaluated at the internal boundary,

r = r
(1)
i ) versus aspect ratio l0/h0 of a Mooney–Rivlin coated bilayer subject to bending

with h
(lay)
0 /h

(coat)
0 = 10 and μ(coat)/μ(lay) = 20. The coating is located on the tensile side

of the structure. In both plots, a small circle denotes a transition between two different
integer values of m (the parameter which sets the circumferential wave number).
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l0 and global thickness is h0, see Fig. 6.9), for the thickness and stiffness

ratios h
(lay)
0 /h

(coat)
0 = 10 and μ(coat)/μ(lay) = 20, respectively. In the figure,

bifurcation curves are shown for different values of the integer parameter

m which, through Eq. (6.72), defines the circumferential wave number n.

Obviously, for a given value of l0/h0 the bifurcation threshold is set by the

value of m providing the minimum (or maximum) value of the critical angle

(or stretch).

In the same figure, the threshold for surface instability of the ‘soft’

layer material (λsurf ≈ 0.545 [4]) is also shown. It can be deduced from

the figure that a diffuse mode, which set the bifurcation thresholds, always

exists before surface instability for each aspect ratio l0/h0. It is important

to observe that the occurrence of the critical diffuse mode is very close

to the surface instability when the coating is located on the tensile side

of the specimen (Fig. 6.11). The critical angle at bifurcation is given in

Fig. 6.12 as a function of the aspect ratio l0/h0, for two values of the

(coat) (lay)/ =20
coated layer:

h / =200
(lay) (coat)h0

h / =100
(lay) (coat)h0

0 2 4 6 8 10

annular configuration

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9

uncoated
layer

m=9 m=10
m=10

8

9

7

6

5

3

2

4

1

cr

l /h0 0

Fig. 6.12. Comparison between the critical angle θ̄cr at bifurcation versus aspect ratio
l0/h0 of two Mooney–Rivlin coated bilayers subject to bending with the coating on

the tensile side of the structure, with μ(coat)/μ(lay) = 20 and h
(lay)
0 /h

(coat)
0 = 10

and 20, respectively. On each curve, a small symbol denotes a transition between two
different integer values of m (the parameter which sets the circumferential wave number).
Bifurcation angles for a single, uncoated layer are also shown.
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coating thickness, h
(lay)
0 /h

(coat)
0 = {10, 20}, and when the coating layer is

on the tensile side. In the same figure, results for the uncoated layer are

also shown for comparison.

It is evident from the figures that the bifurcation solution for a

single layer is approximated by a straight line, so that we can define an

approximate solution

θ̄cr = 0.712 l0/h0, (6.73)

which is very useful for applications. We may also notice that a linear

relation between θ̄cr and l0/h0 is found for the bilayer (Figs. 6.11, 6.12

and 6.16); however, the inclination of such lines depends on the elastic and

thickness contrasts between the layer and coating, so that it is difficult to

obtain a simple formula like Eq. (6.73) in this case.

The effects of an imperfect interface on bifurcations of a layered block

under bending have never been analyzed, so we limit the discussion to a

simple situation, while a more detailed presentation will be the subject

of future research. The simple example analyzed in Figs. 6.13 and 6.14

pertains to a uniform elastic block divided into two identical layers through

an imperfect interface of stiffness Sθ and Sr→∞. Results presented in

Figs. 6.13 and 6.14 are in terms of the critical bending angle for bifurcation

θ̄cr versus the initial ‘global’ aspect ratio l0/h0, as a function of the

dimensionless interfacial stiffness parameter Sθh0/μ0. Results for several

values of this parameter (ranging between 0 and 1000) are shown in

Fig. 6.13, while those results for only two (namely, 0 and 10) are shown

in Fig. 6.14.

Only the smallest circumferential number m = 1 was considered for

Fig. 6.13, so that θ̄ is not always ‘critical’, since for low values of the aspect

ratio l0/h0 the onset of instability is associated with higher values of m.

A general conclusion that can be drawn from the results shown in

Figs. 6.13 and 6.14 is that the bifurcation threshold strongly depends on the

dimensionless parameter Sθh0/μ0, which yields an important decrease in

the bifurcation angles with respect to the perfectly bonded case, approached

when Sθh0/μ0 → ∞.

6.4.5. Experiments on coated and uncoated rubber blocks

under bending

To substantiate the theoretical results for the bifurcation of layered

structures subject to finite bending, Roccabianca, Bigoni and Gei [22, 23]
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Fig. 6.13. Critical angle θ̄cr at bifurcation (m = 1) versus the ‘global’ aspect ratio
l0/h0 for two Mooney–Rivlin identical layers subjected to flexure and jointed through
a ‘shear-type’ imperfect interface of dimensionless stiffness Sθh0/μ0. Perfect bonding
corresponds to Sθh0/μ0 → ∞.

designed and performed experiments, similar to those initiated by Gent

and Cho [49, 50]. In these experiments, a finite flexure was imposed on

uncoated and coated elastic blocks (made of natural rubber), glued to two

metallic platelets, which were forced to bend by a simple screw loading

device (Fig. 6.15 left; see also [22]).

Different coatings and blocks were tested. Bending results for three

uncoated rubber strips (made of natural rubber with a ground-state shear

modulus μ(lay) ∼= 1N/mm2) and ten coated strips of the same dimensions

with two types of coating (both made of a polyester transparent film

having μ(coat) ∼= 500N/mm2 but with different thicknesses), all situated
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Fig. 6.14. Bifurcation angles θ̄cr versus the ‘global’ aspect ratio l0/h0 for two Mooney–
Rivlin identical layers subjected to flexure and jointed through a ‘shear-type’ imperfect
interface as in Fig. 6.13. Left: Sθh0/μ0 = 0; right: Sθh0/μ0 = 10. The small numbers
near a curve denote the value of the circumferential number m. The lower boundary of
the grey region is the bifurcation threshold for perfect bonding.

screw loading device
rubber block

scale for bending angle measure

post-bifurcation pattern

onset of bifurcation

Fig. 6.15. Left: Device used to impose a finite bending (of semi-angle θ̄ equal to 35◦
in the photo). Right: Bifurcation of a 20 × 4 × 100mm3 rubber block, coated with two
polyester 0.2mm thick films on the tensile side. Top: Onset of bifurcation (θ̄ = 40◦,
creases become visible). Lower: Post-bifurcation pattern (θ̄ = 50◦, creases invade the
whole specimen).
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Fig. 6.16. Experimental results versus theoretical predictions for the bifurcation
opening semi-angle θ̄cr of uncoated and coated rubber strips subject to finite bending,
versus the aspect ratio l0/h0 of the undeformed configuration. The shear moduli ratio
μ(coat)/μ(lay) of the coated layers has been taken equal to 500, while two thickness ratios

h
(lay)
0 /h

(coat)
0 equal to 20 and 10 were considered. The critical theoretical configurations

(for h
(lay)
0 /h

(coat)
0 = 20) corresponding to bifurcation points Ωi (i = 1, . . . , 5) are

sketched the right on the figure.

on the tensile side of the structure, are shown in Fig. 6.16. At a certain

stage of finite bending, namely at a certain bending semi-angle θ̄cr,

creases can be detected on the surface of the sample, as in Fig. 6.15

on the right (and in Fig. 6.1 in the center). This has been identified

with the appearance of small wavelength bifurcations and compared with

theoretical predictions for uncoated layers and for a layer with a stiff

coating on the tensile side of the specimen, in terms of the critical bending

semi-angle (θ̄cr) at bifurcation versus the aspect ratio of the samples,

Fig. 6.16. Experiments demonstrate that the trend predicted by the

theory is qualitatively very well followed, while quantitatively experimental

values for bifurcation angles are often a bit lower than the theoretical
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predictions, a result consistent with observations by Gent and Cho [49]. The

fact that experimental results substantiate theoretical predictions allows

us to conclude that bifurcation theory can be successfully employed to

predict the deformational capabilities of a composite plate subject to finite

bending.

In the case when the coating is applied to the compressed side,

long wavelengths become visible in the experiment, as qualitatively

demonstrated in Fig. 6.1 on the right (see also [23]), while quantitative

evaluation still requires further investigation.

6.5. Conclusions

The load-carrying capacity of laminated structures is often limited by the

occurrence of various instabilities at different structural levels. Among

these, delamination is the best known. Accordingly, there is a large

literature where bifurcations and instabilities of multilayers are analysed

from a variety of perspectives.

We have shown that the theory of incremental bifurcation of prestressed

elastic solids, in which each layer is treated as an elastic nonlinear

continuum and plate-like approximations are not introduced, can be

effectively used to find threshold loads for delamination involving complex

bifurcation modes. The presented framework is broad enough to include

several constitutive laws modeling the mechanical response of (i) the

interfaces (for instance spring-like or shear-type junctions) and (ii) the

layers (for instance Mooney–Rivlin and J2-deformation theory of plasticity

materials).

The bifurcation analysis, carried out for different deformation paths

including finite tension/compression of straight layers and finite bending,

reveals a number of different instabilities that may occur in a multilayer,

including Euler buckling, necking, surface instability and various wave-like

modes. The occurrence of one or another form of instability is strongly

related to the interfacial conditions between the layers.
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José Merodio∗,‡ and Ray W. Ogden†,§
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Abstract

In fiber-reinforced materials several different instability mechanisms can be
operative. These include fiber kinking, fiber splitting, fiber debonding and
matrix failure, inter alia. These phenomena are analyzed in this chapter on
the basis of the notion of loss of ellipticity. For this purpose, the material
is considered as elastic and is modeled by a constitutive law consisting of
an isotropic contribution associated with a matrix material, in which the
reinforcing fibers are embedded, and a transversely isotropic contribution (the
reinforcing model) associated with the fiber direction. Loss of ellipticity is
associated with surfaces of discontinuity in the material, and is assessed for
two different reinforcing models, both for compressible and incompressible
materials in two and three dimensions. Depending on the choice of reinforcing
model and the prevailing state of deformation, loss of ellipticity may be
associated with a surface of discontinuity at different orientations relative to the
fiber direction. In the first part of the chapter, weak surfaces of discontinuity
(associated with discontinuity of the second derivative of the deformation
field) are examined, while the second part is concerned with strong surfaces
of discontinuity (associated with discontinuity in the first derivative of the
deformation field) and the transition between weak and strong surfaces.
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7.1. Introduction

Fibrous composite materials are susceptible to failure from several different

mechanisms, including fiber kinking [1–8], fiber splitting [9–11], fiber

debonding [12, 13] and matrix failure [14, 15]. For an extensive review of

a wide range of compressive failure mechanisms we refer to [16], and for

further discussion of experimental results, analysis of kink band propagation

and failure to [17–22].

These failure mechanisms can be modeled on the basis of the continuum

mechanics of fiber-reinforced materials. In particular, in the setting of

the nonlinear theory of elasticity, certain types of failure have been

characterized in terms of loss of ellipticity of the differential equations that

govern the deformation of the material, as exemplified in the papers [23–32].

Loss of ellipticity is associated with the emergence of a surface (or

surfaces) of discontinuity in the material. Such a surface is referred to as a

weak (discontinuity) surface if the second gradient of the deformation field

is discontinuous, and a strong (discontinuity) surface if the deformation

gradient itself is discontinuous. For a given elastic constitutive law, the

equation which defines the discontinuity surface determines both the
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kink band

fiber-reinforcement
weak surfaces

Fig. 7.1. Parallel reinforcing fibers under compression leading to the formation of a
kink band with weak surfaces whose normals are close to parallel to the fiber direction
exterior to the kink band.

deformation at the initiation of the discontinuity surface and the direction

of the normal to the surface. A strong (discontinuity) surface is also weak,

but a weak (discontinuity) surface is not in general strong, although a

weak surface can develop into a strong one, and a strong surface can

degenerate into a weak one. For a general analysis of discontinuity relations

for functions with particular applications in solid mechanics, we refer to the

article [33].

Different failure mechanisms may be associated with different relative

orientations of the normal to the weak surface and the fiber direction. This

is illustrated, for example, by the initiation of fiber kinking when the fibers

are compressed, in which case the weak surface normal is oriented close to

the fiber direction [1]. A kink band is depicted in Fig. 7.1, which shows

parallel fibers under compression and the associated weak surfaces.

Fiber splitting is another failure mechanism and occurs, for example,

in glass fiber composites and corresponds to weak surfaces that are

almost parallel to the fibers. Fiber splitting and fiber kinking can arise

simultaneously [9, 10], as depicted in Fig. 7.2.

Another possible failure mechanism is debonding between a fiber and

the matrix when the fibers are under tension [13], as modeled in [12], which

may also be interpreted in terms of a weak surface that is close to parallel

to the fiber direction. This scenario is depicted in Fig. 7.3, which shows just

a single fiber embedded in a matrix.

When the fibers are extended rather than compressed matrix failure

can occur [14, 15] and is associated with weak surfaces normal to the fiber-

reinforcement, as depicted in Fig. 7.4.

To provide a theoretical description of these phenomena we focus on

the analysis of constitutive equations for nonlinearly elastic solids and their

ellipticity and loss of ellipticity, following in the first instance the approach
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kinkband

fiber-reinforcement
weak surfaces

fiber splitting

Fig. 7.2. Parallel reinforcing fibers under compression leading to the formation of a
kink band, with weak surfaces whose normals are close to parallel to the fiber direction
exterior to the kink band, combined with fiber splitting for which the weak surfaces are
close to parallel to the fiber-reinforcement direction.

fiber-reinforcement

weak surface

Fig. 7.3. Fiber debonding depicted for a single fiber under tension embedded within a
matrix. This may be associated with a weak surface that lies close to parallel to the fiber
direction.

fiber-reinforcement weak surfaces

Fig. 7.4. Depiction of parallel fibers under extension embedded within a matrix
leading to possible matrix failure with weak surfaces normal to the direction of fiber-
reinforcement.

in [24] for compressible materials and [23] for incompressible materials.

Initially, we consider the equations governing weak surfaces and then go

on to analyze strong surfaces. Constitutive equations that admit loss of

ellipticity have been the subject of attention in a number of different

contexts, exemplified in [3, 6, 7, 23, 24, 34–40]. The analysis herein is based

on considering the elastic strain-energy function to consist of an isotropic
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model that describes the matrix within which the fibers are embedded and

a reinforcing model that characterizes the properties of the fibers.

The material model is described in Section 7.2 following a summary

of the required aspects of the kinematics of deformation. The notions of

ellipticity, strong ellipticity and loss of ellipticity of the equations governing

equilibrium of the material are then described for compressible materials

in three dimensions, and the form of strain-energy function is highlighted

for different reinforcing models that are used subsequently.

Specialization to plane strain is then discussed in Section 7.3, in which

the ellipticity status of the different reinforcing models is established.

Depending on the reinforcing model and its convexity status, loss of

ellipticity can occur when the fibers are compressed or extended and the

different weak surfaces discussed above can be predicted.

In Section 7.4 a parallel, but briefer, analysis of loss of ellipticity is

provided for incompressible materials, both for three dimensions and the

plane strain specialization. For incompressible materials, attention is then

turned in Section 7.5 to the analysis of strong discontinuities for which

purpose the plane strain specialization is adopted. An expression for the

jump in the deformation gradient across a strong surface is obtained and

related to the normal to the discontinuity surface and the strength of the

discontinuity. The energetics of a strong discontinuity are then examined in

terms of a so-called discontinuity driving traction. Two simple examples are

then examined, one involving a kink surface orthogonal to the initial fiber

direction and one that shows how, as the strength of a strong discontinuity

tends to zero, the strong discontinuity degenerates into a weak discontinuity.

Finally, Section 7.6 contains a brief concluding discussion.

7.2. Compressible Materials in Three Dimensions

For comprehensive introductions to continuum mechanics, in particular

to applications in nonlinear elasticity theory, we refer to the standard

texts [41, 42]. In this section, we focus on the main aspects of the theory

that are needed in this chapter.

7.2.1. Kinematics

We first consider a material body occupying a reference configuration when

unloaded and stress free, and we denote this configuration by Br, within

which material points are labeled by the position vector X relative to
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300 J. Merodio & R.W. Ogden

a suitably chosen origin. The Cartesian components of X are denoted

Xα, α ∈ {1, 2, 3}. Once subject to loads the material is deformed and

occupies the deformed configuration, denoted B, in which the material point

X has position vector x, with Cartesian components xi, i ∈ {1, 2, 3}. Note,
in particular, that here and henceforth we associate Greek indices with Br

and Roman indices with B.
Of special importance is the deformation gradient tensor, which is

denoted F and has Cartesian components Fiα = ∂xi/∂Xα. From this are

formed two symmetric tensors, the left, B, and right, C, Cauchy–Green

deformation tensors, which are defined by

B = FFT, C = FTF. (7.1)

The principal invariants of these two tensors, sometimes referred to as

isotropic invariants, are the same and defined, through C, by

I1 = trC, I2 =
1

2
[I21 − tr(C2)] = I3tr(C

−1), I3 = detC. (7.2)

Reinforcing fibers are modeled as a continuous distribution with their

direction locally defined by the unit vector M (the so-called preferred

direction) in Br, and since fiber directions may vary M will in general

depend on X. This allows us to introduce two additional (in general

independent) invariants which depend on both C and M. These are

typically denoted I4 and I5 and defined by

I4 = M · (CM) = m ·m, I5 = M · (C2M) = m · (Bm), (7.3)

wherein we have introduced the notation m for the push forward of M from

Br to B defined by

m = FM. (7.4)

The eigenvalues of B and C are the squares of the principal stretches

{λ1, λ2, λ3}, in terms of which the invariants are expressed as

I1 = λ21 + λ22 + λ23, I2 = I3(λ
−2
1 + λ−2

2 + λ−2
3 ), I3 = λ21λ

2
2λ

2
3, (7.5)

I4 = λ21M
2
1 + λ22M

2
2 + λ23M

2
3 = m2

1 +m2
2 +m2

3, (7.6)

I5 = λ41M
2
1 + λ42M

2
2 + λ43M

2
3 = λ21m

2
1 + λ22m

2
2 + λ23m

2
3, (7.7)

where (M1,M2,M3) and (m1,m2,m3) are the components of M and m

referred to the principal axes of C and B, respectively.
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Instabilities from Loss of Ellipticity in Fiber-Reinforced Solids 301

The invariant I4 measures changes in the length of the fiber that was

in the direction M in Br and represents the square of the stretch of such a

fiber. The invariant I5 does not in general have such a clear interpretation

and we refer to [23, 24] for a discussion of this point.

7.2.2. Elasticity

The material properties are here considered to be elastic, and characterized

in terms of a strain-energy function. In this section we do not apply

any internal constraints to the material, but in Section 7.4 we adopt the

constraint of incompressibility. The material is assumed to be transversely

isotropic with the transverse isotropy defined locally in terms the fiber

direction M. Then the strain energy is an isotropic function of the two

tensors C and M ⊗ M, which means that in its most general form it can

be expressed as a function of the five invariants I1, I2, I3, I4, I5. Thus, the

strain-energy function, denoted W and defined per unit volume in Br, is

written

W =W (I1, I2, I3, I4, I5). (7.8)

For background on the mathematical theory of fiber-reinforced material,

we refer to [43].

The nominal stress tensor (the transpose of the first Piola–Kirchhoff

stress tensor) is denoted by S and in general given by

S =
∂W

∂F
, (7.9)

and, for the considered material, use of the formulas

∂I1
∂F

= 2FT,
∂I2
∂F

= 2I1F
T − 2FTFFT,

∂I3
∂F

= 2I3F
−1, (7.10)

∂I4
∂F

= 2M⊗ FM,
∂I5
∂F

= 2(M⊗ FCM +CM⊗ FM), (7.11)

enables S to be expanded out in the form

S = 2W1F
T + 2W2(I1I−C)FT + 2I3W3F

−1

+2W4M⊗ FM+ 2W5(M⊗ FCM+CM⊗ FM), (7.12)

where we have adopted the shorthand notation Wi = ∂W/∂Ii for i =

1, 2, 3, 4, 5, and I is the identity tensor in Br.
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302 J. Merodio & R.W. Ogden

The Cauchy stress tensor σ is related to S via the connection Jσ = FS,

where J = detF = I
1/2
3 , and hence

Jσ = 2W1B+ 2W2(I1B−B2) + 2I3W3I

+2W4m⊗m+ 2W5(m⊗Bm+Bm⊗m), (7.13)

I now being the identity tensor in B (here we use the same notation for the

two, in general different, identity tensors).

We have assumed that the configuration Br is stress free. Thus, σ (and

hence S) must vanish when F = I, in which case I1 = I2 = 3 and I3 = I4 =

I5 = 1. Thus, from (7.13), it follows that

W1(3, 3, 1, 1, 1) + 2W2(3, 3, 1, 1, 1) +W3(3, 3, 1, 1, 1) = 0, (7.14)

W4(3, 3, 1, 1, 1) + 2W5(3, 3, 1, 1, 1) = 0. (7.15)

We also assume that W itself vanishes in Br, so that

W (3, 3, 1, 1, 1) = 0. (7.16)

Connections between the first and second derivatives of W evaluated

in Br and the classical elastic constants of linear transversely isotropic

elasticity that ensure consistency with the classical theory were given in [24]

in terms of the Voigt notation for the linear elastic constants given in, for

example, [44, p. 160].

7.2.3. Equilibrium and ellipticity considerations

Here we do not consider the effect of body forces, so that in terms of the

nominal stress tensor the equation of equilibrium may be written Div S = 0.

In Cartesian components, we then have

Aαiβjxj,αβ = 0, (7.17)

where the subscripts following a comma indicate differentiation with respect

to the relevant coordinate, the usual summation convention for repeated

indices is adopted and Aαiβj are the components of the elasticity tensor A
given by

Aαiβj =
∂2W

∂Fiα∂Fjβ
. (7.18)

Note that this has the pairwise symmetry Aαiβj = Aβjαi.
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Instabilities from Loss of Ellipticity in Fiber-Reinforced Solids 303

Now we consider F to be continuous throughout Br. We also assume

that its gradient Grad F is continuous in Br except that it may be

discontinuous across a surface, denoted Sr, in Br. Then Sr is called a weak

(discontinuity) surface. Let N denote a unit normal vector to Sr, and let

Nα, α = 1, 2, 3, be its components. The components of Grad F are xi,αβ
and the jump (discontinuity) in xi,αβ across Sr is given by

�xi,αβ� = aiNαNβ, (7.19)

where � • � denotes the difference in the enclosed quantity evaluated on the

two sides of Sr and ai, i = 1, 2, 3, are the components of a vector a, which

at this point is unknown.

Since F, and hence A, is continuous, application of (7.19) to the

equilibrium equation (7.17) on Sr gives

AαiβjajNαNβ = 0. (7.20)

Let the vector n be defined through the equation

N = FTn. (7.21)

Then (7.20) can be expressed in the form

A0piqjajnpnq = 0, (7.22)

which is the Eulerian counterpart of (7.20) and where A0piqj (the

components of the fourth-order updated elasticity tensor A0) are defined

as the push forwards from Br to B of the components Aαiβj by

JA0piqj = FpαFqβAαiβj (7.23)

(see, e.g., [41] for detailed discussion of this and similar connections). The

pairwise symmetry A0piqj = A0qjpi is inherited from that of Aαiβj .

According to Nanson’s formula, nda = JF−TNdA, where dA and da

are area elements in Br and B, respectively, N and n being the associated

normals (unit vectors in this case, as distinct from in (7.21) where n is not

in general a unit vector). Let S be the image of Sr in B. It follows that n,
defined either by (7.21) or by Nanson’s formula, is normal to S. We note

that, strictly, it is S which is the actual discontinuity surface, while Sr is

its preimage representation in Br.
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304 J. Merodio & R.W. Ogden

Next, we write (7.22) in vector form as

Q(n)a = 0, (7.24)

where we have introduced the acoustic tensor Q(n), with components

defined by

Qij = A0piqjnpnq (7.25)

enjoying the symmetry Qji = Qij .

If Eq. (7.24) is satisfied for some (non-zero) n then Q(n) is singular

and the equation

detQ(n) = 0 (7.26)

determines such vectors n, which are normal to surfaces of weak

discontinuity. For an n satisfying (7.26) the corresponding eigenvector a of

Q is obtained from (7.24). It follows from (7.24) that, for any deformation

for which n and a are so determined,

[Q(n)a] · a ≡ A0piqjnpnqaiaj = 0, (7.27)

and for a weak surface this condition is therefore necessarily satisfied.

If Eq. (7.27) does not hold for any pair of non-zero vectors n and a

at some deformation, then the system of equations (7.17) is said to be

elliptic, in which case no weak surface can exist at that deformation for the

considered material model. The general ellipticity requirement is then

[Q(n)a] · a ≡ A0piqjnpnqaiaj �= 0 (7.28)

for all non-zero vectors a and n. Of particular importance is the special

case of this for which

[Q(n)a] · a ≡ A0piqjnpnqaiaj > 0 for all a �= 0, n �= 0. (7.29)

This is known as the strong ellipticity condition. When strong ellipticity

holds Q(n) is positive definite for all non-zero vectors n.

For any given strain-energy function W evaluation of A0piqjnpnqaiaj
enables the ellipticity status of W to be determined. In particular, if the

deformation gradient F satisfies (7.28) for that W for every pair of non-

zero vectors a and n it is said to be an elliptic deformation. Moreover, if all

possible deformations for a particular W are elliptic then W itself is said

to be an elliptic strain-energy function. An example of an elliptic strain-

energy function is the incompressible isotropic neo-Hookean material model
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(see, e.g., [23]). In contrast, for a given W , if the deformation gradient F

satisfies Eq. (7.27) for some pair of non-zero vectors a and n, then F is

said to be a non-elliptic deformation for that W . Then, n is normal to a

weak surface S in the deformed configuration B, and the corresponding N

is normal to its preimage Sr in Br. Here we have focused on weak surfaces,

across which Grad F is discontinuous but F is continuous. In Section 7.5

we shall turn our attention to surfaces of strong discontinuity, i.e., surfaces

across which F is discontinuous. These surfaces are also weak surfaces since

a discontinuity in F entails a discontinuity in Grad F and they are also

signaled by the loss of ellipticity condition (7.27).

7.2.4. Reinforcing models

In this section, we specialize the energy function W = W (I1, I2, I3, I4, I5)

so that it contains information about the isotropic matrix within which

reinforcing fibers are embedded and the fibers themselves. For this purpose

we consider the isotropic matrix (or isotropic base material) to be

characterized by the strain-energy function denoted W iso(I1, I2, I3), to

which is added a contributionW fib(I4, I5) associated with the fibers through

their direction M in the reference configuration, this also being known as

the reinforcing model. The superscripts ‘iso’ and ‘fib’ stand for ‘isotropic’

and ‘fiber’, respectively. Thus, we write

W =W (I1, I2, I3, I4, I5) =W iso(I1, I2, I3) +W fib(I4, I5). (7.30)

The condition (7.14) now applies to W iso(I1, I2, I3) alone, and (7.15) to

W fib(I4, I5). Thus,

W iso
1 (3, 3, 1) + 2W iso

2 (3, 3, 1) +W iso
3 (3, 3, 1) = 0, (7.31)

W fib
4 (1, 1) + 2W fib

5 (1, 1) = 0, (7.32)

and we may also set W iso(3, 3, 1) =W fib(1, 1) = 0.

We now specialize further by considering the effect of the fiber-

reinforcement through the invariants I4 and I5 separately. First, we

specialize W fib(I4, I5) to a function of I4 alone: W fib(I4, I5) = F (I4).

The term W4 in the expression (7.13) for the Cauchy stress then yields

a component 2I4F
′(I4) in the direction m. We require this to be positive

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



306 J. Merodio & R.W. Ogden

(negative) when fibers in this direction are extended (contracted), so that

F ′(I4) > 0 (< 0) for I4 > 1 (< 1), F ′(1) = 0. (7.33)

Next, we consider a reinforcing model of the formW fib(I4, I5) = G(I5).

The counterpart of (7.33) is then

G′(I5) > 0 (< 0) for I5 > 1 (< 1), G′(1) = 0. (7.34)

In general, however, I5 > 1 does not correspond to fiber extension, although

it is easy to show that I4 > 1 implies I5 > 1. On the other hand I5 < 1

implies I4 < 1. In the following sections we shall assume that the inequalities

(7.33) and (7.34) hold when F (I4) and G(I5) are used. In general F (I4) and

G(I5) need not be convex functions.

7.3. Specialization to Plane Strain Deformations

In this section, in order to facilitate illustrations, we specialize by

considering just plane strain deformations. In particular, we evaluate the

extent of ellipticity of the specific examples of material models identified

in Section 7.2.4 and we obtain conditions on the reinforcing models that

elucidate the ellipticity status of the energy function (7.30). Attention is

now restricted to plane deformations in the (X1, X2) plane with the fiber-

reinforcement direction M within this plane. For plane strain we then have

x3 = X3 and x1 and x2 depend only on X1 and X2. It follows that the only

non-zero (in general) components of the deformation gradient are F11, F12,

F21, F22, with F33 = 1, so that the out-of-plane principal stretch is λ3 = 1.

The corresponding components of C are C11, C12 = C21, C22 and C33 = 1.

The isotropic invariants (7.5) now specialize to

I1 = λ21 + λ22 + 1, I2 = λ21 + λ22 + λ21λ
2
2, I3 = λ21λ

2
2. (7.35)

Let M have componentsM1 andM2 in the (X1, X2) plane (M3 = 0). Then

(7.6) and (7.7) specialize to

I4 = λ21M
2
1 + λ22M

2
2 , I5 = λ41M

2
1 + λ42M

2
2 , (7.36)

respectively. It may then be deduced that

I2 = I1 + I3 − 1, I5 = (I1 − 1)I4 − I3. (7.37)

This means, in particular, that under the plane strain specialization

only three of the original five invariants are independent. Thus, the
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ˆ

strain-energy function can be specialized accordingly. We choose (I1, I3, I4)

as the independent invariants and denote the specialization of the strain-

energy function by Ŵ , which is defined by

W (I1, I3, I4) =W (I1, I1 + I3 − 1, I3, I4, (I1 − 1)I4 − I3). (7.38)

Let F now denote the in-plane specialization of the deformation gradient

and M the corresponding in-plane fiber direction. Then, (7.10)1,3 and

(7.11)1 specialize to

∂I1
∂F

= 2FT,
∂I3
∂F

= 2I3F
−1,

∂I4
∂F

= 2M⊗ FM. (7.39)

ˆ ˆ ˆ

Let S similarly denote the plane strain specialization of the nominal stress

tensor (7.12), which then specializes to

S = 2W1F
T + 2I3W3F

−1 + 2W4M⊗m, (7.40)

ˆ ˆ ˆ

where m = FM is the in-plane version of (7.4). We emphasize that (7.40)

includes only the in-plane part of the three-dimensional nominal stress.

The only non-zero out-of-plane component S33 is required (in general) to

maintain the plane strain deformation and can be obtained from (7.12) if

needed. The associated in-plane specialization of the Cauchy stress σ is

given by Jσ = FS, with J = detF. Hence the in-plane specialization of

(7.13) is

Jσ = 2W1B+ 2W3I+ 2W4m⊗m, (7.41)

ˆ

with B = FFT the in-plane specialization of the left Cauchy–Green

deformation tensor and I the in-plane identity tensor.

The planar strain-energy function Ŵ inherits the restrictions (7.14)

and (7.15) in the (stress free) reference configuration identified for W in

the form

W1(3, 1, 1) + Ŵ3(3, 1, 1) = 0, Ŵ4(3, 1, 1) = 0, (7.42)

together with Ŵ (3, 1, 1) = 0.

Next, we note that in Section 7.2.3 general expressions for the

components of A0 were given, but their expanded forms in terms of

invariants were not provided since they are rather lengthy. In the plane
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J. Merodio & R.W. Ogden

strain specialization, however, they are manageable but still quite lengthy.

Explicitly they are given by

JA0piqj = 4W11BpiBqj + 4I3W13(Bpiδqj +Bqjδpi)

+ 4I23Ŵ33δpiδqj + 4I3W34(δpimqmj + δqjmpmi)

+ 4W14(Bpimqmj +Bqjmpmi) + 4W44mpmimqmj

+2W1δijBpq + 2I3W3(2δpiδqj − δpjδqi) + 2W4δijmpmq, (7.43)

in which the indices run over values 1 and 2 only and δij denotes the

Kronecker delta. In obtaining (7.43) use has been made of the second

derivatives of the invariants I1, I3 and I4 with respect to F, which, in

component form, are given by

FpαFqβ
∂2I1

∂Fiα∂Fjβ
= 2δijBpq, FpαFqβ

∂2I4
∂Fiα∂Fjβ

= 2δijmpmq, (7.44)

FpαFqβ
∂2I3

∂Fiα∂Fjβ
= 4I3δipδjq − 2I3δiqδjp.

ˆ ˆ

ˆ

ˆ ˆ

(7.45)

These may be obtained from more general formulas such as those in the

appendix of [45] or by direct differentiation of the component forms of the

appropriate expressions for the first derivatives in (7.10) and (7.11).

Referred to the principal axes of B the (in-plane) components of Q,

obtained from (7.43) and the definition (7.25), are given by

JQij = 4W11λ
2
i λ

2
jninj + 4I3W13(λ

2
i + λ2j)ninj

+4I23Ŵ33ninj + 4I3W34(n ·m)(nimj + njmi)

+ 4W14(n ·m)(λ2inimj + λ2jnjmi) + 4W44(n ·m)2mimj

ˆ+ 2W1δij(λ
2
1n

2
1 + λ22n

2 ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ

2) + 2I3W3ninj + 2W4δij(n ·m)2, (7.46)

in which the indices i and j take values 1 and 2 only. The plane strain

specialization of the strong ellipticity condition (7.29) then takes the form

2W11[a · (Bn)]2 + 4I3W13[a · (Bn)](a · n) + 2I23Ŵ33(a · n)2

+ [4I3W34(a · n) + 4W14[a · (Bn)] + 2W44(a ·m)(n ·m)](a ·m)(n ·m)

+ Ŵ1n · (Bn) + I3W3(a · n)2 + Ŵ4(n ·m)2 > 0 (7.47)

for all (in-plane) unit vectors a and n. It should be emphasized, however,

that m = FM is not in general a unit vector.
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It is worth mentioning that the inequality (7.47) may also be expressed

as positive definiteness of Qij , i.e.,

Q11(n) > 0, Q11(n)Q22(n)− [Q12(n)]
2 > 0 (7.48)

ˆ

for all (in-plane) unit vectors n, the components Qij(n) being given

by (7.46).

For a brief discussion of the specialization of the above inequalities to

isotropic materials and to linear transversely isotropic materials, in which

cases necessary and sufficient conditions for strong ellipticity to hold are

obtained, we refer to [24, 46], while prior analysis for isotropy can be found

in, for example, [47, 48].

To proceed with the discussion of loss of ellipticity we now focus on

strain-energy functions of the decoupled form (7.30), but specialized to

plane strain. In particular, we first consider the reinforcing model to depend

only on I4. Thus

W (I1, I3, I4) = Ŵ iso(I1, I3) + Ŵ fib(I4). (7.49)

A basic assumption is that the strong ellipticity condition (7.47) holds in the

undeformed reference configuration. We also assume here and henceforth

that Ŵ iso(I1, I3) on its own satisfies the strong ellipticity condition so that,

by continuity, incipient failure of ellipticity is dependent on Ŵ fib(I4) losing

ellipticity as the deformation proceeds on some path from the reference

configuration. In respect of (7.49) the strong ellipticity condition (7.47)

takes the form

SEiso > 0, SEiso + (m · n)2[F ′ + 2(a ·m)2F ′′] > 0 (7.50)

ˆ ˆ

for all (in-plane) unit vectors n, where we have adopted the notations

SEiso = 2W iso
11 [a · (Bn)]2 + 4I3W

iso
13 [a · (Bn)](a · n)

+ 2I23Ŵ
iso
33 (a · n)2 + Ŵ iso ˆ

1 n · (Bn) + I3W
iso
3 (a · n)2 (7.51)

and

F (I4) = Ŵ fib(I4) (7.52)

for subsequent convenience and a prime signifies differentiation with respect

to I4. In the following, we examine the contribution to (7.50) of the

reinforcing model F (I4).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
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7.3.1. Ellipticity of the reinforcing model F (I4)

Only the latter two terms in (7.50)2 depend on m = FM and F (I4). Since

n can be chosen freely, it follows that the ellipticity status of the model

(7.49) is strongly dependent on the sign of

F ′(I4) + 2(a ·m)2F ′′(I4). (7.53)

Since a may be chosen independently of n so that a ·m = 0 then for (7.53)

to be non-negative it is necessary that F ′(I4) ≥ 0.

If F ′′(I4) < 0 then since, from (7.3)1, m ·m = I4 we have

F ′(I4) + 2(a ·m)2F ′′(I4) ≥ F ′(I4) + 2I4F
′′(I4).

It follows that (7.53) is non-negative for all m if and only if

F ′(I4) ≥ 0, F ′(I4) + 2I4F
′′(I4) ≥ 0. (7.54)

Thus, given that we have assumed that Ŵ iso(I1, I3) is strongly elliptic, i.e.,

SEiso > 0, Eq. (7.54) is sufficient for the strong ellipticity condition (7.50)

to hold.

We recall from (7.33) that F ′(I4) ≷ 0 according as I4 ≷ 1, and it follows

that F ′′(1) ≥ 0. Since n may be chosen so that n · m = 0 the reinforcing

term in (7.50) loses ellipticity for any deformation, but does not affect the

overall strong ellipticity in this case. Moreover, if n ·m �= 0 the contribution

of the reinforcing term to (7.50) is strictly positive if and only if

F ′(I4) > 0, F ′(I4) + 2I4F
′′(I4) > 0. (7.55)

7.3.1.1. Failure of ellipticity

We have already assumed that the isotropic matrix material is strongly

elliptic, so that SEiso > 0. We are now concerned with assessing the

deformations for which the strong ellipticity condition (7.50)2 just fails,

which requires that

SEiso + (m · n)2[F ′ + 2(a ·m)2F ′′] ≥ 0, (7.56)

for all unit vectors a and n, with equality holding for one or more pairs

of unit vectors (a,n). Let the region of deformation gradient space (which

includes the reference configuration F = I) for which the strong ellipticity

condition (7.50) holds be denoted by E. Its boundary, denoted ∂E, is then

defined by the equality in (7.56).
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In view of the strong ellipticity SEiso > 0 the failure of ellipticity (7.56)

can only occur once the reinforcing model F (I4) has lost ellipticity, i.e.,

when either F ′(I4) < 0 or F ′(I4) + 2I4F
′′(I4) < 0 prior to the deformation

within E reaching the boundary ∂E.

To take the analysis further we now decompose the acoustic tensor Q

for the material model (7.49) with the notation (7.52) into its isotropic and

reinforcing fiber contributions by writing Q = Qiso + Qfib, where Qiso is

the acoustic tensor associated with Ŵ iso(I1, I3) and Qfib that with F (I4).

Then, we obtain

detQ = detQiso +Qiso
11Q

fib
22 +Qiso

22Q
fib
11 − 2Qiso

12Q
fib
12 + detQfib, (7.57)

where, explicitly,

J2 detQfib = 4(n ·m)4F ′(F ′ + 2I4F
′′), (7.58)

and, because of the strong ellipticity of Ŵ iso(I1, I3), we have

detQiso ≡ Qiso
11Q

iso
22 −Qiso

12

2
> 0, Qiso

11 > 0, Qiso
22 > 0. (7.59)

Also, bearing in mind (7.48), we have

JQfib
11 = 2(n ·m)2(F ′+2F ′′m2

1), JQfib
22 = 2(n ·m)2(F ′+2F ′′m2

ˆ

2). (7.60)

It is straightforward to deduce from (7.58) and (7.60) that neither Qfib
11 nor

Qfib
22 can vanish before detQfib within E, and it is therefore appropriate to

examine loss of ellipticity of F (I4) based on detQfib.

Suppose that any material parameter associated with the matrix is

significantly smaller than any associated with the reinforcement, and let ε

(the ratio of a reinforcing to a matrix material constant) be a (large

in general) dimensionless parameter that measures the strength of the

reinforcement compared with the strength of the matrix material. Then,

we write F (I4) = εF̃ (I4), where F̃ (I4) has the same order of magnitude as

W iso(I1, I3), so that (7.57) can be expressed as a quadratic in ε, namely

a+ bε+ cε2, (7.61)

where

a = detQiso, b = Qiso
11 Q̃

fib
22 +Qiso

22 Q̃
fib
11 − 2Qiso

12 Q̃
fib
12 , c = det Q̃fib, (7.62)

and Q̃fib is defined as Qfib/ε, a, b and c all having the same order of

magnitude.
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312 J. Merodio & R.W. Ogden

A necessary condition for loss of ellipticity is therefore detQfib < 0,

and this requires that n · m �= 0. When this holds loss of ellipticity will

certainly occur if ε is sufficiently large. Given the fiber direction, the point

at which loss of ellipticity occurs depends on the deformation, the vectors

a and n, and the strength of the reinforcement. We now illustrate the type

of weak surface that can be predicted for the cases in which F ′′(I4) ≥ 0

and F ′′(I4) < 0 separately.

It is clear from (7.50) that ellipticity cannot fail if n · m = 0, so

that a weak surface cannot be parallel to the fiber-reinforcement direction.

A particular example leading to this conclusion was provided in [6], and a

parallel result for an incompressible material was given in [23].

Case (a): Fiber kinking. First we consider F ′′(I4) ≥ 0. Then, for loss

of ellipticity it is necessary that F ′(I4) < 0, which means that fibers are

subject to compression. For a given n the reinforcement term

(m · n)2[F ′ + 2(a ·m)2F ′′]

ˆ

ˆ

(7.63)

in (7.50) takes on its least value when a ·m = 0 and its minimum value is

I4F
′(I4), which corresponds to n being parallel to m, i.e., n = m̂, where

m̂ = m/|m|. The magnitude of this term increases as I4 decreases from

unity and loss of ellipticity is initiated when the negative value of I4F
′(I4)

balances the positive value of SEiso in (7.50) for n = m̂.

As a simple example consider the situation in which m̂ is an eigenvector

of B corresponding to the stretch λ1. Then for a ·m = 0 the left-hand side

of (7.50)2 reduces to λ
2
1W

iso
1 (I1, I3)+I4F

′(I4). But, from (7.50)1 and (7.51),

it follows that Ŵ iso
1 (I1, I3) > 0. Thus, λ21W

iso
1 (I1, I3) + I4F

′(I4) will vanish
for some I4 < 1 since the reinforcing term is dominant except for relatively

weak reinforcement, and for strong reinforcement it will vanish for I4 close

to unity.

Since n = m̂ and a · m̂ = 0 the weak surface is normal to the

fiber direction and the failure mechanism associated with this situation

is interpreted as the initiation of fiber kinking, which occurs under

fiber compression. Loss of ellipticity is associated not only with a weak

discontinuity but also with strong discontinuities, and, as we have already

noted, a strong discontinuity is also a weak discontinuity (but not

the converse in general). However, fiber kinking is actually a strong

discontinuity and the weak surface is also a strong surface in this case.

Here we have considered the situation in which a · m̂ = 0, but it is possible

that, for a · m̂ �= 0, [Qiso(n)a] · a has a smaller value than when a · m̂ = 0,
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Instabilities from Loss of Ellipticity in Fiber-Reinforced Solids 313

in which case ellipticity could be lost on a deformation path prior to the

point at which a kink is initiated.

Case (b): Fiber debonding. Second, we focus on the case F ′′(I4) < 0.

If F ′(I4) + 2I4F
′′(I4) ≥ 0 then overall ellipticity cannot be lost, but if

F ′(I4) + 2I4F
′′(I4) < 0 then the minimum value of (7.63) is

I4F
′ + 2I24F

′′ (7.64)

ˆ

ˆ

for either F ′ > 0 or F ′ < 0, and this corresponds to a = n = m̂.

Since F ′′(1) > 0 then, by continuity, F ′′(I4) > 0 when I4 is near 1. In

fiber compression, therefore, loss of ellipticity is most likely to arise in the

mode discussed in (a). In contrast, in fiber extension, since then F ′(I4) > 0,

loss of ellipticity can only occur if F ′(I4) + 2I4F
′′(I4) becomes negative,

which entails loss of convexity of F .

Again we consider the example for which m̂ is an eigenvector of B.

Then in fiber extension ellipticity can be lost when n ·m is small since the

negative contribution to (7.63) then balances the positive contribution due

to Ŵ iso(I1, I3) provided the reinforcement is sufficiently strong. In this case

the weak surface is close to parallel to the fiber direction and the relevant

failure mechanism can be interpreted as debonding.

7.3.2. Ellipticity of a hybrid reinforcing model

For the model (7.49) considered in the foregoing section, the isotropic

W iso
1 (I1, I3) and reinforcing Ŵ fib(I4) contributions are decoupled. In this

section, we consider a reinforcing model that depends not only on I4 but

also on the isotropy. First, note that as well as I4 the invariant I5 reflects

the anisotropy. Thus, a possible alternative model to (7.49) that might be

considered is

W (I1, I3, I4) = Ŵ iso(I1, I3) + Ŵ fib(I5). (7.65)

For plane strain, from (7.37)2, I5 is given by I5 = (I1 − 1)I4 − I3, in which

case the reinforcing model depends on all three invariants I1, I3, I4. To

simplify the resulting analysis, but without changing the substance of the

results, we adopt a slightly modified version of I5, denoted I
∗
5 and defined by

I∗5 = (I1 − 1)I4 − 1, (7.66)
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314 J. Merodio & R.W. Ogden

noting that for incompressible materials I3 = 1 and I∗5 = I5. Then (7.65)

is replaced by

Ŵ (I1, I3, I4) = Ŵ iso(I1, I3) + Ŵ fib(I∗5 ), (7.67)

and for simplicity we also use the notation G(I∗5 ) =W fib(I∗5 ).
From (7.41) the contribution of the term G to the normal stress in the

deformed fiber direction is easily seen to be 2J−1I4[m̂·(Bm̂)+I1−1]G′(I∗5 ).
Since the coefficient of G′(I∗5 ) is positive this stress is positive (negative)

when G′(I∗5 ) > (<) 0 according as I∗5 > (<) 1, i.e., the conditions (7.34)

with I5 replaced by I∗5 .
By specializing the general plane strain strong ellipticity condition

(7.47) for the model (7.67) we obtain

SEiso + J(Qfiba) · a > 0, (7.68)

where SEiso is defined in (7.51) while Qfib is here obtained from G to give

J(Qfiba) · a = 2G′′ [I4a · (Bn) + (I1 − 1)(n ·m)(a ·m)]
2

+G′ [I4n · (Bn) + (I1 − 1)(n ·m)2
]
. (7.69)

The coefficient of G′ in (7.69) is strictly positive while that of G′′ is non-

negative. Thus, the sign of this expression depends on the signs of G′

and G′′. For ellipticity to be lost (Qfiba) · a must be negative, and we

now examine two examples for which ellipticity does fail for this model.

Case (c): Fiber kinking and fiber splitting. We recall from

Section 7.3.1.1 that strong ellipticity holds when m · n = 0 since in this

case the reinforcing model involving F does not contribute to (7.50)2. This

is not the case for (7.69) since for m · n = 0 it becomes

2I24G
′′[a · (Bn)]2 + I4G

′n · (Bn).

ˆ

(7.70)

With m · n = 0, for a first illustration we consider the situation in which

n coincides with the principal axis of B corresponding to the stretch

λ1, and we set a = m̂. Then the left-hand side of (7.68) simplifies to

λ21[W
iso
1 (I1, I3) + I4G

′(I∗5 )]. Since Ŵ iso
1 (I1, I3) > 0 and G′(1) = 0 this

expression is positive in the reference configuration but can vanish as I∗5
decreases from unity since G′(I∗5 ) < 0 for I∗5 < 1. Thus ellipticity can be

lost for I∗5 < 1 and, since m · n = 0, the associated weak surface is aligned

with the fiber direction; we interpret the corresponding failure mechanism

as fiber splitting [9, 10]. The reinforcing model F (I4) is not able to predict
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Instabilities from Loss of Ellipticity in Fiber-Reinforced Solids 315

ˆ

this mechanism. Since n is an eigenvector of B and m ·n = 0 then m is also

an eigenvector of B and corresponds to the stretch λ2, and hence I∗5 < 1

implies (λ21 + λ22)λ
2
2 < 2. For an isochoric deformation λ1λ2 = 1, in which

case λ2 < 1, so that the fiber is subject to compression.

For the second example we consider n = m̂ with a·n = 0 and again take

n to be an eigenvector ofB corresponding to the stretch λ1, so that I4 = λ21.

The left-hand side of (7.68) becomes λ21[W
iso
1 (I1, I3) + (2λ21 + λ22)G

′(I∗5 )].
Ellipticity can be lost as I∗5 decreases from 1 at a value nearer to 1 than in

the first example, and in this case the weak surface is normal to the fiber

direction. In particular, if λ1 < 1 the fiber direction is compressed and the

loss of ellipticity is associated with fiber kinking, similarly to the situation

for the F (I4) reinforcement.

These two mechanisms may arise simultaneously with weak surfaces

along and normal to the fiber direction, as illustrated in the experimental

work [9, 10].

More generally, eventual loss of ellipticity is guaranteed as I∗5 decreases

from 1 since the terms in G dominate the left-hand side of (7.68) for strong

reinforcement.

Case (d): Fiber debonding and matrix failure. Case (c) was

associated with I∗5 < 1 and G′(I∗5 ) < 0. We now consider what may happen

when I∗5 > 1 and G′(I∗5 ) > 0. Given that SEiso > 0 it is clear from (7.69)

that loss of ellipticity requires G′′(I∗5 ) < 0, and we highlight two possible

occurrences of weak surfaces. First, if n·m = 0 the weak surface is parallel to

the fiber direction. If, for example, m is an eigenvector of B corresponding

to the stretch λ1 and a = n then n is an eigenvector corresponding to the

stretch λ2, I4 = λ21, I
∗
5 = (λ21 + λ22)λ

2
1 − 1 and (7.70) becomes

λ21λ
2
2[G

′(I∗5 ) + 2I4G
′′(I∗5 )], (7.71)

which can become negative for suitable functions G(I∗5 ), and it is a simple

matter to construct such functions. Note that for an isochoric deformation

I∗5 = λ41 and since I∗5 > 1 the fiber is extended, and the relevant failure

mechanism in this case is debonding.

The second example is when a = n = m̂ is an eigenvector of B

corresponding to the stretch λ1, so the weak surface is normal to the fiber

direction. Then I4 = λ21, I
∗
5 is as in the first example, and (7.70) takes the

form

λ21(2λ
2
1 + λ22)[G

′(I∗5 ) + 2(2λ21 + λ22)G
′′(I∗5 )], (7.72)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



316 J. Merodio & R.W. Ogden

and again suitable functions G(I∗5 ) will allow this to become negative. The

loss of ellipticity in this case is then interpreted as matrix failure.

In summary, the loss of ellipticity outlined in cases (a)–(d) above can

be thought of as predicting the features highlighted in Figs. 7.1–7.4. We

emphasize that in the foregoing analysis we have focused on compressible

materials. A parallel treatment for incompressible materials is contained

in [23], and in the remainder of this chapter, indeed, we restrict attention

to incompressible materials as we turn attention to strong discontinuities.

As a prelude to the discussion of strong discontinuities we summarize in

the following section the equations appropriate for incompressible elastic

materials.

7.4. Incompressible Materials

For incompressible materials the deformation gradient satisfies the

constraint detF = 1 and hence I3 = 1. In terms of the principal stretches

this is expressed as

λ1λ2λ3 = 1. (7.73)

Then, with the omission of I3 the strain-energy function (7.8) specializes to

W (I1, I2, I4, I5) (7.74)

and the expression (7.9) for the nominal stress tensor is adjusted

accordingly as

S =
∂W

∂F
− pF−1, (7.75)

where p is a Lagrange multiplier associated with the incompressibility

constraint. When expanded in terms of the invariants, analogously to (7.12),

it becomes

S = 2W1F
T + 2W2(I1I−C)FT − pF−1 + 2W4M⊗ FA

+2W5(M ⊗ FCA+CA⊗ FA), (7.76)

and the corresponding Cauchy stress tensor is

σ = 2W1B+ 2W2(I1B−B2)− pI+ 2W4m⊗m

+2W5(m ⊗Ba+Ba⊗m). (7.77)
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The restrictions (7.14), (7.15) and (7.16) in the reference configuration are

replaced by

2W1(3, 3, 1, 1) + 4W2(3, 3, 1, 1)− p0 = 0, (7.78)

W4(3, 3, 1, 1) + 2W5(3, 3, 1, 1) = 0, (7.79)

andW (3, 3, 1, 1) = 0, respectively, where p0 is the value of p in the reference

configuration.

The equilibrium equation (7.17) is replaced by

Aαiβjxj,αβ − p,i = 0, (7.80)

where Aαiβj is defined as in (7.18) with the incompressibility constraint

applied after the differentiation of W with respect to the components of F.

The counterpart of (7.20) is

AαiβjaiNαNβ − qni = 0, (7.81)

which may be rewritten as

Q(n)a − qn = 0, (7.82)

where Qij = A0piqjnpnq. This is formally the same as in the compressible

case, but now the incompressibility constraint is in force, and this requires

a · n = 0.

By taking the dot product of (7.82) with n we obtain

q = [Q(n)a] · n, (7.83)

and hence (7.82) may be rewritten as

[Q(n)− n⊗Q(n)n]a = 0. (7.84)

The strong ellipticity condition is in this case

[Q(n)a] · a ≡ A0piqjnpnqaiaj > 0 (7.85)

ˆ

as in (7.29) but now subject to a · n = 0.

Note that, following the method of [49], the eigenvalue problem (7.84)

can be recast as the two-dimensional problem

Q̂(n)a = 0, (7.86)

where Q̂(n) = ÎQ(n)I is the projection of Q̂(n) on to the space normal to

n and Î = I− n⊗ n.
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For the considered incompressible material the model (7.30) now takes

the form

W =W iso(I1, I2) +W fib(I4, I5) (7.87)

and may be specialized by replacing the latter term with F (I4) or G(I
∗
5 ) as

in Section 7.3.1 or Section 7.3.2, respectively.

7.4.1. Plane strain

For plane strain the connection (7.37)2 specializes to

I5 = (I1 − 1)I4 − 1

ˆ

(7.88)

and the strain-energy function can be written in terms of the two invariants

I1 and I4 according to

W (I1, I4) =W (I1, I1, I4, (I1 − 1)I4 − 1), (7.89)

so that the planar nominal stress is

ˆ ˆS = 2W1F
T + 2W4M⊗ FM− p̂F−1, (7.90)

ˆ

where p̂ is the planar counterpart of the Lagrangemultiplier p. The reference

configuration restrictions (7.42) become

W1(3, 1)− p̂0 = 0, Ŵ4(3, 1) = 0,

ˆ ˆ ˆ

ˆ ˆ

(7.91)

along with Ŵ (3, 1) = 0, p̂0 being the reference configuration specialization

of p̂.

The (plane) components of A0 are

A0piqj = 4W11BpiBqj + 2W1Bpqδij + 4W14(Bpimqmj +Bqjmpmi)

+ 4W44mpmqmimj + 2W4mpmqδij . (7.92)

ˆ

Referred to the principal axes of B the corresponding strong ellipticity

condition takes the form

2W11(λ
2
1 − λ22)

2n2
1n

2
2 + Ŵ1(λ

2
1n

2
1 + λ22n

2
2)

ˆ+ 4W14(λ
2
1 − λ22)n1n2(n1m1 + n2m2)(n2m1 − n1m2) (7.93)

ˆ+ 2W44(n1m1 + n2m2)
2(n2m1 − n1m2)

2 + Ŵ4(n1m1 + n2m2)
2 > 0,
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ˆ

and we note, in particular, that in the reference configuration the necessary

and sufficient conditions

W1(3, 1) > 0, ˆ2W1(3, 1) + Ŵ44(3, 1) > 0 (7.94)

for (7.94) to hold may be deduced on use of (7.91)2.

7.5. Strong Discontinuities

7.5.1. Piecewise homogeneous deformation gradients

In this section, we consider strong discontinuities, i.e., discontinuities in the

deformation gradient, for an incompressible elastic material. Thus, as with

weak discontinuities, solutions of the equilibrium equations lose their global

smoothness across the discontinuity surface. Suppose then that the system

of equations has a solution x(X) for which F, S and p are continuous in some

region Dr in the reference configuration except on some smooth surface Sr

across which x(X) is continuous but F, S and p are discontinuous. The

surface Sr separates the material into two connected regions with different

deformation gradients and stresses, thus corresponding to two different

phases of the same material.

For illustration it suffices to focus on homogeneous deformations so

that F is uniform on either side of Sr, Sr is a plane and the fibers are

parallel in the reference configuration. Since we are considering plane strain

deformations Sr is orthogonal to the considered plane and its intersection

with the plane corresponds to a straight line.

Let D denote the image of Dr under the deformation and S that of Sr.

Then we refer to the discontinuity surface S as a kink surface in D and its

preimage Sr as a kink surface in Dr. We also denote by Π+
r and Π−

r the two

regions (half-spaces) separated by Sr in Dr and by Π+ and Π− their images

in D, as depicted in Fig. 7.5, in which are also shown the unit vectors N

and n, which are normal to Sr and S, respectively, and L and l, which

are aligned with the discontinuity surfaces within the considered plane and

make angles ϕ and α, respectively, with the horizontal axis. Also shown in

Fig. 7.5 is a typical fiber parallel to the E1 direction in Dr which becomes

kinked inD, with the so-called kinking angle φ, which indicates the direction

change of that part of the fiber in Π− compared with its initial direction.

For a general analysis of stress induced two-phase piecewise homogeneous

deformations and an analysis of their stability, we refer to [50].
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E2

E1

e2

e1

N
n

Sr S

ϕ α

lL

Π+
r Π−

r Π+ Π−

φ

Fig. 7.5. Schematic of the intersection of the discontinuity plane Sr in the reference
region Dr in the E1,E2 plane — the dashed line in left-hand figure in the direction L
with normal N, and their images in the deformed region D in the e1, e2 plane in the
right-hand figure. The region Dr is separated by Sr into the two parts Π+

r and Π−
r , and

similarly S separates D into the two parts Π+ and Π−. See the text for more details.

Now suppose that the deformation from Π+
r to Π+ is a pure

homogeneous strain with deformation gradient F+ given by

F+ = λ e1 ⊗E1 + λ−1 e2 ⊗E2 + e3 ⊗E3, (7.95)

where, by incompressibility and the plane strain assumption, the principal

stretches may be expressed as λ1 = λ, λ2 = λ−1, λ3 = 1. The associated

right and left Cauchy–Green deformation tensors, C+ = (F+)TF+ and

B+ = F+(F+)T, respectively, are

C+ = λ2 E1 ⊗E1 + λ−2 E2 ⊗E2 +E3 ⊗E3, (7.96)

B+ = λ2 e1 ⊗ e1 + λ−2 e2 ⊗ e2 + e3 ⊗ e3. (7.97)

The fiber-reinforcement maintains its initial direction under the

deformation F+, but, since the deformation gradient suffers a jump across

the discontinuity surface let the deformation gradient from Π−
r to Π− be

denoted F−. As indicated above, this results in the fiber direction having

an abrupt change across the kink surface S, thus forming a kink in the

fiber, which is characterized by the kinking angle φ shown in Fig. 7.5.

Let L and N be the tangent and the normal unit vectors to Sr shown

in Fig. 7.5. Then

L = L1 E1 + L2 E2 = cosϕE1 + sinϕE2, (7.98)

N = N1 E1 +N2 E2 = − sinϕE1 + cosϕE2, (7.99)
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where Lα and Nα, α = 1, 2, are the components of L and N. Similarly, for

S, again with reference to Fig. 7.5,

l = l1 e1 + l2 e2 = cosα e1 + sinα e2, (7.100)

n = n1 e1 + n2 e2 = − sinα e1 + cosα e2, (7.101)

where li and ni, i = 1, 2, are the components of l and n.

Next, we note that, since the deformation is homogeneous, we have

x = F+X in Π+
r and x = F−X in Π−

r , and x is continuous. Hence

F+X = F−X on Sr. (7.102)

It follows that F+L = F−L, and hence F−TN is continuous across Sr and

|FL| = |F−TN|. This continuity can also be deduced from Nanson’s formula

nda = F−TNdA for an incompressible material connecting area elements

nda and NdA in the deformed and reference configurations, which applies

not just in two dimensions. Thus FTn is continuous, da = |FL|dA, and
hence, in two dimensions, Nanson’s formula can be recast as

N = |FL|FTn. (7.103)

Expressed in terms of the components of F+ (or F−) this provides a

connection between the angles α and ϕ, namely

tanα =
F21 + F22 tanϕ

F11 + F12 tanϕ
, (7.104)

within which either F = F+ or F = F− can be used. In particular, if

evaluated for F+ from (7.95) it gives

tanα = λ−2 tanϕ. (7.105)

In view of the continuity conditions discussed above we deduce that

the deformation gradient F− is given by

F− = F+ + kl⊗ F+T
n, (7.106)

where the parameter k is a measure of the discontinuity in the deformation

gradient and is referred to as the discontinuity strength.
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It follows that the non-zero components of F− are given by

F−
11 = λ(1 + kn1n2), F−

12 = λ−1kn2
2, (7.107)

F−
21 = −λkn2

1, F−
22 = λ−1(1− kn1n2), (7.108)

and F−
33 = 1. The corresponding components of the right and left Cauchy–

Green deformation tensors C− and B− are

C−
11 = (1 + 2kn1n2 + k2n2

1)λ
2,

C−
22 = (1− 2kn1n2 + k2n2

2)λ
−2,

C−
12 = k(n2

2 − n2
1) + k2n1n2, (7.109)

with C−
33 = 1, and

B−
11 = (1 + kn1n2)

2λ2 + k2n4
2λ

−2,

B−
22 = (1− kn1n2)

2λ−2 + k2n4
1λ

2,

B−
12 = k(n2

2λ
−2 − n2

1λ
2)− k2(n2

2λ
−2 + n2

1λ
2)n1n2, (7.110)

with B−
33 = 1.

On use of (7.108), an expression for the kinking angle φ shown in Fig. 7.5

can be obtained in terms of k and the angle α via

tanφ = −F
−
21

F−
11

=
kn2

1

(1 + kn1n2)
=

k tan2 α

1 + tan2 α− k tanα
. (7.111)

As well as F, the nominal stress S and Lagrange multiplier p have

discontinuities across Sr, and we denote by S+, p+ and S−, p− their values

in Π+
r and Π−

r , respectively. For these two regions the constitutive equation

(7.75) then gives⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S+ =

∂W

∂F
(F+)− p+(F+)−1 in Π+

r ,

S− =
∂W

∂F
(F−)− p−(F−)−1 in Π−

r .

(7.112)

The equilibrium equation Div S+ = 0 is satisfied in D+
r and Div S− = 0

in D−
r excluding Sr, while on Sr the traction must be continuous, i.e.,

�ST�+− N = 0 on Sr, (7.113)

where �•�+− = •+ − •−, indicating evaluation of the two sides of Sr. Note

that since we are restricting attention to plane strain S3α = 0, α = 1, 2,
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and hence the out-of-plane component of (7.113) is automatically satisfied.

From (7.112), Eq. (7.113) becomes

[[(
∂W

∂F

)T

− pF−T

]]+
−
N = 0. (7.114)

7.5.2. Energy considerations

We are considering strong discontinuities in the context of elastostatics,

otherwise referred to as elastostatic discontinuities, and we note that

here we do not use the terminology ‘elastostatic shocks’ adopted in [51].

Specifically, we examine quasi-static motion of an elastic material body that

includes an elastostatic discontinuity so that the equilibrium equations are

maintained (no inertia terms). Such a motion will in general be dissipative

and the existence of an elastostatic discontinuity therefore modifies the

mechanical energy balance of the body.

We begin with the three-dimensional equations of compressible

elasticity, but the formulas that follow also apply to incompressible

materials although they involve minor modifications in their derivation

(as shown in [51]). We use ‘time’ t as a parameter that tracks the evolution

of the deformation. Let D ⊂ B, with boundary ∂D, denote a sub-domain of

the deformed configuration B and Dr, with boundary ∂Dr, its preimage in

the reference configuration Br. Then, for each such domain the inequality

∫
∂D

t · v da− d

dt

∫
Dr

W (F)dV ≥ 0 (7.115)

must be satisfied, where t = σn is the traction vector on ∂D expressed in

terms of the Cauchy stress tensor and the unit outward normal n to ∂D, v

is the (quasi-static) particle velocity on ∂D,W is the strain energy per unit

volume in Dr and dV is the volume element therein. The first integral in

(7.115) may also be written in Lagrangian form (as an integral over ∂Dr) by

noting the connection tda = TdA, where T = STN is the nominal traction

vector and dA is the area element on ∂Dr, which is the preimage of the area

element da. The first term in this inequality represents the work done by

the external traction acting on ∂D, while the second term represents the

rate of storage of elastic energy.

In general the left-hand side of (7.115) is non-zero and equal to the

work needed to move the elastostatic discontinuity S through the material
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in D. As shown in [51] this work can be expressed as an integral over the

discontinuity surface Sr (the preimage of S), namely∫
Sr

TV ·N dA, (7.116)

where the scalar T is the so-called discontinuity driving traction andV·N is

the normal component of the velocity of Sr. Note that V ·N dA = vS ·n da,

where, on use of Nanson’s formula, the actual velocity vS of S in D is

related to V by V = JF−1vS .
In Lagrangian form (7.115) can now be recast as∫

∂Dr

T · v dA− d

dt

∫
Dr

W (F)dV =

∫
Sr

TV ·N dA ≥ 0. (7.117)

As discussed in [51], the discontinuity driving traction T can be thought

of as the magnitude of a ‘fictitious’ nominal traction vector acting on the

elastostatic discontinuity by the surrounding material, and it was shown

in [51] that T is expressible in the form

T = �W (F) − (STN) · (FN)�+−. (7.118)

Since STN = T is continuous this may also be written

T = �W (F)�+− −T · (�F�+−N). (7.119)

We emphasize that S here is the nominal stress tensor, whereas ST is the

first Piola–Kirchhoff stress tensor, which was employed in [51].

If, during the quasi-static motion, T = 0, the motion is said to be

dissipation free, and an equilibrium state for which T = 0 is said to

satisfy the Maxwell condition, which is also known as a condition for neutral

stability, in which case neither Π+
r nor Π−

r is energetically favored.

If the elastostatic discontinuity is advancing into Π+
r then V ·N > 0,

while advancement into Π−
r requires V ·N < 0. Then, based on the energy

balance in (7.117), the existence of an energetically admissible elastostatic

discontinuity requires

• T ≤ 0 when the discontinuity moves so that Π−
r is being converted into

the favored Π+
r (V ·N < 0).

• T ≥ 0 when the discontinuity moves so that Π+
r is being converted into

the favored Π−
r (V ·N > 0).
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If we restrict attention to two dimensions and an incompressible

material then, by the connections TdA = tda, |FL|dA = da, (7.103) and

(7.106) it follows that (7.119) specializes to

T = �W (F)�+− + k t · l, (7.120)

where t · l is the Cauchy shear traction on S and we recall that k is the

strength of the elastostatic discontinuity.

7.5.3. Illustrations

For definiteness we now consider a simple (incompressible) material model,

namely the standard reinforcing model for which the strain-energy function

has the form

W =
1

2
μ(I1 − 3) +

1

2
μγ(I4 − 1)2, (7.121)

where the constant μ > 0 is the reference configuration shear modulus of

the matrix material governed by the neo-Hookean model and the constant

γ > 0 is a measure of the strength of the reinforcement in the reinforcing

model F (I4) defined by the second term in (7.121). From (7.77) the Cauchy

stress is then obtained as

σ = μB− pI+ 2μγ(I4 − 1)m⊗m. (7.122)

For the plane strain specialization considered in the previous section

it follows that in respect of (7.121) a kink can be characterized in terms

of the parameters μ, γ, λ, α, k, p+, p−. The angle ϕ is then determined from

(7.105), the deformation gradient F− from (7.106), and the kinking angle

φ from (7.111).

We now apply the traction continuity condition (7.113) expressed

equivalently as �σ�+−n = 0 on S. As already noted, the out-of-plane

component is satisfied identically, while the two in-plane components yield

2μγkλ2[(3λ2 − 1)n2 + kλ2(1 + 2n2
2)n1 + k2λ2n2

1n2]n
2
1

+μk(λ2n2
1 + λ−2n2

2)n2 + (p+ − p−)n1 = 0, (7.123)

2μγkλ2[(λ2 − 1)n1 + 2kλ2n2
1n2 + k2λ2n3

1]n
2
1

+μk(λ2n2
1 + λ−2n2

2)n1 − (p+ − p−)n2 = 0. (7.124)

Note that if n1 = 0 then these equations are independent of γ and cannot

both be satisfied, thus recovering the well-known result that the neo-

Hookean material does not admit kinks.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



326 J. Merodio & R.W. Ogden

By multiplying (7.123) by n1 and (7.124) by n2 and subtracting the

two resulting equations we obtain

p− − p+ = 2μγkλ4n3
1(kn1 + 2n2), (7.125)

and by elimination of p+ − p− from the equations we obtain

P (λ, n1, n2, k, γ) ≡ 2γλ2[λ2 − 1 + 2λ2n2
2 + kλ2(kn1 + 3n2)n1]n

2
1

+λ2n2
1 + λ−2n2

2 = 0, (7.126)

wherein the notation P (λ, n1, n2, k, γ) is defined.

By evaluating T from (7.120) in respect of the strain-energy function

(7.121) and then using (7.126) we obtain

T =
1

2
μγk3λ4n3

1(kn1 + 2n2) =
1

2
μγk3λ4 sin3 α(k sinα− 2 cosα), (7.127)

and hence, from (7.125),

T =
1

4
k2(p− − p+). (7.128)

Note that for a non-trivial solution for T = 0 the discontinuity strength

k and the angle α in S are related by tanα = 2/k, and then p+ = p−.
Moreover, (7.126) then gives

tan2 α = λ4[2γ(1− λ2)− 1], (7.129)

which yields a real α in the range (0, π) if and only if γ > 1/2 and λ2 <

1− 1/(2γ) < 1 and also provides an expression for the dependence of k on

λ for any given γ > 1/2.

We now assume that F+ and p+ are prescribed. Bearing in mind that

F− is given by (7.106), we require to find p−, α, k that satisfy (7.125) and

(7.126), the latter providing a connection between k and α and the former

an expression for p−. Let F+ be given in terms of the stretch λ by (7.95).

Then, for any given value of γ, a mechanically equilibrated kink can exist

if and only if there are real values of k and α such that (7.126) is satisfied.

Note that since P (λ,−n1, n2,−k, γ) = P (λ, n1, n2, k, γ) follows from

(7.126), (π − α,−k) is a solution of P (λ, n1, n2, k, γ) = 0 whenever (α, k)

is, which allows us to restrict attention to values of α in (0, π).

We now exemplify the above theory by considering two simple

problems.
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7.5.3.1. Example 1: An orthogonal kink

First, we consider an orthogonal kink S, so that α=π/2, and hence n1 =−1,

n2 = 0. From (7.126) we then obtain

k = ±
√

1

λ2

(
1− 1

2γ

)
− 1, (7.130)

allowing k to be either positive or negative. For a real solution k it is

necessary that γ > 1/2 and

0 < λ ≤ λ̂(γ) < 1, (7.131)

where

λ̂(γ) =

√
1− 1

2γ
. (7.132)

In this case the kink driving traction in (7.127) is given by T = μγk4λ4/2.

The value of I−4 is (m−
1 )

2 + (m−
2 )

2 = (F−
11)

2 + (F−
21)

2 = λ2(1 + k2) =

λ̂(γ)2, and hence the fiber stretch in the region Π− is λ̂(γ). Thus, from

(7.131) the fiber is under contraction on both sides of an orthogonal kink.

Equation (7.111) gives φ = tan−1(k) so that, with reference to Fig. 7.5,

k > 0 implies 0 < φ < π/2, whereas for k < 0 the fiber direction is reflected

in the e1-axis.

Suppose λ is decreased continuously from λ = 1. An orthogonal kink

first becomes possible when λ reaches the value λ̂(γ), at which point k = 0.

This represents a weak kink with φ = 0. As λ then decreases from λ̂(γ) an

orthogonal strong kink can develop, with k given by (7.130). Whether the

value of k is positive or negative the fiber stretch remains constant in Π−

as λ decreases, and the kinking angle φ increases in magnitude with the

magnitude of k via tanφ = k. The dependence of k on λ is illustrated in

Fig. 7.6 for three values of γ. Note that λ = λ̂(γ) for k = 0, with λ̂(γ) → 1

as γ → ∞.

7.5.3.2. Example 2: A weak kink

In this second example we consider a weak kink obtained by letting k tend

to zero in the expression (7.126), which then yields, after replacing n2
2 by

1− n2
1,

4γλ4n4
1 − (6γλ4 − 2γλ2 + λ2 − λ−2)n2

1 − λ−2 = 0. (7.133)
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γ = 10

Fig. 7.6. Plots of k versus λ for γ = 0.6, 1, 10 based on Eq. (7.130). The curves cut the
k = 0 axis at λ = λ̂(γ) given by Eq. (7.132).

This equation has a unique positive solution n2
1 in the range 0 < n2

1 ≤ 1

with positive λ provided γ > 1/2, in which case Eqs. (7.131) and (7.132)

again apply. Indeed, it is easy to show that Eqs. (7.131) and (7.132) are

required for loss of the strong ellipticity condition (7.94) applied to the

model (7.121) since the left-hand side of (7.94) reduces to precisely minus

half of the left-hand side of (7.133), i.e., continuity of traction is equivalent

to loss of ellipticity in this case.

Thus, provided γ > 1/2, two possible weak kinks can emerge,

corresponding to n2 = ±
√
1− n2

1 and symmetrically disposed with respect

to the axes e1 and e2, with the kink orientation given in terms of the angle

α: if n2 > 0 (< 0), 0 < α < π/2 (π/2 < α < π). In the limiting case when

α = π/2 the two weak kinks coincide with λ = λ̃(γ), but if λ < λ̃(γ) then

the weak kinks are necessarily separated with 0 < n2
1 < 1 and distinct from

the orthogonal kink considered in Example 1.

Again, provided γ > 1/2, for each λ satisfying 0 < λ ≤ λ̃(γ) both

an orthogonal kink solution (α = π/2) and weak kink solutions (k → 0)

of (7.126) can occur (note that γ = 1/2 requires λ → 0). Under a

compressive loading programme with λ decreasing from 1 the various

solutions first emerge when λ = λ̃(γ) after which, as λ decreases further, the

associated orthogonal weak kink solution develops into four kink solutions:

two symmetric orthogonal strong kinks with k given by (7.130) (α = π/2)

and two symmetric weak kinks with k = 0 and α = π/2 ± sin−1
√
1− n2

1,

where n2
1 is the unique solution of (7.133) satisfying 0 < n2

1 < 1.
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7.6. Concluding Remarks

In this chapter, we have reviewed some of the recent research concerned

with the theoretical prediction of certain types of failure in fiber-reinforced

nonlinearly elastic materials on the basis of loss of ellipticity of the

governing equations of equilibrium. Attention has been focused on materials

that consist of an isotropic matrix and embedded parallel fibers modeled

as a continuous distribution of a preferred direction. The associated

mathematical model combines additively the strain-energy function of the

isotropic matrix and that of a transversely isotropic strain-energy function,

the latter being referred to as a reinforcing model.

We have shown how loss of ellipticity could be related to different

failure mechanisms, including fiber kinking and splitting in compression

and fiber debonding or matrix failure in tension, and we have considered

only homogeneous deformations, so that boundary conditions are not an

issue. However, the analysis of instabilities such as fiber buckling has not

been included, and such instabilities may be initiated prior to the loss of

ellipticity.

The second law of thermodynamics, exemplified by Eq. (7.117), must

be satisfied for solutions for which the deformation field is continuous

but the deformation gradient is discontinuous. It is consistent with either

a zero discontinuity driving traction (so that the discontinuity does not

propagate), with a positive driving traction (the discontinuity surface S
moves into the region Π+) or a negative driving traction (the discontinuity

surface S moves into the region Π−).
The list of possible failure mechanisms mentioned above is not

exhaustive. Other examples might include loss of ellipticity associated with

an incipient shear band. However, the development of a shear band (or a

kink band) requires a material model that involves a length scale that is

not available in pure elasticity theory, and consideration of such models is

beyond the scope of the present work.
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Abstract

Composite materials behave in the long wavelength limit as if they are
homogeneous but, more often than not, carry strong anisotropy. We review
the Stroh formalism for dynamic elasticity and apply this formalism to derive
perturbation formulas for the phase velocity and polarization ratio of Rayleigh
waves that propagate along the free surface of a prestressed half-space where,
when unstressed, the principal part of the elasticity tensor is orthotropic
or transversely isotropic. An objective of the present study is to examine
the possibility of and the problems and issues regarding the determination
of the prestress in an otherwise transversely isotropic composite material
by boundary measurements of angular dependence of Rayleigh-wave phase
velocity or polarization ratio.
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8.5 Perturbation of the Phase Velocity of Rayleigh Waves in

Prestressed Anisotropic Media When the Base Material is

is Orthotropic . . . . . . . . . . . . . . . . . . . . . . . . . 358

8.6 An Inverse Problem on Recovery of Initial Stress . . . . . 366

8.7 Perturbation of the Polarization Ratio of Rayleigh Waves

in Prestressed Anisotropic Media When the Base Material

is Orthotropic . . . . . . . . . . . . . . . . . . . . . . . . . 371

8.1. Introduction

In the long wavelength limit composite materials behave as if they

are homogeneous but, more often than not, carry strong anisotropy

(see, e.g., Chapter17 of [1],[2], Chapter11 of [3], and [4]).a The Stroh

formalism is a powerful and elegant mathematical method developed for

the analysis of problems of two-dimensional deformations in anisotropic

elasticity[6–12]. It reveals simple structures hidden in the equations of

motion (or equilibrium) for such problems and provides a systematic

approach for tackling these equations. In particular the Stroh formalism

is an effective tool in the study of Rayleigh waves, long since a topic of

utmost importance in non-destructive evaluation, seismology, and materials

science.

In this chapter, we will use the Stroh formalism to derive a perturbation

formula for the phase velocities of Rayleigh waves that propagate along

various directions on the free surface of a prestressed half-space where,

when unstressed, the principal part of the elasticity tensor is orthotropic or

transversely isotropic. The effects of the initial stress are grouped under the

perturbative part of the constitutive equation. In our previous study [13], we

derived a perturbation formula for the phase velocity of Rayleigh waves that

aHere we cite one concrete example. Consider wave propagation in a composite that
consists of an elastic homogeneous matrix reinforced by a random distribution of aligned
continuous cylindrical elastic fibers. It is well established that such a composite can be
modeled as a transversely isotropic homogeneous elastic medium when the wavelength
of the propagating wave is much longer than the fiber diameter. See, for example, the
theoretical and experimental study of Datta and Ledbetter[5], where they calculated
and measured the macroscopic elastic constants of a composite that consisted of an
aluminum 6061 alloy matrix reinforced by 0.14-mm-diameter boron fibers. They used
two methods in their measurements of the elastic constants. In the resonance method
they used oscillations of frequencies that ranged from 30 to 50 kHz. In the ultrasonic-
velocity method they used waves at frequencies near 10MHz.
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propagate along the free surface of a prestressed half-space; that formula

expresses the shift of the phase velocity of the Rayleigh waves from its value

for the comparative unstressed and isotropic medium. Unlike that work,

here we allow the base material to be orthotropic or transversely isotropic

(and the anisotropy may be strong), which is typical of directional fiber-

reinforced composite materials (see e.g., [1, 2, 4, 14], Chapter 15 of [15],

and [16]). An objective of the present study is to examine the possibility of

and the problems and issues regarding the determination of the prestress

in an otherwise transversely isotropic composite material by boundary

measurements of angular dependence of Rayleigh-wave phase velocity or

polarization ratio.

The present chapter reviews the essence of the Stroh formalism for

dynamic elasticity, summarizes an approach based on this formalism

to derive a first-order perturbation formula for the phase velocity of

Rayleigh waves, and outlines what information on the prestress of a

body of a composite material can, in principle, be delivered by boundary

measurements of Rayleigh-wave phase velocities. One objective of this

chapter is to introduce the reader to the full paper [17].

The polarization ratio rR of Rayleigh waves is defined as the ratio of

the maximum longitudinal component to the maximum normal component

of the displacements at the surface on which the Rayleigh waves propagate.

Junge et al. [18] studied the relative polarization of Rayleigh waves for

several materials (mild steel, four aluminum alloys, polystyrene, and brass)

under uniaxial stress; here by relative polarization is meant the ratio of

rR and its value for the comparative isotropic medium where the (applied)

prestress is zero. They observed that “the relative polarization is more

sensitive to applied stress than the relative wave speeds . . . , while being

less sensitive to uncertainties in the values of the TOE-constants [i.e.,

third-order elastic constants]”. These properties of the polarization ratio

represent possible advantages of using it in non-destructive evaluation of

stress. The observation of Junge et al. was largely corroborated by our

earlier study [19] where we derived a first-order perturbation formula for

the polarization ratio of Rayleigh waves when the base material is isotropic.

Here taking advantage of the opportunity to revise this chapter for the

second edition, we present in a new final section a first-order perturbation

formula for the polarization ratio of Rayleigh waves that propagate along

the free surface of a prestressed half-space where the base material is

orthotropic or transversely isotropic. The possibility of using this formula

for the determination of the prestress in an otherwise transversely isotropic
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composite material by boundary measurements of the polarization ratios of

Rayleigh waves will be briefly discussed.

8.2. Basic Elasticity in Anisotropic Materials with Initial Stress

Here we consider a macroscopically homogeneous, anisotropic, prestressed

elastic medium and small elastic motions superimposed on it. Let R denote

the set of real numbers. Suppose that the medium occupies a region B in

R3 with a smooth boundary. We take the given initial configuration of B

as the reference configuration for the description of the elastic motions.

Let E = E(u) =
(
εij
)
i,j=1,2,3

be the infinitesimal strain tensor

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (8.1)

where u = u(x) = (u1, u2, u3) is the displacement at the place x pertaining

to the superimposed small elastic motion and (x1, x2, x3) are the Cartesian

coordinates of x.

In the theoretical context of linear elasticity with initial stress (see [20]

and the references therein), the constitutive equation can be written as

S = T
◦
+H T

◦
+ L[E], (8.2)

where S = (Sij)i,j=1,2,3 is the first Piola–Kirchhoff stress, T
◦
=
(
T
◦
ij

)
i,j=1,2,3

the initial stress, H = (∂ui/∂xj)i,j=1,2,3 the displacement gradient, and L

the incremental elasticity tensor. The initial stress T
◦
is symmetric

T
◦
ij = T

◦
ji, i, j = 1, 2, 3 (8.3)

and the incremental elasticity tensor L, regarded as a fourth-order tensor

that maps symmetric tensors E onto symmetric tensors, has major and

minor symmetries

Lijkl = Lklij = Ljikl, i, j, k, l = 1, 2, 3. (8.4)

Then we can rewrite (8.2) componentwise as

Sij = T
◦
ij +

3∑
k,l=1

(T
◦
jlδik + Lijkl)

∂uk
∂xl

, (8.5)

where δik is Kronecker’s delta. Both L and T
◦
depend implicitly on the

formative history of the material body in the given initial configuration,
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but we will keep this dependence implicit and simply take L and T
◦
as given

fourth-order and second-order tensors, respectively.

Note that when T
◦
= 0 the constitutive equation (8.2) is reduced to the

generalized Hooke’s law

S = C[E] or Sij =

3∑
k,l=1

Cijklεkl,

where L now collapses to the classical elasticity tensor C. Furthermore, we

say that the elastic material is isotropic if the elasticity tensor

C =
(
Cijkl

)
1≤i,j,k,�≤3

satisfies

Cijkl =

3∑
p,q,r,s=1

QipQjqQkrQlsCpqrs, i, j, k, l = 1, 2, 3 (8.6)

for any orthogonal tensor Q = (Qij)i,j=1,2,3. For isotropic materials, the

components Cijkl(i, j, k, l = 1, 2, 3) can be written as

Cijkl = λ δijδkl + μ(δikδjl + δilδkj)

with the Lamé constants λ and μ. We say that the elastic material is

anisotropic if it is not isotropic.

We will study dynamic deformations of the elastic medium in B. Let

t denote the time and ρ the uniform mass density of the material in the

given initial (prestressed) configuration. We assume that the initial stress

T
◦
satisfies the equation of equilibrium with the body force (per unit mass)

b = b(x) = (b1, b2, b3):

3∑
j=1

∂

∂xj
T
◦
ij + ρbi = 0, i = 1, 2, 3.

Substitution of (8.5) into the equation of motion with the body force b,

namely

3∑
j=1

∂

∂xj
Sij + ρbi = ρ

∂2

∂t2
ui, i = 1, 2, 3,

leads to the elastic wave equation written in terms of the displacement

3∑
j=1

∂

∂xj

(
Bijkl

∂uk
∂xl

)
= ρ

∂2

∂t2
ui, i = 1, 2, 3, (8.7)
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338 K. Tanuma & C.-S. Man

where

Bijkl = δikT
◦
jl + Lijkl (8.8)

are the effective elastic coefficients which have the major symmetry

Bijkl = Bklij , i, j, k, l = 1, 2, 3 (8.9)

but do not have the minor symmetries because of the term δikT
◦
jl.

Hereafter in this chapter we assume the strong ellipticity condition:

The matrix
( 3∑
j,l=1

Bijklξjξl

)
i↓k→1,2,3

is positive definite for

any non-zero vector ξ = (ξ1, ξ2, ξ3) ∈ R
3.b (8.10)

This condition is guaranteed if the incremental elasticity tensor L

satisfies the strong convexity condition:

3∑
i,j,k,l=1

Lijklεijεkl > 0 for any non-zero 3× 3 real symmetric matrix (εij)

and if the initial stress T
◦
is sufficiently small.

We have treated T
◦
and L as if they are independent. In fact they are

generally related through their mutual dependence on the formative history

of the material body in question. In particular L generally depends on T
◦
.

There are models for the dependency of L on T
◦
. The simplest case of which

is found when L is an isotropic bilinear function of T
◦
and E relative to the

initial configuration. In this case L is given by

L(T
◦
)[E] = λ(trE)I + 2μE + β1(trE)(trT

◦
)I + β2(trT

◦
)E

+ β3

(
(trE)T

◦
+ (trET

◦
)I
)
+ β4(ET

◦
+ T

◦
E), (8.11)

where λ and μ are the Lamé constants, βi (i = 1, . . . , 4) are material

constants and I denotes the 3 × 3 identity matrix (see [21]). For instance

classical acoustoelastic theory, where the initial stress is caused by a

deformation of an isotropic elastic material from a stress-free natural

configuration, in effect uses (see [19, Sec. 9]) the constitutive equation (8.2)

bThe subscript i ↓ k → 1, 2, 3 means that i and k are the row and column number,
respectively, and both numbers run from 1 to 3.
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with L given by (8.11) and the four βi coefficients expressed in terms of

three third-order elastic constants and the Lamé constants of the isotropic

elastic material.

We take as the sole reference configuration the initial configuration,

which already has the initial stress and material anisotropy, and we make

no presumption of their origin. Thus our study begins with the constitutive

relation (8.2) and our theory is applicable so long as infinitesimal motions

superimposed on this initial configuration are elastic. We assume the

symmetries (8.3) for T
◦
and (8.4) for L but do not assume any other material

symmetry.

In Section 8.3, we give a brief review of the Stroh formalism for elastic

wave equations. This formalism, which reveals simple structures hidden in

the equations of anisotropic elasticity, is powerful and elegant. One of its

applications is a systematic study of Rayleigh waves in anisotropic materials

presented in Sections 8.4, 8.5 and 8.7.

8.3. The Stroh Formalism for Dynamic Elasticity

In this section, we review the Stroh formalism for elastic wave equations in

a manner as self-contained, readable, and brief as possible. Rayleigh waves

propagate along free surfaces, i.e., these waves produce no traction at the

boundary. However, the formalism in this section applies to surface waves

that do not necessarily satisfy a zero-traction condition at the boundary. In

the subsequent sections, we will restrict our attention to Rayleigh waves.

All the theorems, lemmas, etc. in Sections 8.3 and 8.4 can be found

in [8–12]. In the following, except for several important results, we shall

refrain from referring to the literature at each point.

We assume that the elastic medium and the initial stress are

homogeneous, and hence the effective elastic coefficients
(
Bijkl

)
i,j,k,l=1,2,3

are independent of the position vector x. In this case (8.7) becomes

3∑
j,k,l=1

Bijkl
∂2uk
∂xj∂xl

= ρ
∂2

∂t2
ui, i = 1, 2, 3. (8.12)

The only assumptions we make for (Bijkl)i,j,k,l=1,2,3 are their major

symmetry (8.9) and the strong ellipticity condition (8.10).

Let x = (x1, x2, x3) be the position vector and let m = (m1,m2,m3)

and n = (n1, n2, n3) be orthogonal unit vectors in R3. Let C denote the
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set of complex numbers.c We consider the motion of a homogeneous elastic

medium that occupies the half-space n · x = n1x1 + n2x2 + n3x3 ≤ 0, and

seek solutions to (8.12) of the form

u = (u1, u2, u3) = a e−
√−1 k(m·x+pn·x−vt) ∈ C

3 (8.13)

in n · x ≤ 0 (cf., e.g., [10, Sec. 2]).

When Im p, the imaginary part of p ∈ C, is positive, a solution of the

preceding form describes a surface wave in n · x ≤ 0; it propagates along

the surface n ·x = 0 in the direction of m with the wave number k and the

phase velocity v > 0, has the polarization defined by a constant vector a,

and decays exponentially as n · x −→ −∞. When Im p < 0, the solution

blows up as n · x −→ −∞. We exclude such a solution.

A surface wave described by the form (8.13) depends on the projection

of x on the plane spanned by the two orthogonal unit vectors m and n.

Let us determine the equations that a ∈ C
3 and p ∈ C in (8.13) must

satisfy. Substituting (8.13) into (8.12) and noting that

∂u

∂xj
= −√−1 k(mj + pnj)a e

−√−1 k(m·x+pn·x−vt)

and

∂u

∂t
=

√−1 k va e−
√−1 k(m·x+pn·x−vt),

we get

⎛
⎝ 3∑
j,l=1

Bijkl(mj + pnj)(ml + pnl)− ρ v2δik

⎞
⎠
i↓k→1,2,3

a

=

⎛
⎝ 3∑
j,l=1

Bijklmjml − ρ v2δik + p

⎛
⎝ 3∑
j,l=1

Bijklmjnl +

3∑
j,l=1

Bijkl njml

⎞
⎠

+ p2
3∑

j,l=1

Bijkl njnl

⎞
⎠
i↓k→1,2,3

a = 0, (8.14)

cWe also use the symbol C to denote the classical elasticity tensor. It should be clear
from the context what the symbol means when it appears.
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where δik is the Kronecker delta. We introduce the 3× 3 real matrices

Q =

⎛
⎝ 3∑
j,l=1

Bijklmjml − ρ v2δik

⎞
⎠
i↓k→1,2,3

,

R =

⎛
⎝ 3∑
j,l=1

Bijklmjnl

⎞
⎠
i↓k→1,2,3

, T =

⎛
⎝ 3∑
j,l=1

Bijkl njnl

⎞
⎠
i↓k→1,2,3

.

(8.15)

Taking the major symmetry (8.9) into account, we rewrite equation

(8.14) as

[Q+ p(R+RT ) + p2T]a = 0, (8.16)

where the superscript T denotes transposition. For the existence of a non-

trivial vector a �= 0, we observe that p satisfies the sextic equation

det[Q+ p(R+RT ) + p2T] = 0. (8.17)

Lemma 8.1.

(1) Matrices Q and T are symmetric. Moreover, matrix T is positive

definite.

(2) When v = 0, the characteristic roots pα (1 ≤ α ≤ 6), i.e., the solutions

to the sextic equation (8.17), are not real and they occur in complex

conjugate pairs.

Proof. The symmetries of Q and T follow immediately from the major

symmetry (8.9) and the positive definiteness of T from the strong ellipticity

condition (8.10). Assertion (2) also follows easily from (8.10). For details,

refer, for example, to (2) of Lemma 1.1 of [12]. �

Next we examine the traction on the surface n ·x = 0 produced by the

surface-wave solution (8.13). Since the outward unit normal of this surface

is the vector n, the traction t on n · x = 0 is given by

t =

⎛
⎝ 3∑
j=1

Sijnj

⎞
⎠
i↓1,2,3

∣∣∣∣∣∣∣∣∣
n·x=0
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which, by (8.5), (8.8), (8.13) and (8.15), becomesd

t =
( 3∑
j,k,l=1

Bijkl
∂uk
∂xl

nj

)
i↓1,2,3

∣∣∣∣∣∣
n·x=0

= −√−1 k
( 3∑
j,l=1

Bijkl (ml + pnl)nj

)
i↓k→1,2,3

a e−
√−1 k(m·x−vt)

= −√−1 k [RT + pT]a e−
√−1 k(m·x−vt).

Hence we define a vector l ∈ C3 as

l = [RT + pT] a. (8.18)

Then

t = −√−1 k l e−
√−1 k(m·x−vt) (8.19)

is the traction on the surface n · x = 0 produced by (8.13).

By (1) of Lemma 8.1, T−1 exists. Hence from (8.18) we get

p a = −T−1RT a+T−1l, p l = [pRT + p2T]a. (8.20)

The last equation becomes, by (8.16) and the first equation of (8.20),

p l = −[Q+ pR]a = −Qa−R(−T−1RTa+T−1l)

= [−Q+RT−1RT ]a−RT−1l. (8.21)

Thus, from (8.20) and (8.21) we obtain the following theorem.

Theorem 8.1. Let
[
a
l

]
be a column vector in C6 whose first three

components consist of a vector a ∈ C3 that satisfies (8.16) and whose

last three components consist of the vector l∈C3 given by (8.18). Then

dHere we restrict our attention to the case where the traction produced by T
◦
on n ·x = 0

vanishes, i.e.,
∑3

j=1 T
◦
ijnj = 0 (i = 1, 2, 3) on n · x = 0.
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the following six-dimensional eigen-relation holds:

N

[
a

l

]
= p

[
a

l

]
, (8.22)

where N is the 6× 6 real matrix defined by

N =

[
−T−1RT T−1

−Q+RT−1RT −RT−1

]
. (8.23)

We call the eigenvalue problem (8.22) Stroh’s eigenvalue problem.

When v = 0, it follows from (2) of Lemma 8.1 that the solutions pα (1 ≤
α ≤ 6) to (8.17), i.e., the eigenvalues of N, are not real. As v increases from

v = 0, at some point Eq. (8.17) ceases to have only complex roots. Since

we are concerned with the surface-wave solution (8.13), where Im p > 0, we

shall restrict our attention to the range of v for which all the solutions to

(8.17) are complex.

Let m̃ = (m̃1, m̃2, m̃3) and ñ = (ñ1, ñ2, ñ3) be orthogonal unit vectors

in R
3, which are obtained by rotating the orthogonal unit vectors m and n

around their vector product m× n by an angle φ (−π ≤ φ < π) so that

m̃ = m̃(φ) = m cosφ+ n sinφ, ñ = ñ(φ) = −m sinφ+ n cosφ. (8.24)

Let Q(φ),R(φ) and T(φ) be the 3× 3 real matrices given by

Q(φ) =

⎛
⎝ 3∑
j,l=1

Bijklm̃jm̃l

⎞
⎠
i↓k→1,2,3

− ρv2 cos2 φ I,

R(φ) =

⎛
⎝ 3∑
j,l=1

Bijklm̃j ñl

⎞
⎠
i↓k→1,2,3

+ ρv2 cosφ sinφI,

T(φ) =

⎛
⎝ 3∑
j,l=1

Bijklñj ñl

⎞
⎠
i↓k→1,2,3

− ρv2 sin2 φI,

(8.25)

where I is the 3× 3 identity matrix. Then Q(0),R(0), and T(0) are equal

to Q,R, and T in (8.15), respectively.

As we shall see in Proposition 8.2, Definition 8.3 and Theorem 8.4, we

have introduced the matricesQ(φ),R(φ) and T(φ) for the ultimate purpose
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344 K. Tanuma & C.-S. Man

of finding properties of the vectors a and l in (8.22) and of the surface

impedance matrix Z(v), which is defined later through these vectors.

Definition 8.1. The limiting velocity vL = vL(m,n) is the lowest velocity

for which the matrices Q(φ) and T(φ) become singular for some angle φ:

vL = inf{v > 0 | ∃φ; detQ(φ) = 0} = inf{v > 0 | ∃φ; detT(φ) = 0}. (8.26)

We will give a characterization of vL = vL(m,n) in terms of body

waves whose direction of propagation is on the m–n plane.

A solution to (8.12) of the form

u = (u1, u2, u3) = a e−
√−1 k

(
m̃·x−c(φ)t

)
(8.27)

represents a body wave with direction of propagation m̃, wave number k,

velocity c(φ), and polarization a = a(φ). Substituting this into (8.12), we

easily observe that ρc(φ)2 and a(φ) are an eigenvalue and an eigenvector of

the positive definite matrix called the acoustic tensor⎛
⎝ 3∑
j,l=1

Bijklm̃jm̃l

⎞
⎠
i↓k→1,2,3

, (8.28)

respectively.

Let

λi(φ) (i = 1, 2, 3), 0 < λ1(φ) ≤ λ2(φ) ≤ λ3(φ)

be the eigenvalues of the acoustic tensor (8.28). Corresponding to

these eigenvalues, there exist three body waves, which have direction of

propagation m̃, phase velocity

ci(φ) =

√
λi(φ)

ρ
(i = 1, 2, 3), 0 < c1(φ) ≤ c2(φ) ≤ c3(φ), (8.29)

and polarizations ai= ai(φ)∈R
3 (i=1, 2, 3), which are mutually

orthogonal.

Proposition 8.1.

vL = vL(m,n) = min
−π

2<φ<
π
2

c1(φ)

cosφ
. (8.30)
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Propagation of Rayleigh Waves in Anisotropic Media 345

Proof. We see from the first equation in (8.25) that the eigenvalues of

Q(φ) are

λi(φ)− ρv2 cos2 φ, i = 1, 2, 3.

Hence the assertion follows from (8.29) and the first equality in (8.26). �

A useful construction of vL(m,n) is in terms of the slowness section

in the m–n plane. The slowness section in the m–n plane consists of the

three closed curves generated by the radius vectors

1

ci(φ)
m̃, i = 1, 2, 3 (−π < φ ≤ π).

The curve corresponding to the slowest velocity c1(φ) defines the silhouette

of the slowness section and is called the outer profile.

It follows from (8.30) that

v−1
L = max

−π
2<φ<

π
2

1

c1(φ)
cosφ. (8.31)

Since φ is the angle of rotation about m × n between the m-axis and the

vector m̃,

1

c1(φ)
cosφ

is the projection on the m-axis of the point on the outer profile. Then by

(8.31), the limiting slowness vL(m,n)−1 is the absolute maximum of the

set of such projections. Thus, we obtain the following corollary.

Corollary 8.1. In the m–n plane, let L be a line parallel to the n-

axis approaching the slowness section from the right and making the first

tangential contact with the outer profile at some point T . The limiting

slowness vL(m,n)−1 is the projection of T on the m-axis. Let φ̂ be the

angle between
−→
OT and the m-axis (−π

2 < φ̂ < π
2 ). Then

v−1
L = max

−π
2<φ<

π
2

1

c1(φ)
cosφ =

1

c1(φ̂)
cos φ̂ (8.32)

(see Fig. 8.1). The corresponding body wave represented by (8.27) propagates

in the direction of the radius vector
−→
OT with the velocity c1(φ̂) and

its polarization is an eigenvector of the acoustic tensor (8.28) at φ= φ̂

pertaining to the smallest eigenvalue ρ c1(φ̂)
2.
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m

n

T

v (m,n)-1
L

L

φ̂

Fig. 8.1. Slowness section and limiting velocity.

Example 8.1. The effective elastic coefficients of a material in an

unstressed and isotropic state are given by

Bijkl = λδijδkl + μ(δikδjl + δilδkj), (8.33)

where λ and μ are the Lamé constants. Then it follows thate

Q(φ) = (λ+ μ)m̃ ⊗ m̃+ (μ− ρv2 cos2 φ) I,

detQ(φ) = (μ− ρv2 cos2 φ)2(λ + 2μ− ρv2 cos2 φ).

Taking into account that μ < λ + 2μ, which is guaranteed by the strong

convexity condition for (8.33) (cf. the paragraph which follows (8.10)), we

immediately see that vL for the material in question is given by vIsoL =
√

μ
ρ

for any m and n. The acoustic tensor (8.28) of this material is given by

(λ+ 2μ)m̃⊗ m̃+ μ(ñ⊗ ñ+ �⊗ �),

where � = m×n = m̃×ñ; its eigenvalues are λ+2μ (simple) and μ (double).

Hence the slowness sections of this material are three circles centered at

eHenceforth we will use the notations ⊗ and × to denote the tensor product and the
vector product, respectively.
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Propagation of Rayleigh Waves in Anisotropic Media 347

the origin, two of which have the same radius
√

ρ
μ and the other has radius√

ρ
λ+2μ .

The interval 0 < v < vL is called the subsonic range.f

We present below several fundamental properties of the matrices

Q(φ),T(φ), N and the sextic equation (8.17) in the subsonic range. The

proof of the following lemma is given, for example, in [12, Lemma 3.2].

Lemma 8.2.

(1) The symmetric matrices Q(φ) and T(φ) are positive definite for all φ

if and only if 0 ≤ v < vL.

(2) When 0 ≤ v < vL, the solutions pα (1 ≤ α ≤ 6) to the sextic equation

(8.17), i.e., the eigenvalues of N, are not real and they occur in complex

conjugate pairs.

Henceforth we will restrict our attention to the subsonic range 0 ≤ v <

vL and take

Im pα > 0, α = 1, 2, 3. (8.34)

Now let 0 ≤ v < vL, and let
[
aα

lα

]
(α = 1, 2, 3) be linearly independent

eigenvectors of the eigenvalue problem (8.22) pertaining to the eigenvalues

pα (α = 1, 2, 3, Im pα > 0), respectively. Motivated by (8.13) and (8.19),

we observe that the general formg of the surface-wave solution is given by

u =

3∑
α=1

cαaα e
−√−1 k(m·x+pαn·x−vt) (8.35)

and the corresponding traction on the surface n · x = 0 produced by the

solution above is given by

t = −√−1k

3∑
α=1

cαlαe
−√−1k(m·x−vt), (8.36)

fThe reader should not consider “subsonic” and “ultrasonic” to be related adjectives.
“Ultrasonic” refers to stress waves with frequencies above 2× 104 Hz, the upper limit of
human hearing. Rayleigh waves, which have a phase velocity in the subsonic range, can
have ultrasonic frequencies.
gWe have used the term “general” because aα (α = 1, 2, 3) are linearly independent in
C3, which we shall see soon.
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348 K. Tanuma & C.-S. Man

where cα (1 ≤ α ≤ 3) are arbitrary complex constants. The arrangement

(8.34) guarantees that the surface-wave solution (8.35) in the subsonic range

decays exponentially as n · x −→ −∞.

Remark 8.1. When the six-dimensional eigenvalue problem (8.22) does

not have six linearly independent eigenvectors, generalized eigenvector(s)

must be introduced. Let
[
aα

lα

]
∈ C

6 (α = 1, 2, 3) be linearly independent

eigenvector(s) and generalized eigenvector(s) of N associated with the

eigenvalues pα (α = 1, 2, 3). Then the form of the surface-wave solution

(8.35) must be modified according to the degeneracy of the eigenvalue

problem (8.22) (see, e.g., [12, Sec. 3.2]). However, the corresponding

displacements on the surface n · x = 0 have the same form

u =

3∑
α=1

cαaαe
−√−1k(m·x−vt), (8.37)

and the corresponding tractions on n · x = 0 all have the same form

t = −√−1 k

3∑
α=1

cαlαe
−√−1k(m·x−vt). (8.38)

Let us turn to the rotated orthogonal unit vectors (8.24) in the m–n

plane and to the matrices (8.25) defined through these rotated vectors. For

0 ≤ v < vL, let N(φ) be the 6× 6 real matrix defined by

N(φ) =

[
−T(φ)−1R(φ)T T(φ)−1

−Q(φ) +R(φ)T(φ)−1R(φ)T −R(φ)T(φ)−1

]
. (8.39)

Note that N(0) is equal to N defined by (8.23).

The following property of Stroh’s eigenvector problem is fundamental

to the Stroh formalism. It serves as a basis for the derivation of the Barnett–

Lothe integral formalism and is also elegant in itself.

Theorem 8.2. For 0 ≤ v < vL, let
[
a

l

]
be an eigenvector of N(0)

associated with the eigenvalue p = p0. Then

N(φ)

[
a

l

]
= p(φ)

[
a

l

]
(8.40)
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Propagation of Rayleigh Waves in Anisotropic Media 349

for all φ, and the eigenvalue p(φ) of N(φ) satisfies the Riccati equation

d

dφ
p = −1− p2 (8.41)

with p(0) = p0.

Various proofs of this theorem can be found in several papers listed

at the beginning of this section. Here, by avoiding the introduction of

“dynamical elastic coefficients”, we present a slight improvement of the

proof given in [12].

Proof. We denote the differentiation d
dφ by ′. From (8.24) we get

m̃′ = −m sinφ+ n cosφ = ñ, ñ′ = −m cosφ− n sinφ = −m̃.

Then from (8.25) it follows that

Q(φ)′ =

⎛
⎝ 3∑
j,l=1

Bijklñjm̃l +

3∑
j,l=1

Bijklm̃j ñl

⎞
⎠
i↓k→1,2,3

+2ρv2 cosφ sinφI = R(φ) +R(φ)T ,

R(φ)′ =

⎛
⎝ 3∑
j,l=1

Bijklñj ñl −
3∑

j,l=1

Bijklm̃jm̃l

⎞
⎠
i↓k→1,2,3

+ ρv2(cos2 φ− sin2 φ)I = T(φ) −Q(φ),

T(φ)′ = −
⎛
⎝ 3∑
j,l=1

Bijklm̃j ñl +

3∑
j,l=1

Bijklñjm̃l

⎞
⎠
i↓k→1,2,3

− 2ρ v2 cosφ sinφI = −R(φ)−R(φ)T . (8.42)

Put

H(φ) = [Q+ p(R+RT ) + p2T](φ).

From (8.42) we have

H′(φ) = [R +RT + p′(R+RT ) + 2p(T−Q) + 2p p′T− p2(R+RT )](φ)

= [−2pQ+ (1 + p′ − p2)(R +RT ) + 2p(1 + p′)T](φ).
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350 K. Tanuma & C.-S. Man

Suppose that p(φ) satisfies the Riccati equation (8.41). Then the equation

above becomes

H′(φ) = −2p[Q+ p(R+RT ) + p2T](φ) = −2p(φ)H(φ). (8.43)

Now put

h(φ) = [Q+ p(R+RT ) + p2T](φ)a = H(φ)a,

where a satisfies (8.16). Then we get

h(0) = 0. (8.44)

It follows from (8.43) that

h′(φ) = −2p(φ)H(φ)a = −2p(φ)h(φ). (8.45)

The solution to (8.41) is p(φ) = tan(φ0−φ) with tan(φ0) = p0 and Im p0 �= 0

or p(φ) ≡ ±√−1, both of which are bounded smooth functions of φ. Thus

from (8.44) and (8.45) we obtain

h(φ) = [Q+ p(R+RT ) + p2T](φ)a = 0 (8.46)

for all φ.

Now put

l(φ) = [RT + pT](φ)a.

Then, by the assumption of the theorem, we have

l(0) = l.

It follows from (8.41) and (8.42) that

l′(φ) = [T−Q+ p′T− p(R+RT )](φ)a

= −[Q+ p(R+RT ) + p2T](φ)a = −h(φ),

which is equal to zero by (8.46). Hence we obtain

l(φ) = [RT + pT](φ)a = l(0) = l (8.47)

for all φ. In the same manner that (8.16) and (8.18) lead to the eigen-

relation (8.22), from (8.46) and (8.47) we obtain (8.40).h �

hIn the proof, we have assumed that p(φ) satisfies the Riccati equation (8.41). However,
it follows that p(φ), being the eigenvalue of N(φ) in (8.40), must be the solution to (8.41),
because an eigenvalue that corresponds to the same eigenvector is unique.
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Propagation of Rayleigh Waves in Anisotropic Media 351

When N(0) has generalized eigenvectors, they do not have the simple

invariance as in Theorem 8.2, but there is a rule that describes their

dependence on φ, for which we refer to the literature given at the beginning

of this section.

We now proceed to the Barnett–Lothe integral formalism.

Definition 8.2. For 0 ≤ v < vL, we define the 6× 6 real matrix S = S(v)

to be the angular average of the 6× 6 matrix N(φ) over [−π, π]:

S =

[
S1 S2

S3 ST1

]
=

1

2π

∫ π

−π
N(φ)dφ, (8.48)

where S1 = S1(v),S2 = S2(v) and S3 = S3(v) are 3 × 3 real matrices

defined by

S1 =
1

2π

∫ π

−π
−T(φ)−1R(φ)T dφ, S2 =

1

2π

∫ π

−π
T(φ)−1dφ,

S3 =
1

2π

∫ π

−π
−Q(φ) +R(φ)T(φ)−1R(φ)T dφ,

(8.49)

and Q(φ), R(φ) and T(φ) are given by (8.25).

By (1) of Lemma 8.2, the matrices S2 and S3 are symmetric and S2 is

positive definite for 0 ≤ v < vL.

Now we take the angular average of Stroh’s eigenvalue problem.

Theorem 8.3. For 0 ≤ v < vL, let
[
aα

lα

]
be an eigenvector or generalized

eigenvector of N(0) corresponding to the eigenvalues pα (α = 1, 2, 3) with

Im pα > 0. Then for 0 ≤ v < vL,

S

[
aα

lα

]
=

√−1

[
aα

lα

]
. (8.50)

Proof. When
[
aα

lα

]
is an eigenvector of N(0) corresponding to the

eigenvalues pα (α = 1, 2, 3) with Im pα > 0, we take the angular average of

both sides of (8.40). For p(φ) = tan(φ0 − φ) with tan(φ0) = p0, Im p0 > 0

and for p(φ) ≡ ±√−1 it follows that 1
2π

∫ π
−π p(φ)dφ =

√−1, which,

combined with (8.48), leads to (8.50).

When
[
aα

lα

]
is a generalized eigenvector of N(0), the proof of (8.50) is

a little complicated: refer to the literature given at the beginning of this

section. �
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Proposition 8.2. For 0≤ v <vL, let
[
aα

lα

]
(α=1, 2, 3) be linearly indepen-

dent eigenvector(s) or generalized eigenvector(s) of N(0) corresponding to

the eigenvalues pα (α = 1, 2, 3) with Im pα > 0. Then their displacement

parts aα (α = 1, 2, 3) are linearly independent.

Proof. The first three rows of the system (8.50) are written, by using the

notation in (8.49), as

S1aα + S2lα =
√−1aα, α = 1, 2, 3.

Then we get

S2lα = (
√−1I− S1)aα, α = 1, 2, 3.

Since S2 is invertible, multiplying both sides by S−1
2 , we obtain

lα = (
√−1S−1

2 − S−1
2 S1)aα, α = 1, 2, 3. (8.51)

Suppose that aα(α = 1, 2, 3) are linearly dependent. Then there exists a set

of complex numbers (c1, c2, c3) �= (0, 0, 0) such that

3∑
α=1

cαaα = 0.

Then from (8.51) it follows that

3∑
α=1

cαlα = 0,

and therefore

3∑
α=1

cα

[
aα

lα

]
= 0.

This contradicts the assumption that
[
aα

lα

]
(α = 1, 2, 3) are linearly

independent. �

Now we can define the surface impedance matrix, which was first

introduced by Ingebrigtsen and Tonning [22] and later given by Lothe and

Barnett [8] in the framework of the Stroh formalism.

Definition 8.3. For 0≤ v < vL, let
[
aα

lα

]
(α=1, 2, 3) be linearly indepen-

dent eigenvector(s) or generalized eigenvector(s) of N(0) corresponding to
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Propagation of Rayleigh Waves in Anisotropic Media 353

the eigenvalues pα (α = 1, 2, 3) with Im pα > 0. The surface impedance

matrix Z(v) is the 3× 3 matrix given by

Z(v) = −√−1[l1, l2, l3][a1, a2, a3]
−1, (8.52)

where [l1, l2, l3] and [a1, a2, a3] denote 3× 3 matrices, which consist of the

column vectors lα and aα, respectively.

Therefore, Z(v) expresses a linear relationship between (i) the

displacements given at the surface n · x = 0 of the form (8.37), which

pertain to the surface-wave solution of the form (8.35)i propagating in the

direction of m with the phase velocity v, and (ii) the tractions needed to

sustain them at that surface of the form (8.38).

Remark 8.2. There is an arbitrariness in the choice of the linearly

independent eigenvectors and generalized eigenvectors. However, Theorem

8.4, below, implies that the arbitrariness is canceled out in the product of

the two matrices in (8.52), and hence Z(v) is well defined.

Theorem 8.4. For 0 ≤ v < vL,

Z(v) = S−1
2 +

√−1S−1
2 S1, (8.53)

where the real matrices S1 and S2 are given by (8.49).

Proof. It is obvious from (8.51) and (8.52). �

Let
[
aα

lα

]
(α=1, 2, 3) be linearly independent eigenvectors or genera-

lized eigenvectors of N(0) corresponding to the eigenvalues pα (α=1, 2, 3)

with Im pα > 0. Then from Theorem 8.3 it follows that

S2

[
aα

lα

]
= −

[
aα

lα

]
(α = 1, 2, 3). (8.54)

We see from (8.22) that the complex conjugates of
[
aα

lα

]
(α = 1, 2, 3)

are linearly independent eigenvectors or generalized eigenvectors of N(0)

corresponding to the complex conjugates of the eigenvalues pα (α = 1, 2, 3).

iWhen N(0) has generalized eigenvectors, the form of (8.35) will have to be modified
slightly. cf. Remark 8.1.
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Hence we take the complex conjugate of both sides of (8.54) to see

that (8.54) holds for six linearly independent eigenvectors or generalized

eigenvectors of N(0). Therefore, we get

S2 = −I6 (0 ≤ v < vL), (8.55)

where I6 denotes the 6× 6 identity matrix. Then the blockwise expression

of (8.55) obtained from (8.48) gives

S2
1 + S2S3 = −I, S1S2 + S2S

T
1 = 0 (0 ≤ v < vL). (8.56)

Since S2 is symmetric and invertible for 0 ≤ v < vL, it follows from the

second equality in (8.56) that

S−1
2 S1 = −(S−1

2 S1)
T (0 ≤ v < vL), (8.57)

which implies that S−1
2 S1 is antisymmetric. Hence from (8.53) we obtain

the following corollary.

Corollary 8.2. The surface impedance matrix Z(v) is Hermitian for 0 ≤
v < vL.

8.4. Rayleigh Waves in Anisotropic Materials

Rayleigh waves are elastic surface waves, which propagate along the

traction-free surface n · x = 0 with a phase velocity in the subsonic range

0 < v < vL, and whose amplitude decays exponentially with depth below

that surface.

Let m and n be orthogonal unit vectors in R3. Following the setting of

Section 8.3, we consider Rayleigh waves that propagate along the surface

n · x = 0 in the direction of m with the phase velocity vR satisfying

0 < vR < vL, and whose amplitude decays exponentially as n · x −→ −∞,

and which produce no tractions on n · x = 0. Here vL = vL(m,n) is the

limiting velocity in Definition 8.1.

We take the C3-vectors aα and lα (α = 1, 2, 3) so that
[
aα

lα

]
(α = 1, 2, 3)

are linearly independent eigenvector(s) or generalized eigenvector(s) ofN(0)

at v = vR associated with the eigenvalues pα (α = 1, 2, 3, Im pα > 0). Then

the existence of Rayleigh waves implies that the corresponding traction on

n · x = 0 given by (8.38) vanishes for v = vR. In other words, there exists
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a set of complex numbers (c1, c2, c3) �= (0, 0, 0) such that

3∑
α=1

cαlα = 0 at v = vR, (8.58)

which is equivalent to

det[l1, l2, l3] = 0 at v = vR. (8.59)

We will give a characterization of the Rayleigh-wave velocity vR
in terms of the surface impedance matrix Z(v) defined by (8.52), or

equivalently by (8.53), which we shall use in investigating the perturbation

of vR in the next section.

Theorem 8.5. A necessary and sufficient condition for the existence of

Rayleigh waves in the half-space n ·x ≤ 0, which propagate along the surface

n · x = 0 in the direction of m with the phase velocity vR in the subsonic

range 0 < v < vL, is

detZ(v) = 0 at v = vR (0 < vR < vL). (8.60)

Proof. Recall that Rayleigh waves produce no tractions on n ·x = 0. The

theorem is obvious from (8.59), Proposition 8.2, and (8.52). �

The surface impedance matrix Z(v) (0 ≤ v < vL) has the following

fundamental properties:

(1) Z(v) is Hermitian for 0 ≤ v < vL (Corollary 8.2).

(2) Z(0) is positive definitej (cf. [8], Sec. 7.D of [9], Sec. 6.6 of [11],

and [23, 24]).

(3) The Hermitian matrix d
dvZ(v) is negative definite for 0 < v < vL

(cf. [8, 25, 26]).

Proofs of assertions (2) and (3) are long: refer to the literature mentioned

above.

Using assertion (3), we obtain (cf. Theorem 7 of [10], [12]):

Lemma 8.3. For 0 ≤ v < vL, the eigenvalues of Z(v) are monotonic

decreasing functions of v.

jThis assertion holds when (Bijkl)i,j,k,l=1,2,3 satisfies the strong convexity condition.
However, since we have assumed that a deviation of the medium from its unstressed
state caused by the initial stress is small (see the comment just after (8.10)), the assertion
remains valid.
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356 K. Tanuma & C.-S. Man

Therefore, the eigenvalues of Z(v) decrease monotonically with v

in the interval 0≤ v <vL from their positive values at v=0, and one

of them becomes zero when v equals the Rayleigh-wave velocity vR
(Theorem 8.5).

Using the integral expression (8.53) for Z(v), we get (cf. the comments

after Theorem 7 of [10], [12]) the following lemma.

Lemma 8.4. At most one eigenvalue of Z(v) can be negative at v = vL.

The last two lemmas, combined with Theorem 8.5, imply the following

corollary.

Corollary 8.3. For given orthogonal unit vectors m and n, the phase

velocity of a Rayleigh wave is uniquely determined if the Rayleigh wave

exists.k

Example 8.2. The effective elastic coefficients of a material in an

unstressed and isotropic state are given by (8.33). Algebraic manipulations

of (8.52) give

Z(v) = −√−1

[
μp1�⊗ �+ V p3

1 + p1p3
m⊗m+

V p1
1 + p1p3

n⊗ n

+

(
2μ− V

1 + p1p3

)
(m⊗ n− n⊗m)

]
, (8.61)

where

V = ρv2, p1 = p2 =
√−1

√
μ− V

μ
, p3 =

√−1

√
λ+ 2μ− V

λ+ 2μ
,

� = m × n is the vector product, and ⊗ denotes the tensor product. Here

we have used the explicit expressions of aα and lα (α = 1, 2, 3) given in

(3.36) and (3.158) of [12].

kThe polarization vector
∑3

α=1 cαaα in (8.37) of the Rayleigh wave at the surface
n · x = 0 is also uniquely determined up to a constant multiplicative factor.
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When v = vIsoL =
√

μ
ρ ,

p1 = 0, p3 =
√−1

√
λ+ μ

λ+ 2μ
.

Hence

Z(vIsoL ) = μ

√
λ+ μ

λ+ 2μ
m⊗m−√−1μ(m⊗ n− n⊗m),

whose eigenvalues are 0 and the two real roots of the quadratic equation

of p:

p2 − μ

√
λ+ μ

λ+ 2μ
p− μ2 = 0.

Obviously, this has two roots of opposite sign, which implies that one of

the eigenvalues of Z(v) is negative at v = vIsoL . Therefore, a Rayleigh wave

exists for any m and n. As an example, we show in Fig. 8.2 the variation of

the eigenvalues of Z(v) (0≤ v≤ vL) in (8.61), which pertains to a specific

unstressed and isotropic material.

The phase velocity vIsoR (< vIsoL ) of the Rayleigh wave is obtained

through (8.60) and (8.61) from the equation

V p1
1 + p1p3

V p3
1 + p1p3

+

(
2μ− V

1 + p1p3

)2

= 0,

which is equivalent to the cubic equation

V 3 − 8μV 2 +
8μ2(3λ+ 4μ)

λ+ 2μ
V − 16μ3(λ+ μ)

λ+ 2μ
= 0.

In the next section, using Theorem 8.5 we derive an equation for the

phase velocity of Rayleigh waves (i.e., a secular equation) that propagate

on the free surface of a material in an unstressed and orthotropic or

transversely isotropic state and study the perturbation of the phase velocity

caused by the presence of the initial stress and/or caused by the deviation

of the incremental elasticity tensor from its comparative orthotropic or

transversely isotropic state.
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358 K. Tanuma & C.-S. Man

Fig. 8.2. Variation of the three eigenvalues of Z(v) in the interval 0≤ v <vL (black
curves) which pertains to mild steel in an unstressed and isotropic state whose effective
elastic coefficients are given by (8.33) with λ = 107.4, μ = 81.9 (GPa) and whose density
is given by ρ = 7837 kg/m3. In this figure, the subsonic range is divided into 300 sub-
intervals of equal length and the three eigenvalues are computed at each partition point.
The figure was produced by a Matlab program written under the first author’s joint work
with Samuli Siltanen at University of Helsinki in the spring of 2014.

8.5. Perturbation of the Phase Velocity of Rayleigh Waves

in Prestressed Anisotropic Media When the Base

Material is Orthotropic

Let us turn to the constitutive equation (8.2). As a base material we take

an orthotropic mediuml with elasticity tensor C
Orth. Suppose the base

material can be such that it occupies the half-space x3 ≤ 0 and its planes

of reflectional symmetry coincide with the three coordinate planes. Then

lWe say that an elastic material is orthotropic if there exist three mutually orthogonal
planes such that (8.6) holds for any orthogonal tensor Q = (Qij)i,j=1,2,3 pertaining to
a reflection with respect to one of these planes.
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Propagation of Rayleigh Waves in Anisotropic Media 359

the elasticity tensor COrth is expressed with the Voigt notation as

C
Orth = (COrth

rs ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C55 0

Sym. C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.62)

Suppose that the incremental elasticity tensor L is composed of an

orthotropic part C
Orth and a perturbative part A, the latter of which

expresses a deviation of the material from its orthotropic unperturbed state.

For the perturbative part A, we assume the major and minor symmetries

aijkl = aklij = ajikl, i, j, k, l = 1, 2, 3

but do not assume any material symmetry. In the Voigt notation, A can be

written as

A = (ars) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15 a16

a22 a23 a24 a25 a26

a33 a34 a35 a36

a44 a45 a46

a55 a56

Sym. a66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.63)

and the 21 components in the upper triangular part of matrix (8.63) are

generally all independent. In this setting, L can be written as a fourth-order

tensor on symmetric tensors E in the form

L[E] = C
Orth[E] + A[E]; (8.64)

here the comparative orthotropic part C
Orth and the perturbative part A

are also treated as fourth-order tensors on E. In this section, we shall

investigate how A affects the phase velocity of Rayleigh waves.

We also consider the change of the phase velocity of Rayleigh waves

due to the presence of the initial stress. We assume that the surface x3 = 0

of the half-space is free of traction. Since the initial stress is here taken

to be homogeneous, zero traction at the boundary x3 = 0 implies that the
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360 K. Tanuma & C.-S. Man

components T
◦
i3 (i = 1, 2, 3) of T

◦
must vanish. Then the second-order tensor

T
◦
is represented by a 3× 3 matrix as

T
◦
=

⎛
⎜⎜⎜⎝
T
◦
11 T

◦
12 0

T
◦
12 T

◦
22 0

0 0 0

⎞
⎟⎟⎟⎠. (8.65)

Thus, in our constitutive equation (8.2) with (8.64), A and T
◦
express

the deviation of the medium in question from its comparative orthotropic

and unstressed state and then we consider what influence A and T
◦
exert

upon the phase velocity of Rayleigh waves that propagate along the surface

of the material half-space.

Remark 8.3. As we mentioned in Section 8.2, L generally depends on T
◦
.

Hence A also may depend on T
◦
. Throughout this chapter, except for the

model studied in Sec. 8.6 we will keep the dependence of L and A on T
◦

implicit. Thus, in Theorem 8.6, Remark 8.4 and below, when we refer to

the effect of T
◦
on the perturbation formulas, we mean only the contribution

of the initial stress through the HT
◦
term in (8.2).

For an orthotropic base material whose elasticity tensor is given by

(8.62), when there exist Rayleigh waves propagating along the surface of

the half-space x3 ≤ 0 in the direction of the 2-axis, the phase velocity vOrth
R

satisfies the secular equation

ROrth(v) = 0, (8.66)

where

ROrth(v) = C33C44(C22 − V )V 2 − (C44 − V )
(
C33(C22 − V )− C2

23

)2
(8.67)

and V = ρv2. Equations (8.66) and (8.67) follow from (8.59) (cf. [27]).

As mentioned in the introduction of this chapter, our purpose is to

derive a perturbation formula that shows how A and T
◦
affect the phase

velocity of Rayleigh waves from its comparative orthotropic and unstressed

value vOrth
R . Now we state a theorem that gives the perturbation formula.

Theorem 8.6. In a prestressed medium whose incremental elasticity

tensor L and initial stress T
◦
are given by (8.64) and (8.65) respectively,
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Propagation of Rayleigh Waves in Anisotropic Media 361

the phase velocity of Rayleigh waves which propagate along the surface of

the half-space x3 ≤ 0 in the direction of the 2-axis can be written, up to

terms linear in the perturbative part A of L and the initial stress T
◦
, as

vR = vOrth
R − 1

2ρvOrth
R

[
γ22(v

Orth
R )a22

+ γ23(v
Orth
R )a23 + γ33(v

Orth
R )a33 + γ44(v

Orth
R )a44 − T

◦
22

]
, (8.68)

where

γij(v) =
Nij(v)

D(v)
({ij} = {22}, {23}, {33}, {44}), (8.69)

N22(v) = C33[−2C44(C22C33 − C2
23) + 2(C22C33 − C2

23 + C33C44)V

+ (C44 − 2C33)V
2],

N23(v) = 4C23(C44 − V )(C22C33 − C2
23 − C33V ),

N33(v) = (C22 − V )[−2C44(C22C33 − C2
23) + 2(C22C33 − C2

23 + C33C44)V

+ (C44 − 2C33)V
2] =

C22 − V

C33
N22(v),

N44(v) =
−V
C44

(C22C33 − C2
23 − C33V )2,

D(v) = (C22C33 − C2
23 + 2C33C44)23)(C22C33 − C2

+2C33[C22C44 − 2(C22C33 − C2
23)− C33C44]V

+3C33(C33 − C44)V
2,

V = ρv2.

Remark 8.4. Only four components a22, a23, a33 and a44 of the

perturbative part A of L and one component T
◦
22 of the initial stress T

◦
in the

HT
◦
term of (8.2) affect the first-order perturbation of the phase velocity

vR. This is also true for the case where the base material is unstressed

and isotropic [13]. When the base material is generally anisotropic, Song

and Fu [28] obtained a formula on the first-order perturbation of the phase

velocity of Rayleigh waves; that formula involves the eigenvalues and the

eigenvectors of Stroh’s eigenvalue problem for the base material. Also, they

applied their formula to the case where the base material is monoclinic.

There they asserted that for Rayleigh waves polarized in a symmetry plane

of the monoclinic material, which we take to be the 2–3 plane in this
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362 K. Tanuma & C.-S. Man

instance, the first-order perturbation of vR will not involve any components

of A in which suffix 1 appears at least once, i.e., no components of A other

than a22, a23, a24, a33, a34 and a44 will affect the first-order perturbation of

vR. For more discussion on work [28] refer to [17].

When the base material is transversely isotropicm and the axis of

symmetry coincides with the 3-axis, its elasticity tensor CTrans is expressed

in the Voigt notation as

C
Trans = (CTrans

rs ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

C44 0

Sym . (C11 − C12)/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.70)

Corollary 8.4. In a prestressed medium whose incremental elasticity

tensor L and initial stress T
◦
are given by L = C

Trans + A and (8.65),

respectively, the first-order perturbation formula for the phase velocity of

Rayleigh waves that propagate along the surface of the half-space x3 ≤ 0

in the direction of the 2-axis is given by (8.68) and (8.69) with C22 and

C23 there replaced by C11 and C13 of (8.70), respectively, and with vOrth
R

replaced by the phase velocity vTransR of Rayleigh waves propagating on the

surface of the half-space x3 ≤ 0 of the comparative transversely isotropic

and unstressed medium, which solves (8.66) under the aforementioned

replacements of the components of the elasticity tensor.

Remark 8.5. Note that in Theorem 8.6 the 2-axis is an axis of two-

fold rotational symmetry of the orthotropic base material. Hence formula

(8.68) and its obvious modification are applicable only to two propagation

directions in the x3 = 0 plane. On the other hand, when the base material

is transversely isotropic with the 3-axis being the ∞-axis, any propagation

direction in the x3 = 0 plane can be used to define the 2-axis. Thus

Corollary 8.4 is applicable to any propagation direction of Rayleigh waves.

mWe say that an elastic material is transversely isotropic if there exists a unit vector
n such that (8.6) holds for any orthogonal transformation Q = (Qij)i,j=1,2,3 which
satisfies Qn = n or Qn = −n.
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Propagation of Rayleigh Waves in Anisotropic Media 363

For a base material with T
◦
= 0, A = O and L = C

Orth, the limiting

velocity vOrth
L of the surface waves that propagate along the surface of the

half-space x3 ≤ 0 in the direction of the 2-axis is given by

ρ(vOrth
L )2 = min(C66, V

∗), (8.71)

where

V ∗ = sup{0 < V ≤ min(C22, C44) |
√
C33(C22 − V )

+
√
C44(C44 − V ) ≥ |C23 + C44|},

and the corresponding surface impedance matrix is given by

ZOrth(v) = (Zij)i↓j→1,2,3 = ZOrth(v)
T
, (8.72)

Z11 =
√
C55(C66 − V ), Z12 = Z13 = 0, Z22 =

√
C44(C22 − V )H

G
,

Z23 =
−√−1

√
C44J

G
, Z33 =

√
C33(C44 − V )H

G
,

where

H = H(V ) =

√(√
C33(C22 − V ) +

√
C44(C44 − V )

)2
− (C23 + C44)

2
,

G = G(V ) =
√
C33(C22 − V ) +

√
C44(C44 − V ),

J = J(V ) =
√
C33C44(C22 − V )− C23

√
C44 − V

and V = ρv2 (cf. [11, Sec. 12-10] and [12, Sec. 3.8]).

From Theorem 8.5 it can be proved (cf. [11, 12]) that Rayleigh waves

that propagate along the surface of the half-space x3 ≤ 0 in the direction

of the 2-axis exist if V ∗ ≤ C66 and that the secular equation for the phase

velocity of the Rayleigh waves in the base material is given by Z22Z33 +

Z2
23 = 0, which is found to be equivalent to (8.66).

Sketch of Proof of Theorem 8.6. Below we shall briefly sketch a derivation

of the perturbation formula (8.68) in Theorem 8.6. We will investigate the

effects of A and T
◦
on the surface impedance matrix Z(v) pertaining to the

surface waves that propagate in the direction of the 2-axis along the surface

of the half-space x3 ≤ 0 of an elastic medium whose incremental elasticity

tensor and the initial stress have the form (8.64) and (8.65), respectively.
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364 K. Tanuma & C.-S. Man

Since we are concerned with the terms in vR up to those linear in the

perturbative part A of L and the initial stress T
◦
, suppose that we can write

the surface impedance matrix Z(v), up to terms linear in A and T
◦
, as

Z(v) ≈ ZOrth(v) + ZPtb(v).

We will use the notation ≈ to indicate that we are retaining terms up to

those linear in the perturbative part A of L and the initial stress T
◦
and are

neglecting the higher-order terms. Note that each component of ZPtb(v) is

a linear function of A and T
◦
. From (8.72) we can write

Z(v) ≈

⎛
⎜⎝
Z11 + ζ11 ζ12 ζ13

ζ12 Z22 + ζ22 Z23 + ζ23

ζ13 −Z23 + ζ23 Z33 + ζ33

⎞
⎟⎠,

where

ZPtb(v) = ZPtb(v)
T
= (ζij)i↓j→1,2,3.

Hence it follows that

det Z(v) ≈ (Z11 + ζ11)(Z22 + ζ22)(Z33 + ζ33)

− (Z11 + ζ11)(Z23 + ζ23)(−Z23 + ζ23)

≈ (Z11 + ζ11)(Z22Z33 + Z2
23 + Z33ζ22 + Z22ζ33 + Z23(ζ23 − ζ23)).

We see from Z11 =
√
C55(C66 − V ) and (8.71) that Z11 > 0 in the subsonic

range 0 < v < vOrth
L of surface waves that propagate along the surface of

the half-space x3 ≤ 0 in the direction of the 2-axis of the base material.

Since T
◦
and A are sufficiently small, Z11 + ζ11 > 0 in the subsonic range

of the surface waves in question. Thus we obtain from Theorem 8.5 an

approximate secular equation for vR:

Δ(v) = 0, (8.73)

where

Δ(v) = Z22Z33 + Z2
23 + Z33ζ22 + Z22ζ33 + Z23(ζ23 − ζ23).

Lemma 8.5. The effects of the initial stress T
◦

and the perturbative

part A of the incremental elasticity tensor L on the approximate secular

equation (8.73), more precisely, on the components ζ22 and ζ33 of ZPtb(v)
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Propagation of Rayleigh Waves in Anisotropic Media 365

and ζ23 − ζ23, to first order of T
◦
and A, come only from a22, a23, a33, a44

and T
◦
22.

To prove this lemma we use the integral representation (8.53) of Z(v).

The matrix S1 can be written as

S1 ≈ SOrth
1 + SPtb

1 . (8.74)

Here

SOrth
1 = SOrth

1 (v) =
1

2π

∫ π

−π
(−TOrth

v (φ)−1ROrth
v (φ)T )dφ

is of zeroth order in T
◦
and A, where

ROrth
v (φ) =

⎛
⎝ 3∑
j,l=1

COrth
ijkl m̃j ñl

⎞
⎠
i↓k→1,2,3

+ ρ v2 cosφ sinφ I,

TOrth
v (φ) =

⎛
⎝ 3∑
j,l=1

COrth
ijkl ñj ñl

⎞
⎠
i↓k→1,2,3

− ρv2 sin2 φI,

and

SPtb
1 = SPtb

1 (v) =
1

2π

∫ π

−π
(−TOrth

v (φ)−1RPtb(φ)T

+TOrth
v (φ)−1TPtb(φ)TOrth

v (φ)−1ROrth
v (φ)T )dφ (8.75)

is of first order in T
◦
and A, where

RPtb(φ) =

3∑
j,l=1

T
◦
jlm̃j ñlI+

⎛
⎝ 3∑
j,l=1

aijklm̃j ñl

⎞
⎠
i↓k→1,2,3

,

TPtb(φ) =

3∑
j,l=1

T
◦
jlñj ñl I+

⎛
⎝ 3∑
j,l=1

aijklñj ñl

⎞
⎠
i↓k→1,2,3

.

We also have

S2 ≈ SOrth
2 + SPtb

2 ,
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where

SOrth
2 = SOrth

2 (v) =
1

2π

∫ π

−π
TOrth
v (φ)−1dφ

is of zeroth order in T
◦
and A and

SPtb
2 = SPtb

2 (v) =
−1

2π

∫ π

−π
TOrth
v (φ)−1TPtb(φ)TOrth

v (φ)−1dφ

is of first order in T
◦
and A. Hence we can deduce from

Z(v) = S−1
2 +

√−1S−1
2 S1 ≈ ZOrth(v) + ZPtb(v)

that

ZPtb(v) = −(SOrth
2 )−1SPtb

2 (SOrth
2 )−1

+
√−1[−(SOrth

2 )−1SPtb
2 (SOrth

2 )−1SOrth
1 + (SOrth

2 )−1SPtb
1 ]

= − (SOrth
2 )−1SPtb

2 ZOrth(v) +
√−1(SOrth

2 )−1SPtb
1 . (8.76)

Looking carefully at the components ζ22 and ζ33 of (8.76) and ζ23 − ζ23, we

can confirm the lemma. For details refer to [17].

From the lemma we immediately obtain the following proposition.

Proposition 8.3. The effects of the initial stress T
◦
(cf. Remark 8.3) and

the perturbative part A of the incremental elasticity tensor L on the phase

velocity vR, to first order of T
◦
and A, come only from a22, a23, a33, a44

and T
◦
22.

This proposition allows us to reduce the case where the perturbative

part A is generally anisotropic and the initial stress T
◦
is generally given

by (8.65) to the orthotropic case with uniaxial stress in the propagation

direction, which provides a highly simplified derivation of the perturbation

formula (8.68). The argument is similar to that which is given at the end of

Section 8.7 for deriving perturbation formula (8.101) in Theorem 8.7 from

Proposition 8.5. For details see [17].

8.6. An Inverse Problem on Recovery of Initial Stress

Consider the body of a composite material, which occupies the half-

space x3 ≤ 0 and, after homogenization, is transversely isotropic (with

the 3-axis defined by the unit vector e3 as the ∞-axis) except for the
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presence of a prestress T
◦
given by (8.65). In this section, we will investigate

what information about the prestress T
◦
could be inferred from boundary

measurements of the phase velocities of Rayleigh waves that propagate

along the free surface.

In the following we will choose the 1- and 2-axes of the Cartesian

coordinate system in question arbitrarily. We assume that the constitutive

equation of the composite material is of the form (cf. [29] for a different but

similar setting)

S = T
◦
+HT

◦
+ L(T

◦
)[E] = T

◦
+HT

◦
+ C[E] + D[T

◦
,E], (8.77)

where the elasticity tensor C and the acoustoelastic tensor D satisfy

QC[E]QT = C[QEQT ], QD[T
◦
,E]QT = D[QT

◦
QT ,QEQT ], (8.78)

respectively, for all orthogonal transformations Q that obey Qe3 =e3 or

Qe3 = − e3. Restriction (8.78)1 dictates that C is given by C
Trans or by

(8.62) with the additional conditions

C11 = C22, C13 = C23, C44 = C55, C66 =
1

2
(C11 − C12). (8.79)

In the following, for simplicity we will adopt the special assumption that

the bilinear function D[T
◦
,E] is isotropic, i.e., it satisfies (8.78)2 for each

orthogonal transformation Q. With the understanding that E and T
◦
are

written as Ekl and T
◦
mn, respectively, we then have [21]

Dijklmn = β1δijδklδmn +
1

2
β2(δikδjl + δilδjk)δmn

+
1

2
β3((δimδjn + δinδjm)δkl + (δkmδln + δknδlm)δij)

+
1

4
β4(δikδlmδjn + δilδkmδjn + δikδlnδjm

+ δilδknδjm + δimδjlδkn + δimδjkδln + δinδjlδkm

+ δinδjkδlm), (8.80)

where β1, β2, β3 and β4 are material constants. Assumption (8.80), while

simplistic in the sense that it could not be expected to be adequate

for a transversely isotropic composite that is strongly anisotropic, serves

the purpose of illustrating all the main issues pertaining to the inverse

problem in question. We refer the reader to Remark 8.6 for further
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368 K. Tanuma & C.-S. Man

comments and to [17] for a full account of the case where D is transversely

isotropic.

Here the acoustoelastic tensor D plays the role of the perturbative part

A in (8.64). It follows from (8.80) that the parameters a22, a23, a33 and a44
in (8.68) are given by the following formulas:

a22 =

3∑
m,n=1

D2222mnT
◦
mn = (β1 + β2)(T

◦
11 + T

◦
22) + 2β3T

◦
22 + 2β4T

◦
22,

(8.81)

a23 =
3∑

m,n=1

D2233mnT
◦
mn = β1(T

◦
11 + T

◦
22) + β3T

◦
22, (8.82)

a33 =

3∑
m,n=1

D3333mnT
◦
mn = (β1 + β2)(T

◦
11 + T

◦
22), (8.83)

a44 =

3∑
m,n=1

D2323mnT
◦
mn =

1

2
β2(T

◦
11 + T

◦
22) +

1

2
β4T

◦
22. (8.84)

Note that T
◦
12 does not appear in these equations.

Let σ1 and σ2 be the principal stresses in the 1–2 plane, and let the

1′- and 2′-axes define the corresponding principal directions of the initial

stress. Let ψ be the angle between the 1′-axis and the 2-axis. We choose

the labels 1′ and 2′ such that 0 < ψ ≤ π/2. The non-trivial components of

the initial stress are then given by

T
◦
11 =

1

2
(σ1 + σ2)− 1

2
(σ1 − σ2) cos 2ψ, T

◦
12 =

1

2
(σ1 − σ2) sin 2ψ,

T
◦
22 =

1

2
(σ1 + σ2) +

1

2
(σ1 − σ2) cos 2ψ.

(8.85)

Substituting the expressions for T
◦
11 and T

◦
22 into Eqs. (8.81)–(8.84),

we have

a22 = (β1 + β2 + β3 + β4)(σ1 + σ2) + (β3 + β4)(σ1 − σ2) cos 2ψ, (8.86)

a23 =

(
β1 +

1

2
β3

)
(σ1 + σ2) +

1

2
β3(σ1 − σ2) cos 2ψ, (8.87)

a33 = (β1 + β2)(σ1 + σ2), (8.88)
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Propagation of Rayleigh Waves in Anisotropic Media 369

a44 =

(
1

2
β2 +

1

4
β4

)
(σ1 + σ2) +

1

4
β4(σ1 − σ2) cos 2ψ. (8.89)

Substituting the preceding expressions and that for T
◦
22 into (8.68), we

obtain for Rayleigh waves propagating in the 2-direction the formula

vR = vTransR +A(σ1 + σ2) +B(σ1 − σ2) cos 2ψ, (8.90)

where vTransR is the solution of the secular equation (8.66) for the unstressed

medium, and

A = − 1

2ρvTransR

(
γ22(β1 + β2 + β3 + β4) + γ23

(
β1 +

1

2
β3

)

+ γ33(β1 + β2) + γ44

(
1

2
β2 +

1

4
β4

)
− 1

2

)
, (8.91)

B = − 1

2ρvTransR

(
γ22(β3 + β4) +

1

2
β3γ23 +

1

4
β4γ44 − 1

2

)
. (8.92)

Now consider Rayleigh waves with propagation direction m = (cos θ,

sin θ, 0) or θ for simplicity, and let vR(θ) be the phase velocity. Let ϕ be

the angle of rotation about the 3-axis that will bring the 1- and 2-axes to

the 1′- and 2′-directions, respectively. Consider a new Cartesian coordinate

system OX ′′Y ′′ wherem is in the direction of the 2′′-axis. Since ψ = θ−ϕ

(see Fig. 8.3) is the angle between the 1′-axis and the 2′′-axis, Eq. (8.90)
dictates that vR(θ) is given by the formula

vR(θ) = vTransR +A(σ1 + σ2) +B(σ1 − σ2) cos 2(θ − ϕ). (8.93)

m

1

1

2

2

Fig. 8.3. The angle between the 1′-axis and the propagation direction is θ − ϕ.
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370 K. Tanuma & C.-S. Man

The recovery of ϕ (i.e., the principal directions of T
◦
), of σ1 − σ2, and

of σ1 + σ2 from boundary measurements of Rayleigh-wave phase velocities

have different degrees of difficulty. We will discuss these problems in turn

below:

(1) Recovery of the principal directions of T
◦
: By measuring vR(θ) for

various θ, we can determine ϕ without any knowledge of vTransR , A, B,

σ1, σ2.

(2) Recovery of σ1 − σ2: Measurement of vR(θ) alone will not suffice for

determination of σ1 − σ2. We will also have to ascertain the value of

the acoustoelastic constant B. If it is feasible to conduct experiments

in which vR(θ) is measured for various θ while the sample is subjected

to additional (known) applied stresses, then B can be determined.

Another possibility is to estimate C22, C23, C33, C44, β3, and β4 through

micromechanical modeling or some homogenization scheme and then

use (8.92) to calculate B.

(3) Recovery of σ1 + σ2: Suppose we can perform experiments such as

those described in item (2) above. After the values of ϕ, B, and σ1−σ2
are ascertained, we can determine the acoustoelastic constant A. But

we still cannot recover σ1 + σ2 from measurement of vR(θ) unless

vTransR has already been found. If the initial stress T
◦
is a result of

the manufacturing process of the composite material, then it may not

be possible to prepare unstressed samples with the same C as that

of the composite material. In that case, getting theoretical estimates

of C22, C23, C33, and C44 through micromechanical modeling or

homogenization would be the only way that might lead us out of this

difficulty. Since we have been treating the effects of the initial stress

T
◦
as a first-order perturbation, we have assumed a priori that the size

of the term A(σ1 + σ2) is at least an order of magnitude smaller than

vTransR . For the approach outlined here to work, the measured value

of vR(θ) and the theoretical estimate of vTransR should be sufficiently

accurate and the size of the acoustoelastic constant A sufficiently large

so that the errors involved do not mask the contribution of σ1 + σ2
when this sum is at significant levels.

Remark 8.6. As mentioned above, for transversely isotropic composites

that are strongly anisotropic, the isotropic assumption (8.80) for D will be

inadequate. It should be replaced by its transversely isotropic counterpart,

which has 16 material constants (instead of four for the isotropic case).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Propagation of Rayleigh Waves in Anisotropic Media 371

The procedure that leads to formula (8.90) for vR and the formula itself,

however, remain valid, although the parameters A and B are now given

by somewhat more complicated formulas that involve, besides elastic

coefficients from C, seven material constants from D (see [17] for details).

The discussion above on the recovery of the principal directions of T
◦
, of

σ1 − σ2, and of σ1 + σ2 from boundary measurements of Rayleigh-wave

phase velocities requires only minor modifications that result from the

fact that the formulas for A and B now involve more material constants.

In fact, the sheer number of such constants might make their experimental

determination arduous or even unfeasible. A potentially more practical

approach is to design experiments based on formula (8.90) to measure the

acoustoelastic constants A and B directly. Alternatively, one may consider

developing micromechanical models or homogenization schemes by which

the material parameters of the homogenized material that appear in C and

D can be estimated from the structure of the composite and the mechanical

properties of its constituents.

8.7. Perturbation of the Polarization Ratio of Rayleigh

Waves in Prestressed Anisotropic Media When the

Base Material is Orthotropic

We consider Rayleigh waves which propagate along the traction-free surface

of the half-space n ·x ≤ 0 in the direction of m with the phase velocity vR.

The displacement field u of such Rayleigh waves at the surface n · x = 0 is

written through (8.37) as

u = apol e
−√−1 k(m·x−vR t), apol =

3∑
α=1

cαaα, (8.94)

where cα ∈ C (α = 1, 2, 3) are the coefficients which satisfy (8.58) and

the vectors aα ∈ C
3 (α = 1, 2, 3) become the first three components of

linearly independent eigenvector(s) or generalized eigenvector(s) of N(0) at

v = vR associated with the eigenvalues of positive imaginary parts (cf. the

paragraph that includes formula (8.58)). The vector apol ∈ C
3 is called the

polarization vector of the Rayleigh waves at n · x = 0.

The Stroh formalism allows us to express the polarization vector apol
in terms of the Rayleigh-wave velocity vR and the real matrices S1(v) and

S3(v) in (8.49).
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372 K. Tanuma & C.-S. Man

Proposition 8.4 ([9]). Let S1(v) and S3(v) be the 3 × 3 real matrices in

(8.49), and let e1 and e2 be orthogonal unit vectors in R
3 such that

S3(vR)e1 �= 0,
(
S3(vR)e1

)× e2 �= 0, (8.95)

where the symbol × denotes the vector product. Then the Rayleigh waves

have at the surface n · x = 0 the polarization vector

apol =
(
S3(vR)e1

)× e2 −
√−1 S1(vR)[

(
S3(vR)e1

)× e2]. (8.96)

The real part a+ and the imaginary part a− of apol define the plane to

which the paths of surface particles are confined, so that their displacements

are expressed by taking the real part of (8.94), i.e.,

a+ cos k(m · x− vRt) + a− sin k(m · x− vRt). (8.97)

It is proved (see [9, Sec. 7.B]) that a+ and a− are linearly independent.

Let us turn to the setting in Section 8.5; the medium has the

incremental elasticity tensor L (8.64), carries the initial stress T
◦
(8.65),

and the constitutive equation is given by (8.2). We consider Rayleigh waves

which propagate along the traction-free surface of the half-space x3 ≤ 0 in

the direction of the 2-axis with the phase velocity vR. Using the component-

wise expression

a+ =

⎡
⎢⎣
a+1

a+2

a+3

⎤
⎥⎦ and a− =

⎡
⎢⎣
a−1
a−2
a−3

⎤
⎥⎦,

we rewrite (8.97) as

⎡
⎢⎣
a+1

a+2

a+3

⎤
⎥⎦ cos k(x2 − vRt) +

⎡
⎢⎣
a−1
a−2
a−3

⎤
⎥⎦ sin k(x2 − vRt). (8.98)

Since the 2-axis agrees with the propagation direction, the longitudinal

component of (8.98) is

a+2 cos k(x2 − vRt) + a−2 sin k(x2 − vRt)

=

√
(a+2 )

2 + (a−2 )2 sin (k(x2 − vRt) + α),
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Propagation of Rayleigh Waves in Anisotropic Media 373

and since Rayleigh waves propagate along the surface x3 = 0, the normal

component of (8.98) is

a+3 cos k(x2 − vRt) + a−3 sin k(x2 − vRt)

=

√
(a+3 )

2 + (a−3 )2 sin (k(x2 − vRt) + β),

where α and β are the angles determined by

tanα =
a+2
a−2

, tanβ =
a+3
a−3

,
(
−π
2
≤ α, β ≤ π

2

)
.

The polarization ratio rR of the Rayleigh waves on the surface x3 = 0

is defined by the ratio of the maximum longitudinal component to the

maximum normal component of the displacements on x3 = 0:

rR =

√
(a+2 )

2 + (a−2 )2√
(a+3 )

2 + (a−3 )2
. (8.99)

In the comparative orthotropic and unstressed medium defined by

L[E] = C
Orth[E], A[E] = 0 and T

◦
= 0, the polarization ratio is given by

rOrth
R =

√
C33V Orth

R

C22C33 − C2
23 − C33V Orth

R

, (8.100)

where V Orth
R = ρ

(
vOrth
R

)2
and vOrth

R satisfies (8.66) (cf. [27])n.

Our purpose in this section is to derive a perturbation formula that

shows how A in (8.64) and T
◦
of the termHT

◦
in (8.2) affect the polarization

ratio of Rayleigh waves from its value rOrth
R for the comparative orthotropic

and unstressed base material (cf. Fig. 8.4).

nThe fractional expression under the square-root sign on the right-hand side of (8.100) is
positive. In fact, the strong convexity condition for COrth implies that C22, C33, C44 > 0,
C22C33 − C2

23 > 0, which leads to ROrth(0) = −C44
(
C22C33 − C2

23

)2
< 0 (see (8.67)).

Suppose that there exists a velocity ṽ (0 < ṽ ≤ vOrth
R ) such that C22C33 − C2

23 −
C33Ṽ = 0, where Ṽ = ρ (ṽ)2. Since (8.71) implies that Ṽ ≤ V Orth

R < ρ
(
vOrth
L

)2 ≤
C22, it then follows that ROrth(ṽ) > 0. Hence there exists v̂ (0 < v̂ < ṽ) such
that ROrth(v̂) = 0, which contradicts Corollary 8.3. Therefore, C22C33 −C2

23 −C33V
decreases monotonically with V ≥ 0 from its positive value at V = 0, but remains
positive as long as V moves between 0 and V Orth

R .
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374 K. Tanuma & C.-S. Man

Fig. 8.4. Change of the polarization vector due to the effects of A and the initial stress.

Theorem 8.7. In a prestressed medium whose incremental elasticity

tensor L and initial stress T
◦
are given by (8.64) and (8.65), respectively, the

polarization ratio of Rayleigh waves which propagate along the surface of

the half-space x3 ≤ 0 in the direction of the 2-axis can be written, to within

terms linear in the perturbative part A of L and the initial stress T
◦
, as

rR = rOrth
R +η22(v

Orth
R ) a22+η23(v

Orth
R ) a23+η33(v

Orth
R ) a33+η44(v

Orth
R ) a44,

(8.101)

where

η22(v) =
−C33C44

√
C44 − V

2E(v)
[(C22C33 − C2

23)
2 − 2(C22C33 − C2

23)C33V

+ (C2
33 − C2

23)V
2],

η23(v) =
C23

√
C44 − V

E(v)
[(C22C33 − C2

23)
2C44 − 2(C22C33 − C2

23)C33C44V

+ (C33 − C22)C33C44V
2],

η33(v) =

√
C44 − V

2C33E(v)
[2C22(C22C33 − C2

23)
2C33C44 − (C22C33 − C2

23)

× ((C22C33 − C2
23)(2C22C33 + C2

23) + 4C22C
2
33C44

)
V

+C33

(
2(C22C33 − C2

23)(2C22C33 + C2
23)

−C22(C22C33 + C2
23 − 2C2

33)C44

)
V 2

−C33

(
C22C33(2C33 − C44) + C2

23(C33 − 2C44)
)
V 3],
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Propagation of Rayleigh Waves in Anisotropic Media 375

η44(v) =
C22C33 − C2

23

2C44D(v)

√
C33(C22C33 − C2

23 − C33V )V ,

E(v) =
√
C44(C22 − V )(C22C33 − C2

23 − C33V )V D(v)V ,

and D(v) is given in (8.69) and V = ρv2.

Remark 8.7. Only four components a22, a23, a33 and a44 of the

perturbative part A of L can affect the first-order perturbation of the

polarization ratio rR. To first order, the HT
◦

term in (8.2) has no

perturbative effect on rR.

Proof. First we make use of (8.96) to obtain an expression of apol which

is correct up to terms linear in the perturbative part A of L and the initial

stress T
◦
. In a parallel way in which we have derived (8.74), we get

S3 ≈ SOrth
3 + SPtb

3 . (8.102)

Here

SOrth
3 =SOrth

3 (v)=
1

2π

∫ π

−π
(−QOrth

v (φ) +ROrth
v (φ)TOrth

v (φ)−1ROrth
v (φ)T ) dφ

is of zeroth order in T
◦
and A, where

QOrth
v (φ) =

⎛
⎝ 3∑
j,l=1

COrth
ijkl m̃jm̃l

⎞
⎠
i↓k→1,2,3

− ρv2 cos2φ I,

and

SPtb
3 = SPtb

3 (v) =
1

2π

∫ π

−π
(−QPtb(φ) +RPtb(φ)TOrth

v (φ)−1ROrth
v (φ)T

+ROrth
v (φ)TOrth

v (φ)−1RPtb(φ)T

−ROrth
v (φ)TOrth

v (φ)−1TPtb(φ)TOrth
v (φ)−1ROrth

v (φ)T ) dφ

is of first order in T
◦
and A, where

QPtb(φ) =

3∑
j,l=1

T
◦
jlm̃jm̃l I+

⎛
⎝ 3∑
j,l=1

aijklm̃jm̃l

⎞
⎠
i↓k→1,2,3

,

and the matrices ROrth
v (φ), TOrth

v (φ), RPtb(φ), and TPtb(φ) have been

defined in the proof of Lemma 8.5.
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376 K. Tanuma & C.-S. Man

The Rayleigh waves in question propagate along the surface of the half-

space x3 ≤ 0 in the direction of the 2-axis. Hence we take

m = (0, 1, 0) and n = (0, 0, 1).

Then Theorem 8.4 and formula (8.72) imply that

(
SOrth
2

)−1
=

⎛
⎜⎝
Z11 0 0

0 Z22 0

0 0 Z33

⎞
⎟⎠, SOrth

1 =

⎛
⎜⎝

0 0 0

0 0 T23

0 T32 0

⎞
⎟⎠, (8.103)

where

T23 = T23(v) =
−1√

C22 − V

J

H
,

T32 = T32(v) =

√
C44

C33(C44 − V )

J

H
, V = ρv2,

which, together with the first identity of (8.56), gives

SOrth
3 = − (SOrth

2

)−1
(
I+

(
SOrth
1

)2)
=

⎛
⎜⎝
S11 0 0

0 S22 0

0 0 S33

⎞
⎟⎠, (8.104)

where

S11 = S11(v) = −
√
C55(C66 − V ),

S22 = S22(v) =

√
C44√

C33(C44 − V )GH

×
(√

C44 J
2 −

√
C33(C22 − V )(C44 − V )H2

)
,

S33 = S33(v) =

√
C33(C44 − V )√
C44(C22 − V )

S22, V = ρv2.

Let tij = tij(v) and sij = sij(v) be the (i, j) components of the matrices

SPtb
1 (v) and SPtb

3 (v), respectively. They are linear functions of A and T
◦
.

We see from (8.74) and the second formula in (8.103) that

S1(v) ≈ SOrth
1 (v) + SPtb

1 (v) =

⎛
⎜⎝
t11 t12 t13

t21 t22 T23 + t23

t31 T32 + t32 t33

⎞
⎟⎠, (8.105)
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and from (8.102) and (8.104) that

S3(v) ≈ SOrth
3 (v) + SPtb

3 (v) =

⎛
⎜⎝
S11 + s11 s12 s13

s12 S22 + s22 s23

s13 s23 S33 + s33

⎞
⎟⎠.
(8.106)

Let us put e1 = (1, 0, 0) and e2 = (0, 1, 0) in the formula (8.96). From

(8.106) it follows that

S3(v)e1 ≈ (SOrth
3 + SPtb

3 )(v)e1 = (S11 + s11, s12, s13)
T

and

(S3(v)e1)× e2 ≈ (
(SOrth

3 + SPtb
3 )(v)e1

)× e2 = (−s13, 0, S11 + s11)
T .

Since A and T
◦
are sufficiently small, vR is close to vOrth

R and sij(vR) (1 ≤
i ≤ j ≤ 3) are sufficiently small. From (8.71) and vOrth

R < vOrth
L it follows

that S11(v
Orth
R ) < 0 and S11(vR) < 0. Hence the preceding two vectors

do not vanish at v = vR, which guarantees the assumptions (8.95). Thus,

by (8.105) and (8.106), the formula (8.96) can be written, to within terms

linear in A and T
◦
, as

apol =
(
I−√−1S1(vR)

)
[
(
S3(vR)e1

)× e2]

≈
(
I−√−1(SOrth

1 (vR) + SPtb
1 (vR))

)
[((SOrth

3 (vR) + SPtb
3 (vR))e1)× e2]

=

⎛
⎜⎝

1−√−1 t11 −√−1 t12 −√−1 t13

−√−1 t21 1−√−1 t22 −√−1 (T23 + t23)

−√−1 t31 −√−1 (T32 + t32) 1−√−1 t33

⎞
⎟⎠
v=vR

×

⎛
⎜⎝

−s13
0

S11 + s11

⎞
⎟⎠
v=vR

≈

⎛
⎜⎝

−s13
0

S11 + s11

⎞
⎟⎠
v=vR

+
√−1

⎛
⎜⎝

−S11 t13

−T23 (S11 + s11)− S11 t23

−S11 t33

⎞
⎟⎠
v=vR

.
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Hence a real form of the displacements on the surface x3 = 0 of the Rayleigh

waves is given from (8.97), to first order in A and T
◦
, as⎛

⎜⎝
−s13(vR)

0

S11(vR) + s11(vR)

⎞
⎟⎠ cos k(x2 − vRt)

+

⎛
⎜⎝

−S11(vR) t13(vR)

−T23(vR) (S11 + s11) (vR)− S11(vR) t23(vR)

−S11(vR) t33(vR)

⎞
⎟⎠ sin k(x2 − vRt).

(8.107)

From (8.98), (8.99) and (8.107) it follows that

rR ≈ |T23(vR) (S11 + s11) (vR) + S11(vR) t23(vR)|
|S11(vR) + s11(vR)| . (8.108)

We recall that S11(vR) < 0 when A and T
◦
are sufficiently small. On the

other hand, from (8.71) and vOrth
R < vOrth

L it follows that H(V Orth
R ) >

0, where V Orth
R = ρ (vOrth

R )2. Moreover,
√
C33(C22 − V Orth

R ) > C23 (see

footnote “n”) and
√
C44 >

√
C44 − V Orth

R imply that J(V Orth
R ) > 0. Hence∣∣∣

T23(v
Orth
R )

∣∣∣
is positive.o Thus we obtain from (8.108)

rR ≈
∣∣∣∣∣∣T23(vR) + S11(vR) t23(vR)

S11(vR) + s11(vR)

∣∣∣∣∣∣ ≈ |T23(vR) + t23(vR)|. (8.109)

Recalling that t23(v) is a linear function of A and T
◦
, we get

t23(vR) ≈ t23(v
Orth
R ). (8.110)

Moreover, it follows from the Taylor expansion of T23(v) around v = vOrth
R

that

T23(vR) ≈ T23(v
Orth
R ) + T ′

23(v
Orth
R ) (vR − vOrth

R ). (8.111)

Therefore, we obtain

rR ≈ ∣∣∣
T23(v

Orth
R ) + T ′

23(v
Orth
R ) (vR − vOrth

R ) + t23(v
Orth
R )

∣∣∣
. (8.112)

oUsing (8.66), we easily check that
∣
∣T23(vOrth

R )
∣
∣ = rOrth

R .
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Proposition 8.5. The effects of the initial stress T
◦
and the perturbative

part A of the incremental elasticity tensor L on the polarization ratio rR,

to first order of T
◦
and A, come from a22, a23, a33, a44 and T

◦
22.

Proof. Theorem 8.6 implies that the effects of T
◦
and A on vR − vOrth

R , to

first order of T
◦
and A, come from a22, a23, a33, a44 and T

◦
22. Also, by the

argument that follows (55) of [17], the effects of T
◦
and A on t23(v), to first

order of T
◦
and A, come from a22, a23, a33, a44 and T

◦
22. �

This proposition allows us to reduce the case where the perturbative

part A is generally anisotropic and the initial stress T
◦
is generally given

by (8.65) to the orthotropic case with uniaxial stress in the propagation

direction, which provides a highly efficient derivation of the perturbation

formula (8.101).

Indeed, consider another prestressed elastic half-space x3 ≤ 0 (II) with

incremental elasticity tensor

L
Orth[E] = C

Orth[E] + A
Orth[E], (8.113)

where the principal part C
Orth is exactly the same as that of the given

prestressed medium (I), and the perturbative part A
Orth is orthotropic

with the coordinate planes xi = 0 (i = 1, 2, 3) as the planes of reflection

symmetry and has its non-trivial components exactly the same as the

corresponding ones in the perturbative part A of the given medium (I).

Clearly L
Orth is orthotropic and has the coordinate planes xi = 0 (i =

1, 2, 3) as the planes of reflection symmetry. Furthermore, we assume that

the initial stress in the half-space (II) has the form T
◦
= diag(0, T

◦
22, 0) and

consider Rayleigh waves that propagate along its free surface. The following

proposition is a simple extension of [27] (see also [19, Proposition 6.4]).

Proposition 8.6. The polarization ratio of Rayleigh waves which

propagate in the direction of the 2-axis along the surface of the prestressed

orthorhombic half-space (II) is given by

rL-Orth
R =

√√√√√ L33(V L-Orth
R − T

◦
22)

L22L33 − L2
23 − L33(V L-Orth

R − T
◦
22)

, (8.114)
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where V L-Orth
R = ρ (v L-Orth

R )2. Here vL-Orth
R , the phase velocity of the

Rayleigh waves described above, satisfies the secular equation

RL-Orth(v) = 0, (8.115)

where

RL-Orth(v) = L33L44(L22 − (V − T
◦
22))(V − T

◦
22)

2

− (L44 − (V − T
◦
22))(L33(L22 − (V − T

◦
22))− L2

23)
2 (8.116)

and V = ρv2.

The components of the perturbative part AOrth and of the initial stress

T
◦
included in r L-Orth

R are, through (8.113), a22, a23, a33, a44 and T
◦
22. By

Proposition 8.5, these are exactly the same components that affect the

first-order perturbation of the polarization ratio rR of the given prestressed

medium (I). Hence it should also be possible to obtain from (8.114) the

perturbation formula for the polarization ratio of the Rayleigh waves in

question, i.e., Rayleigh waves which propagate in the direction of the 2-axis

on the surface of the given prestressed elastic half-space x3 ≤ 0 (I) whose

incremental elasticity tensor and the initial stress have the forms (8.64) and

(8.65), respectively.

In fact, observing that

r L-Orth
R

∣∣∣∣∣∣
AOrth=0,T

◦
=0

= rOrth
R ,

from the Taylor expansion of rR around (AOrth,T
◦
) = (0,0) we get

rR ≈ rOrth
R +

∑
r,s

∂r L-Orth
R

∂ars

∣∣∣∣∣∣
AOrth=0,T

◦
=0

ars +
∂r L-Orth
R

∂T
◦
22

∣∣∣∣∣∣
AOrth=0,T

◦
=0

T
◦
22,

(8.117)

where the summation
∑

r,s on the right-hand side is taken for the indices

(r, s) = (2, 2), (2, 3), (3, 3) and (4, 4)p.

p rL-Orth
R is independent of T

◦
22, because (8.115) and (8.116) imply that V L-Orth

R −T
◦
22 is

independent of T
◦
22, and by (8.114), so is r L-Orth

R . Hence the last term on the right-hand
side of (8.117) vanishes.
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We see from (8.64) that

∂r L-Orth
R

∂ars

∣∣∣∣∣∣
AOrth=0,T

◦
=0

=
∂r L-Orth
R

∂Lrs

∣∣∣∣∣∣
AOrth=0,T

◦
=0

+
∂r L-Orth
R

∂V L-Orth
R

∂V L-Orth
R

∂ars

∣∣∣∣∣∣
AOrth=0,T

◦
=0

. (8.118)

On the other hand, it follows that

∂V L-Orth
R

∂ars

∣∣∣∣∣∣
AOrth=0,T

◦
=0

= −γrs, (r, s) = (2, 2), (2, 3), (3, 3) and (4, 4),

where γrs are the coefficients of the perturbation formula for the phase

velocity given by (8.69). Since r L-Orth
R is given by (8.114) explicitly, we

can calculate directly its derivatives in (8.118). Therefore, from (8.117) and

(8.118) we obtain Theorem 8.7. �

Remark 8.8. A comparison of the formulas (8.68) in Theorem 8.6 and

(8.101) in Theorem 8.7 reveals that in the context of Section 8.6, in parallel

to (8.93) for angular dependence of Rayleigh-wave velocity, we have the

formula

rR(θ) = rTransR + C(σ1 + σ2) +D(σ1 − σ2) cos 2(θ − ϕ) (8.119)

for angular dependence of polarization ratio, where

C = η22(β1 + β2 + β3 + β4) + η23

(
β1 +

1

2
β3

)

+ η33(β1 + β2) + η44

(
1

2
β2 +

1

4
β4

)
, (8.120)

D = η22(β3 + β4) +
1

2
β3η23 +

1

4
β4η44. (8.121)

Formula (8.119) can be used instead of (8.93) in non-destructive evaluation

of stress. In fact, doing so may be advantageous for materials where rR is

more sensitive than vR to changes in initial stress (cf. the discussion at the

end of the introduction). On the other hand, (8.119) and (8.93) are formulas

with the same structure. The discussion and caveats given in Section 8.6 on

using (8.93) for recovery of initial stress (see the paragraph that precedes

Remark 8.6) applies almost verbatim to using (8.119) for that purpose.
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Abstract

Over the last decades, an increasing number of functional and structural
parts, made so far with metals, has been progressively reengineered by
replacing metallic materials by polymers, reinforced polymers and composites.
The motivation for this substitution may be the weight reduction, the
simpler, cheaper or faster forming process, or the ability to exploit additional
functionalities. The fillers usually employed cover a broad range involving many
scales: (i) the nanometer scale (e.g., carbon nanotubes, graphene, fullerene,
nanodiamonds); (ii) the micrometer to the millimeter scale (particles and
short fibers); (iii) the centimeter scale of fibers used in SMC and BMC
composite processes; and finally (iv) the macroscopic scale where fibrous
reinforcements are made of continuous fibers arranged in bundles. When load-
bearing capacities are especially looked for, continuous fiber-reinforcement
polymers are selected. In that case, the impregnation of the reinforcement
with a low viscosity polymer involves the flow of a Newtonian or non-

Newtonian fluid in the complex multi-scale microstructure related to the
fiber and tow arrangement. Reinforced polymers are selected instead of high
performance polymers of equivalent properties since the latter are generally
more expensive. When looking for functional properties, the use of nano-
charges opens a wide spectrum of possibilities but also raises new challenges,
such as dispersion of charges into the polymer matrix and occurrence of
aggregation and disaggregation mechanisms. Suspensions of practical interest
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involve many scales and many concentration regimes, the latter ranging from
dilute to highly concentrated. In the present chapter, we survey modern
developments related to the multi-scale modeling and simulation of reinforced
polymers and composites.

Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 386

9.2 Reinforced Polymers . . . . . . . . . . . . . . . . . . . . . 388

9.2.1 Fiber suspensions in Newtonian fluids . . . . . . . 390

9.2.2 Fiber suspensions in non-Newtonian fluids . . . . . 393

9.3 Multi-Physics in Laminates . . . . . . . . . . . . . . . . . . 395

9.3.1 PGD at a glance . . . . . . . . . . . . . . . . . . . 398

9.3.2 Heat transfer in laminates . . . . . . . . . . . . . . 400

9.3.2.1 Computing R(x) from S(z) . . . . . . . . 402

9.3.2.2 Computing S(z) from R(x) . . . . . . . . 403

9.3.3 3D RTM . . . . . . . . . . . . . . . . . . . . . . . . 404

9.3.4 The elastic problem defined in plate domains . . . 406

9.3.5 3D elastic problem in a shell domain . . . . . . . . 409

9.3.5.1 Shell representation . . . . . . . . . . . . 409

9.3.5.2 Weak form . . . . . . . . . . . . . . . . . 409

9.3.5.3 In-plane–out-of-plane separated

representation . . . . . . . . . . . . . . . 410

9.3.6 Squeeze flow in composite laminates . . . . . . . . 411

9.3.6.1 Stokes model . . . . . . . . . . . . . . . . 412

9.3.6.2 Power-law fluid . . . . . . . . . . . . . . . 415

9.3.6.3 Brinkman’s model . . . . . . . . . . . . . 415

9.3.6.4 Squeeze flow of multiaxial laminates . . . 416

9.3.7 Electromagnetic models in laminates . . . . . . . . 419

9.4 Coupled Physics at Interfaces . . . . . . . . . . . . . . . . 420

9.4.1 Surface representation . . . . . . . . . . . . . . . . 421

9.4.2 High-resolution numerical solution . . . . . . . . . 423

9.4.3 Surface evolution during the in-situ .

consolidation . . . . . . . . . . . . . . . . . . . . . 426

9.4.4 Consolidation simulation strategy . . . . . . . . . . 432

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 433

9.1. Introduction

Composites manufacturing processes involve many different physics and

length and timescales. When considering reinforced polymers the main issue
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is related to the flow induced anisotropy, whose prediction and control is

needed in order to optimize both, the processes and the manufactured

parts. Standard reinforced polymers flow models were developed under

a number of strong hypotheses. Most of them are based on the fact of

considering dilute suspensions with the reinforcement (consisting of nano

or micro particles) immersed into a Newtonian fluid that flows in complex

geometries. Moreover, those particles are assumed rigid enough to neglect

eventual deformations and their kinematics assumed unperturbed by any

eventual confinement effect occurring when the characteristic particles

length is of the same order than the gap in which the suspension is flowing.

The first part of the present chapter focuses on the state of the art and the

most recent developments of flow involving reinforced polymers.

When considering long-fibers composites, an important issue concerns

the nature of the macroscopic models defined in plate or shell domains

characterized by having a dimension (the thickness) several orders of

magnitude lower than the other representative in-plane dimensions. This

fact, even if it is not a major conceptual issue, is a real handicap for

simulation purposes. This situation is not new; plate and shell theories

were successfully developed many years ago and they were intensively

used in structural mechanics. These theories make use of some kinematic

and mechanic hypotheses to reduce the 3D nature of mechanical models

to 2D reduced models defined in the shell or plate middle surface. In

the case of elastic behaviors, the derivation of such reduced models is

quite simple and it constitutes the foundations of classical plate and

shell theories. Today, most commercial codes for structural mechanics

applications propose different type of plate and shell finite elements, even

in the case of multilayered composites plates or shells.

However, in composites manufacturing processes the physics

encountered in such multilayered plate or shell domains is much more rich,

because usually it involves chemical reactions, crystallization and strongly

coupled thermomechanical behaviors. The complexity of the involved

physics makes impossible the introduction of pertinent hypotheses for

reducing the dimensionality of the model from 3D to 2D. In that case a

fully 3D modeling is compulsory, and because the richness of the thickness

description (many coupled physics and many plies differently oriented)

the approximation of the fields involved in the models needs thousands of

nodes distributed along the thickness direction. Thus, fully 3D descriptions

involve thousands of millions of degrees of freedom that should be solved

many times because of the history-dependent thermomechanical behavior.

Moreover, when we are considering optimization or inverse identification,
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many direct problems have to be solved in order to reach the minimum of

a certain cost function. In the case of inverse analysis, such cost function is

the difference between the predicted and measured fields.

Today, the solution of such fully 3D models involved in composites

manufacturing processes remains intractable despite the impressive progr-

esses reached in mechanical modeling, numerical analysis, discretization

techniques and computer science during the last decade. New numerical

techniques are needed for approaching such complex scenarios, able to

proceed to the solution of fully 3D multiphysics models in geometrically

complex parts (e.g., the whole aircraft). The well-experienced mesh-based

discretizations techniques fail because the excessive number of degrees of

freedom involved in the fully 3D discretizations where very fine meshes

are required in the thickness direction (despite its reduced dimension)

and also in the in-plane directions to avoid too distorted meshes and also

because some processes (e.g., tape placement) implies thermomechanical

loads moving on the plate or shell requiring fine enough meshes of the

plate or shell surfaces. We are in a real impasse. The only getaway is to

explore new discrezation strategies able to circumvent or at least alleviate

the drawbacks related to mesh-based discretizations of fully 3D models

defined in plate or shell domains, as well as the complex plates and shells

assemblages usually encountered in composite structures.

The second part of the present chapter focuses on the modeling

and efficient simulation of numerous models encountered in composites

engineering, requiring rich enough representations (most of time 3D) and

whose models are defined in this kind of degenerated domains (plates and

shells).

Finally, when considering laminates, special attention must be paid in

the appropriate and fine enough representation of physics at the interfaces

where thermal resistances, molecular diffusion, and squeeze flow during

consolidation, occur. The third and last part of the chapter focuses on

the physics encountered during consolidation of composites laminates with

special emphasis on the efficient treatment of physics encountered at the

interfaces level.

9.2. Reinforced Polymers

Fiber suspensions can be described at different scales: (i) the microscopic

scale, related to individual fibers, (ii) the mesoscopic scale, which considers

a population of fibers within a local representative volume, and (iii) the
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macroscopic scale related to the forming process and the final part itself.

For an overview, see the recent monograph [1].

The kinematics of an ellipsoidal particle oriented in direction p (with

‖p‖ = 1) and immersed in a Newtonian fluid flow characterized by the

velocity gradient ∇v are given by the Jeffery equation [2]

ṗ = Ω · p+ F (D · p−∇v : (p⊗ p)p), (9.1)

where D = 1/2
(∇v + (∇v)T

)
, Ω = 1/2

(∇v − (∇v)T
)
, and the shape

factor F = r2−1
r2+1 depends on the ellipsoid aspect ratio r (major to minor

axes ratio). Note that due to the symmetry of (p ⊗ p), we have ∇v :

(p⊗ p) = D : (p⊗ p).

Mesoscopic kinetic theory models result from the coarsening of

microscopic descriptions. In kinetic theory models, the individuality of

the particles is lost in favor of a statistical description that substitutes

the microscopic entities with a series of conformation coordinates [3, 4].

For example, when considering a suspension of rigid rods, the mesoscopic

description consists in giving the fraction of rods that at position x and

time t are oriented along direction p. This information is contained in

the probability distribution function – pdf – ψ(x, t,p), whose evolution

is governed by the Fokker–Planck equation

∂ψ

∂t
+∇x · (vψ) +∇p · (ṗψ) = 0. (9.2)

The Fokker–Planck equation being highly-dimensional, it cannot be

solved by means of standard mesh-based discretization techniques. This

issue is known as the curse of dimensionality. Solution procedures based

on the use of particles at the mesoscopic scale have been extensively

developed by many authors [5–12]. On the other hand, there are few works

on the solution of the Fokker–Planck equation with standard discretization

techniques [13, 14]. We have proposed in [15, 16] a new solution technique

called Proper Generalized Decomposition (PGD) that allows for the direct

solution of the Fokker–Planck equation in conformation spaces of high

dimension [17, 18].

Finally, at the macroscopic scale, the pdf is substituted with some of

its moments [19, 20], e.g., the second and fourth-order moments, a and A,

that read respectively
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a =

∫
S
p⊗ pψ dp, (9.3)

and

A =

∫
S
p⊗ p⊗ p⊗ pψ dp, (9.4)

where S is the surface of the unit sphere where the orientation vector p is

defined.

Here, the level of detail and the involved physics are sacrificed in favor

of computational efficiency. The equations governing the time evolution of

a are obtained by taking the time derivative of Eq. (9.3), expressing ψ̇ from

Eq. (9.2) and then integrating by parts. This procedure yields

ȧ =

∫
S
(ṗ⊗ p+ p⊗ ṗ)ψ dp, (9.5)

which, in view of Eq. (9.1), leads to

ȧ = ∇v · a+ a · (∇v)T − 2A : ∇v. (9.6)

In order to close the problem, A must be expressed as a function of

the lower-order moment a, using one of the available approximate closure

relations [21–24]. The impact of closure relations on the computed solutions

can be significant [25, 26], and it is a priori unpredictable in most of cases.

Theoretical suspension models not only depend on the chosen scale of

description, but also on the concentration regime considered and on the

nature of the suspending fluid.

9.2.1. Fiber suspensions in Newtonian fluids

For Newtonian suspending fluids, the different concentration regimes

(dilute, semi-dilute, semi-concentrated and concentrated) have been

extensively analyzed from the modeling, simulation and experimental

viewpoints.

In the dilute regime, fiber–fiber interactions are neglected altogether.

For the semi-dilute regime, these interactions are usually taken into account

in the form of a phenomenological randomizing mechanism, i.e., one adds

a diffusion term in the Fokker–Planck equation to obtain

∂ψ

∂t
+∇x · (vψ) +∇p · (ṗψ) = ∇p(Dr∇pψ), (9.7)
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where Dr is a diffusion coefficient. At the macroscopic scale, this leads to

ȧ = ∇v · a+ a · (∇v)T − 2A : ∇v − 6Dr

(
a− I

3

)
. (9.8)

Randomizing effects result from Brownian effects due to thermal

agitation within the suspending fluid and from rod–rod interactions in the

semi-dilute regime. Brownian effects were taken into account in [9, 27, 28],

within the microscopic framework. When randomizing effects are due to

rod–rod interactions, direct numerical simulations [29] suggest that the

diffusion coefficient Dr scales linearly with the strain rate γ̇, i.e., the second

invariant of the rate of strain tensor. Thus, Dr ≈ CI γ̇. Introducing this

linear scaling of the diffusion coefficient into Eq. (9.8) gives the so-called

Folgar–Tucker model [30]:

ȧ = ∇v · a+ a · (∇v)T − 2 ·A : D− 6CI γ̇

(
a− I

3

)
. (9.9)

There is a wide literature on dilute and semi-dilute suspensions,

addressing modeling [31–35], flows [20, 36–38] and rheology [39, 40]. These

models describe quite well the experimental observations.

When the concentration further increases, intense fiber–fiber

interactions occur which must be taken into account appropriately, as for

example, in the model proposed in [41, 42]. Recent experiments suggest that

short fibers in concentrated suspensions align more slowly as a function of

strain than what models based on Jeffery’s equation predict [43]. In order to

address this issue, Wang et al. [43] proposed the use of a strain reduction

factor, but this approach violates the principle of objectivity. Later, the

same authors proposed an objective model by decoupling the time evolution

of both the eigenvalues and the eigenvectors of the second-order orientation

tensor [44]. In [45], an anisotropic rotary diffusion is proposed that accounts

for fiber–fiber interactions; the model parameters were selected by matching

the experimental steady-state orientation in simple shear flow and by

requiring stable steady states and physically realizable solutions.

The most complex scenario is that of the concentrated flow regime

involving entangled suspensions or dense clusters immersed into the

suspending fluid, exhibiting specific kinematics and complex aggregation/

disaggregation mechanisms [46]. The first natural question is how to

describe such systems. At the macroscopic scale, one could try to fit some

power-law constitutive equation, however, this description does not hold for

the microstructure. At the microscopic scale, direct numerical simulations
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describing complex fiber–fiber interactions can be carried out in small-

enough representative volumes [29, 47–49].

A first attempt at describing dilute suspensions composed of rigid and

deformable clusters from a micromechanical point of view was proposed

in [50]. Later, kinematic predictions for rigid and deformable clusters were

compared with direct numerical simulations in [51]. An enriched description

of the kinematics of rigid clusters within a multi-scale framework was

addressed in [52].

In [52], we considered the kinematics of rigid clusters composed of rods.

It is assumed that hydrodynamic forces act on the N beads of the rods

involved in the cluster. The location of each bead Bi with respect to the

cluster center of gravity G is given by Lipi, where pi is the unit vector

pointing from G to Bi, as shown in Fig. 9.1.

A balance of momenta yields the cluster rotary velocity. By defining

the cluster conformation tensor c as follows,

c =

∑N
i=1 L

2
i (pi ⊗ pi)∑N
i=1 L

2
i

, (9.10)

the cluster rotary velocity ω is given by [52]:

ω = (I− c)−1(ε : (∇v · c)), (9.11)

where ε the Levi-Civita permutation tensor.

Entangled systems involving moderately long fibers are generally

described by using some ad hoc adaptations of the Folgar–Tucker model [30].

This model, however, has its origins in the Jeffery equation whose validity

is by construction restricted to the dilute regime. For this reason, the

relevance of this approach must be confirmed from both the theoretical

Fig. 9.1. Rigid cluster composed of rods.
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and experimental viewpoints. Moreover, when the fiber length and the

number of interactions per fiber increase, fiber bending mechanisms are

activated. Attempts at modeling rod bending have been published. Some

consider the rod composed of rigid segments connected by springs activated

by bending [8, 9, 53, 54], while others consider richer dumbbell models [55].

Finally, we addressed in [56] the issue of confinement and highlighted the

related limitations of moment-based descriptions.

9.2.2. Fiber suspensions in non-Newtonian fluids

As mentioned previously, the vast majority of available models are based

on the Jeffery equation [2] that describes the motion of an ellipsoidal

particle immersed in a Newtonian fluid. Nowadays, there is no general

Jeffery counterpart available for non-Newtonian suspending fluids. Different

theoretical studies exist that consider particles immersed in non-Newtonian

fluids. Many of them concern the motion of particles (e.g., sedimentation)

[57–64], others experimental studies on the motion and orientation of fibers

in viscoelastic fluids [65, 66], or theoretical work for second-order fluids

[67, 68]. However, to our knowledge, a multi-scale modeling framework

is lacking that could be exploited in the simulation of forming processes

involving reinforced polymers. Leal [68] and Brunn [67] published important

results for second-order viscoelastic fluids, in the limit of low Weissenberg

numbers. They derived the equations governing the motion of rods (Leal

[68]) and transversely isotropic particles (Brunn [67]) that could be viewed

as the counterparts of the Jeffery equation for the fluids and flow regimes

considered in their derivation. In view of their relevance, we briefly detail

the main ingredients of these two pioneering works.

The study of the kinematics of transversely isotropic particles

suspended in a viscoelastic medium has first been addressed in the work of

Leal [68]. The rheology of the suspending fluid is described by the Rivlin–

Ericksen second-order fluid model. In this case, the dimensionless Cauchy

stress reads

σ = −P I+A1 + ε0
[
(A1)

2 + ε1A2

]
, (9.12)

where P is the isotropic pressure, while the first and second-order Rivlin–

Ericksen tensors A1 and A2 are given, respectively, by

A1 = 2D, (9.13)

and

A2 =
∂D

∂t
+ v · ∇D+ (∇v)T ·D+D · ∇v. (9.14)
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In Eq. (9.12), the material constants ε0 and ε1 are related to

the suspending fluid normal stress coefficients. The flow is considered

rheologically slow, in the sense that the flow characteristic timescale is large

compared to the fluid intrinsic relaxation time. Thus, the dimensionless

number ε0 remains close to zero. Under this assumption, the perturbation

of the velocity field due to presence of the particle differs only slightly from

the one corresponding to a Newtonian suspending fluid. This perturbation

is estimated by performing an asymptotic expansion of the velocity field v

around the particle in terms of powers of ε0:

v = v(0) +
∞∑
i=1

εi0v
(i), (9.15)

and retaining only terms up to first order in ε0. The zeroth-order term

corresponds to the flow field obtained in the Newtonian case. It is deter-

mined from a line Stokeslet distribution along the particle axis of symmetry.

For slender particles, the intensity of the Stokeslet distribution can be

determined analytically as a power series of the particle aspect ratio, by

enforcing the appropriate no-slip condition at the particle surface. In [69],

it was proven that the dominant terms of the series are independent of the

particle geometry.

In the work of Leal [68], only the first-order non-Newtonian

contributions to the flow field generated by these geometry-independent

terms of the Stokeslet distribution are considered. By means of the Lorentz

reciprocal theorem, the resultant force and torque acting on the particle

were calculated without explicitly solving for the velocity and stress field

perturbations. Finally, by enforcing that the particle remains force and

torque-free, the particle rotary velocity ω is determined. However, no

explicit expression for ω is given, but only some particularizations to specific

flows, as for example, the particle rotation in a simple shear flow.

In [67], Brunn later extended Leal’s work to general, transversally

isotropic particles, by introducing the concept of material tensors depending

on the particle geometry and fluid properties. In that work, the fluid

rheology is also described by a second-order fluid model, i.e., that proposed

by Giesekus in [70]. In dimensionless form, this model reads:

σ = −P I+ 2D+ 2

[
κ
(1)
0

(
∂D

∂t
+ v · ∇D−Ω ·D+D ·Ω

)
+ κ

(2)
0 D ·D

]
,

(9.16)

with the material coefficients κ
(1)
0 and κ

(2)
0 given in [67].
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In Brunn’s work, a general expression for the particle rotary velocity is

derived. It consists of a Newtonian contribution enriched with a first-order

non-Newtonian correction. The particle orientation, described by the unit

vector p defining the particle axis, thus evolves according to

ṗ = Ω · p+ F (D · p− (D : (p⊗ p))p)

− (I− p⊗ p) ·D · (H1D · p−H2 (D : (p⊗ p))p), (9.17)

where the scalar F depends, in the case of an ellipsoid or a tri-dumbbell, on

the particle aspect ratio r (i.e., the length ratio of major to minor particle

axes), F = r2−1
r2+1 , and the scalar parameters H1 and H2 depend on the

material tensors associated to the particle and fluid system [67].

The particular case of rigid tri-dumbbells is considered in [67],

establishing the link between tri-dumbbells and ellipsoids. When applied

to a single dumbbell composed of two non-interacting but rigidly-

interconnected beads, emulating rod-like particles, Brunn’s model reduces

to that proposed by Leal [68].

It is important to note that the first term in Eq. (9.17), Ω · p +

F (D · p− (D : (p⊗ p))p), coincides with the classical Jeffery equation for

ellipsoids of aspect ratio r in a Newtonian fluid [2].

Although Brunn’s model provides a detailed description of particle

orientation in a viscoelastic fluid a low Weissenberg number, the first-order

correction term introduces higher powers of p, with important consequences

on the related macroscopic descriptions, as discussed in [71], where it was

proved that a nice compromise consists of assuming standard models (valid

in the case of Newtonian suspending fluids) and considering an effective

velocity gradient that consists in the one related to a Newtonian fluid flow

and an extra-term accounting for the non-Newtonian perturbation. In that

paper, both microscopic and macroscopic descriptions were derived and it

was proved that in simple shear flows of second-order fluids ellipsoid tends

to orient along the vorticity direction instead of aligning along the shear

direction as is the case when considering Newtonian fluids.

9.3. Multi-Physics in Laminates

Plates and shells are very common in nature and thus they inspired

engineers that used both them from the very beginning of structural

mechanics. Nowadays, plates and shells parts are massively present in most

engineering applications.
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This type of structural elements involves homogeneous and

heterogeneous materials, isotropic and anisotropic, linear and nonlinear.

The appropriate design of such parts consists not only in the structural

analysis of the parts for accommodating the design loads, but also in the

analysis of the associated manufacturing processes because many properties

in the final parts are induced by the forming process itself (e.g., flow-induced

microstructures). Thus, fine analyses concern both, the structural parts and

their associated forming processes.

In general, the whole design requires the solution of some mathematical

models governing the evolution of the quantities of interest. These models

consist of a set of partial differential equations combining general balance

equations (mass, energy and momentum) and some specific constitutive

equations depending on the considered physics, the last involving different

material parameters. These complex equations (in general nonlinear and

strongly coupled) must be solved in the domain of interest.

When addressing plate or shell geometries the domains in which the

mathematical models must be solved become degenerated because one

of its characteristic dimensions (the thickness in the present case) is

much lower than the other characteristic dimensions. We will understand

the consequences of such degeneracy later. When analytical solutions

are neither available nor possible because of the geometrical or behavior

complexities, the solution must be calculated by invoking any of the

available numerical techniques (finite elements, finite differences, finite

volumes, methods of particles, . . .).

In the numerical framework the solution is only obtained in a discrete

number of points, usually called nodes, distributed in the domain. From

the solution at those points, it can be interpolated at any other point

in the domain. In general regular nodal distributions are preferred because

they offer better accuracies. In the case of degenerated plate or shell

domains one could expect that if the solution evolves significantly in the

thickness direction, a large enough number of nodes must be distributed

along the thickness direction to ensure the accurate representation of

the field evolution in that direction. In that case, a regular nodal

distribution in the whole domain will imply the use of an extremely large

number of nodes with the consequent impact on the numerical solution

efficiency.

When simple behaviors and domains were considered, plate and shell

theories were developed in the structural mechanics framework allowing,

through the introduction of some hypotheses, reducing the 3D complexity
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to a 2D one related to the problem now formulated by considering the

in-plane coordinates.

In the case of fluid flows this dimensionality reduction is known as

lubrication theory and it allows efficient solutions of fluids flows taking

place in plate or shell geometries for many type of fluids, linear (Newtonian)

and nonlinear. The interest of this type of flows, taking place in plate

and shell geometries, is not only due to the fact that it is involved in the

manufacturing processes of plate and shell parts, but also due to the fact

that many tests for characterizing material behaviors involve it.

However, as soon as richer physics are concerned by the models and the

considered geometries differ of those ensuring the validity of the different

reduction hypotheses, simplified simulations are compromised and they fail

in their predictions.

In these circumstances, the reduction from the 3D model to a 2D

simplified one is not obvious, and 3D simulations appear many times as the

only valid route for addressing such models, that despite the fact of being

defined in degenerated geometries (plate or shell) they seem requiring a

fully 3D solution. However in order to integrate such a calculation (fully

3D and implying an impressive number of degrees of freedom) in usual

design procedures, a new efficient (fast and accurate) solution procedure is

needed.

A new discretization technique based on the use of separated represen-

tations was proposed some years ago for addressing multidimensional

models suffering the so-called curse of dimensionality, where standard mesh-

based techniques fail [15]. The curse of dimensionality was circumvented

thanks to those separated representations that transformed the solution of

a multidimensional problem into a sequence of lower dimensional problems.

The interested reader can refer to the recent reviews [17, 72, 73] and the

references therein.

A direct consequence was separating the physical space. Thus in plate

domains an in-plane–out-of-plane decomposition was proposed for solving

3D flows occurring in RTM (Resin Transfer Moulding) processes [17], then

for solving elasticity problems in plates [74] and shells [75] and coupled

multiphysics problems [50]. In those cases, the 3D solution was obtained

from the solution of a sequence of 2D problems (the ones involving the

in-plane coordinates) and 1D problems (the ones involving the coordinate

related to the plate thickness).

It is important emphasizing the fact that these approaches are radically

different from standard ones. We propose a 3D solver able to compute
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the different unknown 3D fields without the necessity of introducing any

hypothesis. The most outstanding advantage is that 3D solutions can be

obtained with a computational cost characteristic of standard 2D solutions.

The separated representations constructor (solver) is based on the Proper

Generalized Decomposition (PGD).

9.3.1. PGD at a glance

Most of the existing model reduction techniques proceed by projecting

the problem solution onto a reduced basis (this constitutes the wide

class of projection-based model order reduction methods). Therefore, the

construction of the reduced basis usually constitutes the first step in the

solution procedure, giving rise to a second important distinction when

classifying Model Order Reduction (MOR) techniques: a posteriori versus

a priori model order reduction. One must be careful on the suitability of a

particular reduced basis when employed for representing the solution of

a particular problem, particularly if it was obtained through snapshots of

slightly different problems. This difficulty (at least partially) disappears if

the reduced basis is constructed at the same time that the problem is solved

(in other words: a priori with no need for snapshots of different problems).

Thus, each problem has its associated basis in which its solution is

expressed. One could consider few vectors in the basis, leading to a reduced

representation, or all the terms needed for approximating the solution up

to a certain accuracy level. The Proper Generalized Decomposition (PGD),

which is described in general terms in what follows proceeds in this manner.

When calculating the transient solution of a generic problem, say

u(x, t), we usually consider a given basis of space functions Ni(x),

i = 1, . . . , Nn, the so-called shape functions within the finite element

framework, being Nn the number of nodes. They approximate the problem

solution as

u(x, t) ≈
Nn∑
i=1

ai(t)Ni(x). (9.18)

This implies a space-time separated representation where the time-

dependent coefficients ai(t) are unknown at each time instant (when pro-

ceeding incrementally) and the space functions Ni(x) are given “a priori”,

e.g., piece-wise polynomials. POD (Proper Orthogonal Decomposition) and

Reduced Basis methodologies consider a set of global, reduced basis φi(x)
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for approximating the solution instead of the generic, but local, finite

element functions Ni(x). The former are expected to be more adequate

to approximate the problem at hand. Thus, it results

u(x, t) ≈
R∑
i=1

bi(t)φi(x), (9.19)

where it is expected that R � Nn. Again, Eq. (9.19) represents a space-

time separated representation where the time-dependent coefficient must be

calculated at each time instant during the incremental solution procedure.

Inspired from these results, one could consider the general space-time

separated representation

u(x, t) ≈
N∑
i=1

Xi(x) · Ti(t), (9.20)

where now neither the time-dependent functions Ti(t) nor the space

functions Xi(x) are a priori known. Both will be computed on the fly when

solving the problem.

As soon as one postulates that the solution of a transient problem can

be expressed in the separated form (9.20), whose approximation functions

Xi(x) and Ti(t) will be determined during the problem solution, one could

make a step forward and assume that the solution of a multidimensional

problem u(x1, . . . , xd) could be found in the separated form

u(x1, x2, . . . , xd) ≈
N∑
i=1

X1
i (x1) ·X2

i (x1) · . . . ·Xd
i (xd), (9.21)

and even more, expressing the 3D solution u(x, y, z) as a finite sum

decomposition involving low-dimensional functions

u(x, y, z) ≈
N∑
i=1

Xi(x) · Yi(y) · Zi(z), (9.22)

or

u(x, y, z) ≈
N∑
i=1

Xi(x, y) · Zi(z). (9.23)
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Equivalently, the solution of a parametric problem u(x, t, p1, . . . , p℘) could

be approximated as

u(x, t, p1, . . . , p℘) ≈
N∑
i=1

Xi(x) · Ti(t) ·
℘∏
k=1

P ki (pk). (9.24)

9.3.2. Heat transfer in laminates

In what follows, we are illustrating the construction of the Proper

Generalized Decomposition of a generic model defined in a plate domain

Ξ = Ω × I with Ω ⊂ R2 and I = [0, H ] ⊂ R. For the sake of simplicity,

we consider the model related to the steady-state heat conduction

equation:

∇ · (K · ∇u) = 0, (9.25)

in a plate geometry that contains P plies in the plate thickness. Each ply is

characterized by its conductivity tensor Ki(x, y) which is assumed constant

through the ply thickness. Moreover, without any loss of generality, we

assume the same thickness h for the different plies constituting the laminate.

Thus, we can define a characteristic function representing the position of

each ply i = 1, . . . , P :

χi(z) =

{
1 zi ≤ z ≤ zi+1,

0 otherwise,
(9.26)

where zi = (i − 1)h defines the location of the ith-ply in the laminate

thickness. Now, the laminate conductivity can be given in the following

separated form:

K(x, y, z) =

i=P∑
i=1

Ki(x) · χi(z), (9.27)

where x denotes the in-plane coordinates, i.e., x = (x, y) ∈ Ω.

The weak form of Eq. (9.25), with appropriate boundary conditions,

writes: ∫
Ξ

∇u∗ · (K · ∇u) dΞ = 0, (9.28)
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with the test function u∗ defined in an appropriate functional space. The

solution u(x, y, z) is searched under the separated form:

u(x, z) ≈
j=N∑
j=1

Xj(x) · Zj(z). (9.29)

In what follows, we are illustrating the construction of such a

decomposition. For this purpose, we assume that at enrichment step n < N

the solution un(x, z) is already known:

un(x, z) =

j=n∑
j=1

Xj(x) · Zj(z), (9.30)

and that at the present step n + 1 we look for the solution enrichment

R(x) · S(z):
un+1(x, z) = un(x, z) +R(x) · S(z). (9.31)

The algorithm starts by finding the first couple of unknown functions,

that is n = 0.

The test function involved in the weak form is searched under the form:

u∗(x, z) = R∗(x) · S(z) +R(x) · S∗(z). (9.32)

By introducing Eqs. (9.31) and (9.32) into Eq. (9.28) it results:

∫
Ξ

⎛
⎝
⎛
⎝ ∇̃R∗ · S
R∗ · dS

dz

⎞
⎠+

⎛
⎝ ∇̃R · S∗

R · dS
∗

dz

⎞
⎠
⎞
⎠ ·
⎛
⎝K ·

⎛
⎝ ∇̃R · S
R · dS

dz

⎞
⎠
⎞
⎠ dΞ

= −
∫
Ξ

⎛
⎝
⎛
⎝ ∇̃R∗ · S
R∗ · dS

dz

⎞
⎠+

⎛
⎝ ∇̃R · S∗

R · dS
∗

dz

⎞
⎠
⎞
⎠ ·Qn dΞ, (9.33)

where ∇̃ denotes the plane component of the gradient operator, i.e., ∇̃T =(
∂
∂x ,

∂
∂y

)
and Qn denotes the flux at iteration n:

Qn = K ·
j=n∑
j=1

⎛
⎝ ∇̃Xj(x) · Zj(z)
Xj(x) · dZj(z)

dz

⎞
⎠. (9.34)

Now, as the enrichment process is nonlinear we propose to search the

couple of functions R(x) and S(z) by applying the alternating direction

fixed point algorithm. Thus, assuming R(x) known, we compute S(z), and
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402 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

then we update R(x). The process continues until reaching convergence.

The converged solutions allow defining the next term in the finite sum

decomposition: R(x) → Xn+1(x) and S(z) → Zn+1(z). We are illustrating

each one of the just referred steps. The global enrichment procedure stops

when the norm of the just compared functions have becomes small enough

or when more advanced stopping criteria apply [18].

9.3.2.1. Computing R(x) from S(z)

When S(z) is known, the test function reduces to:

u∗(x, z) = R∗(x) · S(z), (9.35)

and the weak form (9.33) reduces to:

∫
Ξ

⎛
⎝ ∇̃R∗ · S

R∗ · dS
dz

⎞
⎠ ·
⎛
⎝K ·

⎛
⎝ ∇̃R · S

R · dS
dz

⎞
⎠
⎞
⎠ dΞ = −

∫
Ξ

⎛
⎝ ∇̃R∗ · S
R∗ · dS

dz

⎞
⎠ ·Qn dΞ.

(9.36)

Now, as all the functions involving the coordinate z are known, they

can be integrated over I = [0, H ]. Thus, if we consider:

K =

(
K k

kT κ

)
, (9.37)

with

K =

(
Kxx Kxy

Kxy Kyy

)
, (9.38)

k =

(
Kxz

Kyz

)
(9.39)

and κ = Kzz, then we can define:

Kx =

⎛
⎜⎜⎜⎝

∫
I K · S2 dz

∫
I k · dS

dz
· S dz

∫
I kT · dS

dz
· S dz ∫

I κ ·
(
dS

dz

)2

dz

⎞
⎟⎟⎟⎠, (9.40)
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and

(Qx)n =

j=n∑
j=1

⎛
⎜⎝
∫
I K · S · Zj dz

∫
I k · dZj

dz
· S dz

∫
I k

T · dS
dz

· Zj dz
∫
I κ · dSdz · dZj

dz
dz

⎞
⎟⎠ ·
(
∇̃Xj(x)

Xj(x)

)
,

(9.41)

that allows writing Eq. (9.36) into the form:∫
Ω

( ∇̃R∗

R∗

)
·
(
Kx ·

( ∇̃R
R

))
dΩ = −

∫
Ω

( ∇̃R∗

R∗

)
· (Qx)n dΩ (9.42)

that defines an elliptic 2D problem defined in Ω.

9.3.2.2. Computing S(z) from R(x)

When R(x) is known the test function writes:

u∗(x, z) = R(x) · S∗(z) (9.43)

and the weak form (9.33) reduces to:

∫
Ξ

⎛
⎝ ∇̃R · S∗

R · dS
∗

dz

⎞
⎠ ·
⎛
⎝K ·

⎛
⎝ ∇̃R · S
R · dS

dz

⎞
⎠
⎞
⎠ dΞ = −

∫
Ξ

⎛
⎝ ∇̃R · S∗

R · dS
∗

dz

⎞
⎠ ·Qn dΞ.

(9.44)

Now, as all the functions involving the in-plane coordinates x = (x, y)

are known, they can be integrated over Ω. Thus, using the previous notation

we can define:

Kz =

(∫
Ω
(∇̃R) · (K · ∇̃R) dΩ ∫

Ω
(∇̃R) · k ·RdΩ∫

Ω(∇̃R) · k · RdΩ ∫
Ω κ ·R2 dΩ

)
, (9.45)

and

(Qz)n =

j=n∑
j=1

(∫
Ω
(∇̃R) · (K · ∇̃Xj) dΩ

∫
Ω
(∇̃R) · k ·Xj dΩ∫

Ω(∇̃Xj) · k ·RdΩ ∫
Ω κ ·Xj ·RdΩ

)
·
⎛
⎝ Zj(z)

dZj
dz

(z)

⎞
⎠,

(9.46)

that allows writing Eq. (9.44) into the form:

∫
I

⎛
⎝ S∗

dS∗

dz

⎞
⎠ ·
⎛
⎝Kz ·

⎛
⎝ S

dS

dz

⎞
⎠
⎞
⎠ dz = −

∫
I

⎛
⎝ S∗

dS∗

dz

⎞
⎠ · (Qz)n dz (9.47)

that defines a one-dimensional boundary value problem (BVP).
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404 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

9.3.3. 3D RTM

We now illustrate in some detail the application of the PGD to the modeling

of resin transfer moulding processes. We consider the flow within a porous

medium in a plate domain Ξ = Ω×I with Ω ⊂ R2 and I = [0, H ] ⊂ R. The

governing equation is obtained by combining Darcy’s law, which relates the

fluid velocity to the pressure gradient,

v = −K · ∇p, (9.48)

and the incompressibility constraint,

∇ · v = 0. (9.49)

Introduction of Eq. (9.48) into Eq. (9.49) yields a single equation for

the pressure field:

∇ · (K · ∇p) = 0. (9.50)

The mould contains a laminate preform composed of P different

anisotropic plies of thickness h, each one characterized by a permeability

tensor Ki(x, y) that is assumed constant through the ply thickness. We

define a characteristic function

χi(z) =

{
1 zi ≤ z ≤ zi+1,

0 otherwise,
(9.51)

where zi = (i− 1)h is the location of the ith-ply in the plate thickness. The

laminate’s permeability is thus given in separated form as follows:

K(x, y, z) =

P∑
i=1

Ki(x) · χi(z), (9.52)

where x denotes the in-plane coordinates, i.e., x = (x, y) ∈ Ω.

The weak form of Eq. (9.50) reads:∫
Ξ

∇p∗ · (K · ∇p) dΞ = 0, (9.53)

for all test functions p∗ selected in an appropriate functional space. Dirichlet

boundary conditions are imposed for the pressure at the inlet and outlet of

the flow domain p(x ∈ ΓD) = pg(x), while zero flux (i.e., no flow) ∇p ·n = 0

is imposed elsewhere (n being the unit outwards vector defined on the
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domain boundary) as a weak boundary condition. We seek an approximate

solution p(x, y, z) in the PGD form:

p(x, z) ≈
N∑
j=1

Xj(x) · Zj(z). (9.54)

The PGD algorithm then proceeds as follows. Assume that the first n

functional products have been computed, i.e.,

pn(x, z) =

n∑
j=1

Xj(x) · Zj(z), (9.55)

is a known quantity. We must now perform an enrichment step to obtain

pn+1(x, z) = pn(x, z) +R(x) · S(z). (9.56)

The test function involved in the weak form is given by

p∗(x, z) = R∗(x) · S(z) +R(x) · S∗(z). (9.57)

Introducing Eqs. (9.56) and (9.57) into Eq. (9.53), we obtain

∫
Ξ

⎛
⎝
⎛
⎝ ∇̃R∗ · S

R∗ · dS
dz

⎞
⎠+

⎛
⎝ ∇̃R · S∗

R · dS
∗

dz

⎞
⎠
⎞
⎠ ·
⎛
⎝K ·

⎛
⎝ ∇̃R · S

R · dS
dz

⎞
⎠
⎞
⎠ dΞ

= −
∫
Ξ

⎛
⎝
⎛
⎝ ∇̃R∗ · S

R∗ · dS
dz

⎞
⎠+

⎛
⎝ ∇̃R · S∗

R · dS
∗

dz

⎞
⎠
⎞
⎠ ·Qn dΞ, (9.58)

where ∇̃ denotes the plane component of the gradient operator, i.e., ∇̃T =(
∂
∂x ,

∂
∂y

)
and Qn is a flux term known at step n:

Qn = K ·
n∑
j=1

⎛
⎜⎝ ∇̃Xj(x) · Zj(z)

Xj(x) · dZj(z)
dz

⎞
⎟⎠. (9.59)

As discussed previously, each enrichment step of the PGD algorithm

is a nonlinear problem which must be performed by means of a suitable

iterative process. Here, we compute the unknown functions R(x) and S(z)

by applying an alternating direction fixed point algorithm. Thus, assuming

R(x) known, we compute S(z), and then we update R(x). The process

continues until reaching convergence. The converged solutions provide the
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406 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

next functional product of the PGD: R(x) → Xn+1(x) and S(z) →
Zn+1(z). Both calculations are exactly the same that were considered in

the thermal model just described.

9.3.4. The elastic problem defined in plate domains

We proposed in [74] and original in-plane–out-of-plane decomposition of the

3D elastic solution in a plate geometry. The elastic problem was defined in

a plate domain Ξ = Ω × I with (x, y) ∈ Ω, Ω ⊂ R2 and z ∈ I, I =

[0, H ] ⊂ R, being H the plate thickness. The separated representation of

the displacement field u = (u1, u2, u3) reads:

u(x, y, z) =

⎛
⎝u1(x, y, z)u2(x, y, z)

u3(x, y, z)

⎞
⎠ ≈

N∑
i=1

⎛
⎝P i1(x, y) · T i1(z)P i2(x, y) · T i2(z)
P i3(x, y) · T i3(z)

⎞
⎠, (9.60)

where P ik, k = 1, 2, 3, are functions of the in-plane coordinates (x, y) whereas

T ik, k = 1, 2, 3, are functions involving the thickness coordinate z. In [74]

we compared the first modes of such separated representations with the

kinematic hypotheses usually considered in plate theories. Similar behavior

was noticed in the case of elastic solutions in shell domains with respect to

classical shell theories.

Expression (9.60) can be written in a more compact form by using the

Hadamard (component-to-component) product:

u(x, y, z) ≈
N∑
i=1

Pi(x, y) ◦Ti(z), (9.61)

where vectors Pi and Ti contain functions P ik and T ik, respectively.

Because neither the number of terms in the separated representation of

the displacement field nor the dependence on x3 of functions T
i
k are assumed

a priori, the approximation is flexible enough for representing the fully 3D

solution, being obviously more general than theories assuming particular a

priori evolutions in the thickness direction z.

Let us consider a linear elasticity problem on a plate domain Ξ = Ω×I.
The weak form using the so-called Voigt notation reads:∫

Ξ

ε(u∗)T ·K · ε(u) dx =

∫
Ξ

u∗ · fd dx+

∫
ΓN

u∗ ·Fd dx, ∀u∗, (9.62)

where K is the generalized 6× 6 Hooke tensor, fd represents the volumetric

body forces while Fd represents the traction applied on the boundary ΓN .
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Advanced Modeling and Simulation of Composite Processes 407

The separation of variables introduced in Eq. (9.60) yields the following

expression for the derivatives of the displacement components ui, i = 1, 2, 3:

∂ui
∂x

≈
k=N∑
k=1

∂P ki
∂x

· T ki , (9.63)

∂ui
∂y

≈
k=N∑
k=1

∂P ki
∂y

· T ki , (9.64)

and

∂ui
∂z

≈
k=N∑
k=1

P ki · ∂T
k
i

∂z
, (9.65)

from which we can obtain the separated vector form of the strain tensor ε:

ε(u(x, y, z)) ≈
N∑
k=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P k1
∂x

· T k1
∂P k2
∂y

· T k2
P k3 · ∂Tk

3

∂z

∂P k1
∂y

· T k1 +
∂P k2
∂x

· T k2
∂P k3
∂x

· T k3 + P k1 · ∂T
k
1

∂z
∂P k3
∂y

· T k3 + P k2 · ∂T
k
2

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.66)

Depending on the number of non-zero elements in the K matrix, the

development of ε(u∗)T ·K · ε(u) involves different number of terms, 21 in

the case of an isotropic material and 41 in the case of general anisotropic

behaviors.

The separated representation constructor proceeds by computing a

term of the sum at each iteration. Assuming that the first n−1 modes (terms

of the finite sum) of the solution were already computed, un−1(x, y, z) with

n ≥ 1, the solution enrichment reads:

un(x, y, z) = un−1(x, y, z) +Pn(x, y) ◦Tn(z), (9.67)

where both vectors Pn and Tn containing functions Pni and T ni (i =

1, 2, 3) depending on (x, y) and z, respectively, are unknown at the present

iteration. The test function u∗ reads u∗ = P∗ ◦Tn +Pn ◦T∗.
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408 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

The introduction of Eq. (9.67) into (9.62) results in a nonlinear

problem. We proceed by considering the simplest linearization strategy,

an alternated directions fixed point algorithm, that proceeds by calculating

Pn,k from Tn,k−1 and then by updating Tn,k from the just calculated

Pn,k where k refers to the step of the nonlinear solver. The iteration

procedure continues until convergence, that is, until reaching the fixed

point ‖Pn,k ◦ Tn,k − Pn,k−1 ◦ Tn,k−1‖ < ε, that results in the searched

functions Pn,k → Pn and Tn,k → Tn. Then, the enrichment step continues

by looking for the next mode Pn+1 ◦Tn+1. The enrichment stops when the

model residual becomes small enough.

When Tn is assumed known, we consider the test function u� given

by P� ◦ Tn. By introducing the trial and test functions into the weak

form and then integrating in I because all the functions depending on the

thickness coordinate are known, we obtain a 2D weak formulation defined

in Ω whose discretization (by using a standard discretization strategy, e.g.,

finite elements) allows computing Pn.

Analogously, when Pn is assumed known, the test function u� is given

by Pn ◦ T�. By introducing the trial and test functions into the weak

form and then integrating in Ω because all the functions depending on

the in-plane coordinates (x, y) are at present known, we obtain a 1D weak

formulation defined in I whose discretization (using any technique for

solving standard ODE equations) allows computing Tn.

As discussed in [74] this separated representation allows computing 3D

solutions while keeping a computational complexity characteristic of 2D

solution procedures. If we consider a hexahedral domain discretized using

a regular structured grid with N1, N2 and N3 nodes in the x1, x2 and

x3 directions respectively, usual mesh-based discretization strategies imply

a challenging issue because the number of nodes involved in the model

scales with N1 ·N2 ·N3, however, by using the separated representation and

assuming that the solution involves N modes, one must solve about N 2D

problems related to the functions involving the in-plane coordinates (x, y)

and the same number of 1D problems related to the functions involving the

thickness coordinate z. The computing time related to the solution of the

one-dimensional problems can be neglected with respect to the one required

for solving the two-dimensional ones. Thus, the resulting complexity scales

as N ·N1 ·N2. By comparing both complexities we can notice that as soon as

N3 � N the use of separated representations leads to impressive computing

time savings, making possible the solution of models never until now solved,

and even using light computing platforms.
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9.3.5. 3D elastic problem in a shell domain

In this section, we generalize the rationale just described for the solution

of elastic problems defined in shell domains.

9.3.5.1. Shell representation

The shell domain ΩS , assumed with constant thickness, can be described

from a reference surface X, that in what follows will be identified to the

shell middle surface but that in the general case could be any other one,

parametrized by the coordinates ξ, η, that is X(ξ, η), where:

X(ξ, η) =

⎛
⎝X1(ξ, η)

X2(ξ, η)

X3(ξ, η)

⎞
⎠. (9.68)

Being n the unit vector normal to the middle surface, the shell domain

ΩS can be parametrized from:

x(ξ, η, ζ) = X(ξ, η) + ζ · n. (9.69)

The geometrical transformation (ξ, η, ζ) → (x1, x2, x3) involves [75]

F̃ =

[
∂x

∂ξ

∂x

∂η
n

]
. (9.70)

The inverse transformation (x1, x2, x3) → (ξ, η, ζ), described by F̃−1

can be also easily obtained [75].

9.3.5.2. Weak form

The weak form of the elastic problem defined in the shell domain ΩS using

again the Voigt notation writes:∫
ΩS

ε(u∗)T ·K · ε(u) dx =

∫
ΩS

u∗ · fd dx+

∫
ΓS
N

u∗ ·Fd dx. (9.71)

Now we are considering the coordinates transformation introduced in

the previous section mapping x ∈ ΩS into (ξ, η, ζ) ∈ Ξ = Ω × I, with
(ξ, η) ∈ Ω ⊂ R2 and ζ ∈ I ⊂ R.

The geometric transformation requires to transform the differential

operator as well as the different volume and surface elements. Knowing that

under the small displacements and strains assumption, the strain tensor
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410 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

consists of the symmetric part of the gradient of displacement tensor, i.e.,

ε(u) =
1

2

(∇u+ (∇u)T
)
, (9.72)

it can be transformed taking into account the transformation of the gradient

differential operator

∇(·) = ∇ξ(·) · F̃−1, (9.73)

where ∇ξ(·) denotes the gradient in the parametric space.

The volume element involved in the integral in ΩS writes [75]

dx = dx1 · dx2 · dx3 =
√
a · (1− 2 ·H · ζ +K · ζ2) · dξ · dη · dζ, (9.74)

where a is the determinant of the metric tensor related to the middle surface

mapping and H and K the curvatures [75].

9.3.5.3. In-plane–out-of-plane separated representation

With the weak form defined in Ξ = Ω× I the situation is quite similar to

the one encountered in the analysis of elastic problems in plate geometries,

that was addressed in [74] and that we just summarized in the previous

section.

In what follows, we use the following matrix notation: If a and b are

vectors of the same dimension, vector c, defined from c = a ◦ b, has as

components ci = ai · bi. If a and b are second-order tensor with the same

size, tensor c, defined from c = a ◦ b, has components cij = aij · bij (no

sum with respect to the repeated indexes). In this case it results a : b = c,

with the scalar c given by c = aij · bij considering sum with respect to the

repeated indexes (Einstein’s summation convention).

We could perform an in-plane–out-of-plane separated representation of

the displacement field, similar to (9.60) but now involving the coordinates

(ξ, η, ζ)

u(ξ, η, ζ) =

⎛
⎜⎝
u1(ξ, η, ζ)

u2(ξ, η, ζ)

u3(ξ, η, ζ)

⎞
⎟⎠ ≈

N∑
i=1

⎛
⎜⎝
P i1(ξ, η) · T i1(ζ)
P i2(ξ, η) · T i2(ζ)
P i3(ξ, η) · T i3(ζ)

⎞
⎟⎠, (9.75)

or in a more compact form

u(ξ, η, ζ) ≈
N∑
i=1

Pi(ξ, η) ◦Ti(ζ). (9.76)
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Advanced Modeling and Simulation of Composite Processes 411

As explained in the previous section, the construction of such a

separated representation is performed sequentially, thus assuming known

the solution at iteration n− 1, the solution at iteration n is sought as

un(ξ, η, ζ) = un−1(ξ, η, ζ) +Pn(ξ, η) ◦Tn(ζ). (9.77)

By introducing (9.77) in the weak form and using the alternated

directions fixed point algorithm we can calculate Pn(ξ, η) by assuming

Tn(ζ) known and then updated Tn(ζ) from the just calculated Pn(ξ, η).

The iteration continues until reaching the convergence (the fixed point)

that determines both functions Pn(ξ, η) and Tn(ζ).

However, the decomposition in a problem defined in Ω for calculating

function Pn(ξ, η), obtained by integrating the weak form in I, and in

another problem defined in I for calculating function Tn(ζ), obtained by

integrating the weak form in Ω, requires the separated representation of

all the operators, variables, coefficients and functions involved in the weak

form.

For the displacement (the trial u and the test u∗ displacements),

we just indicated the separated in-plane–out-of-plane representation. This

representation allows defining a separated representation of the associated

strain tensors ε(u) and ε(u∗) as illustrated in Eq. (9.66) but for this

purpose we must define a separated representation of the transformation

gradient involved in Eq. (9.73) F̃−1. This issue was deeply considered in [75].

9.3.6. Squeeze flow in composite laminates

The in-plane–out-of-plane separated representation allows the solution of

full 3D flow models defined in plate geometries with a computational

complexity characteristic of 2D simulations. In the present case, the 3D

velocity field reads

v(x, z) =

⎛
⎝ u(x, z)

v(x, z)

w(x, z)

⎞
⎠ ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

P 1
i (x) · T 1

i (z)

N∑
i=1

P 2
i (x) · T 2

i (z)

N∑
i=1

P 3
i (x) · T 3

i (z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.78)

which leads to a separated representation of the strain rate, when

introduced into the flow problem weak form allows the calculation of
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functions Pi(x, y) by solving the corresponding 2D equations and functions

Ti(z) by solving the associated 1D equations, as described later.

Equation (9.78) can be rewritten in the compact form

v(x, z) ≈
N∑
i=1

Pi(x) ◦Ti(z). (9.79)

Using notation in (9.78), the velocity gradient ∇v(x, z) can be written

as:

∇v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ ≈

N∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P 1
i

∂x

∂P 1
i

∂y
P 1
i

∂P 2
i

∂x

∂P 2
i

∂y
P 2
i

∂P 3
i

∂x

∂P 3
i

∂y
P 3
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 1
i T 1

i

∂T 1
i

∂z

T 2
i T 2

i

∂T 2
i

∂z

T 3
i T 3

i

∂T 3
i

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

N∑
i=1

Pi(x) ◦ Ti(z). (9.80)

The solution of different 3D flow problems within the in-plane–out-of-

plane separated representation is revisited in the next sections.

9.3.6.1. Stokes model

The Stokes flow model is defined in Ξ = Ω×I, Ω ⊂ R2 and I ⊂ R, and for

an incompressible fluid, in absence of inertia and mass terms reduces to:⎧⎪⎨
⎪⎩

∇ · σ = 0,

σ = −pI+ 2ηD,

∇ · v = 0,

(9.81)

where σ is the Cauchy’s stress tensor, I the unit tensor, η the fluid viscosity,

p the pressure (Lagrange multiplier associated with the incompressibility

constraint) and the rate of strain tensor D defined as

D =
∇v + (∇v)T

2
. (9.82)
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A penalty formulation is used to circumvent the issue related to stable

mixed formulations (LBB give full form of LBB conditions) within the

separated representation, which to this day is an open issue. The mass

balance is modified by introducing a penalty coefficient λ whose value is

usually very small. The penalty formulation can be written as

∇ · v + λp = 0, (9.83)

or more explicitly

p = −∇ · v
λ

= −Tr(D)

λ
, (9.84)

where Tr( ) refers the trace operator. The trace of a tensor, and in particular

the trace of the rate of strain, can be written as Tr(D) = D : I.

The weak form of the penalized Stokes problem, for a test velocity

v∗ vanishing on the boundary in which the velocity is prescribed, and

assuming null tractions in the remaining part of the domain boundary,

can be written as∫
Ω×I

{
1

λ
Tr(D∗)Tr(D) + 2ηD∗ : D

}
dx dz = 0, (9.85)

where as proved in [76] can be expressed from

2ηD∗ : D ≈ η

2

N∑
j=1

4∑
k=1

(
A

∗
jk(x) : Bjk(z) + Ajk(x) : B

∗
jk(z)

)
, (9.86)

and

1

λ
Tr(D∗) · Tr(D) ≈ 1

λ

N∑
j=1

(
F
∗
j (x) : Gj(z) + Fj(x) : G

∗
j(z)
)
, (9.87)

where D∗ is the strain rate related to the test field v∗.
The construction of the solution separated representation is performed

incrementally, a term of the sum at each iteration. Thus, supposing that

at iteration n − 1, n ≥ 1, the first n − 1 terms of the velocity separated

representation were already computed

vn−1(x, z) =

n−1∑
i=1

Pi(x) ◦Ti(z), (9.88)
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the terms involved in the weak form (9.85) are

D∗ : Dn−1 =
1

4

n−1∑
j=1

4∑
k=1

(
A

∗
jk(x) : Bjk(z) + Ajk(x) : B

∗
jk(z)

)
, (9.89)

and

Tr(D∗) · Tr(Dn−1) =

n−1∑
j=1

(
F
∗
j (x) : Gj(z) + Fj(x) : G

∗
j(z)
)
, (9.90)

respectively.

When looking for the improved velocity field vn(x, z) at iteration n

vn(x, z) =
n∑
i=1

Pi(x) ◦Ti(z) = vn−1(x, z) +Pn(x) ◦Tn(z), (9.91)

we consider the test function v∗(x, z)

v∗ = P∗ ◦Tn +Pn ◦T∗. (9.92)

The fixed point algorithm for solving the resulting nonlinear problem

proceeds by calculating functions Tn by assuming known functions Pn,

and then updating the first. The iteration continues until reaching the fixed

point.

Consider a laminate composed of P layers in which each layer involves

a linear and isotropic viscous fluid of viscosity ηi, thus the extended Stokes

flow problem in its weak form involves the dependence of the viscosity along

the thickness direction.

If H is the total laminate thickness, and assuming for the sake of

simplicity and without loss of generality that all the plies have the same

thickness h, it results h = H
P . Now, from the characteristic function of each

ply χi(z), i = 1, . . . , P :

χi(z) =

{
1 if (i − 1)h ≤ z < ih,

0 elsewehere,
(9.93)

the viscosity reads

η(x, z) =

P∑
i=1

ηi · χi(z), (9.94)

where it is assumed, again without loss of generality, that the viscosity does

not evolve in the plane, i.e., ηi(x) = ηi.
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This decomposition is fully compatible with the velocity separated

representation (9.78) and with the in-plane–out-of-plane decomposition

considered for solving the associated weak form.

9.3.6.2. Power-law fluid

The Stokes model extended to power-law fluids reads:{∇p = ∇ ·T,
∇ · v = 0,

(9.95)

where the extra-stress tensor for power-law fluids writes:

T = 2KDn−1
eq D, (9.96)

with the equivalent strain rate Deq given by

Deq = 2(D : D), (9.97)

where “:” denotes the tensor product twice contracted.

The solution is again carried out by using a penalty formulation.

Moreover, at each iteration of the nonlinear solver we must evaluate the

equivalent strain rate, and write it in a separated form for enhancing

the efficiency of the separated representation solver. The simplest way for

performing such decomposition

Dn−1
eq ≈

i=M∑
i=1

Fi(x, y) ·Gi(z), (9.98)

consists of using a singular value decomposition. This decomposition is

optimal but it requires a 3D reconstruction and data storage that can be

expensive from the computational point of view.

As previously discussed this rationale can be easily extended for

considering multi-layered domains with different behaviors, from an

adequate in-plane–out-of-plane expression of the viscosity along the domain

thickness.

9.3.6.3. Brinkman’s model

In composite manufacturing processes resin located between fibers in the

reinforcement layers also flows. A usual approach for evaluating the resin

flow in such circumstances consists of solving the associated Darcy’s model.

It is well known that Darcy–Stokes coupling at the interlayers generates
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416 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

numerical instabilities because the localized boundary layers whose accurate

description requires very rich representations (very fine meshes along the

laminate thickness).

In [77] we proposed to use the Brinkman model that allows representing

in a unified manner both the Darcy and the Stokes behaviors. In order to

avoid numerical inaccuracies a very fine representation along the thickness

direction was considered and for circumventing the exponential increase in

the number of degrees of freedom that such a fine representation would

imply when extended to the whole laminate domain, we considered again

the in-plane–out-of-plane separated representation previously introduced.

The Brinkman’s model is defined by

∇p = μ ·K−1 · v + η ·Δv, (9.99)

where μ is the dynamic viscosity, K the layer permeability tensor and η the

dynamic effective viscosity.

In the zones where Stokes model applies (resin layers) we assign a

very large isotropic permeability K = I (units in the metric system and

I being the unit tensor) whereas in the ones occupied by the reinforcement,

the permeability is assumed anisotropic, being several orders of magnitude

lower, typically 10−8. Thus the Darcy’s component in Eq. (9.99) does not

perturb the Stokes flow in the resin layers, and it becomes dominant in the

reinforcement layers. Additionally by choosing this outstanding difference

in permeability, representative of the one observed in Liquid Resin Infusion

processes when highly porous distribution media are used, we also want

to give the evidence that this type of problem can be addressed by the

proposed approach.

9.3.6.4. Squeeze flow of multiaxial laminates

The case of a prepreg ply reinforced by continuous fibers oriented along

direction pT = (px, py, 0), ‖p‖ = 1 (form now on p denotes the

reinforcement direction whereas p represents the scalar pressure field),

is analyzed here. It is assumed that the thermoplastic resin exhibits

Newtonian behavior. Thus the velocity v(x, z) of the equivalent anisotropic

fluid must satisfy the incompressibility and inextensibility constraints

∇ · v = 0, (9.100)

and

pT · ∇v · p = 0, (9.101)
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respectively. Expression (9.101) can be rewritten using tensor notation as

∇v : a = 0, where the second-order orientation tensor a is defined from

a = p · pT = p⊗ p.

The orientation tensor a has only planar components (the out-of-plane

fiber orientation can be neglected in the case of laminates), it is symmetric

and of unit trace, i.e.,

a =

⎛
⎜⎝
axx axy 0

ayx ayy 0

0 0 0

⎞
⎟⎠ =

(
A 0

0T 0

)
, (9.102)

where A represents the plane component of the orientation tensor a, axy =

ayx (i.e., A = AT ) and ayy = 1− axx.

The simplest expression of the Ericksen’s constitutive equation [78] can

be written in the compact form as follows:

σ = −pI+ Ta+ 2ηTD+ 2(ηL − ηT )(D · a+ a ·D), (9.103)

and introduced in the linear momentum balance

∇ · σ = 0, (9.104)

allows the flow kinematics calculation.

In Eq. (9.103), p and T represent, respectively, the Lagrange multipliers

related to the incompressibility and inextensibility, and ηL and ηT the

longitudinal and transverse shear viscosities, respectively.

By introducing the incompressibility and inextensibility constraints

from a penalty formulation it results:

∇ · v + λp = 0, (9.105)

and

∇v : a+ ξT = 0, (9.106)

with λ and ξ small enough, leading to:

p = −∇ · v
λ

= − 1

λ
Tr(D), (9.107)

and

T = −∇v : a

ξ
= −1

ξ
D : a, (9.108)

where the fact that a is symmetric, implying ∇v : a = D : a, is used.
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The weak form for a test velocity v∗(x, z) vanishing at the boundary in

which velocity is prescribed and assuming null tractions in the remaining

part of the domain boundary can be expressed as∫
Ω×I

D∗ : σ dx dz = 0. (9.109)

By introducing the Ericksen constitutive equation (9.103) as well as

both penalty expressions (9.105) and (9.106), it can be written as∫
Ω×I

D∗ : σ dx dz =

∫
Ω×I

D∗ :

(
Tr(D)

λ
I− D : a

ξ
a+ ηTD

+ η̃ (D · a+ a ·D)

)
dx dz = 0, (9.110)

with η̃ = ηL − ηT . This integral form can be rewritten as∫
Ω×I

{
Tr(D∗) · Tr(D)

λ
− (D∗ : a) · (D : a)

ξ

+ ηTD
∗ : D+ η̃D∗ : (D · a+ a ·D)

}
dx dz = 0. (9.111)

At this stage, the in-plane–out-of-plane separated representation

constructor of v(x, z) proceeds as described in the previous sections.

The following remarks can be addressed:

• If a = 0 this formulation reduced to one related to the Stokes flow

problem.

• Laminates can be addressed by associating with each ply the planar fiber

orientation pi(x), with its out-of-plane component vanishing, from which

the associated orientation tensor ai(x) results in ai(x) = pi(x) ⊗ pi(x).

Using again the characteristic function of the i-ply, χi(z), i = 1, . . . , P ,

the orientation tensor in the laminate, a(x, z), can be expressed as

a(x, z) =
P∑
i=1

ai(x)χi(z). (9.112)

• If the fiber orientation is constant in each plane, then the laminate

orientation tensor can be expressed as

a(z) =

P∑
i=1

aiχi(z). (9.113)
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9.3.7. Electromagnetic models in laminates

Composites parts tend to represent an increasing volume of production

in transport industry (aeronautic and automotive). This is due to their

combination of high mechanical properties and low mass. Although one

aspect is still a disadvantage, this concerns their long cycle time.

Conventional processing methods for producing polymer composite

parts usually involve the application of heat to the material by convection

or conductive heating through elements, which depend on surface heat

transfer. Microwave (MW) technology relies on volumetric heating, that

means thermal energy is transferred through electromagnetic fields to

materials that can absorb it at specific frequencies. Volumetric heating

enables better process temperature control and less overall energy use,

which can results in shorter processing cycles. Furthermore, comparable

mechanical properties are shown between parts made with the MW

technology and parts made with a traditional curing system. These virtues

of the MW technology have attracted interest in developing the method

and adopting it for the production of thermoset as well as thermoplastic

composite materials.

The main drawback of this technology today is that the complex

physics involved in the conversion of electromagnetic energy to thermal

energy (heating) is not entirely understood and controlled. These models

will simulate the way electromagnetic energy is propagated within the

material volume and the various interfaces, then converted to thermal

energy. The main challenge concerns the high-resolution description of

the electromagnetic and thermal fields in a composite laminate, that

involve plies whose characteristic in-plane dimension is orders of magnitude

higher than the ones related to the thickness (typical aspect ratio are

of tens of thousands). In that situation, the use of in-plane–out-of-plane

separated representations within the Proper Generalized Decomposition

(PGD) framework seems an appealing and valuable route for solving 3D

models, very rich in both, the in-plane and the out-of-plane directions,

while ensuring a computational complexity of standard 2D models.

The physical model consists of the Maxwell equations, that after some

manipulations and assuming an harmonic electric field, reduces to

∇2E = γ2E, (9.114)

with γ2 = iωμ(σ+ iωε), where μ, σ and ε are respectively the permeability,

conductivity and permittivity, all them depending on the considered

material and ω the wave pulsation.
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Within the Proper Generalized Decomposition (PGD) framework,

allows writing the electric field in the 3D separated form

E(x, z) ≈
N∑
j=1

Xj(x) ◦ Zj(z). (9.115)

If H is the total laminate thickness, and assuming for the sake of

simplicity and without loss of generality that the P plies have the same

thickness h, it results h = H
P . Now, from the characteristic function of each

ply χi(z), i = 1, . . . , P :

χi(z) =

{
1 if (i − 1)h ≤ z < ih,

0 elsewehere,
(9.116)

the expression of γ2 reads

γ2(x, z) =
P∑
i=1

γ2i (x) · χi(z), (9.117)

where it is assumed that in each ply γ2 does not evolve along its thickness.

When it is not the case a SVD must be applied in order to separate the

electromagnetic properties involved in γ2.

9.4. Coupled Physics at Interfaces

The use of thermoplastic composites, more and more considered for a

variety of industrial applications, requires specific processes because the

high viscosity of thermoplastic resins limits the use of standard liquid

moulding manufacturing processes.

Pre-impregnated thermoplastic composites (pre-preg) are being widely

used for manufacturing complex parts. In these processes in situ

consolidation is envisaged and for that, manufacturing processes must

ensure an adequate degree of intimate contact as well as the molecular

diffusion across the contact interface. Both mechanisms are strongly

influenced by the thermal history. From one side, the polymer viscosity that

depends on the temperature, determine the squeeze flow occurring at the

interfaces when pressure is applied on the laminate. This flow determines

the progressive reduction of the asperities initially present on the pre-preg

surfaces and the increase of the degree of intimate contact. As soon as

surfaces enter in contact molecular diffusion starts, but again the molecular
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mobility depends strongly on the existing temperature through the so-called

temperature-dependent reptation time.

Since the intimate contact at the interface level is imperfect due to the

surface roughness, the heat transfer is perturbed and for quantifying its

effect thermal contact resistances (TCR) were considered in our former

works for performing accurate macroscopic thermal analyses in ATP

(Automated Tape Placement) processes [79, 80]. The TCR is a direct

macroscopic consequence of the imperfect intimate contact originated by

the surface roughness, that involves as many scales as the ones present in

the representation of the rough surface.

From a conceptual viewpoint there are no major difficulties: surfaces

could be measured without neglecting the minimum detail and then, a high-

resolution thermal model could be solved on the actual surface geometry,

using the nowadays advanced experimental and computational facilities.

However, even if such fine enough thermal models able to capture the

microscopic events (surface asperities) do not require the use of TCR, the

resulting numerical complexity for attaining the finest scales involved in

the roughness representation becomes unaffordable even for the nowadays

computational capabilities. Thus, the use of the TCR concept seems

justified from a practical point of view. In this context, the study of its

dependence on the geometrical parameters defining the composite interfaces

seems of major interest for understanding the physics involved in pre-preg

in situ consolidation, and more specifically the evolution of it during the

consolidation, where due to the compression the interface evolves due to

the squeeze flow at the level of the surface asperities.

9.4.1. Surface representation

The characterization of random surfaces and the effect of roughness on

physics defined at surface level is a recurrent issue widely addressed in

many works. Two usual surface descriptors are as follows: (i) the Structure

Function S(τ) and (ii) the Power Spectral Density P (ω), both defined for

a random process z(t) as

S(τ) = 〈(z(t)− z(t+ τ))2〉, (9.118)

where 〈•〉 refers to the average, and

P (ω) = |F(ω)|2, (9.119)
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with F(ω) the Fourier’s transform of z(t)

F(ω) =

∫ ∞

−∞
z(t)e−iωtdt. (9.120)

From these two functions one can extract, as described and discussed

in [81], two useful surface descriptors, the directional topothesy C(θ),

quantifying the roughness amplitude, and the directional fractal dimension

D(θ), quantifying the self-affinity through the space scales. As also

proved in [81], when considering one-directional pre-impregnated tapes, the

resulting surfaces exhibit high anisotropy, justifying the consideration of a

2D analysis along the transverse direction to the fibers.

Having been proved the fractal nature of the surfaces, they can be

assimilated to a Cantor set. Even if such representation does not exactly

describe the actual surface, it has two main advantages: (i) it makes possible

to reduce the computational cost due to the fact that the geometry is

very much simplified and composed of rectangular elements representing

the asperities, making it possible, as described in the next section, the

use of efficient separated representations within the proper generalized

decomposition framework; and (ii) it presents the possibility of modifying

easily the different fractal parameters in order to perform sensibility and

parametric analyses.

The Cantor interface is created by removing rectangles, whose sides

lengths evolve at each generation ng, as illustrated in Fig. 9.2, according

to:

Yng+1 =

(
1

fy

)ng+1

Y0, (9.121)

and

Zng+1 =

(
1

fz

)ng+1

Z0, (9.122)

where fy and fz are the scaling factors in each direction, Y0 is the total

length of the Cantor interface and Z0 is the height of the deepest interface

asperity. When increasing the number of generations, the asperities

characteristic size decreases. The maximum number of generations is

determined by the fiber size, which determines the finest scale of analysis.

At each generation s rectangles result from each parent.

Thus, the interface is fully determined by using four parameters, the

scaling factors fy and fz, the number of asperities s created at each

generation and the considered number of generations ng, the last, as just
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Fig. 9.2. Cantor interface with ng = 3 generations and s = 2.

argued, given by the finest scale present in the interface, the fiber diameter

in the case study here addressed. These four parameters can be easily

extracted from the data provided by a profilometer.

If the domain occupied by the composite tape cross section is denoted

by Ωtp = {(y, z), y ∈ [0, Y0], z ∈ [0, Z(y)]}, the intersection of the line

z = u, u ∈ [0,maxy Z(y)] with Ωtp, Ωtp ∩ {z = u}, measures Yu =

|Ωtp ∩ {z = u}|. Obviously if Yu = 0, the intersection Ωtp ∩ {z = u}
has a null measure. On the contrary, when Yu = Y0 the line z = u is fully

contained in the composite. The evolution with u of Yu is related to the

fractal descriptors. In [81] authors illustrate the identification of the fractal

parameters from the surface geometrical information of a tape obtained

from a profilometer.

9.4.2. High-resolution numerical solution

One of the main advantages of representing the surface by a Cantor fractal

is that it becomes described from a population of rectangular elements of

different sizes as depicted in Fig. 9.2. In those circumstances one could

perform high-resolution thermal simulations by transforming the 2D heat

conduction problem (defined in the tapes cross section) into a sequence

of 1D heat transfer problems along directions y and z when assuming a

separated representation of both the temperature field and the material

thermal properties within the Proper Generalized Decomposition (PGD)

framework.

In that framework the temperature field T (y, z) is searched in a

separated form

T (y, z) ≈
M∑
i=1

Fi(y) ·Gi(z), (9.123)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



424 E. Abisset-Chavanne, A. Barasinski & F. Chinesta

Fig. 9.3. Separated representation of the thermal conductivity.

and the thermal properties, the in-plane thermal conductivity in the present

case, assumed with respect to Fig. 9.3, as

k(y, z) =

⎛
⎝1− ng∑

j=1

Kj
y(y) ·Kj

z(z)

⎞
⎠ kc +

⎛
⎝ ng∑
j=1

Kj
y(y) ·Kj

z(z)

⎞
⎠ ka,

(9.124)

where ka and kc are, respectively, the thermal conductivities of air and

composite (in the transverse directions to the fibers arrangement), ng is

the number of fractal generations and Kj
y and Kj

z are the characteristic

functions related to the rectangles occupied by the air at generation j ≤ ng
(according to Fig. 9.3).

The heat conduction problem is defined in the rectangular domain Ω

illustrated in Fig. 9.3, with prescribed temperatures at the top and bottom

boundaries, Tu and Tb, respectively (Tu > Tb), and null heat fluxes enforced

on the lateral boundaries. The domain Ω is expressed from Ω = [0, L] ×
[0, H ], that in reference to the fractal characterization illustrated in Fig. 9.2,

L = Y0 and H = fzZ0.

The heat problem weak form writes: Find T (y, z) ∈ H1(Ω) verifying

the Dirichlet boundary conditions T (y, 0) = Tb and T (y,H) = Tu such that∫
Ω

∇T ∗k(y, z)∇T dx = 0 ∀T ∗(y, z) ∈ H1
0 (Ω), (9.125)

where H1(Ω) and H1
0 (Ω) are the usual Sobolev functional spaces.
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Now, injecting the conductivity separated form (9.124) into the weak

form (9.125) and assuming that at iteration m, m < M , we have already

computed the first m terms of the separated representation (9.123), i.e.,

Tm(y, z) ≈
m∑
i=1

Fi(y) ·Gi(z), (9.126)

the present iteration looks for Tm+1(y, z)

Tm+1(y, z) = Tm(y, z) + Fm+1(y) ·Gm+1(z), (9.127)

whose associated test function T ∗(y, z) reads

T ∗(y, z) = F ∗(y) ·Gm+1(z) + Fm+1(y) ·G∗(z). (9.128)

Thus, with Ω = Ωy × Ωz (Ωy = [0, L] and Ωz = [0, H ]) the weak form

results:∫
Ωy×Ωz

∇(F ∗(y)Gm+1(z) + Fm+1(y)G
∗(z))k(y, z)∇(Fm+1(y)Gm+1(z)) dx

=

∫
Ωy×Ωz

∇(F ∗(y)Gm+1(z) + Fm+1(y)G
∗(z))k(y, z)

∇Tm(y, z) dx. (9.129)

As the problem defined by Eq. (9.129) becomes nonlinear, Fm+1(y)

and Gm+1(z) being unknown at present iteration, the use of a linearization

strategy becomes compulsory. We consider the simplest one, the one

considering alternated search directions, that computes Fm+1(y) by

assuming Gm+1(z) known (the one coming from the previous iteration of

the nonlinear solution procedure) and then updating Gm+1(z) from the just

calculated Fm+1(y). The iteration process continues until reaching the fixed

point that results in the searched functions Fm+1(y) andGm+1(z). Then the

enrichment iteration continues for calculating Fm+2(y) and Gm+2(z) from

Tm+1(y, z) an so on. The enrichment iteration stops when the norm of the

undated temperature becomes small enough ‖TM(y, z)− TM−1(y, z)‖ < ε,

even if more sophisticated error indicators exist [18].

Thus, the solution of problem (9.129) results in a sequence of

one-dimensional problems, one for calculating Fm+1(y) from Gm+1(z)
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assumed known∫
Ωy×Ωz

∇(F ∗(y)Gm+1(z))k(y, z)∇(Fm+1(y)Gm+1(z)) dx

=

∫
Ωy×Ωz

∇(F ∗(y)Gm+1(z))k(y, z)∇Tm(y, z) dx, (9.130)

and the other for updating Gm+1(z) from the just calculated Fm+1(y)∫
Ωy×Ωz

∇(Fm+1(y)G
∗(z))k(y, z)∇(Fm+1(y)Gm+1(z)) dx

=

∫
Ωy×Ωz

∇(Fm+1(y)G
∗(z)) k(y, z) ∇Tm(y, z) dx, (9.131)

with k(y, z) in Eqs. (9.130) and (9.131) given by Eq. (9.124).

Because in Eq. (9.130) all the functions depending on the coordinate

z are known, integrals in Ωz can be performed in order to obtain the one-

dimensional weak form, that after discretization leads to Fm+1(y). The

same rationale applied to Eq. (9.131) allows obtaining the corresponding

problem for calculating Gm+1(z). For more details on the computational

implementation the interested reader can refer to [18] and the references

therein.

As soon as the solution T (y, z) is obtained we can compute the net heat

flux Q by integrating the heat flux along any section z = C ∈ [0, H ] (being

zero the heat fluxes on the lateral domain boundaries):

Q =

∫
Ωy

k(y, z = C)
∂T (y, z)

∂z

∣∣∣∣∣∣
y,z=C

dy, (9.132)

from which we can obtain the thermal contact resistance (TCR)

TCR =
Tu − Tb
Q

=
ΔT

Q
. (9.133)

9.4.3. Surface evolution during the in-situ consolidation

We consider the flow of a rheo-thinning fluid under the lubrication

hypotheses to derive the squeeze flow equations, to be applied on each

rectangular element involved in the Cantor fractal representation of the

composite surface.
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We consider the linear momentum and mass balance equations

∇ · σ = 0, (9.134)

and

∇ · v = 0, (9.135)

respectively, with σ and v the Cauchy’s stress and the fluid velocity

respectively. For a power-law incompressible fluid the Cauchy’s stress reads:

σ = −pI+ τ = −pI+ 2κDn−1
eq D, (9.136)

where p is the pressure, that can be interpreted as the Lagrange multiplayer

associated with the incompressibility constraint, κ the material consistency,

n the power index (n = 1 results in a Newtonian fluid for which κ

becomes its viscosity), Deq the equivalent strain rate usually given by

second invariant of the strain rate tensor D (symmetric component of the

velocity gradient ∇v)

D =
1

2

(∇v + (∇v)T
)
, (9.137)

and

Deq =
√
2D : D, (9.138)

where (• : •) refers to the tensor product twice contracted.

In what follows the flow equations are considered in 2D (y, z) with the

components of the velocity field given by vT = (v, w). Figure 9.4 illustrates

the problem geometry.

Fig. 9.4. Squeeze flow problem geometry.
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Now, by assuming that the flow takes place in a very thin gap, the

following kinematic hypotheses (lubrication hypotheses) apply:⎧⎨
⎩
∂v

∂z
� ∂v

∂y
,

w ≈ 0,
(9.139)

that introduced into the linear momentum balance results

∂p

∂y
= κ

∂

∂z

(
Dn−1

eq

∂v

∂z

)
, (9.140)

and

∂p

∂z
≈ 0, (9.141)

where in the present case

Deq =

∣∣∣∣∣∣∂v
∂z

∣∣∣∣∣∣ . (9.142)

From Eq. (9.141) we conclude that the pressure does not depend on

the z-coordinate, i.e., p = p(y), that allows the integration of Eq. (9.140)

with respect to the z-coordinate

Dn−1
eq

∂v

∂z
=

1

κ

∂p

∂y
z + C, (9.143)

where the integration constant C vanishes because the velocity gradient

vanishes at z = 0 (flow symmetry condition). Thus, it results

Dn−1
eq

∂v

∂z
=

1

κ

∂p

∂y
z, (9.144)

whose square power, taking into account relation (9.142), results

D2n
eq =

z2

κ2

(
∂p

∂y

)2

, (9.145)

or

Deq =

( |z|
κ

∣∣∣∣∣∣∂p
∂y

∣∣∣∣∣∣) 1
n

, (9.146)

that introduced into Eq. (9.144) results

( |z|
κ

∣∣∣∣∣∣∂p
∂y

∣∣∣∣∣∣)n−1
n ∂v

∂z
=

1

κ

∂p

∂y
z. (9.147)
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By defining α = 1
κ

∣∣∣∣ ∂p∂y
∣∣∣∣, the integration of Eq. (9.147) in the

z-coordinate assuming v(y, z = ±h/2) = 0 finally results

v(y, z) =
1

κ

∂p

∂y
α

1−n
n

n

n+ 1

(
|z| 1+n

n −
(
h

2

) 1+n
n

)
, (9.148)

from which the mean velocity v(y) reads

v =
2
∫ h/2
0 v(y, z)dz

h
= − n

1 + 2n

α
1−n
n

κ
2−

1+n
n h

n+1
n
∂p

∂y
. (9.149)

The mass balance writes

h
∂v(y)

∂y
+
dh

dt
= 0, (9.150)

that taking into account expression (9.149) and the definition of α, the last

considered for ∂p
∂y ≥ 0, results

h
∂

∂y

(
∂p

∂y

(
1

κ

∂p

∂y

) 1−n
n

)
D1 +

dh

dt
= 0, (9.151)

with D1 = − n
1+2n

1
κ2

− 1+n
n h

n+1
n .

Developing the derivative with respect to the y-coordinate in the

previous equation it results

D2

(
∂p

∂y

) 1−n
n ∂2p

∂y2
+
dh

dt
= 0, (9.152)

with D2 = hD1

n

(
1
κ

) 1−n
n . The previous equation can be rewritten for ∂p

∂y �= 0

as

∂2p

∂y2
+
dh

dt

1

D2

(
∂p

∂y

)n−1
n

= 0, (9.153)

that making use of the change of variable q = ∂p
∂y results

∂q

∂y
+
dh

dt

1

D2
q

n−1
n = 0, (9.154)

whose integral results

q
1
n = − 1

nD2

dh

dt
y + C1, (9.155)
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where the integration constant C1 vanishes if q = ∂p
∂y

∣∣∣∣
y=0

= 0 (symmetry

condition). Thus, the pressure derivative ∂p
∂y = q results

∂p

∂y
=

(
− 1

nD2

dh

dt

)n
yn, (9.156)

that integrating again results

p =

(
− 1

nD2

dh

dt

)n
yn+1

n+ 1
+ C2, (9.157)

where C2 is obtained by assuming that at y = ±b/2 the pressure is p0. Thus,
it results finally

p− p0 =
1

n+ 1

(
− 1

nD2

dh

dt

)n(
yn+1 −

(
b

2

)n+1
)
. (9.158)

The total force f originating the thickness reduction dh
dt can be obtained

from

f =

∫ b
2

− b
2

(p− p0)dy, (9.159)

and from it dh
dt , that taking into account the mass conservation bh = b0h0

(where the index (•)0 refers to values at the initial time) results

dh

dt
= −

h2+
1
n

(
1
κ

) 1
n n

(
(2+n)h2f( b0h0

h )
−n

b20h
2
0

) 1
n

1 + 2n
. (9.160)

The thickness evolution rate given by Eq. (9.160) depends on the fluid

rheology through n and κ, the asperity initial geometry b0 and h0, the

present height at time t, h, and the applied force f .

If F denotes the total force applied on the tape, the resulting force

acting on a rectangle of generation ng results

f =
F

sng
. (9.161)
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Now, if hng denotes the height of a rectangle of generation ng at time

t, Eq. (9.160) reads

dhng

dt
= −

nh
2+ 1

ng

(
1
κ

) 1
n n

⎛
⎝ (2+n)h2

ng
F

s
ng

(

b0h0
hng

)−n

b20h
2
0

⎞
⎠

1
n

1 + 2n
= F(hhg ). (9.162)

Thus, the rectangle height time evolution results from integrating the

previous equation: ∫ hng,f

hng,0

1

F(hng )
dhng = (Δt)ng , (9.163)

where (Δt)ng represents the time needed for removing rectangles of

generation ng and hng ,0 and hng ,f respectively the initial and final height

of rectangles of that generation.

In order to obtain the initial and final heights the mass conservation is

again invoked, that as illustrated in Fig. 9.5, reads:

hng,f

(
1

fy

)ng−1

Y0 = hng,0

(
1

fy

)ng

Y0, (9.164)

that results in

hng ,f =
hng ,0

fy
. (9.165)

Thus, being Zng the thickness of the ng generation rectangles, it results

hng ,0 = Zng −Δhng (9.166)

with Δhng = Zng+1 − hng+1,f .

Fig. 9.5. Initial and final configurations.
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Fig. 9.6. Evolution of the surface Cantor representation during the consolidation.
During tape placement air entrapped in the voids associated with the fractal surface
representation can scape in the third direction, the one perpendicular to the depicted
cross section.

Figure 9.6 depicts a consolidation sequence from the evolution of the

surface fractal representation.

9.4.4. Consolidation simulation strategy

As described in the previous section the evolution of the geometry initially

described from a Cantor fractal can be predicted taking into account the

squeeze flow of the different rectangular elements involved in the fractal

description of the surface.

The rectangles of the last generation are removed the first when

compressing, then it is the turn for the ones of the previous generation

and so on. The evolution does not correspond with a sequence of the

same fractal by removing one generation at each compression step, because

as proved in the previous section (see e.g., Eq. (9.165)) as the rectangle

volume does not coincide with the contiguous void rectangles, the rectangles

height of a particular generation is affected by the squeeze flow of the

next generations. For this reason Eq. (9.163) must be carefully integrated

for evaluating the surface evolution that remains all along the simulation

composed by rectangles, but different to the ones associated to the fractal

initial description.

In any case, the fact of having a description based on rectangular

elements makes possible and very easily solving the thermal model

while using a separated representation of both the temperature field

and the thermal conductivity as previously described. Thus, at different

times during the consolidation process the integration of Eq. (9.163)

allows updating the surface description, and then the solution of the
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heat conduction equation in the updated surface representation allows

calculating the equivalent TCR. At each thermal calculation, the thermal

conductivity must be expressed in a separated form from the characteristic

functions describing the deformed rectangles of all the generations existing

at that instant.

9.5. Conclusions

In this chapter, we addressed three main issues encountered in composites

forming processes. The first concerned the modeling of reinforced polymers

with special emphasis on the suspending fluid rheology (Newtonian

versus non-Newtonian) as well as to the concentration regimes (dilute,

semi-dilute/semi-concentrated and concentrated). Then, when moving to

continuous fiber composites the issue related to the efficient simulation

of multi-physics problems in laminates was addressed. The third part of

the chapter focused in the physics encountered at the interfaces level,

and particularly to the ones taking place during thermoplastics laminates

consolidation.
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Abstract

Recent advances in computational methods and numerous published
demonstrations of successful representations of the propagation of composite
damage mechanisms indicate that the day is imminent when reliable tools for
the virtual testing of composite structures will replace some mechanical testing
in the design and certification process. Given these rapid developments and the
apparent diversity of the proposed approaches, it is necessary to formulate the
conditions under which a given model can be expected to work and when
it will cease to be adequate. In this chapter, we examine the fundamental
concepts that are required for predicting damage in composites with the intent
of providing a basis to help select the idealizations that are necessary, physically
reasonable, and computationally tractable. Issues of the objectivity of fracture
propagation with continuum damage mechanics models are discussed and the
application of the extended finite element method to avoid these difficulties is
explored.
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10.1. Introduction: Damage Idealization and Scale

Fracture in a composite structure is the result of the evolution of

discrete damage events, such as fiber/matrix debonding, matrix cracking,

delamination between plies, and fiber failure. These damage modes evolve

in various combinations that depend on the stacking sequence and ply

thicknesses and cause redistributions of stresses in the failing composite.

Some combinations of damage may reduce local stress concentrations, while

others may precipitate a structural collapse. Therefore, a methodology

capable of predicting structural strength must take into account damage

initiation and propagation.

However, the details of the mechanisms that lead to failure are

not fully understood due to the complexity of the idealization of the

individual constituent responses and their interactions. The presence of
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(a) Fiber fracture (b) Matrix transverse crack (c) Delamination 

Fig. 10.1. Damage mechanisms in laminated composites.

two constituents, the fiber and the matrix, and the extreme anisotropy

in both stiffness and strength properties result in damage mechanisms at

different levels. The damage mechanisms can be divided into intralaminar

and interlaminar damage. As shown in Fig. 10.1, intralaminar damage

mechanisms correspond to fiber fracture and matrix cracking, whereas

interlaminar damage mechanisms correspond to the interfacial separation

of the plies (delamination).

The formulation of the governing physical principles of damage

evolution depends on the scale of the idealization of the damage process,

which may span from molecular dynamics to structural mechanics, and

includes the intermediate scales of micro- and mesomechanics. The damage

models shown in Fig. 10.2 illustrate four typical scales of damage

idealization. The micromechanical scale model shown in Fig. 10.2(a)

represents what is normally the smallest scale of composite damage

idealization, in which detailed matrix energy-dissipating mechanisms such

as matrix plasticity and damage and fiber/matrix interface cracking are

represented [1]. The representation of damage at this level is typically based

on a reduction of the material stiffness. Hence, a fracture is represented

as a band of localized volumetric stiffness reduction, referred to as a

“weak discontinuity,” as opposed to a “strong discontinuity” in which

voids are represented by displacement discontinuities in the model. Due

to computational constraints, micromechanical models are typically two-

dimensional (2D) and represent domains much smaller than a ply thickness.

Consequently, they are useful for representing a composite hardening

response before cracks localize at either the ply level or on a larger scale.

The discrete damage mechanics (DDM) model shown in Fig. 10.2(b)

represents a new class of analysis methods in which the plies are represented

at the mesoscale level, i.e., the material is assumed to be homogeneous

with orthotropic properties, and where enriched finite elements [2] are used

to insert cracks and delaminations in locations that are independent of
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Structural scale
(Strong discontinuity) • Fracture mechanics and

   modifications 
• Strain softening, cohesive
   laws 

(a)

Mesoscale
(Weak discontinuity) • Continuum damage 

mechanics (CDM)

(b) Mesoscale
(Strong discontinuity) • x-FEM + Cohesive laws

(c)

Microscale
(Weak discontinuity) • Representation volume element

 (RVE) models (unit cell)

(d)

Scale of idealization Damage type Typical approaches

Through-the-thickness 
crack or delamination

Intralaminar damage

Discrete damage

Fiber/matrix interface, 
matrix plasticity and 

damage

Fig. 10.2. Levels of damage idealization from microscale to structural scale.

mesh orientation. DDM methods are classified as either element enrichment

methods (e.g., [3]) or nodal enrichment methods, such as the extended finite

element method (x-FEM) [4, 5]. DDM methods can be used to represent

complex networks of transverse matrix cracks and delaminations using a

single cohesive law [6]. A form of x-FEM, the regularized extended finite

element method (Rx-FEM), is discussed in Section 10.7.

A similar level of kinematic fidelity can also be obtained without the

use of element enrichment when the crack directions are known a priori.

Since the direction of transverse matrix cracks in a unidirectional tape

ply laminate is parallel to the fiber direction, finite element meshes can

be constructed that are aligned with the fiber direction in the ply and in

which the crack paths are pre-defined. Bouvet et al., for instance, model

individual plies with narrow strips of elements tied together with cohesive

elements [7]. This modeling technique can represent networks of matrix

cracks and delaminations without requiring the numerical complexity of

discrete damage methods.
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The most common idealization for composite damage is the continuum

damage mechanics (CDM) model at the mesoscale level, in which plies

are assumed to be composed of a homogeneous material with orthotropic

properties and intraply damage modes, such as fiber fracture, fiber kinking,

and matrix cracking, are represented as a reduction in the corresponding

stiffnesses [8, 9]. In CDM models, localized damage is therefore represented

as a weak discontinuity, as opposed to the strong discontinuities used in

DDM models. An example of a mesoscale model of a notched wing skin

subjected to compression loads is shown in Fig. 10.2(c).

Mesoscale approaches such as DDM and CDM have several

computational advantages compared to micromechanical-level models.

Mesoscale models use material properties that can be determined from

lamina-level characterization tests, and imperfections and variabilities that

must be considered at lower scales can be disregarded. To account for

micromechanical effects such as fiber/matrix debonding, some mesoscale

methods perform concurrent analyses on idealized unit-cell models that

represent typical distribution patterns of fibers in the matrix. Other

mechanisms, such as transverse matrix cracking or fiber kinking, which

depend on mesoscale data such as ply thickness, are usually taken into

account with failure criteria and in situ strengths. These failure criteria

are used in conjunction with material degradation schedules to soften

the material properties associated with a particular mode of failure. The

delamination failure mode is represented at the mesoscale level as a strong

discontinuity between plies, which is generally modeled using either cohesive

elements or nonlinear springs [10].

The mesoscale CDM approach is one of the most widely used

approaches to calculate the damage tolerance of structural components.

However, the relatively diffused representation of damage in the CDM

approach may lack sufficient resolution to capture some important damage

interactions at the micromechanical scale. In particular, mesoscale CDM

models have difficulty predicting the correct direction of propagation of

matrix cracks parallel to the fibers. Furthermore, the damage models for

intralaminar damage may not interact correctly with the delamination

models, e.g., [11, 12].

Finally, the model of a through-crack in a fuselage panel illustrated in

Fig. 10.2(d) is an example of a structural-level damage model. The crack is

represented as a strong discontinuity, and prediction of the propagation of

the crack could be based on a strain-softening law or a criterion based on

the critical energy release rate [13, 14]. However, any structural-level crack
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propagation criterion is strongly dependent on the material system and

laminate configuration and consequently must be determined for each new

material system and laminate stacking sequence. In addition, structural-

level semi-empirical fracture models cannot address the characteristics of

the crack-tip damage zone nor the complex interactions between micro-

and macro-failures associated with the crack-extension process. Instead,

the crack-tip damage zone is simulated as some “effective” notch-tip

damage zone that is assumed to grow in a self-similar manner. In many

cases, self-similar crack growth is not observed, and the lack of resolution

in the damage mechanisms often renders structural-level damage models

inaccurate after a short propagation of damage.

It is clear from the preceding overview of typical damage modeling

strategies that the conceptual idealization of damage, i.e., the identification,

characterization, and formulation of the governing physical mechanisms

that constitute damage evolution, are different at each scale of idealization.

Damage idealizations at lower structural scales have higher resolution and

kinematic freedom and can capture multiple damage mechanisms with a

separate damage law for each mechanism. These damage laws are likely to

be simpler and require lower fracture toughnesses than the damage laws

used in coarser higher-level models to represent the same global response.

For instance, mesoscale DDMmodels may only need one simple cohesive law

to represent a variety of matrix damage patterns, while CDM models may

need multiple empirical stiffness degradation laws and interacting activation

functions to represent the softening of the material.

The choice of a modeling approach is further complicated by the

fact that there is a vast number of published demonstrations of different

successful representations of the propagation of damage. A variety of

damage models have been championed and, given the complexity of these

methods, their differences, strengths, and shortcomings are unclear. The

objective of the present chapter is to examine the common features

and basic principles of well-established approaches for predicting damage

propagation in composites to establish which damage mechanisms are

important and how to select the idealizations that are necessary, physically

reasonable, and computationally tractable.

In the following sections, we first examine the capabilities of cohesive

laws to represent crack initiation and propagation. Then, the concepts of

the continuum representation of composite material response are discussed

and the intrinsic limitations of continuum damage models for laminated

composites are outlined. Finally, a modeling technique based on x-FEM,
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which overcomes many of the limitations of continuum damage models is

presented and the capabilities of the x-FEM methodology are illustrated

with some examples.

10.2. Crack Initiation and Propagation

10.2.1. Linear elastic fracture of composites

The ability to predict crack propagation in composites emerged four decades

ago with the development of computational methods based on the theory

of linear elastic fracture mechanics (LEFM). In particular, the virtual crack

closure technique [15] is a computationally simple procedure with which to

calculate the energy release rate (ERR) for each mode of fracture along a

crack front. According to the Griffith criterion [16], when the sum of these

ERR values exceeds the corresponding critical fracture toughness, the crack

should propagate. However, LEFM is limited to applications in which the

fracture process zone is confined to the immediate neighborhood of the

crack tip itself, so it cannot be applied to a number of important cracking

problems involving some of the tougher, more ductile structural materials

and adhesives sometimes described as quasi-brittle [17], that fracture after

extensive nonlinear deformation.

For many fracture processes in composite materials and structures,

the fracture process zone can be relatively large compared to other

structural dimensions. The fracture process zone is characterized by plastic

deformations and progressive material softening due to nonlinear material

deformations, such as microcracking, void formation, and fiber/matrix

pullout. The size of the fracture process zone is dependent on the type

of material softening and it must be considered in many situations of

crack growth in composite structures. For example, the development of

a process zone gives rise to stable growth and crack growth resistance. The

apparent fracture toughness increases with crack growth — an effect called

the R-curve — until the process zone is fully developed. In addition, the

effects of material strength, the R-curve, and structural size on the residual

strength of structures made of these materials may be misunderstood,

disregarded, or perceived as solely statistical if the fracture process zone

is not taken into account in fracture calculations.

Reduced-singularity criteria such as the Mar–Lin criterion [13, 18] or

Sun’s two-parameter fracture criterion [19] were devised for extending the

classical linear theory to situations where the stress distribution ahead

of the crack tip does not follow a square-root singularity. However, these
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criteria can easily be supplanted by nonlinear fracture mechanics (NLFM).

NLFM provides a framework for characterizing crack growth resistance and

for analyzing initial amounts of stable crack growth.

The cohesive crack model is an NLFM methodology that was developed

to simulate the nonlinear fracture response near a crack tip. Cohesive

crack models have the ability to describe the process of void nucleation

from inclusions. Therefore, they can be applied to an initially un-cracked

structure and can describe the entire fracture process, from no crack to

complete structural failure. In the following sections, the formulation of

cohesive laws is presented. We examine the differences in the failure/

fracture of a quasi-brittle material subjected to either a uniform stress field

or a “singular” stress field caused by a crack tip. Next, we examine the

ability of cohesive laws to account for the size effect on structural strength

and different aspects of composite failure related to material characteristics.

Finally, the effect of material softening on the size of the fracture process

zone and the R-curve effect is demonstrated.

10.2.2. Cohesive laws

Cohesive crack models are based on kinematic descriptions that use strong

discontinuities in the displacement field. Cohesive interfacial laws are

phenomenological mechanical relations between the traction σ and the

interfacial separation δ such that with increasing interfacial separation the

tractions across the interface reach a maximum and then decrease and

vanish when complete decohesion occurs. It can be shown by performing a

J-integral calculation along a contour surrounding a notch tip that the

resulting work of interfacial separation is related to Griffith’s fracture

criterion [16]:

Gc =

∫ δf

0

σ(δ)dδ, (10.1)

where Gc is the critical energy release rate (ERR) and δf is the critical

interfacial separation.

The complete representation of a fracture in a continuum requires

an ability to model both the initiation and growth of the fracture. The

principles of the representation of a fracture in a continuum can be

illustrated by considering a quasi-brittle bar of length L and cross-sectionA,

as shown in Fig. 10.3(a). To model the fracture of the bar, a cohesive

interface is introduced. The crack is assumed to open according to the

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Modeling Fracture and Complex Crack Networks in Laminated Composites 447

L+    +

K

F,

Gc

c

(1-d)K

(a) (b)

Fig. 10.3. (a) Elastic bar with a cohesive crack. (b) Bilinear cohesive law.

softening law shown in Fig. 10.3(b). Initially, the crack is assumed to be

elastic and the crack closing forces are related to the interfacial displacement

jump δcoh by a high penalty stiffness K. If the displacement jump exceeds a

critical value δi the crack closing forces are assumed to soften linearly such

that the area under the traction-displacement curve is equal to the fracture

toughnessGc. Complete separation is achieved when the displacement jump

exceeds δf . Therefore, the bilinear cohesive law can be expressed in two

parts:

σ =

{
Kδ, δ < δi,

(1 − d)Kδ, δi ≤ δ < δf ,
(10.2)

where the damage variable d is a function of the displacement jump and

accounts for the reduction in the load-carrying ability of the material as a

result of damage.

The response of the bar can be obtained from the compatibility and

equilibrium equations:

Δ = δbar + δcoh and σ = σbar = σcoh. (10.3)

The deformation of the bulk material is δbar = σL/E where E is Young’s

modulus. If the bar is undamaged (σ ≤ σc), the opening of the cohesive

crack is δcoh = σ/K. Therefore, the force-displacement response of the bar

before damage is

F = Aσ = EA
Δ

L + E
K

. (10.4)

It can be observed that as long as K � E/L the compliance introduced by

the cohesive law can be neglected. It is also clear from Eq. (10.4) that the

maximum load that the bar can withstand, Fc = Aσc, and the response
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of the bar before failure depend on strength alone and not on a fracture

criterion.

For a bilinear cohesive law, the relationship between the damage

variable d and the displacement jump δcoh has the form:

d =
δf (δcoh − δi)

δcoh(δf − δi)
, (10.5)

where δi = σc

K and δf = 2Gc

σc
. Therefore, the response of the bar after

damage initiation is obtained by substituting d, Δ, δi, and δf into Eq. (10.4),

which results in:

F = Aσ = EA
Δ− 2Gc

σc

L− 2EGc

σ2
c

+ E
K

. (10.6)

The response of the bar after damage initiation is stable under displacement

control only if ∂F∂Δ ≤ 0 which, assuming that K � E/L, gives:

L ≤ 2EGc
σ2
c

. (10.7)

The right-hand side of Eq. (10.7) is a characteristic dimension

associated with material properties that is typically much smaller than

the structural dimensions. Consequently, the failure of a uniformly stressed

problem, such as the present bar, is typically unstable, i.e., no quasistatic

equilibrium solution exists, and the failure load is independent of the

fracture toughness Gc. As a result of the unstable fracture, the shape

of the softening response is of no consequence. On the other hand, when

cohesive models are used to predict the propagation of crack fronts, the

fracture toughness Gc is the dominant material property and the effect of

the strength σc may be minor.

In the following section, the fundamental concepts in the analysis of

crack propagation using cohesive laws and LEFM are compared and some

principles related to the effect of size on structural strength are outlined.

10.2.2.1. Length of the fracture process zone

LEFM assumes that the material is elastic and that the mechanisms that

consume the fracture energy act at the crack tip. NLFM was initiated by

Irwin [20] with a model for ductile solids based on an elastic/perfectly

plastic material response to describe the effect of plastic material behavior

in the vicinity of the crack tip on fracture propagation. By assuming that
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Traction

x

Trailing crack tip

Cohesive traction profile (Bažant)

LEFM stress singularity

r1

lp

A1

A2

Leading crack tip

Plastic traction profile (Irwin)

Fig. 10.4. Stress profile ahead of the crack tip [21].

plasticity affects the stress field only in the vicinity of the crack tip, Irwin

estimated the size of the plastic region by equating the yield strength to

the stress of the elastic field ahead of the leading crack tip (see Fig. 10.4).

A generalization of Irwin’s model for material softening due to damage

was proposed by Bažant and Planas [21]. In the Irwin–Bažant model, the

traction profile in the inelastic zone ahead of the trailing crack tip follows

a general expression:

σ = σc

(
x

lp

)β
, (10.8)

where lp is the size of the cohesive zone (or the fracture process zone), x is

the distance from the trailing crack tip, and β is a parameter that describes

the stress field in the process zone.

In the elastic zone, the traction profile follows the expression given by

the LEFM solution. Accounting for an offset r1 to be determined, the stress

singularity at the crack tip given by the linear elastic solution is

σ =

√
EGc

2π(x− r1)
. (10.9)

The length lp and the offset r1 are obtained by assuming that the traction

given by Eqs. (10.8) and (10.9) are equal at x = lp, and that the areas A1

and A2 shown in Fig. 10.4 are also equal. The crack propagates when the
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energy release rate G is equal to the critical value Gc. Therefore, the size

of the cohesive zone when the crack is propagating in a self-similar, steady-

state fashion can be solved using the previous equations, resulting in:

l∞p =
β + 1

π

EGc
σ2
c

. (10.10)

The notation l∞p indicates that Eq. (10.10) is valid only when the structural

dimensions are infinite compared to the crack length, in which case the

elastic stress field is represented accurately by Eq. (10.9). Finite element

analysis results indicate that the steady-state length of the process zone for

a bilinear law, such as the one represented in Fig. 10.3(b), is approximated

well using β = 1 in Eq. (10.10) (see [22]).

In many situations of crack growth in composite structures, the process

zone length lp may be relatively large compared to other structural

dimensions. The fracture process zone length is generally considered

to represent an intrinsic characteristic of a material response and the

fact that it can range from about 10 nm for a silicon wafer to several

meters for concrete underlines the diversity in the response of different

materials [23]. However, when the structural dimensions are small, the

boundary conditions can influence the stress distribution ahead of the

crack tip and empirical corrections must be applied to Eq. (10.10). This

can be the case, for instance, in delamination, where the process zone

length is shorter than the l∞p estimated by Eq. (10.10), especially for thin

adherends [22]. Conversely in a notched specimen whose height is less than

the crack length, the non-singular stresses become significant and induce

a process zone that is longer than l∞p [19]. The development of analytical

expressions for predicting the length of the process zone accurately for

general configurations is the subject of ongoing research.

For many fracture processes in composite materials and structures,

the length of the process zone must be considered because its formation

is responsible for an increase in fracture toughness with crack growth, a

response denoted as the resistance curve or the R-curve. In the presence

of an R-curve, the toughness measured during crack propagation typically

increases monotonically until reaching a steady-state value. In the case of

delamination, the increase in toughness with crack growth is attributed

mostly to fiber bridging across the delamination plane. Since it is generally

assumed that fiber bridging only occurs in unidirectional test specimens

and not in general laminates, the toughness of the material is taken

as the initial toughness and the toughness for steady-state propagation
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is ignored [24]. However, recent experimental work on the delamination

between plies with different orientations indicates that R-curve effects are

always present in delamination such that the steady-state values of the

critical ERR is typically between four and five times greater than the

initiation values [25–27]. In a through-the-thickness fracture of composite

laminates (Fig. 10.2(d)), the R-curve effect is caused by a combination

of damage mechanisms leading the process zone, and fiber bridging in

the trailing region of the process zone. This R-curve response makes it

difficult to predict the effect of structural size on strength using LEFM,

even in the case of self-similar propagation, as described in the following

section. Test results for notched laminated panels of different sizes indicate

that their strength cannot normally be predicted using a constant fracture

toughness [13].

Finally, knowledge of the length of the process zone lp is also useful for

determining the finite element mesh requirements for a given material since

it is necessary to use more than three elements in the process zone [28].

10.2.2.2. Size effects

The goal of any damage theory is to predict the effect of size, i.e., the change

in strength when the spatial dimensions are scaled up from the coupon

to the structure. No viable physical theory can be postulated without a

clear understanding of the effects of scaling. The LEFM theory, in which

all the fracture processes are assumed to occur at the crack tip, exhibits

the strongest possible size effect. LEFM scaling predicts that the nominal

strength is inversely proportional to the square root of structure size, as

shown in the following example. Consider the notched specimen shown

in Fig. 10.5(a) with an initial crack length a0 and subjected to a tensile

stress σu. Let D, b, and t be the width, the length, and the thickness of

the specimen, respectively. The elastic solution can be approximated as a

stress field consisting of two regions: one which is loaded elastically, Vel,

and another which is unloaded, Vul. The elastic energy in the specimen for

a crack length a is then

Ue =
σ2
u

2E
Vel =

σ2
u

2E
(Db− ka2)t, (10.11)

where E is the elastic modulus and the slope k of the boundary between Vel
and Vul is a constant that is independent of the specimen dimension D and

crack length a. Griffith’s fracture criterion states that crack propagation
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Fig. 10.5. Brittle and quasi-brittle crack propagation in a uniformly-loaded specimen.

occurs when the change in elastic energy per new surface area created is

equal to the fracture toughness Gc. Therefore,

−1

t

[
∂Ue
∂a

]
σu

=
σ2
u

E
ka = Gc. (10.12)

The failure strength σu is obtained by solving Eq. (10.12), which

gives σu =
√
EGc/ka. Since the failure strength decreases with the crack

length a, the maximum strength for the specimen corresponds to the initial

crack length a0:

σMAX
u =

√
EGc
ka0

. (10.13)

Consider a series of experiments conducted on specimens with the same

material and the same geometric proportions but with different dimensions.

On a logarithmic plot, the strength in Eq. (10.13) scales as a line with

slope −1/2, as shown in Fig. 10.5(c).

In contrast with the LEFM assumptions, a crack in a quasi-brittle

material can propagate in a stable manner until a damage zone is formed

behind the crack tip. The effect of the damage zone is equivalent to an

increment lp to the crack length, as shown in Fig. 10.5(b). Therefore, the

failure strength can be expressed as

σu =

√
EGc

k(a0 + lp)
. (10.14)
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Since a0 is proportional to D, the strength represented by Eq. (10.14)

results in the scaling law

σu(D) =
σc√

1 + D
Dc

, (10.15)

which can be plotted on a logarithmic scale as shown in Fig. 10.5(c).

Equation (10.15) is known as Bažant’s scaling law [17]. It can be observed

that the failure of small specimens is governed by strength considerations,

while that of large specimens is governed by LEFM. Furthermore, the

degree to which size effects on structural strength can be predicted by

LEFM depends on the laminate notch sensitivity, which is a function of

both the laminate material and the notch length. The notch sensitivity can

be expressed by the dimensionless ratio η of the notch length a over lp:

η =
a

lp

⎧⎪⎨
⎪⎩
η < 5 ductile damage, plasticity,

5 ≤ η ≤ 100 quasi-brittle fracture mechanics,

η > 100 brittle.

(10.16)

The load-carrying capability of notch-ductile components is dictated by

strength; that of notch-brittle parts is dictated by fracture toughness; and

for the range in between these extremes, both strength and toughness play

a role. The process zone length for polymeric composites is of the order

of a few millimeters, so notched panels with notch lengths greater than

approximately 1–10 cm are notch-brittle [8].

Specimens that do not exhibit localized fracture planes, such as in

the case of brooming, splitting, etc., may exhibit much enhanced notch-

ductility. For instance, notch-ductility is enhanced by multiple cracking

and matrix splitting along the fiber direction. It has been shown that the

fracture toughness of a composite laminate increases with fiber strength

and decreases with fiber/matrix shear strength [29].

Since cohesive laws are defined in terms of strength and fracture

toughness, they can represent equally well the propagation of cracks as

the softening of a material, as in the example of the tension-loaded quasi-

brittle bar, which gives them the ability to produce the entire range of

structural scaling represented by Eq. (10.15) and shown in Fig. 10.5(c).

10.2.2.3. Softening law and the R-curve effect

The relationship between the functional form of the material softening law,

the length of the process zone, and the shape of the R-curve has not received
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much attention from the computational mechanics community. As described

in the previous section, the physics of stable crack growth should be viewed

as the gradual development of a fracture process zone behind the crack

tip that produces a stabilizing influence on crack growth, characterized by

a rising R-curve. For a bilinear softening curve such as the one shown in

Fig. 10.3(b), the R-curve can be approximated by the expression [30]:

GR(Δa) =

⎧⎪⎨
⎪⎩
Gc

Δa

lp

(
2− Δa

lp

)
for Δa < lp,

Gc for Δa ≥ lp,

(10.17)

where lp can be estimated from Eq. (10.10) with β = 1.

In composite materials, more than one physical phenomenon is often

involved in the fracture process. Some phenomena act at small opening

displacements, which are confined to correspondingly small distances from

the crack tip, and others act at higher displacements, which extend further

into the crack wake. In these situations, more complicated softening laws

than the bilinear softening law may be necessary to capture the correct

crack growth response. For example, when fiber bridging or friction effects

are present, a softening law may be required that has a peak at low crack

displacements to represent the tip process zone, and a long tail at high

crack displacements to represent the bridging in the wake of the crack.

In this case, multilinear softening laws can be obtained by combining

two or more bilinear cohesive laws, as illustrated in Fig. 10.6. The

two underlying linear responses may be seen as representing different

phenomena, such as a quasi-brittle delamination fracture characterized by

a small critical opening displacement δc1, and fiber bridging characterized

by a lower peak stress and a larger critical opening displacement δc2.

A multilinear cohesive law can provide a more accurate approximation

of the process zone length and a more accurate approximation of an

experimentally determined R-curve.

Consider a trilinear cohesive law such as that shown in Fig. 10.6. To

describe such a trilinear law, it is convenient to consider the superposition

of two bilinear cohesive laws that peak at the same opening displacement.

Two bilinear softening responses are used for convenience and do not

necessarily correspond to two distinct failure modes, which could peak

at different opening displacements. In fact, the bridging strength does

not typically contribute to the peak strength, which is associated with

the intrinsic fracture process prior to the bridging process. Consequently,
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Fig. 10.6. Trilinear cohesive law obtained by the superposition of two bilinear laws.

a trilinear cohesive law can be described by the proportions: σc1 = nσc,

σc2 = (1 − n)σc, G1 = mGc, and G2 = (1 − m)Gc with 0 ≤ n, m ≤ 1,

so that

Gc = G1 +G2 and σc = σc1 + σc2. (10.18)

A procedure for determining the strength ratio n and the toughness

ratio m that approximate an experimentally determined R-curve is

presented below. On the basis of Eq. (10.17), an expression for an R-curve

that results from the sum of two bilinear cohesive laws [30] is defined as:

GR(Δa) = nGc
Δa

lp1

(
2− n

m

Δa

lp1

)
︸ ︷︷ ︸

=G1 if Δa≥m
n lp1

+ (1 − n)Gc
Δa

lp1

(
2− (1− n)

(1−m)

Δa

lp1

)
︸ ︷︷ ︸

=G2 if Δa≥ 1−m
1−n lp1

,

(10.19)

where lp1 = 2
π
EGc

σ2
c

is the length of the process zone for a single bilinear

cohesive law. If the two superposed bilinear cohesive laws are ordered such

that m/n ≤ (1−m)/(1−n), then the process zone length for the resulting

trilinear law is

lp2 =
1−m

1− n
lp1. Otherwise, lp2 =

m

n
lp1. (10.20)

Consequently, lp2 ≥ lp1, i.e., the process zone length for a trilinear cohesive

law is longer than that of the corresponding bilinear cohesive law. For

example, consider the problem examined in [30] of a crack with an initial

length a0 = 25mm in a material with modulus E = 70GPa, fracture

toughness Gc = 180kJ/m2, and strength σc = 2000MPa. The length of
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Fig. 10.7. R-curves for bilinear and trilinear cohesive laws.

the process zone is equal to lp1 = 2.01mm, and the associated R-curve

obtained from Eq. (10.17) is shown in Fig. 10.7. The R-curve for a trilinear

cohesive law defined bym = 0.556 and n = 0.944 obtained from Eq. (10.20)

is equal to lp2 = 17.8 mm, as shown in Fig. 10.7.

10.2.2.4. Mixed-mode cohesive laws

In composites, the direction of propagation of matrix cracks and

delaminations is typically constrained by the presence of fibers. Therefore,

crack propagation is likely to occur under mixed-mode loading, and a

general formulation for cohesive laws must address mixed-mode fracture.

A mixed-mode cohesive law can be illustrated in a single three-dimensional

(3D) map by representing Mode I on the 2–3 plane, and Mode II in the 1–3

plane, as shown in Fig. 10.8. The triangle O−Y −δFI is the bilinear material

response in pure Mode I and O−S−δFII is the bilinear material response in

pure Mode II. It can be observed that the tensile strength Y is lower than

the shear strength S, and the ultimate displacement in shear can be larger

than in tension. In this 3D map, any point on the 0–1–2 plane represents

a mixed-mode relative displacement. Under mixed-mode loading, damage

initiates at δ0 and complete fracture is reached at δF . Consequently, the

tractions for Mode I and Mode II under mixed-mode loading follow the
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Fig. 10.8. Mixed-mode cohesive law.

reduced curves O−YM − δFMI and O−SM − δFMII , respectively. The areas

under these two curves represent the fracture energies under mixed-mode

loading. In the model proposed by Turon et al. [31], the initial strength and

the critical value of the ERR in the mixed-mode cohesive interface damage

law are functions of the mode-mixity parameter B:

B =
GII

GII +GI
=

KIIδ
2
II

KIIδ2II +KIδ2I
, (10.21)

where GI and GII are the Mode I and II critical ERR values, KI and

KII are the Mode I and II penalty stiffnesses, and δI and δII are the

displacement jumps in the directions normal to and along the crack surface.

The critical strength and fracture toughness values for mixed-mode loading

are defined as

σ2
c = Y 2 + (S2 − Y 2)Bη,

Gc = GIc + (GIIc −GIc)B
η,

(10.22)

where Y and S are the transverse tensile strength and shear strength,

respectively, of a composite ply, and η is a numerical parameter for fitting

experimental mixed-mode data. Similar mixed-mode models have been

adopted by a number of authors [32–36] and have been extended to trilinear

cohesive laws by Hansen et al. [37].

Despite the maturity of cohesive laws, some issues regarding the

prediction of crack propagation under mixed-mode conditions remain

unresolved. According to any of the mode-mixity measures defined in the
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references cited above, the mode ratio is rarely if ever constant during

fracture. Even in specimens such as the mixed-mode bending (MMB)

specimen, where from the LEFM point of view the mode ratio is constant

during propagation, it can be observed that the opening displacements at

damage initiation are dominated by Mode II, and that immediately before

complete separation the displacement jumps are mostly in Mode I. Sørensen

et al. [38] and Turon et al. [39] have observed that the ratio of interlaminar

strengths affects the prediction of delamination propagation, even when the

crack length is long and the propagation should be according to LEFM.

By enforcing the condition of a non-negative damage rate under variable

mode mixity, Turon obtained a relationship between interlaminar strengths,

fracture toughnesses, and penalty stiffnesses that has the form:

KII = KI
GIc
GIIc

(
S

Y

)2

. (10.23)

When the penalty stiffnesses are selected according to Eq. (10.23) and

the LEFM assumptions are valid, then the load–displacement curve

for propagation predicted from a mixed-mode cohesive formulation is

equivalent to that predicted using LEFM. However, additional research is

needed for a full understanding of mixed-mode crack propagation.

10.3. Continuum Representation of Material Response

10.3.1. Distributed damage vs. localization of fracture

All materials exhibit irreversible nonlinearities, which can be due to

plasticity, damage, and fracture. When a material’s constitutive tangent

relationship between the strain increments and the stresses is positive

definite, as shown in Fig. 10.9, the response is said to be of a hardening

type. Hardening is a macroscopic, distributed, and irreversible material

response that locally redistributes stress concentrations and eliminates

any stress singularities. Examples of hardening damage include plasticity

and distributed damage mechanisms at the microstructural scale. Different

material nonlinearities can be identified by comparing the unloading paths

to the loading paths. Unloading path A is a typical linear elastic material

response. Path B has the same slope as path A, but with an additional strain

offset, indicating that the material has undergone plastic deformation.

Path C differs from path A in terms of both slope and offset, indicating

the presence of additional nonlinearities such as cracking. The constitutive

tangential stiffness for loading path D is non-positive definite and the
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Fig. 10.9. Typical shear stress–strain response exhibiting multiple nonlinearities.

response is said to be of a softening type, which corresponds to the

development and coalescence of voids and microcracks. As a consequence of

softening, damage localizes along a fracture surface while material adjacent

to the fracture surface unloads elastically.

A number of models have been proposed to represent material

nonlinearities. The hardening of composites can be modeled with local

constitutive models, i.e., models in which the stresses at a given point

depend uniquely on the history of the strains up to that point. These

models rely on the implicit assumption that the material can be treated

as a continuum at any arbitrarily small scale. These models are described

by differential equations and lack the notion of characteristic length.

Alternatively, the constitutive response of a material can be approxi-

mated using a spatially periodic representative volume element (RVE)

to represent the micromechanical response of individual constituents and

their interactions [40, 41]. The degree of complexity of the system is often

reduced by considering a 2D approximation of the 3D continuum, assuming

plane-strain conditions for a 2D model of the material. It is assumed

that each RVE deforms in a repetitive way, identical to its neighbors.

Periodic boundary conditions are imposed on each RVE in order to ensure

compatibility of the deformation field along the boundaries. RVEs must

be large enough to reflect the stochastic fluctuations of material properties

on the pertinent scale while the computational requirements call for an

RVE to be as small as possible. However, even when the RVE is large,

extending the analysis to a highly nonlinear material response that leads to

localization of damage renders the periodicity in the boundary conditions,

and consequently the RVE approach, unsatisfactory [42].
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Until Bažant and others developed the concept of crack bands [43],

the idea of using strain softening to represent cracking in a continuum

was controversial [44]. It was often argued that materials with a non-

positive definite tangential moduli tensor do not exist. The point in

the deformation history where the tangential stiffness of the constitutive

model loses its positive definite properties indicates the formation of

discontinuities. From the mathematical point of view, the loss of ellipticity

of the governing differential equation induces numerical difficulties related

to the ill-posedness of the boundary-value problem [45, 46]. Since an

infinitesimal change in the data can cause a finite change in the solution, ill-

posedness is manifested by the pathological sensitivity of numerical results

to finite element discretization.

The problem can be easily illustrated by considering a simple

example of a quasi-brittle bar loaded in monotonic tension, as shown in

Fig. 10.10.

The constitutive damage model is a function of the strain given by the

following expression:

σ(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Eε, ε ≤ εi,

(1− d)Eε, εi < ε < εf , d =
εf (ε− εi)

ε(εf − εi)
0, ε > εf ,

, (10.24)

where d is a scalar damage variable and E is the elastic modulus of

the material. While the strains do not exceed εi, the force–displacement

relationship of the bar is

F = Aσ =
EA

L
δ. (10.25)

The material properties and the geometry of a real bar cannot be

exactly uniform. Assuming that the strength of a small region of the bar ΩB

L+

E
F,

(a) (b)

Fig. 10.10. (a) Bar under tensile load. (b) Constitutive response with linear softening.
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is lower than the strength of the remaining portion of the bar ΩA, damage

localizes in the region ΩB. Consequently, the material in ΩB softens and

in order to satisfy the equilibrium conditions the material in ΩA unloads

elastically. Equilibrium dictates that the stress along the bar is

σ = σA = σB , (10.26)

which yields

σ

E
= εA = εi

εf − εB
εf − εi

. (10.27)

Compatibility of the displacements gives

(L− LB)εA + LBεB = δ. (10.28)

Using Eqs. (10.27) and (10.28) to solve for εA and εB gives the force–

displacement relationship during the damage process:

F = Aσ = EA
δ − LBεf
L− LB

εf
εi

. (10.29)

As Eq. (10.29) indicates, the force–displacement relationship for

damage depends on the length of damage localization LB, which can take

any value between zero and L. Consequently, the problem has infinitely

many solutions, as the post-peak solutions illustrated in Fig. 10.11 indicate,

and it is not clear which of these solutions is correct. In addition, some

post-peak responses, such as that for LB/L = 0.01, exhibit an artificial

contraction once the critical strain is exceeded in ΩB, which is not a physical

behavior.

In finite element analyses, the length LB is related to the element length

Le. Consider a model of the bar composed of Ne linear beam elements of

equal length. The length of the localized zone is LB = Le = L/Ne. The

post-peak solution given by Eq. (10.29) is therefore strongly dependent on

the number of elements Ne. As the number of elements tends to infinity,

the post-peak response approaches the unloading response of the initial

(linear elastic) solution. Furthermore, the energy dissipated in the localized

zone is calculated as
∫
V

∫ εf
0
σdεdV = 1/2σcεfALe, which depends on the

element length Le. At the limit, when the element size tends to zero, the

computational model predicts failure without any energy being dissipated,

a physically unacceptable result. If the crack-band model does not permit

reducing the element size to zero, convergence cannot be defined and the
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Fig. 10.11. Force–displacement response of a bar loaded in tension for different
numerical discretizations.

boundary-value problem becomes ill-posed. Somehow, the boundary-value

problem has to be regularized.

In the context of continuum mechanics, so-called non-local techniques

are available to resolve mesh sensitivity issues and to retain the objectivity

of the numerical response. Most of these techniques introduce spatial

interaction terms that have a smearing effect on the deformation fields,

and thus preclude localization in a plane [47, 48]. A similar smearing can

be obtained in a computationally simpler technique using rate-dependent

(viscous) properties [49]. The material properties necessary for crack

smearing, or strain softening, are chosen such that the width of a localizing

diffuse crack band in a continuum is equal to the characteristic length,

which is associated with the material response.

Alternatively, the objectivity of the numerical solution can be simply

achieved by adjusting the post-peak material response using a characteristic

element length Le. This technique, proposed by Bažant and Oh [43], consists

of ensuring that the computed dissipated energy due to the fracture process

is constant and equal to the product between the fracture energy Gc
and the crack surface A. Solving the resulting equation for the ultimate
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strain gives:∫
V

∫ εf

0

σdεdV = GcA⇒ ALe
Eεiεf

2
= GcA⇒ εf =

2Gc
LeEεi

. (10.30)

When Eq. (10.30) is substituted into (10.29), the response of the bar

becomes

F = EA
δ − 2Gc

σc

L− 2EGc

σ2
c

. (10.31)

The response of the bar represented by Eq. (10.31) is independent of the

crack band or discretization length Le. In addition, the response given by

Eq. (10.31) is identical to the response obtained from (10.6) using a cohesive

crack model, provided that the penalty stiffness of the cohesive law is a very

large number: K � E/L.

It can be observed that the adjusted constitutive model takes into

account a size effect, since the response of the bar depends on the length,

L: a longer bar has a more brittle post-peak response. It can be shown

that under displacement control, the post-failure response described by

Eq. (10.31) is stable only if L ≤ 2EGc/σ
2
c .

Another important aspect in the simulation of fracture using crack-

band models is that there exists a maximum size of the finite elements

that can be used in the simulation of a crack band. In order to avoid snap-

back in the constitutive model illustrated in Fig. 10.12, the ultimate strain

cannot be less than εi = σc/E. Under this circumstance, the maximum

characteristic size of the finite element is

ALMax
e

σ2
c

2E
= GcA⇒ LMax

e =
2EGc
σ2
c

. (10.32)

Note that Eq. (10.32) has the same form as the equation governing the

stability of the bar loaded in tension. The same principle applies at both

E

c

E

c

E

c

Softening Limit Snap-back

Fig. 10.12. Snap-back at constitutive level.
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scales: unstable failure occurs when the elastic strain energy in the bar is

greater than the fracture energy required to fail it, once initiated. While

this is physically valid in the case of the bar, if the element size is greater

than the critical size in Eq. (10.32), the element will always fail unstably

and a model composed of such elements will be unable to predict any stable

fracture process.

The implications of Eq. (10.32) are important: the use of an element

size larger than LMax
e , which for some composite damage modes is a fraction

of a millimeter, results in the overestimation of the critical ERR. When it

is computationally impractical to use a sufficiently fine mesh, a workaround

consists of artificially reducing the strength in order to preserve the correct

value of Gc [28, 50]. Reducing the strength in a damage model to increase

the maximum acceptable element size should be done only for problems

where the solution is expected to be fracture dependent and not strength

dependent.

10.3.2. Idealization of damage modes in

composite materials

The complex damage mechanisms occurring in advanced composite

materials result in additional difficulties in the numerical simulation of

failure. While some intralaminar damage mechanisms such as transverse

matrix cracking (Fig. 10.1(b)) and delamination (Fig. 10.1(c)) occur in

easily identifiable fracture planes that are parallel to the fiber direction,

others such as fiber failure are more difficult to idealize. These complexities

make the representation of intralaminar damage using a kinematic

description based on strong discontinuities a formidable task. A more

computationally tractable approach consists of using failure criteria based

on the homogenized stress or strain state to idealize the mechanisms

of failure.

10.3.3. Failure criteria and strength

Many failure criteria have been proposed to predict the onset of matrix

cracking and fiber fracture, some of which are described and compared

in the worldwide failure exercise (WWFE) [51, 52]. However, few criteria

can represent several relevant aspects of the failure process of laminated

composites, e.g., the increase of apparent shear strength when applying
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moderate values of transverse compression, or the detrimental effect of

the in-plane shear stresses in failure by fiber kinking. The LaRC03 failure

criteria [53] and subsequent evolutions [54] address some of the limitations

of other failure criteria as identified from the WWFE. For example, the

LaRC criteria account for the effect of ply thickness, fiber misalignment

in compression, and the effect of shear nonlinearity on fiber kinking and

in situ strength.

10.3.4. Crack tunneling and in situ strength

Transverse matrix cracking is often considered a benign mode of failure

because it normally causes such a small reduction in the overall stiffness of

a structure that it is difficult to detect during a test. However, transverse

matrix cracks can have a strong effect on the development of damage. Work

by Green et al. [55] and others indicates that scaling effects in the failure of

the matrix produce different modes of failure. Thicker plies were found to

crack and cause delaminations at relatively low loads, while thinner plies

resulted in more brittle failure mechanisms with cleaner through-thickness

fracture surfaces.

To predict matrix cracking in a laminate subjected to in-plane shear

and transverse tensile stresses, a failure criterion must account for the in situ

strengths. The in situ effect, originally detected in Parvizi et al.’s [56] tensile

tests of cross-ply glass-fiber-reinforced plastics, is characterized by higher

transverse tensile and shear strengths of a ply when it is constrained by

plies with different fiber orientations in a laminate, compared with the

strength of the same ply in a unidirectional laminate. The in situ strength

also depends on the number of plies clustered together and on the fiber

orientations of the constraining plies. The results of Wang’s [57] tests of

[0/90n/0] carbon/epoxy laminates indicate that thinner plies exhibit a

higher transverse tensile strength.

Both experimental and analytical methods [58] have been proposed to

determine the in situ strengths. The in situ strengths can be calculated

using fracture mechanics solutions for the propagation of cracks in a

constrained ply. For typical ply thicknesses, it can be assumed that defects

exist in a ply and that these material defects span the thickness of the ply,

as shown in Fig. 10.13. Cracking of the ply can be assumed to occur when

the ply is loaded above the load required to propagate the slit crack in

the fiber direction (tunneling). It can be shown that the stress required for
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Fig. 10.13. In situ strength determined from the propagation of a slit crack in a ply.

Fig. 10.14. Transverse tensile strength as a function of ply thickness [57].

tunneling (or the in situ strength) can be approximated as [58]

Y Tis =

√
8GIc
πtΛ0

22

, (10.33)

where GIc is the Mode 1 fracture toughness of the matrix, t is the ply

thickness, and Λ0
22 is an elastic modulus of the material. Predicted in situ

strengths as a function of the ply thickness and some experimental values

of in situ strength are shown in Fig. 10.14 for a T300/944 graphite/epoxy.

A similar approach is followed to calculate the in situ shear strength.

In multidirectional composite laminates subjected to uniform stress

states, cracks accumulate during the loading process. As the loading on
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an individual ply is increased, new cracks suddenly appear, initially at

rather random locations, and then with a progressively more uniform crack

spacing. Eventually, new sets of cracks appear deterministically equally

spaced between the original cracks. Finally, the crack density reaches a

saturation value at which a different event occurs, such as delamination or

fiber failure in an adjacent ply.

As the density of cracks in each ply of the laminate increases, networks

of cracks are formed, which can link up through the thickness of the laminate

by inducing delaminations. A simplified damage progression sequence of

coupled transverse matrix cracking and interlaminar delamination is shown

in Figs. 10.15(b)–(d) for the case of a laminated plate subjected to a tensile

load. Initially, the laminate is undamaged, as shown in Fig. 10.15(a). As

a result of the load application, transverse matrix cracks form in different

plies of the laminate, as shown in Fig. 10.15(b). In the absence of a stress

concentration, the locations of the initial matrix cracks are random, and

(a)

(b)

(c)

(d)

Fig. 10.15. Idealized damage progression sequence in a laminated composite plate
subjected to tensile loading: (a) initial stage without damage, (b) matrix cracking stage,
(c) delamination stage, linking up matrix cracks in various plies, and (d) specimen
fracture.
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cannot be known a priori. At some value of the applied load, delaminations

initiate from the matrix cracks, Fig. 10.15(c). These delaminations can

connect matrix cracks in adjacent plies, which can cause the disintegration

of the laminate, Fig. 10.15(d).

10.3.5. Continuum damage models for composite materials

Continuum damage mechanics models for composite materials were

pioneered by Ladevèze and LeDantec [59], Matzenmiller et al. [60], and

others based on previous work by Kachanov [61], Lemâıtre et al. [62], and

others. In these composite damage models, a distinction is made between

the different failure modes, especially between fiber and matrix failure.

These models include a progressive softening of the material response,

with internal damage variables describing the softening response. However,

a softening response causes a localization of the strains along a surface

known as the failure surface and these strain-softening models typically

do not include a characteristic length. Therefore, they exhibit pathological

dependencies on element size. Upon reducing the mesh size to zero, such

analyses predict that failure would occur with zero energy dissipation.

To resolve this lack of objectivity with respect to element size,

a characteristic length must be inserted into the constitutive model.

The evolution of intralaminar damage in laminated composites can be

represented by softening laws that define the evolution of damage in terms

of the fracture energy dissipated in each damage mode. Most damage

models, such as the progressive damage model for composites provided in

Abaqus R© [34] and typical cohesive elements [31, 63], represent the evolution

of damage with linear softening laws that are described by a maximum

traction and a critical energy release rate.

Using the LaRC03 failure criteria [53] as damage activation functions

FM , it is possible to formulate a continuum damage model to predict the

propagation of M damage mechanisms occurring at the intralaminar level.

Each damage activation function predicts one type of damage mechanism

using the following equations:

FM = φM (εt)− rtM ≤ 0, (10.34)

where rtM are internal variables (equal to 1 at time t = 0), and the functions

φM (εt) of the strains εt correspond to the LaRC03 failure criteria. When

a damage activation function is satisfied, FM ≥ 0, the associated damage

variable dM takes on a positive, non-zero value less than or equal to 1, and
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the ply compliance tensor is affected by the presence of damage. Using the

model proposed by Maimı́ [9], the compliance matrix of a damaged ply is

defined as:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

(1− d1)E1
−υ12
E2

0

−υ12
E2

1

(1 − d2)E2
0

0 0
1

(1− d6)G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.35)

where d1 is the damage variable associated with fiber fracture, d2 is the

damage state variable associated with matrix cracking, and d6 is a damage

variable associated with both damage mechanisms.

In addition to the damage activation functions and damaged

compliance tensor, it is necessary to define the evolution laws for the damage

variables dM . The damage evolution laws need to ensure that the computed

energy dissipated is independent of the refinement of the mesh.

A complete definition of a continuum damage mechanics model for the

simulation of intralaminar damage can be found in [9, 50]. The algorithm

for the integration of the constitutive damage model was implemented

in an Abaqus R© UMAT subroutine. The CDM model simulates localized

intralaminar damage using strain softening constitutive models. In order

to avoid mesh-dependent solutions, energy dissipation is regularized for

each damage mechanism using a modification of the crack-band model.

To avoid physically unacceptable snap-backs of the material response,

the maximum allowable element size is determined using closed-form

equations [50]. If the element size exceeds this maximum for any damage

mode, the corresponding strength is automatically reduced to preserve the

correct ERR.

10.4. CDM: Limitations

To predict the ultimate strength of composite structures, it is necessary

to have an accurate numerical representation of all damage modes and

their interactions. Some of the most complex damage models available

rely on CDM to represent the intralaminar damage modes (e.g., transverse

matrix cracking and fiber failure) and use cohesive zone models to capture

delamination between ply interfaces. Some of the combined CDM/cohesive

models, such as the impact models of Lopes et al. [64], rely on extremely
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fine meshes with one or more elements through the thickness of a ply,

while others use stacks of shell elements to represent sublaminates within

larger structures [65, 66]. However, despite advances in progressive damage

modeling, recent studies (e.g., van der Meer and Sluys [67]) indicate that

CDM models coupled with cohesive zone models may not always represent

laminate failure sequences properly. These deficiencies are particularly

evident when the observed fracture mode exhibits matrix splitting and

pullouts [55] or when the fracture is characterized by a strong coupling

between transverse matrix cracking and delamination [12, 67].

The deficiencies of the predictive capabilities consist of several issues,

including the incorrect prediction of the damage zone size normal to the

fracture direction when using crack-band models and the inability of local

CDM models to reliably predict matrix crack paths. These limitations

are mostly due to the fact that CDM models are usually implemented as

“local” rather than “non-local” models [42], i.e., the evolution of damage

in a local CDM model is evaluated at individual integration points without

consideration of the state of damage at neighboring locations. The following

discussion pertains mostly to such local implementations, since non-local

damage models are less widely used due to the difficulty in implementing

them within the finite element method.

The premise of the crack-band approach for regularizing CDM models

is that damage localizes into a band with a width equivalent to the element

dimension. If the element size is either significantly larger or smaller than

the damage process zone, the crack-band approach may not correctly

predict the width of the damage zone nor the local stress field. The size

of the elements within the CDM crack band affects the severity of the

stress concentration produced by the CDM crack. Consequently, the stress

redistribution resulting from damage development may be inaccurately

predicted and can potentially result in inaccurate representation of damage

mode interactions and failure sequences for problems where the results

are sensitive to primarily the strength inputs or to both the strength and

fracture toughness inputs.

As a result of homogenization and damage localization, CDM models

have difficulties predicting crack paths. Since homogenization eliminates the

physical distinction between the fibers and the matrix, a strain softening

CDM model does not distinguish between cracks that propagate along

the fiber direction from those that cross fibers [67]. In CDM models

implemented with damage localization, the damage state at any integration

point in the model depends only on the stress field at that point rather than
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the damage state of neighboring points. Therefore, the direction of damage

evolution is driven only by the instantaneous local stress distribution. In

other words, the local direction of cracking may be predicted correctly by

the failure criteria, but if the morphology and the kinematics of the cracked

material are not properly accounted for in the damage model, the sequence

of failures that eventually defines the path of a crack at a macroscopic level

may be predicted incorrectly.

The potential inability of CDM models to determine the correct

direction of propagation is particularly evident when the stress field is

dominated by shear. Consider two different plies in a laminate with a notch

that is subjected to shear, as shown in Fig. 10.16. In both situations, the

stress level required to initiate matrix microcracks is correctly predicted

by the failure criterion. Furthermore, both situations would result in an

identical sequence of failures, since the stress field is identical. However,

it is clearly not the same to propagate a crack in a sequence of linked

microcracks (Fig. 10.16(a)) as it is to propagate a crack band across fibers

(Fig. 10.16(b)). Matrix cracking in a shear band running parallel to the

fibers is a relatively brittle failure mechanism, whereas matrix cracking

normal to the fibers produces a damage band that requires much more

work to propagate.

The sensitivity of CDM predictions to the finite element mesh

orientation also contributes to the difficulty in predicting the crack path.

Although the objectivity of the solution with respect to element size is

addressed with the crack-band approach described in the previous section,

the predicted damage may be dependent on mesh orientation and element

ττ

τ τ

21

Damage band

21

a

12

12

Propagation of shear damage along fiber. Propagation across fiber direction. 

(a) (b)

Fig. 10.16. Idealized propagation of shear damage [67].
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Mesh aligned with crack direction. Mesh inclined to crack direction. 

(a) (b)

Fig. 10.17. Effect of mesh orientation on crack path in a unidirectional CT specimen.

shape. When strain-softening constitutive models are used in a finite

element simulation, damage tends to propagate along preferred directions,

consisting of either element edges or element diagonals. A demonstration

of the sensitivity of simulation results to mesh orientation is provided in

Fig. 10.17 for a unidirectional compact tension (CT) specimen with fibers

oriented at 90◦ to the load direction. Results are presented for simulations

obtained with a mesh oriented parallel to the fiber direction (Fig. 10.17(a)).

and with an inclined mesh in front of the crack tip (Fig. 10.17(b)). The

crack should propagate along the fiber direction. However, the results show

directional bias, and the simulated crack band propagates in the direction

of the element alignment.

The tendency for damage to localize along mesh lines can be partially

attributed to shear locking [68]. In the CDM methodology, a crack

or displacement discontinuity is represented by a degradation of the

corresponding terms in the constitutive stiffness. As the crack opens, the

stiffness degradation is such that stress should not be transferred across

the crack faces. However, such unloading may not occur due to in-plane

shear locking. Shear locking here refers to inappropriate shear stress transfer

across a widely open smeared crack, which occurs when an element cannot

shear without inducing tensile strains. In a ply with orthotropic properties,

a matrix crack is typically represented by setting the transverse shear

modulus G12 and the transverse Young’s modulus E22 to zero. However,

quadrilateral elements have been shown to exhibit coupling between γ12
and ε11 unless the element edges are aligned with the softening band or

are oriented at 45◦ to the band [69]. Furthermore, the tendency of the
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element to lock is dependent on the order of integration of the element:

fully integrated elements are more susceptible to pathological in-plane shear

locking than reduced-integration elements.

The shear stress transfer across an open smeared cracked caused by

shear locking can result in inaccurate prediction of stress redistribution

after damage development. Iarve et al. [70] demonstrated shear locking

for a simple case of a unidirectional [08] graphite/epoxy open-hole tension

specimen. Experiments show that this specimen exhibits splitting cracks

parallel to the load and tangential to the hole. Splitting near holes and

notches reduces the stress concentration, so predicting their effect is

essential in obtaining the ultimate strength with any accuracy. Iarve’s

progressive damage analyses were conducted using a radial-type mesh

pattern with different levels of mesh refinement, where a radial mesh

typically consists of a pattern of elements radiating from a circular hole and

ending at a rectangular boundary. Iarve observed that it is not possible to

predict the stress relaxation with a radial mesh due to longitudinal splitting

unless the fiber-direction modulus E11 is also set to zero.

When damage localizes and a fracture path is known a priori, a

relatively simple approach to circumvent some of the limitations of CDM

noted above consists of aligning the mesh with the direction of fracture [71].

Mesh alignment can be used to force a matrix crack to localize along the

fiber direction. The benefit of mesh alignment is demonstrated in Fig. 10.18

for an open-hole tension specimen. Predictions were obtained for an [08]

IM7-8552 laminate using the continuum damage model provided within the

Radial mesh Aligned mesh

(a) (b)

Fig. 10.18. Splitting damage predicted using a radial mesh and an aligned mesh.
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Abaqus� finite element code [34]. Each ply was modeled using quadrilateral

reduced integration shell elements, S4R, to minimize the tendency for

locking. Analyses were obtained using a radial mesh and an aligned mesh,

as shown in Fig. 10.18. The loading direction and fiber direction are parallel

to the X-axis.

The damage zones predicted in the region of the hole using the radial

and aligned meshes are shown in Fig. 10.18. The results indicate that

both models predict longitudinal splitting tangential to the hole. The load

vs. end displacement response obtained with the two models is shown in

Fig. 10.19(a). The radial mesh model predicts failure of the specimen at

65% of the load predicted by the model with the aligned mesh. The failure

load is severely underestimated by the radial mesh due to the inability of

rotated elements to represent shearing along the axial split.

The tensile stresses along the width (Y direction) of the specimen are

shown in Fig. 10.19(b). It can be seen in Fig. 10.19(b) that the results

obtained with the aligned mesh have a stress concentration at the hole that

is substantially less severe than the stress concentration in the radial mesh

model. Shear locking in the damaged elements of the radial mesh model

transfer shear load across the splitting cracks even though the matrix-

dependent moduli G12 and E22 have been set to zero. This load transfer

across the splitting cracks causes premature failure of the fiber ligaments

on either side of the hole.

(a) (b)

Fig. 10.19. Effect of mesh type on predicted ultimate failure and fiber-stress relaxation
due to splitting in a [08] laminate. (a) Load vs. end displacement and (b) normalized
axial stress distribution.
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Using an aligned mesh in the open hole model, however, does not

entirely remove the stress concentration from the edge of the hole. A stress

concentration of approximately 1.6 persists, as shown in Fig. 10.19(b).

Large shear deformations in strain softening CDM models can also cause

load transfer across cracks, even while using fiber-aligned meshes. This

additional source of shear load transfer is related to inaccurately tracking

the orientations of the cracked material and the deformed continuum. When

a cracked material is subjected to simple shear deformation, neither the

material nor the crack face should rotate despite the rotation of the current

frame of the continuum. To avoid nonphysical load transfer across the crack,

it is necessary to accurately define the orientation of the crack throughout

the deformation history of the material.

10.5. Bridging the Gap between DDM and CDM

In order to address some of the limitations of CDM discussed in the

previous section, developers have started to incorporate features of higher-

fidelity DDM methods into CDM methods, where possible. Cohesive zone

modeling (Section 10.2.2) and CDM methods (Section 10.3.5) are closely

related in that the former uses traction-displacement laws to represent

the opening of discrete cracks, while the latter uses stress-strain laws to

do the same for a smeared, cracked continuum. Rather than developing

separate, parallel methods for intralaminar and interlaminar matrix cracks,

Camanho et al. [72] proposed a new smeared crack CDM model in which

intralaminar matrix cracks within the bulk material are represented using

embedded cohesive laws. These intralaminar cohesive cracks can be inserted

in the bulk material with crack surface normals with any orientation in the

2–3 plane. An inserted matrix crack with a crack normal oriented at α

degrees away from the 2-direction is shown in Fig. 10.20. The exact angle

α of the crack normal depends on the stress state that is acting on the

crack at the time of initiation. Additive strain decomposition is used to

separate the total strain into bulk material strain εe and cracking strain εc

components:

ε = εe + εc = εe +Rcrε
c
crR

T
cr, (10.36)

where Rcr defines the crack coordinate system in terms of the crack normal

angle α. The cracking strain εc is transformed into the coordinate system

of the crack to yield εccr. Conventional cohesize zone modeling approaches

are applied to determine the state of stress and damage on the crack in
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Fig. 10.20. Orientation of an inserted cohesive matrix crack in the methods of
Camanho et al. [72] and Leone [74].

terms of εccr. Hooke’s law is applied to determine the state of stress in

the elastic material in terms of εe. Equilibrium is enforced between the

elastic material and cracking regions in order to solve for the two states

of deformation, and the overall state of stress. A similar approach, the

continuum-decohesive finite element (CDFE) of Prabhakar and Waas [73],

utilizes an embedded cohesive law to represent the formation and growth

of intraply cracks in fiber-reinforced materials. The CDFE method is a

finite element formulation that involves applying the principle of virtual

work to a cracked continuum, deriving an enriched set of displacements

for real and internal dummy nodes, and generating an equivalent element

stiffness for the cracked element through static condensation. These

approaches unify the theories used for inter- and intralaminar matrix

damage, simplifying the overall composite damage modeling approach for

fiber-reinforced composites.

In progressive damage analyses, damaged material points may have

to stretch to several times their characteristic length Le as part of

complicated, multi-mode failure processes. Under these large deformations,

it is important that damaged material points accurately represent the

kinematics of a crack. Misrepresenting the kinematics of a crack under

large deformation can lead to non-physical load transfer across the crack.

Leone [74] expanded on the smeared crack CDM model of Camanho for

problems involving geometric nonlinearity and large shear deformations.
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Rather than additively decomposing the strain, the deformation gradient

decomposition (DGD) method is applied to track the orientation of cracks

throughout their deformation history. In this method, the deformation

gradient tensor of the continuum F is decomposed into cohesive

displacement jump vector δ and bulk material deformation gradient tensor

FB components:

F (2) = F
(2)
B +RTcrδ

1

Le
, (10.37)

where the superscript (2) represents the second column of a tensor,

corresponding to the matrix-direction. A schematic representation of the

decomposition of the deformation gradient tensor in the 1–2 plane is shown

in Fig. 10.21. In the DGD approach, the cohesive crack surface normal eN
in the current, deformed configuration is tracked using FB through:

eN = F−T
B

⎡
⎣ 0

cos(α)

sin(α)

⎤
⎦. (10.38)

As a result, the crack coordinate system Rcr is a function of the current

bulk material deformation and the fracture angle α. As in the approach

of Camanho et al. [72], conventional cohesize zone modeling approaches

are applied to determine the state of stress and damage on the crack. The

Green–Lagrange strain and second Piola–Kirchhoff stress are calculated

for the bulk material using FB . Equilibrium is enforced between the bulk

Fig. 10.21. Decomposition of the deformation gradient tensor of the continuum into a
cohesive displacement jump and a bulk material deformation gradient tensor.
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material and the cohesive crack in order to solve for the two states of

deformation, and the overall state of stress.

While the methods of Camanho et al. [72] and Leone [74] use cohesive

laws to soften damaged material, both methods have lower fidelity than

discretely inserting cohesive elements into the original mesh. In both

of these CDM methods, a single integration point must represent the

deformation and stress state of a crack and the material on either side of

the crack. While equilibrium can be assumed across a crack face, assuming

that the material on either side of a crack has equal stresses along the crack

face is a simplification which may introduce load transfer across the crack

and smearing of the overall stress state.

10.6. Regularized x-FEM (Rx-FEM) Framework

The extended finite element method (x-FEM) is a technique that can be

used to predict the location and evolution of matrix cracks in composites

while avoiding the aforementioned limitations associated with CDMmodels.

x-FEM is a mesh enrichment technique based on a pioneering concept

by Moës et al. [4], which facilitates the introduction of displacement

discontinuities such as cracks at locations and along directions that are

independent of the underlying finite element mesh. Although most of the

research on x-FEM is devoted to arbitrary crack propagation in isotropic

materials, recent applications to composite materials include delamination

modeling and textile composite architecture representation [5]. Huynh

et al. [75] provide a review of contemporary developments in x-FEM as well

as novel applications to interfacial crack analysis in 2D and 3D problems.

Modeling a matrix crack that propagates parallel to the fiber direction

in a ply is conceptually straightforward using x-FEM. However, it is more

difficult to model networks of matrix cracks in a laminate where the

fracture planes of matrix cracks in individual plies intersect at common

interfaces and can cause delaminations that link the cracks through

the thickness. Within the traditional x-FEM approach, the difficulty in

modeling networks of linked matrix cracks could be addressed by developing

a special enrichment for multiple crack situations or by connecting two

enriched/cracked elements. Such connections were recently accomplished

in a quasi-2D formulation, for example, by van der Meer and Sluys [76] and

Ling et al. [77].

Another direction in which x-FEM is being developed is the regularized

extended finite element method (Rx-FEM) proposed by Iarve [78–80].
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In Rx-FEM, the step function approaches to describe the crack surface,

which are used in x-FEM, are replaced by a continuous function.

Displacement shape functions are used to approximate the step function,

and the Gauss integration can be retained for element stiffness matrix

computation regardless of the orientation of the crack. The cohesive

connection between two plies in which cracks have been introduced can be

established by computing integrals of the products of the shape functions

at the ply interface. Therefore, with the Rx-FEM technique a kinematically

powerful model of crack networks can be constructed in which transverse

matrix cracks are inserted parallel to the fiber direction at locations

determined using a failure criterion.

A simulation begins without any initial matrix cracks. As the loading

is increased, matrix cracks are inserted according to the LaRC03 failure

criterion [53]. The criterion is evaluated at each integration point and if

the criterion is exceeded a matrix crack oriented in the fiber direction is

added. The crack is inserted using the displacement enrichment necessary

to model the displacement jump. The magnitude of the jump is initially zero

and is controlled by an interface cohesive law (Turon et al. [31]). The same

cohesive law is used at the ply interfaces to represent potential delamination

surfaces. A Newton–Raphson procedure is applied to find the equilibrium

solution at each load step of the implicit incremental solution.

The following section describes the formulation of Rx-FEM. The goal

here is to highlight the concepts. More detailed discussion of the formulation

can be found in [78, 80]. Then, a few examples that illustrate the application

of Rx-FEM to predict matrix cracking-induced delamination failure in

unnotched laminated composites are considered. The ability of the model

to predict the effects of ply thickness and ply orientation on matrix cracking

and delamination are discussed as well.

10.6.1. Matrix crack modeling using Rx-FEM

A discontinuous displacement field over a crack surface Γα can be re-

presented using two continuous displacement fields u1 and u2 and the

Heaviside step function H as follows [4]:

u = H(fα)u1 + (1−H(fα))u2, (10.39)

where fα is a signed distance function of the crack surface Γα. This function

is defined for an arbitrary point as the distance from the point to the crack

surface. The signed distance function is positive if the point is located in
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the direction of the normal to the crack surface and negative if it is located

in the direction opposite to the normal. The strain field and subsequently

the stress field are computed similarly on each side of the crack from the

continuous displacement fields u1 and u2 as

ε = H(fα)ε1 + (1 −H(fα))ε2, (10.40)

σ = H(fα)σ1 + (1−H(fα))σ2. (10.41)

The calculation of the strain energy of a volume, i.e., an element

containing a crack Γα, is more difficult because the approximations given

in Eqs. (10.39)–(10.41) are discontinuous across the surface Γα. Therefore,

separate computations of the stiffness matrix are required on each side of

the crack using complex element subdivisions and the associated integration

points. Nevertheless, the strain energy of the volume of interest V can be

cast in the following form:

W =

∫
V

(H(fa)W1 + (1−H(fa))W2)dV, (10.42)

where W1 and W2 are computed from the strain and stress on each side

of the crack and the aforementioned integration detail is hidden by the

presence of the step function. The cohesive energy over the crack surface Sα
can be written using the cohesive law provided in Eq. (10.2) as

M =

∫
Sα

(∫ δ

0

σ(δ)dδ

)
ds, (10.43)

where the displacement jump δ = ‖u1 − u2‖ and the normal vector to the

crack surface can be readily computed. Performing the surface integration

is not straightforward because the crack surface inside the volume V has

to be discretized in order to perform the surface integration. On the other

hand, if there were a practical way of dealing with the step function and

its derivatives, the surface integral in Eq. (10.43) would be calculated as a

volume integral using

M =

∫
V

|∇H |
(∫ δ

0

σ(δ)dδ

)
dV. (10.44)

Equation (10.44) can be readily understood since

∇H(fα) = D(fα)∇fα, (10.45)
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where D(x) is the Dirac delta function, and the gradient of the signed

distance function is by definition the unit normal vector to the crack

surface so that |∇H(fα)| = D(fα). However, the transition from the

volume integral to a surface integral in Eq. (10.44) is intuitive, especially

considering the 1D case where the “volume” is a line and the “crack surface”

is a point. Clearly, evaluation of Eq. (10.44) within the standard x-FEM

framework has no practical application and needs to be evaluated by surface

discretization.

In the regularized x-FEM formulation, the step function H(fα) is

replaced with a continuous function H̃(x). In the formulation proposed

by Iarve [78], the function H̃(x) is expressed as a superposition of the

displacement approximation functions. This function is equal to 0 or 1

everywhere except in the vicinity of the crack surface. If the displacement

approximation functions are Xi(x), then

H̃(x) =
∑

hiXi(x) (10.46)

and the coefficients hi are obtained as

hi =

∫
V
X

〈fα〉
i fdVα∫

V XidV
or hi = 0.5 + 0.5

∫
V
XifαdV∫

V Xi|fα|dV . (10.47)

As indicated in Eq. (10.47), the coefficient hi is equal to 0 or 1 if the signed

distance function does not change sign in the support domain of the shape

function Xi. On the other hand, when the crack crosses the support domain

of the shape function, 0 < hi < 1, the evaluation of Eqs. (10.47) requires

determination of the signed distance function from the crack surface, which

is a trivial task in the case of a straight crack that is normal to the ply

interfaces and has a prescribed orientation.

The strain energy, Eq. (10.42), and the cohesive energy, Eq. (10.44),

can be evaluated in the Rx-FEM formulation, where H(fα) is replaced by

H̃(x), using standard Gauss quadratures for a crack of arbitrary direction

and location, which is fully defined by the hi coefficients. The price for such

simplicity and robustness is the non-zero width of the crack surface, which

is associated with the width of the gradient zone |∇H̃ | > 0. The width of

this zone is a function of the mesh size. In other words, standard x-FEM

encloses the crack inside the element and Rx-FEM smears the crack surface

over possibly more than one element. Energetically, however, the cohesive

energy of Rx-FEM will approach that of the regular crack with mesh

refinement. Reducing the mesh size, i.e., reducing the size of the support
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Fig. 10.22. Two plies with different cracking directions. The cracking direction in each
ply and the shaded level plot of the regularized step function H̃ are shown.

domain of the shape functions, reduces the size of the band where Xi is not

constant. Therefore, the difference between the step function representation

of the crack surface H(fα) and the continuous representation H̃(x) is

reduced.

The ability to maintain the Gauss quadratures in “cracked” elements

also allows for simple calculation of the cross products of shape functions

on the surfaces between plies with arbitrary fiber and matrix cracking

directions. This is illustrated in Fig. 10.22, where two plies with different

crack directions are shown, and the regularized step functions H̃ associated

with the crack in each ply are shown by shading. Enriched functions in

each ply are obtained by multiplying the shape functions by the respective

step functions. Since the step functions are smooth functions and do not

alter the support domains for the shape functions, the cross integrals of the

enriched functions in the two plies can be easily computed by the Gauss

quadrature.

10.7. Rx-FEM Simulations

Numerical results are presented in the following sections to verify and

illustrate the proposed methodology. First, we consider in detail the

initiation of delamination from a given matrix crack in a transverse

crack tension (TCT) specimen. Next, we simulate failure in multilayered
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composites and evaluate the ply thickness and lamination effects on matrix

cracking and delamination initiation and propagation.

10.7.1. Transverse crack tension test

The TCT specimen was designed to measure Mode II interlaminar fracture

toughness [81]. It consists of three unidirectional (θ = 0) plies with

thicknesses t, 2t, and t and where the middle ply is cut at the specimen mid-

length prior to curing. The specimen is subjected to axial tensile loading,

and when a critical load is exceeded, delaminations between the middle

ply and the top and bottom plies develop suddenly. These delaminations

continue to propagate in a stable manner with increasing load until the

delaminations reach the grips, at which point the load is carried by the two

undamaged outer plies.

A TCT specimen was analyzed using a conventional finite element

(FE) model, shown in Fig. 10.23(a), and an Rx-FEM model, shown in

Fig. 10.23(b), to illustrate the ability of the Rx-FEM method to insert

transverse matrix cracks at arbitrary locations and orientations, and to

demonstrate the ability to represent the correct interactions between

transverse matrix cracks and the corresponding delaminations. Although

Fig. 10.23 shows the entire laminate thickness, only half of the laminate

thickness was modeled and symmetry conditions were applied to the mid-

surface of the laminate. The shaded red regions in the figures show the initial

middle ply crack. In the case of the conventional FE model, the crack in

(a) (b)

Fig. 10.23. (a) Conventional finite element (FE) model and (b) Rx-FEM model of the
TCT specimen.
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Table 10.1. Material properties used in the analyses.

T300/914C [18] T300/976 [20]

E11 (GPa) 139.9 138
E22, E33 (GPa) 10.1 10.3
G23 (GPa) 3.7 3.1
G12,13 (GPa) 4.6 5.5
ν23 0.436 0.66
ν12, ν13 0.3 0.3
α11 (1/0C) — 0.4 × 10−6

α22, α33 (1/0C) — 2.54 × 10−5

T− T0 (0C) — –125
Yt (MPa) 80 37.9
Yc (MPa) 300 200
S (MPa) 100 100
GIC (J/m2) 120 157
GIIC (J/m2) 500 315

the middle ply is aligned with a mesh line and is simply modeled by using

unconnected double nodes.

For the Rx-FEM model, a curved non-uniform mesh was used to

demonstrate the mesh independence of the approach. In the Rx-FEM

model, the middle ply crack was inserted at the start of the analysis and is

not aligned with the mesh cell boundaries. The total number of elements

in the longitudinal direction is 120 for both models. However, the local

density of the Rx-FEM mesh near the delamination crack tip is not uniform

due to the irregularity of the mesh. In both models, the delaminations

between the plies were modeled using the cohesive technique described in

Section 10.2.2 and one element was used through the thickness of each ply

(due to symmetry half of the middle ply was represented by 1 element). The

material properties for T300/914C from [81] are summarized in Table 10.1.

The thermal prestress is not considered since all plies have the same

orientation and there is no mismatch of thermal expansion properties

between plies. The load vs. applied displacement curves predicted by the

two models are shown in Fig. 10.24. The two responses are nearly identical.

10.7.2. Effect of ply thickness

One of the key factors affecting the matrix cracking and delamination

failure modes in laminated composites is the ply thickness. A systematic

experimental study of delamination failure as a function of ply thickness

was conducted by Crossman and Wang [82]. A T300/934 [±25/90n]s
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Fig. 10.24. Load vs. displacement curves of the TCT specimen predicted using the
conventional FE model and the Rx-FEM model.

(a) (b) (c)

Fig. 10.25. Fracture sequence in (25/−25/90n)s laminates: (a) just prior to
delamination; (b) subsequent to delamination; (c) just prior to final failure. Reprinted
with permission from [82].

laminate family with n = 1, . . . , 8 was subjected to uniaxial tensile loading,

perpendicular to the 90◦ ply, and failure loads and patterns were carefully

documented. The delamination patterns (hatched lines) and crack densities

(spacing between horizontal lines) can be observed in Fig. 10.25 for three

load levels and for two thicknesses of the 90◦ ply, namely n = 3 and 8.
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[±25/908]s [±25/903]s Step 1 [±25/903]s Step 2

(a) (b) (c)

Fig. 10.26. Predicted cracking and delamination patterns in [±25/908]s and [±25/903]s
laminates. Blue areas correspond to predicted delaminations at the 90/−25 interface and
green areas correspond to predicted delaminations at the 25/−25 interface.

The differences observed in the shapes of the delaminations in the two

laminates are evident: in the n = 8 case, the delamination is funneling off

the individual matrix cracks, whereas for the thinner plies, the delamination

spreads over multiple transverse matrix cracks, and is referred to as “oyster

shaped” in [82]. A significant difference between the two cases is also seen

in the 90◦ ply transverse crack densities.

The results of simulating the tensile loading of these two laminates

are presented in Fig. 10.26. The material properties for T300/936 used in

the model are shown in Table 10.1. To illustrate the damage development

process, damage variable contours for both transverse matrix cracks and

delaminations are plotted on the undeformed geometry. The areas of

delamination correspond to interfaces where the value of the damage

variable d exceeds 0.995. The Rx-FEM transverse matrix cracks in each

ply correspond to surfaces where the discontinuity function H̃ is equal

to 0.5.

Predicted matrix cracking and delamination patterns for the laminates

with n = 8 and n = 3 are shown in Fig. 10.26. Blue areas correspond

to predicted delaminations at the 90/−25 interface, and green areas

correspond to predicted delaminations at the 25/−25 interface. The state of

cracking and delamination immediately before the complete failure of the
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[±25/908]s laminate is shown in Fig. 10.26(a). The delaminations in the

[±25/903]s laminate evolve extremely rapidly before failure. A sequence

of two states of delamination at nearly identical loads is shown in

Figs. 10.26(b) and (c). It can be observed that the predicted density

of matrix cracking for n = 8 is significantly lower than predicted for

the thinner n = 3 case. In addition, the shape of the delamination in

Fig. 10.26(a) is very similar to the experimental funnel-type delamination

shown in Fig. 10.25. In both the experimental observations and the

predictions, thin delamination areas accompany all matrix cracks.

The delaminations predicted for n = 3 (Figs. 10.26(b) and (c)) cover

multiple transverse cracks and have shapes consistent with the experimental

results shown in Fig. 10.25. The extent of the delamination in Fig. 10.26(b)

is very similar to that in Fig. 10.25. It is likely that the larger predicted

delamination in Fig. 10.26(c) corresponds to an unstable equilibrium state,

which is unlikely to be caught in the experiment. Since the predicted extent

of the delaminations and the crack density is in good agreement with the

experimental observations for both ply thicknesses, it is concluded that the

effect of ply thickness on matrix cracking and delamination evolution is well

represented by the Rx-FEM model.

10.7.3. Internal delamination vs. edge delamination

In the case of the [±25/908]s laminates considered above, the delamination

evolution process initiates from the intersection of matrix cracks and the

free edges, leading to the eventual disintegration of the laminate. It is

of interest to evaluate the present methodology for characterizing the

process of matrix crack-induced damage accumulation in laminates with

different ply orientations, where the delamination and matrix cracking

evolution and interaction patterns may vary. A number of angle-ply

laminate configurations were experimentally and analytically investigated

by Johnson and Chang [83]. The T300/976 graphite fiber material system

(see Table 10.1 for ply level properties) was used. Tensile failure of a

[±45/90]s laminate and a [±602]s laminate, both considered in [83], with

a ply thickness of 0.127mm are considered below. These laminates do not

contain any 0◦ plies and completely lose their load-carrying capacity as a

result of matrix cracking and delamination.

Predicted matrix crack and delamination damage evolution patterns for

a [±45/90]s laminate and for a [±602]s laminate are shown in Fig. 10.27.

Damage patterns are shown at three load levels, including the load level

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



488 C.G. Dávila et al.

[±45/90]s [602/−602]s

Transverse Crack

Delaminations

45/-45 Interface
-45/90 Interface

60/-60 Interface

(a)

(b)

(c)

(d)

(e)

(f)

Initiation of delamination

Intermediate load

Imminent final failure

Fig. 10.27. Predicted damage at three increasing load levels in a [45/−45/90]s laminate
(a,b,c) and in a [602/−602]s laminate (d,e,f).

immediately preceding the simulated final failure. For both laminates

considered, a few cracks develop in the very early stages of loading (not

shown). All of the matrix cracks then quickly grow though the width of the

specimen.

The general damage evolution process of the [±45/90]s specimen is

similar to the edge delamination initiated process seen before in the

[±25/908]s laminates. Triangular-shaped delaminations initiate in multiple

locations on the +45/−45 and −45/90 interfaces at the matrix crack and

free edge intersections, as shown in Figs. 10.27(a), (b), and (c). As the

loading increases, the delaminations grow inwardly and expand in size until

they connect the two edges and the interfaces via matrix cracks, at which

point the specimen fails.

The failure process in the [602/−602]s specimen is starkly different

compared to the previous laminate. Delamination initiation and

propagation are not anchored around the outer edges of the specimen

as in the [±45/90]s specimen. Delamination in this case initiates in the

interior of the specimen at the matrix crack intersections, as shown in

Fig. 10.27(d). As the load is increased, the delamination grows in the
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interior of the specimen. Figure 10.27(e) shows a delamination band of

almost uniform length through the entire width of the specimen, which then

extends and allows the matrix cracks to separate the plies (Fig. 10.27(f)).

This difference in failure mechanisms between the two laminates has been

observed experimentally [83].

The ability to address various failure mechanisms arising in non-

traditional composite laminates without modifying the analysis framework

and/or mesh is a critical advantage of x-FEM technology. Such capability

is becoming increasingly important with aerospace companies focused on

increasing the structural efficiency of composites and breaking away from

traditional laminate design.

Significant developments and applications of Rx-FEM have taken place

since the first edition of this book. Basic results, including finite element

implementation and its application to failure prediction in laminated

composites with open holes, were described in [84–86], which emphasize

the issue of the interaction between matrix cracking and delamination.

Fiber-dominated composite failure mechanisms were considered in [87, 88].

Progressive fiber failure is modeled by using a CDM approach with a

trilinear stress–strain response. The fiber-direction softening response is

characterized by two main physical quantities, the strength σc and the

fracture toughness Gc as well as the knee-over characteristics defined

by m and n. Determination of these characteristics for failure in the

direction perpendicular to fibers is an open topic of experimental research,

especially in the case of compression failure [89]. The application of DDM

to compression loading problems was recently presented in [87]. While

the Rx-FEM modeling of cracking and delamination is independent of

loading direction, models of progressive fiber failure under compressive

loading are significantly less mature than in tension. Therefore, errors

in the open hole compression strength prediction are significantly higher

than in tension, even though the predicted damage distribution at 90%

of the failure load correlated with X-ray CT measurements [87]. Significant

research effort is required to establish robust and reliable DDM compression

failure prediction methodology and demonstrate similar level of accuracy

as achieved in tensile failure prediction in [87, 88].

10.8. Conclusions

Vast numbers of new computational models capable of predicting the

damage processes in composites are continuously advocated. Given the

increasing complexity of these numerical methods, the task of distilling
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technological breakthroughs by sorting through vastly different demonstra-

tions of successful representations of the propagation of damage mechanisms

is daunting. In the present chapter, an overview of the fundamentals of the

idealization of damage in composites was presented with an emphasis on

identifying the issues associated with the scale of damage idealization and

size effects. It was shown that the ability of damage models to predict

the initiation and propagation of damage is related to the shape of the

softening law and its corresponding characteristic length, which depends

on the material properties and on the scale (resolution) of the idealization

selected. The capabilities of advanced continuum damage mechanics (CDM)

models were reviewed and their pathological deficiencies were discussed. In

particular, the conditions were demonstrated under which cohesive laws

and continuum damage models can achieve objectivity with respect to the

mesh size, and how crack propagation using CDM models is constrained by

mesh orientation and damage localization. Finally, the use of an extended

finite element technique to model damage propagation by inserting cohesive

cracks in arbitrary directions was presented as an emerging technology that

avoids some of the limitations of CDM models.
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[5] Belytschko T., Parimi C., Moës N., Sukumar N., Usui S., 2003. Structured
extended finite element methods for solids defined by implicit surfaces, Int.
J. Num. Meth. Eng., 56, 609–635.

[6] Mollenhauer D.H., Iarve E.V., Putthanarat S., Hallett S.R., Li X., 2010.
Application of discrete damage modeling to laminated composite overheight
compact tension specimens, Proc. 41st SDM Conf., Orlando, FL.

[7] Bouvet C., Rivallant S., Barrau J.J., 2012. Low velocity impact modeling
in composite laminates capturing permanent indentation, Compos. Sci.
Technol., 72, 1977–1988.

[8] Camanho P.P., Maimı́ P., Dávila C.G., 2007. Prediction of size effects
in notched laminates using continuum damage mechanics, Compos. Sci.
Technol., 67, 2715–2727.

[9] Maimı́ P., Camanho P.P., Mayugo J.A., Dávila C.G., 2007. A continuum
damage model for composite laminates: Part I — constitutive model, Mech.
Mater., 39, 897–908.

[10] Mabson G., Lyle R.D., Dopker B., Hoyt D.M., Baylor J.S., Graesser D.L.,
2007. Fracture interface elements for static and fatigue analysis, Proc. 16th
Int. Conf. on Composite Materials, Kyoto, Japan.

[11] Dávila C.G., Camanho P.P., de Moura M.F.S.F., 2001. Progressive
damage analyses of skin/stringer debonding, Proc. ASC 16th Tech. Conf.,
Blacksburg, VA.

[12] Allix O., Guedra-Degeorges D., Guinard S., Vinet A., 2000. Analyse de la
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Doleǰskova 5, CZ-182 00 Praha 8, Czech Republic

‡Institute of Information Theory and Automation, Czech Academy of Sciences,
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Abstract

This chapter reviews mathematical approaches to inelastic processes on
the surfaces of elastic bodies. We mostly consider a quasistatic and rate-
independent evolution at small strains. Various concepts of solutions are
introduced and applied (including their comparison), e.g., to elastic-brittle
delamination, cohesive contact problems, and to delamination in various
fracture modes, or combined with friction. Besides the theoretical treatment,
numerical experiments are also presented. Several implicit time discretization
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schemes are exploited. Finally, generalizations to dynamic and thermodynamic
processes are outlined, together with an extension to the homogenization of
composite materials with debonding phases.
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11.1. Introduction

This chapter is devoted to formulation, mathematical, and numerical

treatments of inelastic processes on surfaces. Through this chapter, with

the exception of Sections 11.6.6 and 11.6.7, these inelastic processes
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are considered to be quasistatic (no inertia is taken into account) and

rate-independent (no internal timescale is considered). We will address only

small-strain models. Our general framework will solely be based on the

hypothesis that the evolution is governed by a time-dependent Gibbs-type

stored energy functional E (involving external loading) and a dissipation

potential R, which, being degree-1 positively homogeneous, reflects the

rate-independence of the process (i.e., invariance under any monotone

rescaling of time). Both functionals are defined on a suitable state space

considered here in the form U ×Z . With only a small loss of generality,

we usually assume, with some exceptions in Sections 11.6 and 11.7, that

R involves just the z-component of a state q = (u, z) ∈ U ×Z . This

distinguishes z as a “slow” variable, while u is a “fast” variable because its

velocity is not controlled by any dissipation.

As a prototypical application of the energetic framework in modeling

composite materials and structures, we now briefly introduce a simplified

elastic delamination model (sometimes also called debonding) treated in

more detail later in Section 11.5. Here, we restrict our attention to

two elastic domains Ω1 and Ω2, sharing an interface ΓC. The structure

is subjected to a time-dependent hard-device loading with a Dirichlet

boundary condition imposed by displacements wD(t) acting at a part of

the external boundary ΓD (with uD(t) denoting an extension of wD(t) to

bodies Ω1 and Ω2).

In this context, u+uD is used to denote the displacement field .

Moreover, we will work with an internal variable z (possibly vectorial)

describing inelastic delamination processes on the boundary ΓC. Various

possibilities are presented in this chapter. The simplest scenario works with

a scalar-valued delamination (also called damage) variable considered as a

function of x ∈ ΓC, with z=1 and z=0 corresponding to undamaged and

fully damaged interfacial points x, respectively. The time-independent set

U consists of the kinematically admissible displacements, satisfying the

homogeneous Dirichlet boundary conditions on ΓD and frictionless contact

conditions on ΓC:

u = 0 on ΓD and
[[
u
]]
n
≥ 0 on ΓC. (11.1a)

Analogously, the set of admissible internal variables Z is defined as

0 ≤ z ≤ 1 on ΓC. (11.1b)

The notation [[u]]n in (11.1a) stands for the normal component of the

displacement jump [[u]].

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



500 T. Roub́ıček et al.

Now, given admissible u and z, the stored energy functional reads

E (t, u, z) :=

2∑
i=1

∫
Ωi

C
(i)e(u):e

(
1

2
u+uD(t)

)
dx+

∫
ΓC

z

2
K
[[
u
]]·[[u]] dS,

(11.2)

where e(u) denotes the small-strain tensor associated with displacement u,

C(i) stores the stiffness tensor of the ith domain, and K is the tensor of

elastic interfacial stiffnesses. The dissipation rate is defined as

R(
.
z) :=

⎧⎪⎨
⎪⎩
∫
ΓC

a|.z| dS if
.
z ≤ 0 on ΓC,

∞ otherwise,

(11.3)

with a denoting the interface fracture energy, representing the energy

dissipated by complete delamination of a unit area of interface. The

value ∞ in (11.3) is used to ensure unidirectionality of the delamination

phenomena, i.e., no healing of the interface is admissible during the loading

process. Sometimes only a finitely valued R is considered, which means

that healing (also called rebonding) is allowed, cf., e.g., [1–3]. Such models

are, however, mathematically less difficult in some aspects than (11.3) and

their interpretation is rather limited (as the configuration, possibly shifted

after complete delamination, has a tendency to remember its initial state

after healing if not combined with an interfacial plasticity like in [4]), and

will not be particularly addressed in this chapter.

After the energy functionals (11.2) and (11.3) have been specified, the

tools and techniques presented in the remainder of this chapter will allow

us to study the delamination evolution rigorously, including theoretically

supported numerical simulations. Note that the generality of the

energetic framework makes it easy to incorporate more realistic interfacial

constitutive laws naturally and to couple the delamination phenomena

with other inelastic processes such as plasticity, damage, or phase

transformations. In addition, the energy functional (11.2) can easily be

adapted to the periodic homogenization theory, which makes the framework

directly applicable to the analysis of, e.g., fiber-matrix debonding in fibrous

composites, see also Section 11.8 for a concrete example.

In comparison to the first edition of this chapter [5], we introduce

a wider variety of solution concepts and their mutual comparison, and

suppress the role of energy conservation in merely rate-independent models,

present more numerical experiments (exploiting various time-discretization

schemes beside bare backward Euler one), reflecting also the research
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Delamination and Adhesive Contact Models 501

pursued by our wider team during the past five years. Moreover, some recent

references of this intensively developing area have been added, although we

do not claim that the list is complete in any sense.

11.2. Concepts in Quasistatic Rate-Independent Evolution

We will consider a Banach spacea X ⊃ Z on which R is defined as

having a domain with a nonempty interior and being coercive, and degree-1

homogeneous in the sense R(λz) = λR(z) for any λ ≥ 0. The set X must

be a Banach space (to define the degree-1 homogeneity), but here also U

and Z will always be Banach spaces.

Formally, for E : [0, T ]×U ×Z →R∪{∞} andR : Z → [0,∞], the rate-

independent evolution we have in mind is governed by the following system

of doubly nonlinear degenerate parabolic/elliptic variational inclusions :

∂uE (t, u, z) 	 0 and ∂R(
.
z) + ∂zE (t, u, z) 	 0, (11.4)

where
.
z := dz

dt and the symbol “∂” refers to a (partial) subdifferential,b and

R(·), E (t, ·, z), and E (t, u, ·) are convex functionals in all specific models

considered in this chapter.

In mechanics, internal variables and the inclusion (11.4), sometimes

also called Biot’s equation [6], are used for so-called generalized standard

materials [7], cf. also [8] specifically for adhesive contact. There are sound

variational principles supporting the abstract model (11.4), although their

applicability should not be overestimated.

The first inclusion in (11.4) expresses the minimum-energy principle,

asserting that at any time t the displacement u minimizes u 
→ E (t, u, z(t)).

Assuming for simplicity E smooth and denoting the partial differentials

by E ′
t , E ′

u, and E ′
z, one can postulate a so-called Lagrangian in the form

L (t, u, z,
.
z) :=

d

dt
E + R

= E ′
t (t, u, z) + 〈E ′

u(t, u, z),
.
u〉+ 〈E ′

z(t, u, z),
.
z〉+ R(

.
z)

= E ′
t (t, u, z) + 〈E ′

z(t, u, z),
.
z〉+ R(

.
z), (11.5)

aA normed linear space which is complete is called a Banach space. Recall that a normed
space X is complete if every Cauchy sequence in X converges to a limit in X.
bRecall that the subdifferential ∂f(x) of a convex function f :X → R∪{∞} at a point x is
defined as the convex closed subset ∂f(x) := {x∗ ∈X∗; ∀ v ∈X: f(x)+〈x∗, v−x〉 ≤ f(v)}
of the dual space X∗; conventionally, 〈·, ·〉 : X∗ ×X → R denotes the duality pairing
between the Banach space X and its dual X∗ := {x∗:X → R, linear and continuous}.
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502 T. Roub́ıček et al.

where we also used the first inclusion in (11.4). Then the second inclusion

in (11.4) can be derived as the first-order optimality condition for

.
z 
→ L (t, u, z,

.
z) is minimal for any time t. (11.6)

One refers to (11.6) as a minimum dissipation-potential principle, cf. [9–12].

The degree-1 homogeneity of R still allows for further interpretation

of the flow rule, i.e., the second inclusion in (11.4). Defining the convex

“elastic domain” K := ∂R(0), the second inclusion in (11.4) only means

〈ω − z, w − .
z〉 ≥ 0 for any w and any ω ∈ ∂R(w), where we introduced

the so-called thermodynamic driving force z ∈ −∂zE (t, u, z). As the set

∂zE is not a singleton in general, we will call z rather an actual driving

force, in order to distinguish it from the all formally available driving forces

from −∂zE (t, u, z). The adjective “available” is sometimes used in fracture

mechanics, referring to the energy release rate. In particular, for w = 0 one

obtains

〈z, .z〉 = max
ω∈K

〈ω, .z〉. (11.7)

To derive (11.7), we used that z∈ ∂R(
.
z)⊂ ∂R(0)=K thanks to the

degree-1 homogeneity of R(·), so that always 〈z, .z〉 ≤ maxω∈K〈ω, .z〉. The
identity (11.7) means that the dissipation due to the actual driving force z
is maximal provided that the order-parameter rate

.
z is kept fixed, while

a possible driving force ω varies freely over the set of all admissible

driving forces K. This resembles the so-called Hill’s maximum-dissipation

principle [13], cf. also [14–17].

Let us also observe that the set K = ∂R(0) determines R because

R = δ∗K with δK denoting the so-called indicator functionc of the set K

and δ∗K is its Legendre–Fenchel conjugate.d In terms of K, by standard

convex-analysis calculus [18], Eq. (11.7) can also be written as

.
z ∈ [∂δ∗K ]−1(z) = ∂[[δ∗K ]∗](z) = ∂δK(z) = NK(z), (11.8)

where NK(z) denotes the normal conee to K at z. This is the well-known

principle from plasticity theory, called normality condition, stating that the

rate of the internal parameter z (representing, as a special case in plasticity

cThis means that δK(v) = 0 if v ∈ K and δK(v) = ∞ if v 
∈ K.
dThe Legendre–Fenchel conjugate f∗ : X∗ → R ∪ {∞} of a function f : X → R ∪ {∞}
is defined as f∗(x∗) := supx∈X〈x∗, x〉 − f(x).
eRecall that the normal cone NK(x) to a convex set K ⊂ X at x ∈ X is defined as
NK(x) := {x∗ ∈X∗; ∀ v∈K : 〈x∗, v − x〉 ≤ 0}. It is a generalization of the notion
“outer normal vector” to ∂K.
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Delamination and Adhesive Contact Models 503

theory, the plastic-deformation rate) belongs to the cone of outward normals

to the elasticity domain, see also [14, 19] or [20, Sec. 3.2], [21, Sec. 2.4.4] or

[22, Sec. 2.6].

11.3. Mathematical Concepts to Solve the System (11.4)

Initialized by David Hilbert as the 20th of his famous problems [23],

it was recognized that the classical formulation of (initial-)boundary-value

problems in terms of derivatives (or here subdifferentials) is not natural

and rather some integral variants are to be devised. An initiative pursued

during the whole 20th century led to various more suitable concepts. The

most conventional are so-called weak solutions. Here, as far as static or

incremental problems are concerned, we will rely on respective potentials

and, instead of classical differential equations or inequalities, we will use

the variational structure involving the underlying functionals E and R, and

possible some others, see [24] for a brief introduction to variational methods.

Here, in addition, the rate independence is a certain simplification which,

however, makes the class of weak solutions (also called local solutions)

very wide and needs various refinements to be carefully interpreted, cf. in

particular [25, 26]. We will present the relevant concepts and solutions

first on a rather abstract level, not counting with the concrete form of E

and R.

11.3.1. General weak solutions — Local solutions

To design the concept of a weak solution to (11.4), we use z as in

Section 11.2, and use the standard definition of the convex subdifferential

as already mentioned above to write the three subdifferentials in (11.4) as

the system of three inequalities

∀(t, ũ, z̃) : R(z̃)−〈z(t), z̃ − .z(t)〉 ≥ R(
.
z(t)), (11.9a)

E (t, ũ, z(t)) ≥ E (t, u(t), z(t)), (11.9b)

E (t, u(t), z̃) + 〈z(t), z̃ − z(t)〉 ≥ E (t, u(t), z(t)), (11.9c)

where the first and third inequalities mean that z ∈ ∂R(
.
z) and −z ∈

∂zE (t, u(t), z(t)), respectively, while (11.9b) states that u(t) minimizes the

energy E (t, ·, z(t)). As R is homogeneous only of degree 1,
.
z can be expected
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504 T. Roub́ıček et al.

to be bounded only in the Bochner–Lebesgue space L1(0, T ;X ),f or rather

in the corresponding space of measures. Thus, the expression 〈z, .z〉 in

(11.9a) might not be well defined or not allow for a mathematical treatment

regarding various limit procedures. Thus, it is desirable to convert it to a

more suitable form. For this, we use the formal chain rule

E (T, u(T ), z(T ))− E (0, u0, z0) =

∫ T

0

d

dt
E (t, u, z) dt

=

∫ T

0

(E ′
t (t, u, z)−〈z, .z〉) dt; (11.10)

cf. (11.5). We integrate (11.9a) over [0, T ] and substitute for
∫ T
0

R(
.
z) dt the

total variation

DissR(z, [0, T ]) := sup

N∑
j=1

R(z(tj)− z(tj−1)), (11.11)

where the supremum is taken over all partitions 0 ≤ t0 < t1 < · · · <
tN−1 ≤ tN ≤ T of [0, T ]; indeed, if z is absolutely continuous, then

DissR(z, [0, T ]) =
∫ T
0

R(
.
z) dt. This turns (11.9a) into

E (T, u(T ), z(T )) + DissR(z, [0, T ])

−
∫ T

0

E ′
t (t, u, z) dt− E (0, u0, z0) ≤

∫ T

0

R(z̃)− 〈z, z̃〉dt. (11.12)

Note that (11.12) implies the energy inequality, more specifically for z̃ = 0

we get

E (T, u(T ), z(T ))︸ ︷︷ ︸
stored energy
at time t = T

+DissR(z, [0, T ])︸ ︷︷ ︸
energy dissipated

during [0, T ]

≤
∫ T

0

E ′
t (t, u, z) dt︸ ︷︷ ︸

work done by
mechanical load

+ E (0, u0, z0)︸ ︷︷ ︸
stored energy
at time t = 0

.

(11.13)

We will use the notation B([0, T ];U ) for the Banach space of bounded

measurable functions [0, T ] → U defined everywhere, and BV([0, T ];X )

fThe notation Lp(·) stands for the Banach space of measurable functions whose p-power is
integrable on the indicated domain, here [0, T ]. Such spaces are called Lebesgue spaces.
If the functions take values in a general Banach space X then one applies a natural
generalization of measurability due to Bochner.
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for functions [0, T ] → X with bounded variation;g recall that X ⊃ Z is a

Banach space on which R is coercive, i.e., R(z) ≥ ε‖z‖ for some ε > 0.

Definition 11.1 (Weak solutions). The process (u, z, z) : [0, T ] → U ×
Z ×Z ∗ is called a weak solution of the initial-value problem given by

(U ×Z , E ,R) and the initial condition (u0, z0) if u ∈ B([0, T ];U ), z ∈
B([0, T ];Z ) ∩ BV([0, T ];X ), z ∈ B([0, T ];Z ∗) and

(i) the inequality (11.12) with (11.11) holds for a.a. t1 and t2, where

0 ≤ t1 < t2 ≤ T , and for any z̃ ∈ Z , i.e.,

E (t2, u(t2), z(t2)) + DissR(z, [t1, t2])− E (t1, u(t1), z(t1))

≤
∫ t2

t1

E ′
t (t, u, z) + R(z̃)− 〈z, z̃〉dt, (11.14)

(ii) (11.9b) holds for any ũ ∈ U and a.a. t ∈ [0, T ],

(iii) (11.9c) holds for any z̃ ∈ Z and a.a. t ∈ [0, T ],

(iv) the initial conditions u(0) = u0 and z(0) = z0 hold.

The advantage of the above definition is that it is completely derivative

free, i.e., no time derivative
.
z and no (sub)differentials of E or R occur

explicitly in Definition 11.1. In fact, if E (t, ·, z) or E (t, u, ·) are not

convex and thus (11.4) loses meaning, Definition 11.1 still yields a certain

generalized solution. If a weak solution (u, z, z) is such that
.
z is absolutely

continuous (i.e.,
.
z is not a measure but an L1-function) and if E (t, ·, z)

and E (t, u, ·) are convex, then (u, z) solves the original problem (11.4) for

a.e. time t ∈ [0, T ]. This justifies the above definition.

An inconvenience is also the involvement of the driving-force field

z valued in Z ∗, which obviously does not bear any generalization

for spaces Z lacking a linear structure, like the Griffith-delamination

problem (11.48)–(11.49), below. Thus one may be tempted to make further

generalizations. As R is degree-1 homogeneous and convex, ∂R(
.
z) ⊂ ∂R(0)

and thus −E ′
z(t, u(t), z(t)) ∈ ∂R(

.
z) implies R(z̃) + 〈E ′

z(t, u(t), z(t)), z̃〉 ≥
R(0) = 0. The convexity of E (t, u, ·) and 〈E ′

u(t, u, z), ũ〉 then further imply

R(z̃)+E (t, u(t), z̃+ z(t))−E (t, u(t), z(t)) ≥ 0. After making a substitution

z̃ := z̃−z(t) we arrive to the so-called semi-stability

∀ z̃ ∈ Z : E (t, u(t), z(t)) ≤ E (t, u(t), z̃) + R(z̃−z(t)). (11.15)

gRecall that the variation of z : [0, T ] → X is defined as sup
∑N

j=1 ‖z(tj) − z(tj−1)‖,
where ‖ · ‖ is the norm on X and the supremum is taken over all partitions of [0, T ].

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



506 T. Roub́ıček et al.

Definition 11.2 (Local solutions). The process (u, z, z) : [0, T ] → U ×
Z ×Z ∗ is called a local solutionh of the initial-value problem given by

(U ×Z , E ,R) and the initial condition (u0, z0) if the energy inequality

(i.e., (11.14) for z̃ = 0) holds for a.a. [t1, t2] ⊂ [0, T ], and if for a.a. t ∈ [0, T ],

(11.9b) holds for any ũ ∈ U together with (11.15) and again the initial

conditions u(0) = u0 and z(0) = z0 hold.

This definition was introduced for a special crack problem in [27],

and as a general concept under the name “dissipative trajectories” in

[28, Definition 6.1], and further investigated in the general theory of rate-

independent processes in [25]. In fact, Definition 11.1 yields slightly more

general solutions than Definition 11.2, but in the some cases when ∂R

or ∂zE are (locally) bounded (here, e.g., healing in delamination or some

cohesive contacts) these definitions are equivalent to each other, cf. [26,

Proposition 3.3.5] or [29, Proposition 2.3].

If E (t, ·, ·) is convex, then the class of local (or weak) solution is

fairly small (and even uniqueness of such solution holds under additional

smoothness qualification, cf. [30] or also [26, Sec. 3.4.4]). Yet, convex

stored energies cannot yield the pursued phenomena typically observed

in adhesive contact mechanics (as activated, sudden rupture) and various

careful refinements of these wide concepts are highly desired.

11.3.2. Weak solutions conserving energy: Energetic solutions

As said above, the drawback of the above two definitions is their rather

low selectivity.i An attractive temptation (although not always physically

relevant) is the requirement of a conservation of the mechanical energy in

the sense an equality in (11.13). Relying again on the degree-1 homogeneity

and convexity of R and now even on joint convexity of E (t, ·, ·), we can see

that −E ′
z(t, u, z) ∈ ∂R(

.
z) implies R(z̃) + E (t, ũ+ u, z̃+ z)− E (t, u, z) ≥ 0,

which is obviously just (11.16) below. Thus we arrive at the following

definition.

hMore precisely, local solutions requires the energy inequality to hold for all [t1, t2] ⊂
[0, T ], while solutions defined here are rather called a.e.-local solutions.
iFor example, weak solutions to the brittle delamination problem in the formulation
(11.54) do not necessarily have the so-called Griffith property and do not recover the
original problem (11.48)–(11.49), through the formula (11.55), in contrast to the energetic
solutions (see Definition 11.3), which enjoy this property.
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Definition 11.3 (Energetic solutions, [30–32]). The process (u, z):

[0, T ]→U ×Z is called an energetic solution to the initial-value problem

given by (U ×Z , E ,R) and the initial condition (u0, z0) if u ∈ B([0, T ];

U ), z ∈ B([0, T ];Z ) ∩ BV([0, T ];X ), and

(i) the energy inequality (11.13) holds,

(ii) the following stability inequality holds for any t ∈ [0, T ]:

∀(ũ, z̃) ∈ U ×Z : E (t, u(t), z(t)) ≤ E (t, ũ, z̃) + R(z̃−z(t)), (11.16)

(iii) the initial conditions u(0) = u0 and z(0) = z0 hold.

In fact, any energetic solution satisfies (11.13) as an equality and thus,

more conventionally, the definition of energetic solutions instead employs

the energy equality. If an energetic solution exists it is also a weak or local

solution. Indeed, if (11.13) holds then (11.12) follows because R ≥ 0 and〈
z, z̃
〉 ≥ 0 due to the fact that 0 ∈ ∂R(0). Taking z̃ := z in (11.16) gives

(11.9b). Finally, setting ũ := u in (11.16) and exploiting the convexity of

E (t, u, ·) proves (11.9c).
An important step is to apply Definition 11.3 in cases when E (t, ·, ·)

non-convex, which is just a typical situation in the modeling of quasistatic

delamination processes.

An efficient theoretical tool to prove the existence of energetic solutions

is the implicit time discretization of (11.4) by the so-called backward

Euler formula. Being constructive, it simultaneously suggests a conceptual

numerical algorithm; cf. Remark 11.3 below. Considering, for simplicity, an

equidistant partition of [0, T ] with a time step τ > 0, it formally leads to

the recursive problem

∂uE (kτ, ukτ , z
k
τ ) 	 0 and ∂R

(
zkτ − zk−1

τ

τ

)
+ ∂zE (kτ, ukτ , z

k
τ ) 	 0

(11.17)

for k = 1, 2, . . . , T/τ , starting from u0τ = u0 and z
0
τ = z0. The values (u

k
τ , z

k
τ )

are to approximate the values of (some of) exact solutions (u(t), z(t)) at

time t = kτ with k = 1, 2, . . . , T/τ , and to define an approximate solution

(uτ , zτ ), cf. (11.22) below. Note that, in fact, ∂R is homogeneous of degree 0

so that the factor 1/τ in (11.17) can be omitted. The potential structure of

the problem allows for a conceptually constructive way to obtain a solution
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to (11.17), namely by solving the incremental global-minimization problem,

also referred to as incremental variational problem,

minimize (u, z) 
→ E (kτ, u, z) + R(z − zk−1
τ )

subject to (u, z) ∈ U ×Z .

}

˜

(11.18)

This energy minimization provides a unified approach to both the

continuum thermodynamics of inelastic solids, e.g., [10, 12], as well as to

computational inelasticity, [9, 11, 33]. In addition, rigorous mathematical

theory has been established to study the time-continuous behavior of the

problem (11.18) (corresponding to the limit τ → 0), see [25, 26, 30, 34, 35]

and Section 11.3 below.

Note that (11.17), the time-discretized analog of (11.4), is a first-

order optimality condition for any solution to (11.18). This is also called

the direct method for solving (11.17), i.e., no approximate problem is

in principle needed to ensure the existence of a solution to (11.17),

see, e.g., [36] or [24] for a brief survey. Of course, if E (t, ·, ·) is not

convex, as is usual in delamination problems, (11.17) might admit multiple

solutions. The problem (11.18), referring to global (not only local)

minimizers, encompasses the energetic-solution concept, which in turn is

easily amenable to mathematical and numerical treatment. The following

assertion uses quite minimal hypotheses:

Proposition 11.1 (Existence of time-discrete solutions). If E (t, ·, ·)
is lower semicontinuous and coercivej on U ×Z and also R ≥ 0 is lower

semicontinuous, then the incremental problem (11.18) possesses a solution.

Let us consider a solution (ukτ , z
k
τ ) ∈ U ×Z of the incremental problem

(11.18) at the level k. Comparing the energy value of (11.18) for a solution

in the time step k with energy at arbitrary (u, z̃), we obtain the discrete

stability:

E (kτ, ukτ , z
k
τ ) ≤ E (kτ, ũ, z̃) + R(z̃ − zk−1

τ )− R(zkτ − zk−1
τ )

≤ E (kτ, ũ, z̃) + R(z̃ − zkτ ), (11.19)

where we also used the degree-1 homogeneity and the convexity of R, which

yields the triangle inequality R(z̃ − zk−1
τ ) ≤ R(zkτ − zk−1

τ ) + R(z̃ − zkτ ).

jThis essentially means that the sub-level sets of E (t, ·, ·), i.e., {(u, z) ∈ U ×Z ;
E (t, u, z) ≤ c}, are, for any c ∈ R that makes them non-empty, compact in some topology
of U ×Z which makes E (t, ·, ·) and R(·) lower semicontinuous.
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Delamination and Adhesive Contact Models 509

Comparing the energy value of a solution at the level k with that for a

solution (uk−1
τ , zk−1

τ ) of the incremental problem (11.18) at the level k − 1

gives E (kτ, ukτ , z
k
τ )+R(zkτ −zk−1

τ ) ≤ E (kτ, uk−1
τ , zk−1

τ )+R(zk−1
τ −zk−1

τ ) =

E (kτ, uk−1
τ , zk−1

τ ), which yields an upper estimate of the energy balance in

the kth step:

E (kτ, ukτ , z
k
τ ) + R(zkτ − zk−1

τ )− E ((k − 1)τ, uk−1
τ , zk−1

τ )

≤ E (kτ, uk−1
τ , zk−1

τ )− E ((k − 1)τ, uk−1
τ , zk−1

τ )

=

∫ kτ

(k−1)τ

E ′
t (t, u

k−1
τ , zk−1

τ ) dt. (11.20)

Eventually, writing the stability (11.19) at the level k− 1 and testing it by

(ũ, z̃) = (ukτ , z
k
τ ) gives a lower estimate of the energy balance in the kth

step:

E (kτ, ukτ , z
k
τ ) + R(zkτ − zk−1

τ )− E ((k − 1)τ, uk−1
τ , zk−1

τ )

= E ((k − 1)τ, ukτ , z
k
τ ) +

∫ kτ

(k−1)τ

E ′
t (t, u

k
τ , z

k
τ )dt+ R(zkτ − zk−1

τ )

−E ((k − 1)τ, uk−1
τ , zk−1

τ ) ≥
∫ kτ

(k−1)τ

E ′
t (t, u

k
τ , z

k
τ )dt. (11.21)

It is convenient to introduce the notation for the piecewise constant

interpolants uτ and uτ , defined by

uτ (t) := ukτ for t ∈ ((k − 1)τ, kτ ], (11.22a)

uτ (t) := uk−1
τ for t ∈ [(k − 1)τ, kτ). (11.22b)

The notation zτ and zτ has an analogous meaning. Moreover, we define

E τ (t, u, z) := E (kτ, u, z) for t ∈ ((k − 1)τ, kτ ]. (11.22c)

In terms of these interpolants, one can write (11.19), (11.20), and (11.21)

summed over k in a compact form (11.23)–(11.24):

Proposition 11.2 (Stability and two-sided energy estimate). Let

R be degree-1 positively homogeneous and let E ′
t (·, u, z) ∈ L1(0, T ) for any

(u, z). Then the discrete stability

∀(ũ, z̃)∈U ×Z : E τ (t, uτ (t), zτ (t)) ≤ E τ (t, ũ, z̃) + R(z̃−zτ (t)) (11.23)
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510 T. Roub́ıček et al.

holds for any t ∈ [0, T ], and, for any s = kτ ∈ [0, T ], k ∈ N, the following

two-sided energy inequality holds:

∫ s

0

E ′
t (t, uτ (t), zτ (t)) dt

≤ E τ (s, uτ (s), zτ (s)) + DissR(zτ , [0, s])− E τ (0, u0, z0)

≤
∫ s

0

E ′
t (t, uτ (t), zτ (t)) dt. (11.24)

The two-sided energy estimate may facilitate the numerical solution of

the global-optimization problem (11.18). It should be emphasized that in all

the applications considered in Sections 11.4–11.6, the incremental problem

(11.18) involves a non-convex functional, whose minimization is therefore

very delicate, and iterative procedures need good starting points. Various

back-tracking strategies based only on the two-sided energy estimate (11.24)

have been designed and tested in [37–39] for similar kinds of problems, see

also Section 11.5.2 for additional details.

Let us assume, with some restriction of generality but still covering all

problems presented here, that:

∃ ε > 0 ∀ t, u, z : E (t, u, z) ≥ ε(‖u‖2U + ‖z‖2Z )− 1/ε, (11.25a)

∃ γ ∈ L1(0, T ) ∀ t, u, z : |E ′
t (t, u, z)| ≤ γ(t)(1 + ‖u‖U ), (11.25b)

∃ ε > 0 ∀ z : R(z) ≥ ε‖z‖X . (11.25c)

Proposition 11.3 (Convergence of discrete solutions). Let (11.25)

hold, u0 be stable, and E (t, ·, z) be strictly convex. For τ → 0, there is a

subsequence of the sequence of approximate solutions {(uτ , zτ )}τ>0, which

converges to some (u, z) in the sense

uτ (t) → u(t) in U for any t ∈ [0, T ], (11.26a)

zτ (t) → z(t) in Z for any t ∈ [0, T ], (11.26b)

DissR(zτ , [0, t]) → DissR(z, [0, t]) for any t ∈ [0, T ], (11.26c)

E ′
t (·, uτ (·), zτ (·)) → E ′

t (·, u(·), z(·)) in L1(0, T ). (11.26d)

Moreover, every (u, z) obtained by such a limit process is an energetic

solution to the problem (E ,R, z0).
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Delamination and Adhesive Contact Models 511

The proof of Proposition 11.3 conventionally relies on the following

steps:

(1) A priori estimates, derived from the upper energy estimate in (11.24)

by using the coercivity/growth assumption (11.25) and Gronwall’s

inequality: namely one gets

‖uτ‖B([0,T ];U ) ≤ C, (11.27a)

‖zτ‖B([0,T ];Z )∩BV([0,T ];X ) ≤ C. (11.27b)

(2) The selection of convergent subsequences using Banach’s and Helly’s

principles; the latter is used for the z-component, which has a bounded

variation. Using in addition the strict convexity of E (t, ·, z), one can

show that the u-component converges at each time t.

(3) Passage to the limit of the discrete stability (11.23) by finding a

so-called mutual-recovery sequence [40], i.e.,

∀ stable sequencek (tk, uk, zk) → (t, u, z) ∀ (ũ, z̃) ∃(ũk, z̃k):

lim sup
k→∞

(E (tk, ũk, z̃k) + R(z̃k − zk)− E (tk, uk, zk))

≤ E (t, ũ, z̃) + R(z̃ − z)− E (t, u, z). (11.28)

(4) Passage to the limit by weak lower-semicontinuity in the upper energy

estimate, i.e., in the second inequality in (11.24).

Merging Propositions 11.1 and 11.3, one obtains the following corollary.

Corollary 11.1 (Existence of energetic solutions). Under the assum-

ptions of Propositions 11.1 and 11.3, energetic solutions in the sense of

Definition 11.3 do exist.

Remark 11.1 (Special unidirectional processes). In many delami-

nation models R has the special form

R(
.
z) = δK(

.
z) + 〈a, .z〉

˜

(11.29)

with some cone K ⊂ Z and some a ∈ Z ∗ non-negative in the sense that

〈a, z〉 ≥ 0 for any z ∈ K. Then one can evaluate DissR(z, [0, T ]) in (11.12)

kA sequence {(tk , uk, zk)}k∈N is called stable if supk∈N E (tk , uk, zk)<∞ and if
E (tk , uk, zk) ≤ E (tk , ũ, z̃) + R(z̃ − zk) for all (u, z̃) ∈ U ×Z .
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512 T. Roub́ıček et al.

very explicitly. Indeed, any solution satisfying (11.12) must have
.
z ∈ K,

hence z(tj)− z(tj−1) ∈ K for any tj ≥ tj−1, so that (11.11) gives

DissR(z, [0, T ]) = sup

N∑
j=1

〈a, z(tj)− z(tj−1)〉 = sup 〈a, z(tN )− z(t0)〉

= 〈a, z(T )− z(0)〉 = R(z(T )− z(0)). (11.30)

In this particular case, one can equivalently consider the dissipation

potential R0 : Z → {0,∞} as R0(
.
z) = δK(

.
z), if one augments the stored

energy by the term 〈a, z〉. In view of (11.4), this is obvious when writing

∂R(
.
z) + ∂zE (t, u, z) = ∂[R0(

.
z) + 〈a, .z〉] + ∂zE (t, u, z)

= ∂R0(
.
z) + a+ ∂zE (t, u, z)

= ∂R0(
.
z) + ∂zE0(t, u, z)

for E0(t, u, z) := E (t, u, z) + 〈a, z〉. The philosophy behind this formula is

that the contribution to the stored energy via a unidirectional process can

never be gained back, and it is thus stored forever, which means that it is

dissipated. This alternative setting has been considered, e.g., in [41–44].

It should be emphasized that this purely mechanical alternative is no

longer equivalent in the full thermodynamical context when the dissipated

energy contributes to heat production, in contrast to the stored energy,

cf. Section 11.6.7.

Remark 11.2 (More general dissipation). Sometimes it is useful to

consider R = R(u, z,
.
z), and then the inclusion (11.4) modifies to

∂uE (t, u, z) 	 0, ∂.zR(u, z,
.
z) + ∂zE (t, u, z) 	 0. (11.31)

A priori estimates based on the test by
.
z are the same. Now in general,

DissR(z; [0, T ]) in (11.13) depends also on the u-component and in terms

of a placeholder q = (u, z) is defined by

DissD(q; [0, T ]) := sup

N∑
i=1

D
(
q(ti−1, ·), q(ti, ·)

)
, (11.32)

where the supremum is taken over all partitions of the type 0 ≤ t0 < t1
< · · · < tN ≤ T , N ∈ N; here D denotes a so-called dissipation distance
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Delamination and Adhesive Contact Models 513

defined in [45], reflecting the minimum dissipation-potential principle

(11.6), by

D
(
q1, q2) := inf

{∫ 1

0

R(u, z,
.
z) dt;

q = (u, z)∈C1([0, 1];X ), q(0) = q1, q(1) = q2

}
. (11.33)

As before, one assumes the positive one-homogeneity of R(u, z, ·). This
implies the triangle inequality

∀ q1, q2, q3 ∈ U ×Z : D(q1, q3) ≤ D(q1, q2) + D(q2, q3). (11.34)

In terms of the dissipation distance, the incremental problem (11.18) takes

the form

minimize (u, z) 
→ E (kτ, u, z) + D((uk−1
τ , zk−1

τ ), (u, z))

subject to (u, z) ∈ U ×Z .

}
(11.35)

An important step in the conceptual generalization is to consider the

dissipation distance D ≥ 0 satisfying (11.34) without any reference to R,

and even without requiring any linear structure on U ×Z . The mutual-

recovery-sequence condition (11.28) then modifies to

lim sup
k→∞

(E (tk, q̃k)+D(qk, q̃k)− E (tk, qk)) ≤ E (t, q̃)+D(q, q̃)− E (t, q).

(11.36)

Note that, if R = R(
.
z) and Z is a Banach space, formula (11.33) yields

D(q1, q2) = R(z2 − z1) with qi = (ui, zi), and one obtains the former case.

11.3.3. Weak solutions of stress-driven types

If E (t, ·, ·) is not convex or if R depends on (u, z), the energy-conserving

solutions may be time-discontinuous even if the external loading is time-

continuous. As already said, energetic solutions evolve as soon as it is

energetically not disadvantageous. It should be noted that this may,

however, not be exactly always in full agreement with the response of

real systems where some other rate-dependent phenomena may come into

play on some occasions and a rather non-physical tendency for developing

too early jumps may often be observed. Typically, one may imagine the

delamination of a very large elastic body which have a capacity to store

large energy already under a very low stress and then, counting with

Definition 11.3, the delamination process may be triggered under such a
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514 T. Roub́ıček et al.

low stress, cf. also [26, Sec. 4.3.2.4]. Similarly, in mixed-mode delamination,

energetic solutions may have tendency to slide to less-dissipative Mode I

even in case when it is physically not expected, cf. [46].

For this reason, there are also some other concepts of solutions that

are sometimes applicable and which successfully compete with energetic

solutions, cf. also [25] for a comparison with other concepts in general

and [47–51] in the context of crack propagation. In particular, a well-

motivated class of concepts is based on adding a small viscosity into one or

both inclusions in (11.4). Passing such viscosity to zero leads to so-called

vanishing-viscosity solutions to the rate-independent problem (11.4). In the

context of delamination, the vanishing-viscosity in the second inclusion in

(11.4) was exploited in [52, 53], leading to a definition which involves a

defect measure balancing the energetics.

Rather opposite concepts of solutions try to seek such solutions that

cannot exhibit discontinuous responses if the driving force is not big enough.

The concepts with clear physical interpretation exploit (presumably small)

viscosity and study its asymptotics when it converges to zero. There are

various options which may lead to various local solutions. Essentially, we

can consider (different) viscosities in u, or in z, or in both. The last, most

general option augments the evolution system (11.4) as

ε1V1
.
u+ ∂uE (t, u, z) 	 0 and ε2V2

.
z + ∂R(

.
z) + ∂zE (t, u, z) 	 0, (11.37)

where V1 : U → U ∗ and V2 : Z → Z ∗ are linear positive definite operators
having quadratic potentials V1 : U → R and V2 : Z → R, respectively. We

will use the shorthand notation ε = (ε1, ε2). Under mild assumptions on

data, cf., e.g., [26, 52, 54, 55], conventional weak solutions (uε, zε) to the

parabolic system (11.37) exist and, beside the a-priori estimates (11.27)

which now read as

‖uε‖B([0,T ];U ) ≤ C, (11.38a)

‖zε‖B([0,T ];Z )∩BV([0,T ];X ) ≤ C, (11.38b)

we now have also the estimates

‖.uε‖L2([0,T ];U ) ≤ C/
√
ε1, (11.38c)

‖.zε‖L2([0,T ];Z )∩BV([0,T ];X ) ≤ C/
√
ε2. (11.38d)
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Delamination and Adhesive Contact Models 515

Moreover, instead of the inequality (11.13), we have the energy balance

E (t, uε(t), zε(t)) + DissR(zε, [0, t])

+

∫ t

0

2ε1V1(
.
uε) + 2ε2V2(

.
zε) dt =

∫ t

0

E ′
t (t, uε, zε) dt+ E (0, u0, z0).

(11.39)

Definition 11.4 (V -approximable semi-energetic solutions). A

local solution (u, z) according Definition 11.2 is called V -approximable

semi-energetic solutions with respect to the viscosity V = V (
.
u,
.
z) =

V1(
.
u) + V2(

.
z) if, for some subsequence of ε = (ε1, ε2) → (0, 0) and for

some non-negative (so-called defect) measure μ on [0, T ],

uε(t) → u(t) in U for a.a. t∈ [0, T ], and (11.40a)

zε(t) → z(t) weakly* in Z for all t∈ [0, T ], and (11.40b)

2ε1V1(
.
uε) + 2ε2V2(

.
zε) → μ weakly* in measures on [0, T ], (11.40c)

and the following energy equality holds for a.a. t ∈ [0, T ]:

E (t, u(t), z(t)) + DissR(z, [0, t]) +

∫ t

0

μ(dt)

=

∫ t

0

E ′
t (t, u, z) dt+ E (0, u0, z0). (11.40d)

For a general theory and more solution concepts we refer to [54, 55]

or also [26, Sec. 3.8]. Existence of V -approximable solutions are shown by

limiting (11.39) towards (11.40d). Note that, by omitting the μ-term from

(11.40d) we obtain the energy inequality on a.a. time intervals [t1, t2]. This

inequality is strict if μ is not zero.

Here, as we (intentionally) do not insist on energy equality, we may

advantageously use the time discretization of a fractional-step type to

decouple the system. Thus, instead of a recursive backward-Euler formula

(11.17), we consider

ε1V1
ukτ − uk−1

τ

τ
+ ∂uE (kτ, ukτ , z

k−1
τ ) 	 0, (11.41a)

ε2V2
zkτ − zk−1

τ

τ
+ ∂R

(
zkτ − zk−1

τ

τ

)
+ ∂zE (kτ, ukτ , z

k
τ ) 	 0. (11.41b)
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In contrast to (11.17), this scheme is decoupled in the sense that, at a

current time level, one can solve first (11.41a) to obtain ukτ and then

(11.41b) for zkτ . In view of (11.2), it is realistic to assume E (t, ·, ·) separately
strictly convex, i.e., both E (t, u, ·) and E (t, ·, z) are strictly convex and

even quadratic. Then, taking into account the constraints (11.1) and the

1-homogeneity of R in (11.3), both problems (11.41) lead to (possibly after

a suitable Mosco-type transformation) a strictly convex linear-quadratic

problems which are, after space discretization, efficiently numerically

solvable. In particular, the global nonconvex minimization problem related

to the fully implicit Euler formula (11.17) is thus eliminated. For fixed

ε1 ≥ 0 and ε2 ≥ 0, the recursive system of inclusions (11.41) possesses a

unique solution {(ukτ , zkτ )}k=1,...,T/τ .

An important attribute of the scheme (11.41) is that it still complies

with the upper energy estimate, i.e., the latter inequality in (11.24),

provided that E (t, ·, ·) is separately convex. Indeed, testing (11.41a) by

ukτ − uk−1
τ and using the convexity of E (kτ, ·, zk−1

τ ), one obtains the

inequality

2ε1τV1

(ukτ − uk−1
τ

τ

)
+ E (kτ, ukτ , z

k−1
τ )− E (kτ, uk−1

τ , zk−1
τ ) ≤ 0,

(11.42a)

while testing (11.41b) by zkτ − zk−1
τ and using the convexity of E (kτ, ukτ , ·),

one obtains the inequality

2ε2τV2

(zkτ − zk−1
τ

τ

)
+ τR

(zkτ − zk−1
τ

τ

)
+ E (kτ, ukτ , z

k
τ )− E (kτ, ukτ , z

k−1
τ ) ≤ 0. (11.42b)

Summing it up, one exploits cancellation of the terms ±E (kτ, ukτ , z
k−1
τ ).

Using again the calculus (11.20), one eventually arrives at

E (kτ, ukτ , z
k
τ ) + 2ε1τV1

(ukτ − uk−1
τ

τ

)

+ 2ε2τV2

(zkτ − zk−1
τ

τ

)
+ τR

(zkτ − zk−1
τ

τ

)

≤ E ((k − 1)τ, uk−1
τ , zk−1

τ ) +

∫ kτ

(k−1)τ

E ′
t (t, u

k−1
τ , zk−1

τ ) dt, (11.43)
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which is the second inequality in (11.24) augmented also by the viscous

dissipation ε-terms. After summing it up for k = 1, . . . , T/τ , one obtains the

discrete analog of (11.39) as an inequality. This ensures numerical stability

of this fractional-step method and, in qualified cases, also convergence for

τ → 0. Actually, such splitting works in more than two steps when E (t, ·)
is separately convex at each of (more than two) variables, and R is a sum

of functionals of each of these variables, cf., e.g., [56, Remark 8.25].

The lower energy estimate, i.e., the first inequality in (11.24), does not

hold but, on the other hand, it is not so much needed as before, because

the global minimization of a non-convex functional in (11.18) as well as the

backtracking algorithm in Table 11.2 below was avoided. For fixed ε1 > 0

and ε2 > 0, the scheme (11.41) converges (in terms of subsequences) for

τ → 0 a conventional weak solution to the system of inclusions (11.37).

Moreover, denoting this (not uniquel) solution by (uε, zε), the con-

vergence (in terms of subsequences) for ε = (ε1, ε2) → (0, 0) to the specific

local solutions according Definitions 11.2 and 11.4 holds, cf. [26, Sec. 3.8.3].

Denoting (uε,τ , zε,τ ) the solution interpolated in time from what is obtained

by the scheme (11.41), the joint convergence for (ε, τ) → (0, 0) was proved

under the condition ε/τ → ∞ in [54, 55].

One may have an immediate idea for usage of the scheme (11.41) for

ε1 = 0 and ε2 = 0 because the existence of approximate solutions and

the a-priori estimates (11.27) hold. Although it is in conflict with the

mentioned condition ε/τ → 0, even such approximate solutions converge

in qualified cases for τ → 0 (in the sense of subsequences) towards local

solutions according to Definition 11.2, cf. [29] or also [26, Sec. 4.3.4.3] in

the context of the delamination problems. The energy is (intentionally!)

not conserved by such a scheme. Noteworthy, numerical experiments in

particular cases in [53] show a surprisingly good coincidence with vanishing-

viscosity-type of solutions which (when counting the approximated defect

measure) asymptotically conserve energy. An attempt for reflection of

this (currently not explained) phenomenon has been done by defining a

particular sort of the (otherwise not much specific) local solutions, cf. [29].

To this goal, in [26, Definition 3.3.8], an integral variant of (11.7), namely

∫ T

0

z(t)dz(t) =
∫ T

0

max
ω∈K

〈ω, ·〉 .z(dt) = DissR(z; [0, T ]) (11.44)

lInterestingly, if the delamination variable gradient would be considered, then (uε, zε) is
even unique, cf. [26, Proposition 4.3.51].
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for some available driving force z(t) ∈ −∂zE (t, u(t), z(t)) has been devised,

where the first integral is the Moore–Pollard modification of the lower

Riemann–Stieltjes integralm and the second one is a variation of the

measure
.
z which is here just DissR(z; [0, T ]), as used in (11.44).

Intuitively, it is obvious that, at least on the discrete level, the

approximate solutions are driven by force rather than energies, and there

is a good chance that they satisfy at least with a reasonable accuracy

the maximum-dissipation principle (11.7), although this principle even in

its integral variant (11.44) is not an ultimate dogma and even a simple

counterexample can be constructed with two debonding springs of different

fracture toughness, cf. [26, Example 4.3.40]. The mentioned approximation

of the maximum-dissipation principle may be devised as
∫ T
0 z̄τdz̄τ (t) ∼

DissR(z̄τ ; [0, T ]) for some driving force z̄τ ∈ −Ē (t, ūτ (t), z̄τ (t)), where the

approximate equality “∼” is to be verified a posteriori and, if satisfied with

a reasonable accuracy, one can have a certain indicator that the “inviscid”

fractional-step scheme, i.e., (11.41) with ε1 = 0 and ε2 = 0, gives some

stress-driven-like solution.n

Remark 11.3 (Numerics). One can further approximate U and Z

in (11.35) by some finite-dimensional Banach subspaces Uh and Zh.

Thus, in concrete situations, we obtain computationally implementable

numerical strategies, as also demonstrated in Section 11.5.2. Besides, one

has a convergence analysis for h → 0 at one’s disposal in specific cases;

essentially, the proofs reduce to finding a suitable mutual-recovery sequence

for conditions similar to (11.28) or (11.36), but involving also a sequence of

functionals Eh, which coincide with E on [0, T ]×Uh×Zh while being = ∞
elsewhere, cf. [58]. For an example see (11.60) below.

mMore specifically,
∫ T
0 z(t)dz(t) = lim sup

∑N
j=1 inft∈[tj−1,tj ]

〈z(t), z(tj)−z(tj−1)〉
where “limsup” is taken over all partitions 0 ≤ t0 < t1 < · · · < tN ≤ T with N ∈ N

ordered (directed) by inclusion. If z is absolutely continuous and z is bounded and in
duality with

.
z (which cannot be expected in general for delamination problems we have

in mind, however), then this definition coincides with the expected Lebesgue integral∫ T
0 〈z(t), .z(t)〉 dt. Actually, [29, 46, 57] use mistakenly the Riemann–Stieltjes definition

which uses “sup” in place of “limsup” and which does not work unless z is scalar-valued
non-decreasing.
nUnfortunately, although this scheme is simple and very efficient in many (or even most
of) applications, one cannot say more if this approximate integral maximum-dissipation
principle is not satisfied and one cannot make a limit passage towards (11.44).
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Delamination and Adhesive Contact Models 519

Fig. 11.1. Illustration of the geometry and the notation.

11.4. Quasistatic Brittle Delamination, The Griffith

Concept

We now present models of quasistatic delamination that can be covered by

the general abstract ansatz (11.4) or (11.31). We start, in this section, with

models of brittle delamination.

Let Ω ⊂ Rd (d = 2, 3) be a bounded Lipschitz domain,o and let

us consider its decomposition into a finite number of mutually disjoint

Lipschitz subdomains Ωi, i = 1, . . . , N . Further denote Γij = ∂Ωi ∩ ∂Ωj
the (possibly empty) boundary between Ωi and Ωj . Thus, Γij represents a

prescribed (d − 1)-dimensional surface, which may undergo delamination.

We assume that the boundary ∂Ω is the union of two disjoint subsets ΓD

and ΓN, with

L d−1(∂Ωi ∩ ΓD) > 0, i = 1, . . . , N, (11.45)

where L d−1 denotes the (d − 1)-dimensional Lebesgue measure. On the

Dirichlet part of the boundary ΓD, we impose a time-dependent boundary

displacement wD(t), while the remaining part ΓN is assumed to be free

(Fig. 11.1). Therefore, any admissible displacement u :
⋃N
i=1 Ωi → Rd has

to be equal to a prescribed “hard-device” loading wD(t) on ΓD.

We consider here the case of linear elasticity determined, on each

subdomain Ωi, by the elastic-moduli tensor C(i). Moreover, we take into

account the local non-interpenetration of matter by requiring, for the

displacement u, that [[u]]ij · νij ≥ 0 on Γij , where νij denotes the unit normal

to Γij oriented from Ωj to Ωi. Here, [[u]]ij denotes the jump u|Ωi − u|Ωj ,

oRecall that a domain is called Lipschitz if its boundary can be covered by a finite
number of graphs of Lipschitz functions. Roughly speaking, it excludes corners of 0◦ or
360◦, otherwise most domains considered in engineering are Lipschitz.
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520 T. Roub́ıček et al.

with u|Ωi being the trace on ∂Ωi of the restriction of u to Ωi. For

A ⊂ ΓC :=
⋃
i<j

Γij , (11.46)

we consider the stored-energy functional E in the form

E (t, u, A) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

1

2

∫
Ωi

C
(i)e(u):e(u) dx if u = wD(t) on ΓD,

[[u]]n ≥ 0 on ΓC,

[[u(x)]]= 0 for x ∈ A,

∞ elsewhere,

(11.47)

where e(u)= 1
2 (∇u)� + 1

2∇u is the small-strain tensor, and where [[u]]

stands for the particular jump [[u]]ij on the whole union ΓC of Γijs,

and where we write for brevity [[u]]n ≥ 0 on ΓC instead of [[u]]ij · νij
≥ 0 on Γij , i < j. This means, in particular, that the part A of the

contact boundary ΓC is perfectly glued while the rest ΓC\A is completely

delaminated and a frictionless unilateral, so-called Signorini contact takes

place there. This unilateral condition is important for preventing an

unphysical delamination by a mere compression of the surface.

During the time-dependent loading wD, the glued part A=A(t)

possibly evolves. In the simplest model, this process is considered

unidirectional, i.e., healing is not allowed so that t 
→ A(t) is non-increasing,

and for activation of delamination one needs (and thus dissipates) a specific

energy a : ΓC → R+ (in joules per unit area). The dissipated energy

(understood also as the so-called dissipation distance) is then

D(A1, A2) :=

⎧⎪⎨
⎪⎩
∫
A2\A1

a(x)dS if A1 ⊂ A2 ⊂ ΓC,

∞ otherwise.

(11.48)

Specifically, the dissipated energy does not depend on particular fracture

modes; cf. Sec. 11.6.2 below for a refinement of this model. The

philosophy of such a quasistatic evolution is related to the Griffith fracture

criterion [59], which states that a crack grows as soon as the energy release

is more than the fracture toughness, here determined by a in (11.48). This

“geometrical” framework was used in the small-strain setting in [27, 48, 51]
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Delamination and Adhesive Contact Models 521

and also large strains in [50] for polyconvex materials,p and in [60] for

quasiconvex materials.q

The definition of the energetic solutions (11.13) involves the time

derivative of the stored energy, which is hardly defined for (11.47) unless

wD is constant in time. Therefore, using the additive shift u− uD(t) (where

uD is a suitable extension of the formerly defined wD) we resort to time-

dependent Dirichlet boundary conditions. Thus, up to an irrelevant time-

dependent constant, (11.47) transforms to

E (t, u, A) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+ uD(t)

)
dx if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

[[u(x)]] = 0 for x∈A,
∞ elsewhere,

(11.49)

if one assumes that the Dirichlet loading allows for an extension such that

uD|ΓC = wD. (11.50)

Note that, with a slight abuse of notation, the symbol u in (11.49) and

thereafter denotes the shifted displacement field satisfying u = 0 on ΓD.

After such a shift of the Dirichlet boundary conditions, E ′
t does exist and

one has the following simple formula for it:

E ′
t (t, u, A) =

N∑
i=1

∫
Ωi

C
(i)e(u):e

(.
uD(t)

)
dx. (11.51)

Definingr

U := {u ∈W 1,2(Ω\ΓC;R
d); u|ΓD = 0}, (11.52a)

Z := {A ⊂ ΓC; A measurable} (11.52b)

and adopting a generalization from Remark 11.2, one can claim:

pMaterials whose stored energy density is a convex function of the deformation gradient,
its cofactor, and determinant.
qMaterials whose stored energy density f is quasiconvex, i.e., f(F )|Ω| ≤ ∫

Ω f(F +
∇u(x)) dx for all smooth mappings u : Ω → R3 vanishing at ∂Ω.
rNotation W k,p(Ω) stands for the Banach space of functions on Ω whose kth derivatives
belong to Lp-space.
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522 T. Roub́ıček et al.

Proposition 11.4. Let the prescribed boundary displacement wD belong to

W 1,1(I;W 1/2,2(ΓD;R
d)) with W 1/2,2denoting a Sobolev–Slobodetskĭı spaces

and allow for an extension uD ∈W 1,1(I;W 1,2 (Ω;Rd)) satisfying (11.50)

and let A0 ⊂ ΓC be measurable. Then the problem (U ×Z , E ,D , A0)

defined by (11.48), (11.49), and (11.52), possesses at least one energetic

solution in the sense of Definition 11.3.

Having such an energetic solution (u,A), it is natural to consider the

shifted (u+uD, A) as a solution to the original problem with E from (11.47)

even if E ′
t is not well defined. Also, let us note that there is no explicit linear

structure for the As that would allow us to write first-order optimality

conditions like (11.4) but, nevertheless, the concept of energetic solutions

still works.

Further, it is convenient to reformulate this problem in a way that

Z is a subset of a Banach space. We introduce a so-called delamination

parameter z : ΓC → [0, 1], meaning a fraction of fixed adhesive: z(x) = 0

means complete delamination and z(x) = 1 means 100% perfect bonding,

while z(x) = 1
2 means that 50% of the adhesive is debonded at x ∈ ΓC.

Here it is appropriate to consider the model[[
u(x)

]]
= 0 for a.e. x ∈ ΓC such that z(x) > 0, (11.53)

expressing that delamination can occur only if the adhesive is completely

debonded, i.e., only if z(x) = 0. Thus, instead of (11.49), we now consider

E (t, u, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+uD(t)

)
dx if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

z[[u]] = 0 on ΓC,

0 ≤ z ≤ 1 on ΓC,

∞ elsewhere,

(11.54a)

the dissipation potential

R(
.
z) :=

⎧⎨
⎩
∫
ΓC

a|.z| dS if
.
z ≤ 0 on ΓC,

∞ otherwise,
(11.54b)

sThe space W 1/2,2(ΓD), involving fractional derivatives, is just the space of traces on
ΓD of all functions from W 1,2(Ω).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Delamination and Adhesive Contact Models 523

and, instead of (11.52b),

Z := L∞(ΓC). (11.54c)

Now we can use Definition 11.3.

Proposition 11.5. Let wD ∈ W 1,1(I;W 1/2,2(ΓD)) and 0 ≤ z0 ≤ 1 be

measurable. The problem (U ×Z , E ,R, z0) defined by (11.52a) and (11.54)

possesses energetic solutions in the sense of Definition 11.3.

The relation between the previous “geometrical” concept used in

Proposition 11.4 and this “functional” concept is that, if z takes only values

0 or 1, i.e., always z = χA for some A ⊂ ΓC,
t then

D(A1, A2) = R(z2 − z1) with z1 = χA1 , z2 = χA2 . (11.55)

˜

It has been proved in [61] that any energetic solution (u, z) to the brittle

delamination problem, whose existence was stated in Proposition 11.5, is

of the Griffith type in the sense that z takes only values 0 or 1. Thus, in

particular, Proposition 11.4 is proved if Proposition 11.5 is proved. The

latter essentially relies on the explicit construction of the mutual-recovery

sequence for condition (11.28) from [62], namely

uk := uk and z̃k :=

{
zkz̃/z where z > 0

0 where z = 0.
(11.56)

Note that 0 ≤ z̃k ≤ zk always and, if one considers uk → u weakly in

W 1,2(Ω;Rd) and zk → z weakly* in L∞(ΓC;R),
u then also ũk → ũ weakly

and z̃k → z̃ weakly*.

As the adhesive does not exhibit any elastic response in model (11.47),

we refer to it as a brittle delamination.

The classical formulation corresponding to (11.4) with E from (11.54a)

and R from (11.54b) consists in the equilibrium of forces on each subdomain

Ωi and several complementarity problems. Using a simplified notation

tHere χA denotes the characteristic function of a set A, i.e., χA(x) = 1 if x ∈ A while
χA(x) = 0 otherwise.
uThe adjective “weak*” refers to testing by functions from a so-called pre-dual space.

Here, as L∞(ΓC;R)=L1(ΓC;R)∗, weak* L∞(ΓC;R)-convergence means that limk→∞∫
ΓC

zk ·ϕ dS =
∫
ΓC

z·ϕdS for every ϕ ∈ L1(ΓC;R).
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524 T. Roub́ıček et al.

C = C(x) = C(i) if x ∈ Ωi, at a current time t, we can write it as:

div σ = 0, σ = C
(i)e(u) in Ωi, i = 1, . . . , N, (11.57a)

u = wD(t, ·) on ΓD, (11.57b)

σν = 0 on ΓN, (11.57c)

[[σ]]ν = 0

[[u]]n ≥ 0, σn(u)[[u]]n = 0

σn(u) ≤ 0 wherever z(t, ·) = 0

z[[u]] = 0
.
z ≤ 0, ξ ≤ a,

.
z(ξ − a) = 0

ξ ∈ N[0,1](z) + ∂zI([[u]], z)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

on ΓC, (11.57d)

whereN[0,1](·) : R ⇒ R is the normal-cone mapping, I denotes the indicator

function of the constraint z[[u]] = 0, ξ is the driving “force” for the

delamination, and σν := C(i)e(u)|Γν is the traction stress on Γ=ΓC or

Γ = ΓN adjacent to Ωi. Moreover, its normal and tangential components on

ΓC are denoted σn(u) = (σν) · ν and σt(u) = σν − ((σν) · ν)ν, respectively,
so that we have the decomposition σν = σnν + σt. Notice that, since by

our choice ν turns out to be the inner unit normal on Ω1, σn in (11.57d) is

non-positive.

11.5. Elastic-Brittle Delamination

In contrast with Section 11.4, we will consider that the adhesive has an

elastic response, which is called elastic-brittle delamination.

11.5.1. The model and its asymptotics to brittle delamination

Assuming a linear response of the adhesive, the possible modification of

(11.54a) is

E
K
(t, u, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+uD(t)

)
dx

+

∫
ΓC

1

2
zK
[[
u
]] · [[u]] dS if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

0 ≤ z on ΓC,

∞ elsewhere,

(11.58)
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Delamination and Adhesive Contact Models 525

with K being a positive-definite matrix representing the elastic response of

the adhesive. Note that the constraint z ≤ 1 cannot be active if the initial

condition z0 satisfies it, therefore it is not explicitly involved in EK.

The classical formulation corresponding to (11.4) with E =EK from

(11.58) and R from (11.54b) consists of an equilibrium of forces on each

subdomain Ωi and three complementarity problems on ΓC, corresponding

to the three subdifferentials in functionals EK and R. Before shifting the

Dirichlet conditions, it is (ρ is the Lagrange multiplier to the constraint

z ≥ 0):

div σ = 0, σ = C
(i)e(u) in Ωi, i = 1, . . . , N, (11.59a)

u = wD(t, ·) on ΓD, (11.59b)

σν = 0 on ΓN, (11.59c)

[[σ]]ν = 0

σν + zK[[u]] = 0

[[u]]n ≥ 0, σn(u) ≤ 0, σn(u)[[u]]n = 0

.
z ≤ 0,

1

2
K[[u]]·[[u]] + ρ ≤ a

.
z

1

2
K[[u]] · [[u]] + ρ− a

)
= 0

z ≥ 0, ρ ≤ 0, ρz = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on ΓC. (11.59d)

Mathematically speaking, elastic-brittle delamination is a regulari-

zation of brittle delamination. In fact, the condition z[[u]] = 0 in (11.54a)

can obviously be modified to
√
z[[u]] = 0 with entirely the same effect,

and then, after a penalization using a quadratic penalty with an L2-type

(possibly anisotropic) norm, (
∫
ΓC

Ku ·u dS)1/2 yields exactly (11.58). Thus,

one can expect convergencev for K → ∞ to brittle delamination. This has

been proved in [62].

For a computer implementation, one also needs a spatial discretization.

The simplest choice is P1-finite elements for u and P0-finite elements for z,

assuming that all Ωi are polyhedral and triangulated consistently on the

joint boundary ΓC. The mutual-recovery sequence, cf. Remark 11.3 above,

vThe shorthand notation K → ∞ means that the minimal eigenvalue of K goes to ∞.
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526 T. Roub́ıček et al.

can be taken as:

˜ ˜uh := ΠU ,hu, z̃h := zhΠZ ,h(z̃/z), (11.60)

where z̃(x)/z(x) is defined 0 if z(x) = 0, h = 1/k denotes the mesh size,

and ΠU ,h and ΠZ ,h are standard projectors on the finite-element subspace,

the latter making element-wise constant averages.w Merging it with a time

discretization, the general result follows [40]. If we consider P1-elements for

z with ΠZ,h the corresponding projector, we can take z̃h = ΠZ,h(z̃ − ‖zh −
z‖L∞(ΓC))

+, where + denotes the positive part. Merging the convergence

to the brittle limit K → ∞ with numerical approximation (τ, h) → (0, 0)

seems possible only in a rather implicit way, cf. also [61, 63] for this type

of result.x

Proposition 11.6. Assume (11.52a) and (11.54c). Let (uK, zK) denote

the energetic solution to the problem (EK,R) from (11.58) and (11.54b).

Let (uK,τ , zK,τ ) stand for the approximate solutions obtained by the implicit

semidiscretization in time (with a time step τ), and (uK,τ,h, zK,τ,h) for its

numerical approximation constructed by this implicit time discretization

and the above finite element method (FEM) discretization in space (with h

a mesh parameter). Also let the above qualification of wD and z0 be satisfied.

Then:

(i) If K → ∞, then (uK, zK) converges (in terms of subsequences) to

energetic solutions to the brittle problem (E ,R) from (11.54a) and

(11.54b) in the sense (11.26). The same holds also for (uK,τ , zK,τ ) for

K → ∞ and τ → 0.

wNote that the product of element-wise constant functions zh and ΠZ ,h(z̃/z) is again
element-wise constant, hence zh ∈ Zh. As 0 ≤ ΠZ ,h(z̃/z) ≤ 1, we have also 0 ≤ z̃h ≤ zh,
hence R(z̃h − zh) < ∞. As ΠZ ,h(z̃/z) → z̃/z in any Lp(ΓC), p < +∞, and zh → z
weakly, from (11.60) we have z̃h → z(z̃/z) = z̃ weakly* in fact in L∞(ΓC) due to the
a priori bound of values in [0, 1].
xMore explicitly H occurring in Proposition 11.6(iii) might be supported by a
local Lipschitz continuity of (z, u) �→ z[[u]]2:L2(ΓC)×W 1/2,2(Ω)→L1(ΓC) and by a
rate of approximation by finite element (FE) discretization in these norms, cf. [58,
Proposition 3.3]. If d = 3, this continuity is due to ‖z1[[u1]]2 − z2[[u2]]2‖L1(ΓC) ≤
‖z1 − z2‖L2(ΓC)‖[[u1]]‖2L4(ΓC)

+ 2‖z2‖L∞(ΓC) (‖[[u1]]‖L4(ΓC) + ‖[[u2]]‖L4(ΓC)) ‖[[u1 −
u2]]‖L4/3(ΓC), and then due to the continuity of the trace operator W 1/2,2(Ω) → L2(ΓC).
To get the rate of convergence, it seems inevitable to use a gradient theory for z. Then
H(K) ∼ o(|K|−1/2) is expected.
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Delamination and Adhesive Contact Models 527

(ii) For K fixed and for (τ, h) → (0, 0), (uK,τ,h, zK,τ,h) converges (in terms

of subsequences) to energetic solutions of (EK,R).

(iii) There H : Rd×d → R
+ converging to 0 sufficiently fast for K → ∞

such that the “stability criterion” h ≤ H(K) ensures the convergence

of (uK,τ,h, zK,τ,h) (in terms of subsequences) to energetic solutions of

the brittle problem (E ,R).

The different solution concepts are particularly important for the brittle

limit when K → ∞. Lumped-parameter (i.e., zero-dimensional) examples

show that the energetic solutions qualitatively differ from stress-driven type

(i.e., vanishing-viscosity) solutions in the sense that the scalling of the

activation threshold must be different to obtain a resonable brittle limit,

cf. [64] or also [26, Sec. 4.3.2.4]. In contrast to the scaling in Proposition 11.6

which uses constant fracture toughness a in (11.54b) for energetic-

solution concept and which we also used in Fig. 11.5, the mentioned

examples suggest that the stress-driven-solution concepts should use the

scaling

a ∼ 1

|K| for the brittle limit for K → ∞. (11.61)

In fact, this scaling has already been investigated numerically in engineering

literature for static problems close to the onset of rupture, cf. [65, Formula

(16)] or [66, Formula (7)]. The rigorous proof of convergence for K → ∞
is however very technical and, in fact, works only in a W 1,1-regularized

variant for z valued in [0, 1], cf. [64].

11.5.2. Numerical implementation

The theoretical developments presented up to this point provide

a convenient framework for an implementable numerical scheme by

discretizing the time-incremental formulation (11.18) in the space

variables by standard finite element methods, recall Remark 11.3. Hence,

each domain Ωi is triangulated using elements with a mesh size h,

cf. Remark 11.3. Recall that we use conforming discretizations, i.e., that

two interfacial nodes belonging to the adjacent domains Ωi and Ωj are

geometrically identical, and that the same mesh is used to approximate

variables u and z. Note that, in the following, we denote by boldface letters

nodal discretized variables and omit the subscripts K and h. Now, the finite

element discretization with a suitable numbering of nodes yields a discrete
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528 T. Roub́ıček et al.

incremental problem in the form

minimize (u, z) 
→ Eh(kτ,u, z) + Rh(z − zk−1
τ )

subject to BEu = 0, BIu ≥ 0, zk−1
τ ≥ z ≥ 0.

}
(11.62)

Here, u ∈ Rnu stores the nodal displacements for individual subdomains

and z ∈ Rnz designates the delamination parameters associated with

interfacial element edges. The discretized stored energy functional has the

form related to (11.58),

Eh(t,u, z) = uTK

(
1

2
u+wD(t)

)
+

1

2

[[
u
]]
Tk(z)

[[
u
]]
, (11.63)

where K = diag (K1,K2, . . . ,KN ) is a symmetric positive semi-definite

block-diagonal stiffness matrix of order nu (derived from C(i)), [[u]] ∈ Rnk

stores the displacement jumps at interfacial nodes, and k is a symmetric

positive-definite interfacial stiffness matrix of order nk, which is derived

from K and depends linearly on z. The discrete dissipation potential is

expressed as

Rh(z) = −aTz, (11.64)

where the entries of a ∈ Rm store the amount of energy dissipated by

the complete delamination of an interfacial element; see [67] for additional

details. The constraints in problem (11.62) consist of the homogeneous

Dirichlet boundary conditions prescribed at nodes specified by a full-rank

mE × nu Boolean matrix BE, nodal non-penetration conditions specified

by a full-rank matrix BI ∈ RmI×nu storing the corresponding components

of the normal vector, and the box constraints on the internal variable.

The discrete incremental problem (11.62) represents a large-scale non-

convex program (due to the k(z) term), which is very difficult to solve

using a monolithic approach. Nevertheless, it can be observed that the

problem is separately convex with respect to the variables u and z. This

directly suggests using the alternating minimization algorithm, proposed

by Bourdin et al. [68] for variational models of fracture. In the current

context, the algorithm is summarized in Table 11.1.

The individual sub-problems of the alternating minimization algorithm

can efficiently be resolved using specialized solvers. In particular,

step (11.65) now becomes a quadratic programming problem, for which

optimal duality-based solvers have been recently developed [69, 70]. Owing
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Delamination and Adhesive Contact Models 529

Table 11.1. Conceptual implementation of the alternating minimization algorithm.

(1) Set j = 0 and z(0) = zk−1
τ

(2) Repeat

(a) Set j = j + 1
(b) Solve for u(j):

minimize u �→ Eh(kτ,u,z
(j−1))

subject to BEu = wD(kτ) BIu ≥ 0

}
(11.65)

(c) Solve for z(j):

minimize z �→ Eh(kτ,u
(j), z) + Rh(z − zk−1

τ )

subject to zk−1
τ ≥ z ≥ 0

}

(11.66)

(d) Until ‖z(j) − z(j−1)‖ < η

(3) Set uk
τ = u(j) and zk

τ = z(j)

to the piecewise constant approximation of the delamination parameters,

problem (11.66) can be solved locally element-by-element in a closed form.

Note that this method allows for a non-constant C(i) and works equally

well for non-homogeneous materials. Let us, however, mention that if all

C(i) are independent of x, one can alternatively (and more efficiently)

apply boundary element methods (BEM) thus combining recent advances

in BEM-based solvers for the Signorini problem [71] with developments in

computational materials science [72–75].

Even though the alternating minimization algorithm performs well

for a wide range of computational examples, it only converges to a

local minimizer of the objective function (11.62), cf. [76, 77], whereas

the energetic solution concept relies on global energy minimization. To

overcome this discrepancy, Mielke et al. [39] proposed a heuristic back-

tracking algorithm based on the two-sided energy inequality (11.24). The

resulting algorithm proceeds as shown in Table 11.2.

It should be noted that there is generally no guarantee that the

algorithm will locate the global optimum of the objective function

(11.62); nevertheless computational experiments suggest that it delivers

solutions with lower energies than the basic alternating minimization

scheme [39, 76]. An alternative approach is offered by stochastic optimiza-

tion techniques [37, 38], but this comes at the expense of a substantial

increase of computational cost.
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530 T. Roub́ıček et al.

Table 11.2. Conceptual implementation of an energy-based back-tracking-in-time
procedure.

(1) Set k = 1, z0 = z(0) = 1

(2) Repeat

(a) Determine zk
τ using the alternating minimization algorithm for time tk

and initial value z(0)

(b) Set z(0) = zk
τ

(c) If ∫ tkτ

t
k−1
τ

∂tEh(t,u
k
τ , z

k
τ )dt

≤ Eh(tk ,u
k
τ , z

k
τ ) + Rh(z

k−1
τ − zk

τ )− Eh(tk−1,u
k−1
τ ,zk−1

τ )

≤ τ
∫ tk

tk−1
τ

∂tEh(t,u
k−1
τ , zk−1

τ )dt,

set k = k + 1
(d) Else set k = k − 1
(e) Until k > T/τ

Fig. 11.2. Setup of the flexure test.

11.5.3. Illustrative examples

The basic features of the proposed solution concepts and their numerical

treatment will be demonstrated by means of several two-dimensional

examples.

First, the energetic-solution concept will be applied to the response

of a two-layer beam in bending, imposed by a vertical displacement at the

mid-span. The geometrical details of the experiment, adapted from [78], are

shown in Fig. 11.2; the thickness refers to a plane-stress model used in the

calculations. The elastic properties of the bulk material are characterizedy

by Young’s modulus of 75GPa and Poisson’s ratio of 0.3 (corresponding to

yThis means we use an isotropic material with C determined by Ce:e = λ|trace e|2 +
2μ|e(u)|2 with the so-called Lamé constants λ= νE/((1+ ν)(1−2ν)) and μ = E/(2+ 2ν),
when E denotes Young’s modulus and ν Poisson’s ratio.
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Delamination and Adhesive Contact Models 531

(a) (b)

Fig. 11.3. (a) Illustration of the back-tracking procedure, (b) distribution of
delamination parameter at T = 1; h = 1mm, τ = 0.025 and K = 105IGPa/m;
EΩ =energy stored in bulk, EΓ =the interfacial contribution.

aluminum), the interfacial fracture toughness is set to a = 25Jm−2 and the

maximum vertical displacement amounts to 1mm at T = 1. The problem

is discretized by identical isosceles right triangles with side length h and

uniform time step τ . The energetics of the delamination process is shown in

Fig. 11.3(a), highlighting the difference between local energy minimization

and the time back-tracking scheme. In particular, the local scheme predicts

initially elastic behavior, followed by almost complete delamination of the

two layers at t ≈ 0.56, accompanied by interfacial energy dissipation.

However, exactly at this step the two-sided inequality is violated, as

detected by the back-tracking algorithm. Inductively using this solution as

the initial guess of the alternating iterative scheme, the algorithm returns

to the original elastic path, thereby predicting a response leading to a lower

value of the total energy for t ∈ [0.46, 0.56]. During the whole time interval,

the contribution of the stored interfacial energy remains relatively small,

owing to the large value of the interfacial stiffness. Notice that a small

part of the interface remains intact even at T =1, see Fig. 11.3(b), due to

the presence of compressive traction at the mid-span. This explains why

the dissipated energy in Fig. 11.3(a) saturates at a slightly smaller value

than 60Nmm, which corresponds to complete delamination. Figure 11.4(a)

demonstrates the convergence of the approximate solutions for h→ 0. The

results confirm that the overall energetic picture is almost independent of

the spatial discretization, and that no spurious numerical oscillations are

observed. The same conclusion holds for the force-displacement diagrams,

shown in Fig. 11.4(b). Finally, the convergence of the debonding process
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532 T. Roub́ıček et al.

(a) (b)

Fig. 11.4. Convergence for h → 0: (a) energetics and (b) force-displacement diagram;
τ = 0.025 and K=105I GPa/m; EΩ =energy stored in bulk, EΓ =the interfacial
contribution.

Fig. 11.5. Convergence for K → ∞ towards the brittle model devised in [62] based on
the energetic-solution concept, justified in Proposition 11.6; τ = 0.025 and h = 0.5 mm;
EΩ = energy stored in bulk, EΓ = the interfacial contribution.

as K → ∞ is illustrated in Fig. 11.5. Notice that, as with h → 0, the

energetics appears to be only mildly dependent on the interfacial stiffness

and that, already for K ≈ 104IGPa/m, the FE-based solution accurately

approximates the Griffith-type behavior discussed in Section 11.4.

The second example will illustrate the vanishing-viscosity approach

and, in particular, the (approximate) defect measure arising from the

dissipation through the (vanishing) viscosity. Let us remind that our

adhesive model yields a discontinuous response of the mechanical stress
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Delamination and Adhesive Contact Models 533

σ := ∂[[u]](
z
2K[[u]] · [[u]]) = zK[[u]] within a displacement-controlled experi-

ment. Namely, starting from an unstressed configuration, the stress

linearly increases with a prescribed [[u]] until the driving force z :=

∂z(
z
2K[[u]] · [[u]]) = 1

2K[[u]] · [[u]] reaches the activation threshold a used in

(11.54b), then z jumps to zero and the mechanical stress jumps to zero,

too; Fig. 11.6 depicts the isotropic case K = κI with some κ > 0.

The philosophy of the stress-driven-type solutions as, e.g., the

vanishing-viscosity ones (in contrast to energetic solutions) is to follow the

diagrams in Fig. 11.6. Typically, in our concrete delamination problem,

the abstract “viscosity” operators occurring in (11.37) are considered as

V1 = V ′
1 with the potential V1(

.
u) =

∑2
i=1

∫
Ωi

1
2D

(i)e(
.
u):e(

.
u) dx, which

gives rise to the visco–elastic material in the Kelvin–Voigt rheology, and

V2 = V ′
2 with V2(

.
z) =

∫
ΓC

1
2

.
z2 dS. Vanishing viscosity both in the bulk and

in the adhesive was considered in [79]. Here, for numerical experiments,

we confine ourselves to the bulk (vanishing) viscosity, while the adhesive is

considered merely elastic as in the first example, i.e., ε1 > 0 while ε2 = 0

in (11.37). A two-dimensional isotropic viscoelastic specimen is glued on

ΓC to the rigid obstacle, as shown in Fig. 11.7. In contrast to μ from

the abstract Definition 11.4, we can now obtain a more interesting defect

measure on Ω̄ × [0, T ] as a weak* limit of the time-and-space distribution

Fig. 11.6. Schematic illustration of the response of the driving force z, the delamination
z, and the mechanical stress σ in model (11.58) with K = κI and (11.54b) during
the displacement-controlled experiment; in fact, after rupture occurs, z displayed
schematically on the left diagram is only a selection of an available driving force from
the set-valued mapping −∂zE (t; u, 0).

ΓN

ΓN

ΓN

ΓC

(visco)elastic body

rigid obstacleadhesive

250mm

12.5mm

loa
din

g

Fig. 11.7. Geometry of a two-dimensional rectangular-shaped specimens subjected to
the linearly increasing loading on the right-hand side of ΓN.
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534 T. Roub́ıček et al.

of the viscous-dissipation rate με := εCe(
.
uε):e(

.
uε). Evolution in time (as

an integral
∫ t
0 με(x, t)dt) of the spatial distribution over the specimen Ω

is depicted in Fig. 11.8 until the delamination is completed. We use the

fractional-step scheme (11.41) and the time step τ controlled in such a way

that the energy equality (for a chosen small ε > 0) is satisfied with a good

accuracy while ε was made successively smaller until a reasonably good

convergence of the distribution in Fig. 11.8 and also the other quantities

was observed. For more results concerning this and other experiments, we

refer to [53].

Computationally, the model for big K becomes very “stiff” and

calculations based on the global minimization arising from the concept of

energetic solutions become troublesome. The stress-driven concepts and

Fig. 11.8. The (approximate) spatial density of the defect measure, i.e., the distribution
of the energy dissipated by (even very small) viscosity over the time interval [0, t], i.e.,∫ t
0
εCe(

.
uε):e(

.
uε) dt, depicted in a gray scale in seven snaphots selected at (equi-distantly

distributed) time instants t.
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fractional-step discretization then become attractive both from physical/

modeling as well as computational viewpoints. Some two-dimensional

experiments for the geometry as in Fig. 11.23 are presented in [64],

illustrating also a nice convergence under the scaling (11.61).

11.6. Various Refinements and Enhancements

The models introduced so far represent a very basic scenario, which was

intentionally simplified to make the explanation of the underlying concepts

easier. Engineers, however, deal with various advanced ideas not so far

discussed. The goal of this section is to demonstrate that they too can be

involved in this theory.

11.6.1. Cohesive contacts

The adhesive model presented in Section 11.5 yields a discontinuous

response of the mechanical stress, cf. Fig. 11.6. The engineering literature

often considers instead the continuous response of the mechanical stress,

however. It is referred to as a cohesive-type contact and urges some

modification of the above model. One simple option is to modify EK from

(11.58) as follows:

EK1,K2(t, u, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+uD(t)

)
dx

+

∫
ΓC

zK1[[u]]+ z2K2[[u]]

2
· [[u]]

+
κ0
r
|∇

S
z|r dS if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

0 ≤ z ≤ 1 on ΓC,

∞ elsewhere,

(11.67)

where we used a (d−1)-dimensional “surface” gradientz ∇
S
and assume

r > d−1 and for mathematical reasons κ0 > 0. This last term has a similar

“non-local” effect as in the frequently used gradient theory in damage; also

the analysis and especially the constructions of a mutual-recovery sequence

in the sense of [40] are the same as in damage models. In particular,

zThe notation ∇Sz of the surface gradient stands for ∇z − ν(ν · ∇z).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



536 T. Roub́ıček et al.

for 1 < r ≤ d− 1 one has to use a sophisticated construction from [80, 81],

otherwise a simpler construction from [82] works, too. In the context of

delamination, gradient theory has been used, e.g., in [41, Chapter 14] or

[83, 84].

To demonstrate the response of this model, consider the isotropic

adhesive response K1 =κ1I and K2 =κ2I. Then, the mechanical stress σ:

= ∂[[u]](
1
2 (κ1z+κ2z

2)|[[u]]|2)= (κ1z+ κ2z
2)[[u]] within a pulling experiment

again linearly increases with [[u]] until the driving force z := ∂z(
1
2 (κ1

z+ κ2z
2)|[[u]]|2) = (12κ1 +κ2z)|[[u]]|2 reaches a, which happens for |[[u]]| =√

2a/(κ1+2κ2), and then z starts evolving while holding z = a, i.e., z =
a
κ2
|[[u]]|−2 − κ1

2κ2
, until it arrives at 0, which happens for |[[u]]| = √

2a/κ1;

thus the mechanical stress decays as σ = (κ1z+ κ2z
2)[[u]] = (a

2

κ2
|[[u]]|−4 −

κ2
1

4κ2
)[[u]] to zero; see Fig. 11.9. The continuous response of σ (Fig. 11.9, right)

is addressed as a cohesive-zone model, cf., e.g., [85, 86]. As (11.58), a feature

of (11.67) is that it is separately quadratic both in the u- and the z-variable,

so one can advantageously use alternating minimization algorithms to

solve the incremental minimization problems of the type (11.18) as in

[39, 68, 77].

More generally, one can consider a continuous, increasing function

φ: [0, 1] → R
+ with φ(0)=0, and replace the z-term under the surface

integral in (11.58) by φ(z)|[[u]]|2. Repeating the previous arguments, the

response in a tensile experiment starting from z=1 exhibits a quadratic

dependence on the driving force z=φ′(z)|[[u]]|2 until it reaches the

activation threshold a, which happens for |[[u]]|= a/φ′(1). Then z starts
√

evolving while holding z= a, which yields z= [φ′]−1(|[[u]]|2/a) and the actual

stress σ=2φ([φ′]−1(|[[u]]|2/a))[[u]], until it arrives at 0.

Fig. 11.9. Schematic illustration of the response of the refined model (11.67) with K1 =
κ1I and K2 = κ2I and (11.54b) under the pulling experiment; again, like in Fig. 11.6-left,
after the rupture is completed, the left diagram shows only schematically a selection of
an available driving force rather than the actual driving force z.
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Delamination and Adhesive Contact Models 537

Up to the gradient term, the equivalent effect can be obtained by a

substitution of φ(z) by a new delamination variable, say ζ. This leads to the

stored-energy term ζ|[[u]]|2 and the dissipation distance a|φ−1(ζ̃)− φ−1(ζ)|
if ζ̃ ≤ ζ, which corresponds to the dissipation metric a|

.
ζ|/φ′(φ−1(ζ)). Thus,

in terms of this new variable, we obtain the situation

effective activation =
a

φ′(φ−1(ζ))
, stress = 2ζ

[[
u
]]
, (11.68)

while the driving force is |[[u]]|2. In fact, having an “optically” non-

associativeaa model like (11.68), one can conversely explicitly construct the

dissipation metric, which is instead an exceptional situation due to the

one-dimensionality and uni-directionality of the considered delamination

process.

In practical applications, frequently used cohesive zone models (CZM)

are bilinear or exponential (also called Ortiz-Pandolfi), cf. [87–89].bb Both of

them can be obtained in the present formulation by using various functions

φ, see [90], the following choices have simple analytical expressions:

Bilinear: φ(z) =
1

2
κ

βz

1 + β − z
, with β > 0, (11.69a)

Exponential : φ(z) =
1

2
κe−ω, with z = e−ω

(
1 + ω +

1

2
ω2

)
.

(11.69b)

In the bilinear case, κ is the undamaged interface stiffness, so that in

the weakening part of the traction-displacement diagram the slope is −βκ.
Thus, for the model parameter β→+∞, the bilinear CZM reverts to the

elastic-brittle model. Similarly, in the exponential case, κ is the original

interface stiffness, i.e., the slope of the traction-displacement diagram

at the origin. The relations for driving force, damage or stress can be

derived as above for the formulation (11.67), their graphical representations,

aaHere “non-associative” means that there is no unique activation threshold associated
with the dissipation mechanism. Sometimes the adjective “non-associative” instead
means that the dissipative forces do not have any potential.
bbThe adjectives of the CZMs typically refer to the resulting traction-separation law
(in particular k-linear means piece-wise linear dependence of the traction on the
displacement jump with k pieces). In the context of the damage model represented by
the function φ, these adjectives may be confusing, e.g., the bilinear CZM is defined by a
rational function φ, see (11.69a).
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538 T. Roub́ıček et al.

(a)

(b)

Fig. 11.10. Schematic illustration of the (a) bilinear and (b) exponential CZMs defined
by functions φ(z) in (11.69). The response of the driving force z, the delamination z,
and the mechanical stress σ during the displacement-controlled experiment. As before,
after rupture occurs, z displayed schematically in the left diagram is only a selection of
an available driving force similarly as in Fig. 11.9.

corresponding to Fig. 11.9, are shown in Fig. 11.10. Thus, it is clear that

in the exponential CZM the damage starts from the very beginning of

loading (z = a) which may be unrealistic, moreover, it may cause troubles

in numerical solutions, so that its modified version should be used as defined

in [90].

Some applications of the presented CZMs for the analysis of fiber-

reinforced composites at micro-scale are shown in Section 11.7.

11.6.2. Delamination in Modes I, II and mixed modes

Dissipation in the so-called Mode I (delamination by opening) is smaller

than in the so-called Mode II (delamination by shearing); sometimes the

difference may be tens or even hundreds of percent and under general

loading it depends on the so-called fracture-mode-mixity angle, cf. [91–94].

Microscopically, the additional dissipation in Mode II may be explained

by a plastic process both in the adhesive itself and in a narrow bulk

vicinity of the delamination surface before the actual delamination starts,
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Delamination and Adhesive Contact Models 539

cf. [92, 95], or by some rough structure of the interface, cf. [96]. These

plastic processes are less relevant in Mode I if the plastic strain is valued

in R
d×d
dev = the “incompressible” (=trace free) symmetric strain, as usually

considered. Modeling the narrow plastic strip around ΓC is computationally

difficult, and thus the various simplified phenomenological models are worth

considering.

An immediate reflection of the standard engineering approach as,

e.g., in [66, 97–99] is to modify (11.54b) by an activation threshold a =

a(ψ) depending on the so-called fracture-mode-mixity angle ψ. For K =

diag(κn, κt, κt), this angle can be defined as

ψ = ψ(
[[
u
]]
) := arc tan

√
κt|[[u]]t|2
κn|[[u]]n|2

, (11.70)

where [[u]]t and [[u]]n stand for the tangential and the normal displacement

jump, arising in the decomposition [[u]] = [[u]]nν + [[u]]t with [[u]]n = [[u]] · ν
with ν a unit normal to ΓC. Typical phenomenology is that κt < κn (usually

reaching no more than 80% of κn). A typical, phenomenological form of a(·)
used in engineering [97] is, e.g.,

a(ψ) := a
I

(
1 + tan2((1 − λ)ψ)

)
, (11.71)

where a
I
= a(0) is the activation threshold for fracture Mode I and λ is the

so-called fracture-mode sensitivity parameter. For example, for moderately

strong fracture-mode sensitivity, which means the ratio a
II
/a

I
is about 5–10

(with a
II

= a(90◦) being the activation threshold for the pure fracture

Mode II), one has λ about 0.2–0.3; cf. [98]. Therefore, this model uses the

dissipation rate from Remark 11.2 in a general form, namely

R(u,
.
z) :=

⎧⎨
⎩
∫
ΓC

a(ψ(
[[
u
]]
))|.z| dS if

.
z ≤ 0 on ΓC,

∞ otherwise.

(11.72)

An immediate idea is to use a semi-implicit time discretization, leading to

a modification of the incremental minimization problem (11.18) as follows:

minimize (u, z) 
→ EK(kτ, u, z) + R(uk−1
τ , z − zk−1

τ )

subject to (u, z) ∈ U ×Z .

}
(11.73)
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The convergence of this method is indeed guaranteed in some cases [100],

in particular when the stored energy is uniformly convex. This, however, is

not the case for EK. The discrete stability inequality (11.19) is modified to

E (kτ, ukτ , z
k
τ ) ≤ E (kτ, ũ, z̃) + R(uk−1

τ , z̃ − zkτ ) (11.74)

and the following energy inequalities hold:

E (kτ, ukτ , z
k
τ ) + R(uk−1

τ , zkτ − zk−1
τ )− E ((k − 1)τ, uk−1

τ , zk−1
τ )

≤
∫ kτ

(k−1)τ

E ′
t (t, u

k−1
τ , zk−1

τ ) dt (11.75)

and

E (kτ, ukτ , z
k
τ ) + R(uk−2

τ , zkτ − zk−1
τ )− E ((k − 1)τ, uk−1

τ , zk−1
τ )

≥
∫ kτ

(k−1)τ

E ′
t (t, u

k
τ , z

k
τ ) dt. (11.76)

The first inequality follows from the minimality of (ukτ , z
k
τ ) when compared

with (uk−1
τ , zk−1

τ ) while the second is implied by the discrete stability

(11.74) of (uk−1
τ ˜, zk−1

τ ) with (u, z̃) = (ukτ , z
k
τ ). We then get onlyW 1,1 bounds

on piecewise affine interpolants of {zkτ }. Hence, concentrations of
.
z can

appear in the limit z, which is thus a function of the bounded variation

only. To pass to the limit in the dissipation term one would need to

enhance the sophisticated techniques developed in [101, 102] and then

only get the energy inequality. There is, however, an obvious peculiarity

in direct application of the previous concepts from Remark 11.2 because

the dissipation distance D = DR defined implicitly by (11.33) here can

be evaluated explicitly as D(q1, q2) =
∫
ΓC

min0≤ψ̃≤π/2 a(ψ̃)|z1 − z2|dS if

z2 ≤ z1 a.e. on ΓC, otherwise it is infinite. The existence of an energetic

solution of the model determined by (EK,DR) defined by (11.58) and

(11.72) can be conventionally shown, but such solutions do not distinguish

particular modes at all. This is a quite well-known effect in non-associative

models, indicating that sometimes other concepts for solutions are more

relevant, cf. [25, 54]. Altogether, the analysis of (11.73) (or e.g., a fully

implicit modification of it) is not entirely clear. Moreover, a question

remains as to whether one can indeed model the desired mode-mixity-

sensitive effect in all situations in such a way. It is likely that the higher
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Delamination and Adhesive Contact Models 541

gradients in u are needed to control [[u]] in C(Γ̄;Rd) to give a good meaning

to
∫ T
0 R(u,

.
z) dt with R(u,

.
z) from (11.72), i.e., to

∫
Γ̄C
a(ψ([[u]]))| .z|(dS).cc

To overcome these drawbacks, but still considering an additional

dissipation in Mode II, one can use the concept of viscosity from

Section 11.3.3 for which the existence of solutions based on the fractional-

step discretization of the type (11.41) is relatively simple,dd although

a limit passage as in Definition 11.4 meets analytical difficulties.

Again, the decoupled scheme (11.41) avoids global minimization of non-

convex functionals. The efficiency of this model and its discretization

is demonstrated on a two-dimensional experiment from Fig. 11.11. The

response as far deformations and dissipation is concerned is depicted in

Fig. 11.12. For detailed data concerning the material and more results

concerning this experiments we refer to [103]. For convergence of the

inviscid fractional-step time discretization we refer to [57] or also to

[26, Proposition 4.3.49]. Numerical tests with appropriately formulated

approximate maximum-dissipation principle are presented in [46, 57].

Alternatively, one can consider an additional inelastic process on ΓC.

For this, we may introduce a dissipative variable representing the “plastic”

tangential slip sp on ΓC, and devise a plastic-like model with kinematic-type

hardening for it, namely

Z := L∞(ΓC)×L2(ΓC;R
d−1), X := L1(ΓC)×L1(ΓC;R

d−1), (11.77a)

ΓN

ΓN

ΓN

ΓC

viscoelastic body

rigid obstacleadhesive

250 mm

12.5mm

loa
din

g

Fig. 11.11. Geometry of a two-dimensional rectangular-shaped specimen subjected
to the linearly increasing loading on the right-hand side of ΓN for the mixed-mode
delamination experiment.

ccIn fact, this scenario indeed works in the viscous Kelvin–Voigt rheology from
Section 11.6.6, as demonstrated in [103] and in the anisothermal situation in [104].
ddThe rate-independent delamination requires the stored energy E (t, ·, z) to have a
polynomial growth bigger than space dimension (i.e., 2 or 3) which, on the other hand,
does not allow for a rigorous proof of the energy conservation like (11.39), cf. [103] for
details.
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542 T. Roub́ıček et al.

Fig. 11.12. Deformed configurations (magnified 100×) of the specimen from Fig. 11.11
depicted in selected (not equi-distributed) 11 snapshots and the final distribution along
ΓC of the (relative) dissipated energy, documenting mode variation (1 = pure Mode I,
4 = pure Mode II). Interestingly, at the end of the process, the delamination also starts
rather in Mode I from the left-hand side which is opposite to the loaded right-hand side.

E (t, u, z, sp) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+uD(t)

)
dx

+

∫
ΓC

z
(κn
2
|[[u]]

n
|2 + κt

2
|[[u]]

t
− sp|2

)

+
κH

2
|sp|2 + κ0

r
|∇Sz|r dS if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

0 ≤ z ≤ 1 on ΓC,

∞ otherwise,

(11.77b)

R(
.
z,
.
sp) :=

⎧⎨
⎩
∫
ΓC

a1|.z|+ a2|.sp|dS if
.
z ≤ 0 a.e. on ΓC,

∞ otherwise,
(11.77c)
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Delamination and Adhesive Contact Models 543

with [[u]] = [[u]]nν + [[u]]t, [[u]]n = [[u]] · ν and ν a unit normal to ΓC, while

U is again from (11.52a). Rigorously, sp ∈ L2(ΓC;R
d−1) is considered as a

(d−1)-dimensional vector field embedded in R
d space to give meaning to the

expression [[u]]t−sp. As in (11.67), we again use a gradient theory for z with

r > d − 1 and κ0 > 0 to facilitate the construction of the mutual-recovery

sequence.ee When d = 3, the physical dimensions are: [a
I
] = J/m2, [a2] =

J/m3, and [κt] = [κn] = [κ
H
] = J/m4. The activation criterion to trigger

delamination is now

1

2
κn

∣∣∣∣∣∣[[u]]
n

∣∣∣∣∣∣2 + κt

∣∣∣∣∣∣[[u]]
t
− sp

∣∣∣∣∣∣2) ≤ a
I
. (11.78)

Starting from the initial conditions sp,0 = 0 and z0 = 1, the response for

pure Mode I is essentially the same as in Fig. 11.6 (right), because no

evolution of sp is triggered by for opening. To analyze the response pure

Mode II, realize that the tangential stress σt is a derivative of E with respect

to [[u]]t, and thus σt(u, sp) = κt([[u]]t − sp) if z = 1. In analogy with the

plasticity, the slope of evolution of sp under hardening is κt/(κt + κ
H
).

From (11.78), one can see that delamination is triggered if 1
2κt|[[u]]t−sp|2 =

1
2σ

2
t /κt reaches the threshold aI

, i.e., if the tangential stress σt achieves the

threshold
√
2a

I
κt, as depicted in Fig. 11.13 (right). The delamination in

Mode II is thus triggered under the tangential displacement

s
II
=

√
2κ3taI

− a2κt +
√
2κtκ2HaI

κtκH
(11.79a)

Fig. 11.13. Schematic illustration of the response of the mechanical stress in model
(11.77) under pulling and shearing experiments; the left-hand side (Mode I) corresponds
to Fig. 11.6 (right); 2κtaI ≥ a22 is assumed so that aII ≥ aI .

eeWe can use the damage-type construction for z, i.e., z̃k = (z̃−‖z− zk‖L∞(ΓC))
+ and

the binomial trick [40] for sp; cf. [105] for details.
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544 T. Roub́ıček et al.

and, after some algebra, one can see that the overall dissipated energy is

a
II
= a

I
+ a2

κ
H
(
√
2κtaI

− a2), (11.79b)

provided 2κtaI
≥ a22. The fracture-mode sensitivity a

II
/a

I
is then indeed

more than 1, namely 1 + a2(
√
2κtaI

− a2)/(κH
a

I
). The surface plastic slip

stops evolving after delamination and, as used for (11.79b), only if after

delamination the driving stress κHsII has a magnitude less than a2. In view

of (11.79a), it needs κtaI < 2a22. Thus, to produce the desired effects, our

model should work with parameters satisfying

1

2
κtaI

< a22 ≤ 2κtaI
. (11.80)

The validity of this model has been tested numerically in [105, 106].

An interesting open problem is the limit passage of this model under a

suitable scaling to a brittle model as in Proposition 11.6.

Let us note that in both of the mode-mixity-sensitive models considered

in this section the stored energy involves z linearly. However, it is not

difficult to combine cohesive-zone-typemodels fromSection 11.6.1 with these

mode-mixity-sensitive models. Thus, e.g., (11.72) can be generalized to

R
(
u, z,

.
z
)
:=

⎧⎨
⎩
∫
ΓC

a(ψ(
[[
u
]]
), z)|.z| dS if

.
z ≤ 0 on ΓC,

∞ otherwise.

(11.81)

To facilitate the mathematical analysis, one again needs the stored energy

to be augmented by the delamination gradient.

The influence of the mixed-mode behavior will be illustrated with

an example of the mixed-mode flexure test [78, Sec. 3.2] shown in

Fig. 11.14. The material properties of the bulk material are the same as

in Section 11.5.3, the elastic-brittle interface is now characterized by the

stiffnesses κn = 810GPa/m and κt = 760GPa/m. The Mode I and Mode II

fracture energies are set to aI = 200 Jm−2 and aII = 900Jm−2, in order

Fig. 11.14. Setup of the mixed-mode flexure test.
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Delamination and Adhesive Contact Models 545

(a) (b)

Fig. 11.15. (a) Energetics of mixed mode flexure test (EΩ = energy stored in bulk,
EΓ = interfacial contribution) and convergence for h → 0, and (b) evolution of mode-
mixity angles calculated for h = 0.5mm and τ = 0.025 by using the energetic-solution
concept.

to achieve a more ductile structural response. The prescribed mid-span

displacement equals 2.5mm at T = 1. The non-associative model (11.72)

with (11.58) is used.

Figure 11.15(a) summarizes energetics of the delamination evolution.

After the initial elastic regime, delamination initiates in a combined normal

and shear mode, see Fig. 11.15(b). This is accompanied by a high increase of

the dissipated energy. With the increasing load, however, the mode mixity

gradually changes towards the opening mode. The production of dissipated

energy decreases and the interfacial stored energy almost vanishes; see

Fig. 11.16 for an illustration. The response remains almost independent of

the mesh size h. Moreover, the back-tracking algorithm remained inactive

for the whole loading range, which confirms the energy stability of the

delamination evolution. Note that the peaks in the mode-mixity angles in

Fig. 10(b) are related to the changes of the sign of the tangential slip [[u]]t,

recall Eq. (11.70).

Both the models (11.54a)–(11.72) and (11.77) are conceptually quite

different, although they aim to cope with the same phenomenon of the

mode-dependent delamination. For a comparison and mutual fitting of these

two models when used the stress-driven solution concept we refer to [107].

Remark 11.4 (Mode III). Delamination by twisting (i.e., Mode III)

exhibits specific behavior and is often also considered, though we not

consider this sort of model here. In fact, it would be possible to model such

regimes by making the activation threshold dependent on the angle between
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546 T. Roub́ıček et al.

Fig. 11.16. Ten snapshots of delamination evolution during the flexure test of the
specimen from Fig. 11.14; displacements are magnified five times.

∇Sz and the tangential stress. Obviously, there needs to be compactness in

terms of ∇Sz, which would have to occur “nonlinearly” in the model, so

that an even higher gradient of z is involved in E .

11.6.3. Multi-threshold delamination

Some of the engineering literature incorporates parallel breakable springs

with different elastic and inelastic properties, cf. [66, 98]. On the continuum-

mechanical level, this idea can be reflected by a generalization of the

previous model by considering J different adhesives acting simultaneously

on ΓC:

E (t, u, z1, . . . , zJ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+uD(t)

)
dx

+

∫
ΓC

∑J
j=1 zjKj[[u]]

2
· [[u]]dS
if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

0 ≤ zj ≤ 1 on ΓC,

∞ otherwise,

(11.82a)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Delamination and Adhesive Contact Models 547

R(
.
z1, . . . ,

.
zI) :=

⎧⎪⎨
⎪⎩

J∑
j=1

∫
ΓC

aj
∣∣∣.
zj
∣∣∣
dS if max

j=1,...,J

.
zj ≤ 0 on ΓC,

∞ otherwise.

(11.82b)

Again, the advantage of the energetic formulation is that there is no problem

in combining multi-threshold models with cohesive-zone models from

Section 11.6.1 and/or the mode-mixity-sensitive models from Section 11.6.2.

Also, instead of parameterizing the various adhesives by a discrete

parameter j = 1, . . . , J , one could use a “continuous” parameter.

An example for implementation of multi-threshold damage uses a

double cantilever beam adopted from [108] whose dimensions are shown

in Fig. 11.17(a). The material parameters of the beam are E = 176.6GPa

and ν = 0.34.

The initial crack of length �ini is situated in the specimen midplane. To

predict crack propagation along the interface ΓC, a CZM with a trilinear

stress-separation law (a generalization of the bilinear one), similar to that

in [108], is used to model the interface behavior. The considered stress-

separation law is shown in Fig. 11.17(b). This also includes consideration

of the “cohesive” term over ΓC, i.e., replacement of the pertinent integral

in (11.82a) by that from (11.67), or specifically by its equivalent with φ

from (11.69a):
∫
ΓC

(φ1(z1)[[u]] + φ2(z2)[[u]]) · [[u]]dS. In fact, both φ1 and

φ2 are chosen as a scalar (damage dependent, according to the bilinear

CZM (11.69a)) multiple of the initial stiffness K, see [109].

(a)

(b)

Fig. 11.17. (a) Set-up for a double cantilever beam test. Dimensions are: � = 190mm,
�ini = 55mm, w = 20mm, h = 5mm. (b) The stress response of the interface given by
a two-threshold delamination model corresponding to a trilinear CZM. The parameters
are: u0 = 0.014mm, u1 = 0.25mm, uc = 4mm, σ0 = 62MPa, σ1 = 0.67MPa.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



548 T. Roub́ıček et al.

The adopted split of fracture energy according to (11.82b) considers

a1 = 7.745kJm−2 and a2 = 1.34 kJm−2. Such a split corresponds to crack

initiation near the crack tip and subsequent crack propagation with a large

process zone, as justified, e.g., for fiber composites by fiber bridging in [108].

The calculated deformations, stresses and two-threshold damages are

shown in Fig. 11.18 for various time instants of the applied displacement

load, where the stress-driven type solution of Section 11.3.3 was used. After

initiating both levels of damage, the stress distribution close to the crack

tip (point where z1 and z2 are still equal to one) remains almost the same.

But there is a difference at least at the part where z2 is non-vanishing. A

detailed plot within the last snap-shot focuses on the stress distribution

corresponding to z2 evolution which is small but non-zero according to

the stress-displacement graph in Fig. 11.17. The graphs also show that the

damage parameter z2 is initiated after z1 has reached zero.

11.6.4. Combinations with other inelastic processes in bulk

The definite advantage of the energetic formulation (i.e., in terms of

functionals E and R) is that one can easily combine the above delamination

models with other inelastic processes, like damage or plasticity in the bulk.

Let us illustrate this by a simple example, augmenting the model

from Section 11.5 by linearized, single-threshold plasticity with kinematic

hardening. The additional variable is then the plastic strain π valued in

R
d×d
dev := {π ∈Rd×d, π� = π, trπ=0}, and the plastic response is determined

by the convex “elasticity” domain S(i) ⊂ R
d×d
dev and by a hardening tensor

H(i) on each Ωi. After shifting the Dirichlet conditions, the functionals are

as follows:

E
K
(t, u, z, π) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)(e(u)−π):

(
e
(u
2
+ uD(t)

)
−π
2

)
+H

(i)π:π dx

+

∫
ΓC

1

2
zK
[[
u
]] · [[u]] dS if u = 0 on ΓD,

[[u]]n ≥ 0 on ΓC,

0 ≤ z on ΓC,

∞ otherwise,

(11.83a)

R(
.
z,
.
π) :=

⎧⎪⎨
⎪⎩
∫
ΓC

a|.z| dS +

N∑
i=1

∫
Ωi

δ∗S(i)(
.
π) dx if

.
z ≤ 0 on ΓC,

∞ otherwise,

(11.83b)
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Delamination and Adhesive Contact Models 549

Fig. 11.18. Deformations of the double-cantilever beam, the interfacial damage
evolution, and the normal stress distribution in the cracked interface at selected time
instants corresponding to the prescribed displacement g, �ini is the initial crack length,
cf. Fig. 11.17. The last snapshot includes also a detail of the stress distribution in the
part where z1 is already zero but z2 is positive, according to the prescribed trilinear
CZM in Fig. 11.17, the maximal stress at this region being 0.67MPa.
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550 T. Roub́ıček et al.

and, instead of (11.52b),

Z := L∞(ΓC)× L2(Ω;Rd×ddev ). (11.83c)

The classical formulation corresponding to (11.4) with E and R from

(11.54b) is an equilibrium of forces on each subdomain Ωi and four

complementarity problems on ΓC, corresponding to the four subdifferentials

occurring in the involved functionals EK and R. Before shifting the Dirichlet

conditions, this formulation is

div σ = 0, σ = C(i)(e(u)− π)
.
π ∈ NS(i)(H(i)π − σ)

}
in Ωi, (11.84a)

u = wD(t, ·) on ΓD, (11.84b)

σν = 0 on ΓN, (11.84c)

[[σ]]ν = 0

σν + zK[[u]] = 0[[
u
]]
n
≥ 0, σn(u) ≤ 0, σn(u)

[[
u
]]
n
= 0

.
z ≤ 0,

1

2
K
[[
u
]] · [[u]]+ ρ ≤ a

.
z
(1
2
K
[[
u
]] · [[u]] + ρ− a

)
= 0

z ≥ 0, ρ ≤ 0, ρz = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on ΓC, (11.84d)

where NS(i) denotes the normal cone to S(i), as in (11.8), and i = 1, . . . , N .

There are both mathematical and engineering studies combining elasto-

plasticity with cracks, cf., e.g., [110, 111]; this is a highly non-trivial

problem because the crack path is not a priori prescribed, in contrast to

delamination and perfect (the so-called Prandtl–Reuss) plasticity, which has

been considered in [111]. A combination with damage models in the bulk

is also easily possible. Recent studies [61, 80] reveal that the delamination

model from Section 11.4 can be obtained as the limit when, instead of

a surface ΓC undergoing delamination, one considers a narrow strip of

material undergoing damage and the thickness of that strip goes to zero.

A challenging conjecture is whether the refined models from Section 11.6

can be justified in this way, e.g., whether considering a narrow strip of a

material undergoing damage and plasticity with kinematic hardening might

recover the mode-mixity-dependent model (11.77) under a suitable scaling.

This could support former engineering studies as, e.g., in [95, 112].
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Delamination and Adhesive Contact Models 551

In the static or quasi-static case, the bulk damage can approximate

cracks with not a-priori prescribed paths by using the Ambrosio–Tortorelli

functional [113]

E (u, z) =

∫
Ω

ε2+z2

2
Ce(u):e(u) +

a0
4ε

(1−z)2+ εa0|∇z|2 dx (11.85)

provided ε → 0, imitating the philosophy that fracture is in fact a bulk

damage which is eventually complete but localized on very small volumes

along evolving surfaces where the fracture propagates, cf. [68, 76, 114, 115].

11.6.5. Another inelastic process on the surface: Friction

Another inelastic process that can be considered directly on the contact

boundary is dry friction. It is relatively easy in bilateral contact (i.e.,

always in Mode II) but, if combined with the Signorini unilateral contact,

it is recognized as extremely difficult in generalff and therefore various

regularizations (often with a reasonable mechanical interpretation) are

adopted.

Likely the most popular model for unilateral frictional contact in

engineering employs the so-called normal-compliance concept, cf., e.g.,

[1, 2, 8, 26, 116–119]. The model including Coulomb friction then provides

the force equilibrium on the contact interface ΓC as follows:[[
σ
]]
�n = 0 with σ = Ce(u), (11.86a)

σn − 2φn(z)
[[
u
]]
n
− σc = 0, with σc := −κg

[[
u
]]−
n
, (11.86b)

|σf | < −μ(z)σc ⇒ [[.
u
]]
t
= 0, (11.86c)

|σf | = −μ(z)σc ⇒ ∃λ ≥ 0 : σf = λ
[[.
u
]]
t
, (11.86d)

σf := σt − 2φt(z)
[[
u
]]
t
, (11.86e)

with

σt := σ�n− σn�n with σn := �n�σ�n,
and the flow rule for delamination on ΓC:

a
(
ψ
([[
u
]]) )

+φ′t(z)
[[
u
]]2
t
+φ′n(z)

[[
u
]]2
n
+N[0,1](z) 	 div

S
(κ2∇S

z) (11.86f)

ffOften, results are available only for small friction coefficient (with the goal to prevent
interesting jump regimes and without specifying what “small” means) or for a given
friction (independent of the normal force), etc. Particular difficulties occur in combination
of the Signorini unilateral contact with inertia as considered in Section 11.6.6).
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as described in [120]. The weak formulation requires at least an additional

dissipation term for Coulomb friction on ΓC, say in dissipation functional

from (11.54b) or (11.72). Thus, we may devise the following model:

E (t, u, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
Ωi

C
(i)e(u):e

(u
2
+uD(t)

)
dx

+

∫
ΓC

φn(z)|
[[
u
]]
n
|2 + φt(z)|

[[
u
]]
t
|2

+
κg
2
|[[u]]−

n
|2 + κ0

r
|∇

S
z|r dS if u = 0 on ΓD,

0 ≤ z ≤ 1 on ΓC,

∞ otherwise,

(11.87a)

R(u, z;
.
z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
ΓC

μ(z)κg
∣∣∣[[
u
]]−
n

∣∣∣ ∥∥∥[[.
u
]]
t

∥∥∥
+ a (ψ ([[u]]n))

∣∣∣ .
z
∣∣∣
dS if

.
z ≤ 0 a.e. on ΓC,

∞ otherwise.

(11.87b)

Notice that the normal compliance penalization form (introducing the

parameter κg) of the normal contact is used and that the friction

coefficient μ is considered to be damage dependent, cf. [120]. Actually, the

rigorous analysis needs still to consider a suitable viscoelastic material,

in particular in the Kelvin–Voigt rheology with σ = D(i)e(
.
u) + C(i)e(u)

as in (11.88) below and then R in (11.87b) augments by the term∑N
i=1

∫
Ωi

1
2D

(i)e(
.
u):e(

.
u) dx.

Another regularization exploits the model (11.77): taking κt very large,

[[u]]t is then approximately equal to sp and the activation threshold a2 is in

the position of the friction, cf. [120].

11.6.6. Dynamical adhesive contact in visco-elastic materials

So far, we have considered only quasistatic models, which have relatively

broad applicability. In some situations, additional effects must be taken into

account, however. In particular, even under very slow loading, spontaneous

rupture of weak surfaces ΓC may lead to the emission of elastic waves in the

bulk, which may backward interact with the rate-independent delamination

hosted on ΓC. Thus inertial effects must be considered. It is natural to take

into account also attenuation in the bulk. Considering the Kelvin–Voigt
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rheology, the simplest model from Section 11.5 thus modifies to:

�(i)
..
u − div σ = 0, σ = C(i)e(u) + D(i)e(

.
u) in Ωi, (11.88a)

u = wD(t, ·) on ΓD, (11.88b)

σν = 0 on ΓN, (11.88c)

[[σ]]ν = 0

σν + zK[[u]] = 0[[
u
]]
n
≥ 0, σn(u) ≤ 0, σn(u)

[[
u
]]
n
= 0

.
z ≤ 0,

1

2
K
[[
u
]] · [[u]]+ ρ ≤ a

.
z
(1
2
K
[[
u
]] · [[u]] + ρ− a

)
= 0

z ≥ 0, ρ ≤ 0, ρz = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on ΓC, (11.88d)

where �(i) > 0 is a mass density and D(i) is a fourth-order symmetric

positive definite tensor determining the attenuation of the material

occupying the domain Ωi, i = 1, . . . , N . This model is analyzed by a

semidiscretization in time leading to a recursive increment formula. We

refer to [121] for more details when the backward Euler formula is used,

or to [26, Chapter 5] or [122, 123] when the backward Euler formula

possibly combined with the fractional-step strategy and a smoothening

of the unilateral contact is used; in particular, the inertial term �(i)
..
u is

approximated by the second-order difference �(i)(ukτ − 2uk−1
τ + uk−2

τ )/τ2.

For a slow loading, one expects that the solution (after a corresponding

rescaling of time) will converge to a vanishing-viscosity solution of the rate-

independent model,gg cf. [124] where a viscosity in the adhesive has been

also considered.

For an analogous model but with viscous (instead of activated rate-

independent) adhesion we refer to [2, Chapter 5] or, e.g., [1, 125], and, with

plasticity in the bulk, to [126].

The typical application of dynamic adhesive contact is in the modeling

of spontaneous rupture on lithospheric faults (i.e., weak surfaces in the

language of mechanical engineers) with the emission of elastic waves having

the capability to trigger, e.g., another possible rupture on an adjacent

fault and inelastic damage, examples of which occur on the Earth’s surface

ggThe proof of this intuitive phenomenon is however not trivial due to the inertial term
interacting with a non-convex potential E (t, ·), as emphasized already in [26, Sec. 5.1.2.2].
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554 T. Roub́ıček et al.

as earthquakes . Typical rupture processes run in pure Mode II because

the enormous gravity pressures on the faults deep under the Earth’s

surface exclude Mode I. Thus, Signorini contact might even be a priori

simplified to the condition [[u]]n = 0 on ΓC. An important phenomenon

that facilitates spontaneous rupture within earthquake modeling is the so-

called slip weakening ; cf. models and discussion, e.g., in [127–133]. There

are several options for how to describe the weakening phenomena within the

models presented above. One can, e.g., modify model (11.77) by considering

the activation threshold aI in (11.77c) dependent on the plastic slip sp or,

perhaps more physically, on
∫ t
0 |
.
sp|dt, which then makes the dissipation non-

associative. This option is capable of modeling one particular rupturing. For

repeated rupturing (combined with healing), a dependence of both a1, and

a2 in (11.77c) on delamination parameter z can be considered instead, cf.

also [4].

Another possibility arises if E (t, u, ·) is concave. In model (11.67) in

Section 11.6.1 with K1 =κ1I and K2= κ2I, this occurs if κ2 is small,

namely 0>κ2>− κ1/2. Then Fig. 11.6 is relevant but the rupture

happens under the mechanical stress σ = (κ1 +κ2)
√
2a/(κ1+2κ2) when

|[[u]]| =√2a/(κ1+2κ2) as in Fig. 11.9. Thus, one can model delamination

weakening. Note that the initial stress σ leading to delamination may be

made very large by sending κ2 ↓ −κ1/2, even if the total dissipated energy

may be independently moderate. One can see the weakening effect also from

(11.68): if κ2 < 0 then φ is strictly concave hence φ′ is decreasing and thus

the effective activation threshold (11.68) gets smaller if η decreases (ranging

over a monotone branch of φ of course).

The weakening phenomenon may also occur in the multi-threshold

models from Section 11.6.3: consider K1 > K2 > · · · (= ordering of positive

definite matrices) and a1 > a2 > · · · ; initially the first adhesive layer can

withstand high stress but when debonded the next adhesive layers can

withstand smaller and smaller stresses.

It is well known that the mentioned backward Euler discretization of the

inertial term �
..
u exhibits unacceptably large artificial numerical attenuation

ΓN

ΓN

ΓN

ΓC

elastic body

rigid obstacleadhesive

250mm

12.5mm
loading

Fig. 11.19. Geometry of a two-dimensional rectangular-shaped specimen subjected to
the loading f1 = f1(t) on the right-hand side of ΓN monotonically increasing until rupture
is completed.
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Delamination and Adhesive Contact Models 555

and is mainly useful for theoretical analysis. Computationally, efficient

approaches for so-called transient or wave propagation problems (i.e. low-

frequency vibrations or high-frequency waves, respectively) use various

implicit or explicit schemes. An interesting implicit scheme conserving

energy relies on replacing the second-order equation (11.88a) by the system

.
u = v, �(i)

.
v − div σ = 0, σ = C

(i)e(u) + D
(i)e(v) in Ωi (11.89)

which is then discretized in time by the Crank-Nicolson scheme,hh originally

designed for a single parabolic equation [136]. When combined with the

fractional-step splitting, this results to

ukτ − uk−1
τ

τ
=
vkτ + vk−1

τ

2
and �(i)

vkτ − vk−1
τ

τ
= div

σkτ + σk−1
τ

2
(11.90a)

with σkτ = C(i)e(ukτ ) + D(i)e(vkτ ), accompanied by the boundary conditions

on ΓC using zk−1
τ , i.e.,

σkτ + σk−1
τ

2
ν + zk−1

τ K

[[
ukτ + uk−1

τ

2

]]
= 0 (11.90b)

and, when (ukτ , v
k
τ ) is obtained, to be followed by the second step to

obtain zkτ in the same way as used for the fractional-step splitting before,

cf. (11.41b). Combining the binomial formula relying on the quadratic

structure of E (t, ·, z) and V1 as well as of the kinetic energy with the

cancellation effect as we already said for (11.42)–(11.43), the upper-energy

estimate always holds. In “perfectly” cohesive (like (11.67) with K1 = 0)

bilateral contact analogous to the bulk model (11.85) where no constraints

would be needed, we would obtain even the full energy conservation in this

discrete scheme. In our adhesive unilateral contact when E (t, ·, ·) involves

constraints (11.1) violating the separate-quadratic structure, one can make

a penalty-like approximation (i.e., in particular the normal-compliance

approximation of the unilateral contact) and then time discretization by

using difference quotients as in [137], which again yield the full energy

conservation in this discrete scheme, cf. [138] for details.

A numerical experiment with a two-dimensional rectangular-shaped

specimen from Fig. 11.19 can show a wave emitted by the rupture, as

displayed in Fig. 11.20. This wave is then reflected on the right-hand side

of the specimen and propagates back to the left-hand side where it is again

hhIn fact, this is a special case of a popular Hilber–Hughes–Taylor scheme [134] which
generalizes an older scheme by Newmark [135].
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556 T. Roub́ıček et al.

Fig. 11.20. A wave emitted by the sudden adhesive rupture of the adhesive boundary
in Fig. 11.19 and propagating through the specimen and then reflected on the right-hand
side back. Magnitude of the velocity is depicted at 25 snapshots.
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Fig. 11.21. Non-attenuating vibrations after the rupture showing both the lowest eigen-
frequency of the bar from Fig. 11.19 superposed by various higher-frequency vibrations.
The time-evolution of the velocity of the left-hand side of the specimen is depicted.

reflected and so on. The time varying velocity of the left-hand side of the

specimen from Fig. 11.19 is displayed in Fig. 11.21. For other experiments

as well as for numerical stability and convergence of the scheme (11.90)

combined with the fractional-step splitting of the delamination we refer

to [138].

The fractional-step Crank–Nicolson scheme (11.90) can advantageously

be used for the separately-quadratic model (11.85) for fixed ε > 0 combined

both with the inertia, cf. [139] where it was further combined with some

diffusive processes and heat transfer.

Another phenomenon in the bulk that can easily be modeled is creep.

We again consider an internal strain variable π and the stored energy EK

from (11.83a) but, instead of R from (11.83b), we take

R(
.
u,
.
z,
.
π) =

N∑
i=1

∫
Ωi

(
D

(i)(e(
.
u)− .π):(e(.u)− .π) + D

(i)
M

.
π:
.
π
)
dx

+

⎧⎪⎨
⎪⎩
∫
ΓC

a|.z| dS if
.
z ≤ 0 on ΓC,

∞ otherwise,

(11.91)

with some positive definite tensors D
(i)
M which determines so-called Maxwell

rheology. In fact, the model (11.83a) and (11.91) combines Kelvin–Voigt

and Maxwell rheologies, which is sometimes called a Jeffreys viscoelastic
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558 T. Roub́ıček et al.

rheology. Without inertia and in homogeneous isotropic cases where, in

addition D(i) = χC(i) and D
(i)
M = χMC(i) for some fixed relaxation-

time constants χ > 0 and χM > 0, after a suitable computationally

“cheap” transformation, one can use conventional BEM methods for spatial

discretization, cf. [140] also for some other viscoelastic rheologies.

11.6.7. Thermodynamics of adhesive contacts

Interesting features might be triggered in non-isothermal situations.

Mechanical stresses in thermally expanding materials can be created by

spatially varying temperature profiles. Also, merging materials with diffe-

rent thermal expansion coefficients (as is typical in laminated composites)

creates mechanical stresses even with a spatially equilibrated temperature.

Such a thermomechanical load may lead to delamination. This may

naturally influence heat transfer through the delaminated surfaces. Hence,

besides the usual thermomechanical coupling due to viscous dissipation and

thermal expansion in the bulk, coupling by delamination also occurs.

Focusing again on the Kelvin–Voigt rheology as in Section 11.6.6, the

thermodynamically consistent model, naturally involving the additional

variable θ in the bulk as temperature, is

�
..
u − div σ = 0

σ = C(i)(e(u)− θE(i)) + D(i)e(
.
u)

c(i)(θ)
.
θ − div(L(i)∇θ) = (D(i)e(

.
u)− θC(i)E(i)):e(

.
u)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ in Ωi, (11.92a)

u = wD(t, ·) on ΓD, (11.92b)

σν = 0 on ΓN, (11.92c)

[[σ]]ν = 0

σν + zK[[u]] = 0

[[u]]n ≥ 0, σn(u) ≤ 0, σn(u)[[u]]n = 0

.
z ≤ 0,

1

2
K
[[
u
]] · [[u]]+ ρ ≤ a = a0 + a1

.
z
(1
2
K
[[
u
]] · [[u]] + ρ− a

)
= 0

z ≥ 0, ρ ≤ 0, ρz = 0

[[L∇θ]] · ν = −a1 .z
〈〈L∇θ · ν〉〉+ η([[u]], z)[[θ]] = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on ΓC, (11.92d)
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where 〈〈·〉〉 denotes the average of traces from both sides of ΓC, and where

E(i) is the matrix of thermal expansion coefficient, which may depend on

Ωi as C
(i) and D

(i). Further c(i) = c(i)(θ) is the heat capacity, and L
(i)

is the positive-definite heat-conductivity tensor, and η = η
(
[[u]], z

)
is the

heat-transfer coefficient through the delaminating boundary ΓC.

Note that only a part a1/a = a1/(a1 + a0) of the mechanical energy

dissipated during delamination contributes to heat production on ΓC, while

the rest a0/a is irreversibly stored (=dissipated) in the debonded adhesive

without contributing to the heat balance.

Mode II causes considerably more heating than Mode I, as experi-

mentally documented in [141]. For example, bearing in mind (11.71), one

may consider the splitting

a0(ψ) := a
I
, a1(ψ) := a

I
tan2((1− λ)ψ), (11.93)

which indicates that Mode I delamination does not contribute to heat

production at all, and only the additional dissipation for Mode II con-

tributes to heat production on the delaminating surface.

For model (11.77), it would be natural to involve the dissipation via

a2| .sd| as a measure-valued heat source acting on ΓC while the dissipation by

pure opening along the surface, i.e., a
I
| .z|, would contribute instead to the

stored energy. Mathematical analysis of such a problem, as well as numerical

experiments, seem challenging. For mode-mixity-independent dissipation,

this model has been analyzed in [142]; for Griffith-type rate-dependent

adhesion see also [143]. Recently, mode-mixity-sensitive dissipation (e.g.,

of the type (11.71)) was also scrutinized in [104] by implementing the

concept of non-simple materials. The limit passage from adhesive to brittle

delamination in the spirit of Proposition 11.6 but in the context of thermo-

visco-elasticity like (11.92) was analyzed in [144] without inertia effects.

In many situations, the bulk is nearly isothermal while a substantial

variation of temperature occurs only on the adhesive contact or its

vicinity. Then it is computationally advantageous to introduce a “surface

temperature” in addition to the bulk temperature, cf. [143, 145] or also

[26, Sec. 5.3.3.3]. This idea occurs also in physics in the context of surfaces

arising as shear bands during plastification [146]. If the bulk “reservoir” is

big, the bulk temperature can possibly be even ignored, being considered

constant, and then advantageously BEM can be exploited, cf. [120]. An

application of this approach can be for the popular Dieterich–Ruina

rate-and-state-dependent friction model of fault slip during earthquakes
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560 T. Roub́ıček et al.

[147, 148] where the delamination variable can undergo healing and is

interpreted as aging, while the important weakening effect can alternatively

be achieved when introducing the surface temperature [149] that can be

related to the so-called flash heating during large earthquakes.

11.7. Applications to Fiber-Reinforced Composites

Although the focus of this chapter is on the modeling of macroscopic

delamination problems, the presented framework can easily be adapted,

e.g., to the homogenization of composites with debonding interfaces. In the

analysis, we use both the energetic solution described in Section 11.3.2 and

the stress-driven solution of Section 11.3.3. Moreover, for the interface, the

models with cohesive contacts described in Section 11.6.1 are implemented.

First, we use the energetic-solution concept. In the context of two-scale

homogenization, the stored energy associated with the unit cell problem

is [150, 151]:

E
K
(t, u, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

1

2

∫
Ωi

C
(i)(e(u)+E(t)):(e(u)+E(t)) dx

+

∫
ΓC

φ(z)

2
K
[[
u
]] ·[[u]] + κ0

r
|∇

S
z|r dS if u is Ω-periodic,∫

Ω

u dx = 0,

[[u]]n ≥ 0 on ΓC,

0 ≤ z on ΓC,

∞ otherwise,

where E(t) designates the macroscopic strain tensor, u now denotes a

periodic microscopic displacement, and the function φ is used to model the

cohesive contact with a piecewise linear traction-separation law as described

e.g., by Fig. 11.10(a). The dissipative potential (11.54b) remains unchanged,

as well as the numerical treatment of the incremental problem. The periodic

boundary conditions and the macroscopic strain are incorporated by the

Lagrange multipliers technique introduced, e.g., in [152]. As an example,

we consider a cross-section of a unit cell of a fiber-reinforced composite like

that shown in Fig. 11.22(a) but finite one, subject to a bi-axial macroscopic

stretching E11 = E22 = 1.5% at T = 1. The geometry of the problem is

defined by the fiber volume fraction equal to 50% and the diameter of

the fiber is taken as 10µm. The material data for individual phases and
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x ∞
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ϕ
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2
1

σ∞
y

σ∞
y

matrix

(a) (b)

Fig. 11.22. (a) A single-fiber debonding problem under a biaxial far-field load, and
(b) a fiber-bundle debonding problem (representing local geometry of fibers in a fiber-
reinforced composite) under a far-field tension load.

Table 11.3. Material data.

Matrix Young’s modulus 1MPa
Matrix Poisson’s ratio 0.4
Fiber Young’s modulus 150MPa
Fiber Poisson’s ratio 0.3
Interfacial fracture energy, a 0.02 J/m2

Interfacial elastic stiffnesses, κn = κt 0.5GPa/m
Interfacial cohesive contact function φ(z) = z/(1− z+10−4)

interfaces appear in Table 11.3; the gradient term was neglected by setting

κ0 = 0.

The energetics of the progressive debonding is shown in Fig. 11.23,

together with representative snapshots of the debonding evolution. Due to

the prescribed cohesive law, we capture the gradual transition from a stiff

elastic interface, i.e., when the highest values of stress exists in the fiber, to

the completely debonded configuration. In this situation, the whole load is

carried by the matrix phase and the stored interfacial energy drops to zero.

This simple study is complemented with a numerical simulation

of debonding evolution in a complex 20-particle unit cell subject to

macroscopic shear E12 = 1%. The results in Fig. 11.24 confirm that

the energetic approach, combined with robust duality-based solvers,

captures the complex mechanisms of multiple contact, sliding, and gradual

debonding between fibers and matrix in geometrically complicated real-

world material samples.
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562 T. Roub́ıček et al.

Fig. 11.23. Energetics of single-fiber debonding and three selected snapshots of
displacement (magnified 20×) showing the spatial distribution of stress.

The stress-driven type of solution from Section 11.3.3 is used in

the next couple of tests typical for fiber-reinforced composites. The

results will be presented for the two variants shown in Fig. 11.22,

see [99, 153, 154], accordingly the material properties of a common

glass(1)/epoxy(2) composite are: E1 = 70.8GPa, E2 = 2.79GPa, ν1 = 0.22,

ν2 = 0.33, fiber radius r = 7.5µm. The properties of the interface which is

considered to obey the bilinear CZM are: the fracture energy a = 2Jm−2,

the maximal stress σc = 90MPa, see Fig. 11.10(a), and the parameter

β = 0.1. In order to achieve a more ductile structural response, the data in

the solved example also include dependency on the fracture-mode-mixity as

it is shown in Section 11.6.2 Eqs. (11.70), (11.71), (11.72). Thus, in fact a is

aI and σc is σn c. Additionally, we need to define also the fracture energy in

Mode II aII = 13.66Jm−2 and the initial tangential stiffness κt = 0.25κn.
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Delamination and Adhesive Contact Models 563

Fig. 11.24. Debonding in a fiber-reinforced composite: selected snapshots of a gradually
loaded representative cell containing 20 fibers with depicted displacements (magnified
20×) showing the spatial distribution of stress.

In the case of the single fiber, the dependence of the damage initiation

on the ratio of the magnitudes of two applied far-field loads σ∞
x and σ∞

y was

observed. The failure curves in Fig. 11.25 are plotted for various achieved

levels of damage. In this way, the first initiation of damage is referred by

the value 0.9999, while the value 0 reflects that z equals to zero at least

at one point. The presented deformations, corresponding to the failure

curve ‘0’ show how and where the damage appears. It is also observed

that the present formulation predicts symmetric cracking of the interface,

different conditions should be defined to obtain a non-symmetric one as

presented in [155]. Finally, the figure shows that having the compressive

loading prevailing, the Mode II becomes an important part of solution.

In the case of the multi-fiber problem of Fig. 11.22, the far-field tensile

stress σ∞
y is applied. The material parameters are the same, except for the

interface behavior is defined by the exponential CZM, with a modification

according to [90], where, we keep the fracture energies and maximal

cohesive stresses the same as in the previous example. The deformations
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Fig. 11.25. Failure curves for the single-fiber model in the case of the biaxial far-field
loading: each curve corresponds to different level of achieved interface damage (minimal
z in the legend). The shown opening gaps (magnified 15×) are associated to the damage
level 0 for each of the numbered calculated points of the failure curve. The bilinear CZM
was used in the calculation.
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Fig. 11.26. Debonding in a fiber-bundle: selected snapshots of a gradually loaded
representative cell containing 10 fibers with depicted opening gaps (magnified 5×).

in the vicinity of the fibers are shown at several instants of loading in

Fig. 11.26, where the initiation and subsequent propagation of the fiber-

matrix interface cracks can be observed. Additionally, the current damage

state at one of the selected instants is shown in Fig. 11.27. The angle ϕ is

clockwise measured at each fiber from its eastern point, cf. Fig. 11.22(a).

The state of damage can be easily related to the obtained deformations, the

fibers unaffected by the load still have z ≈ 1 along the whole perimeter.

Another phenomenon that can be considered in a fiber-matrix

debonding interface is friction [1, 8, 119] as suggested in (11.86) combined

with viscoelastic materials as mentioned in Section 11.6.5. The difference

between the frictional and frictionless cases for the problem of uniaxial

compression of a single fiber problem solved above is shown in Fig. 11.28.
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the eastern point). Value ‘11’ refers to the particular number of the load case used in
Fig. 11.25.

In the solution, we used the damage-dependent friction in the form μ(z) =

μ0(1−z)4 and we plotted the solution at the time instant, where frictionless

case has already reached full damage (z = 0) at a part of the interface,

cf. Fig. 11.25. It should also be noted that the stress-driven type solution

of Section 11.3.3 was applied.

11.8. Conclusion

In this chapter, we have surveyed some existing models and proposed a

menagerie of new ones for delamination under small strains. The main

purpose has been to cover them using the unified concept of quasistatic

evolution of the form (11.4) or (11.31) — also to pursue their energetics —
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and to outline the rigorous mathematical and numerical analysis based

on the concept of the so-called energetic solutions. Additionally, another

solution concept of the form (11.37) was outlined for a stress-driven

type of solution which intentionally does not necessarily conserve energy

but avoids some tendencies to non-physically early jumps. The particular

solution strategies are important parts of the model in rate-independent

cases. These approaches suggest efficient computational algorithms and

allow for mathematically supported simulations. They also allow us to

combine relatively easily and routinely various mutually competing inelastic

processes both on the delaminating surface or in the bulk, and to

devise advanced mathematically supported models and launch numerical

simulations of such non-trivial processes. In addition, under certain

conditions the approaches may also be combined with rate-dependent

processes in the bulk, such as viscosity (for the solution concept based

on (11.37) it is natural) in a sufficiently dissipating rheology (e.g., Kelvin–

Voigt), inertia, and even thermal processes as, e.g., thermo-visco-plasticity.

When a model with a reliable and fast computable response (which

depends continuously on data) is implemented, one can think about dealing

with various optimization problems, like optimal control or optimal-shape

design or some inverse problems like parameter identification. The desired

attribute in this context is uniqueness of the response. In the field of

adhesive contacts, it is related with stress-driven solution concepts and

the related discretization schemes that avoid global minimization of non-

convex problems and provide a unique discrete solution continuously

dependent on the data, in contrast to the energetic-solution concept

which makes any optimization very complicated and hardly implementable,

cf. [156]. Non-smoothness of the control-to-state response due to both the

activated character of the delamination process and unilateral contacts

needs evaluation of suitable generalized gradients to facilitate usage of

efficient optimization algorithms, cf. [157] for a problem of identification

of fracture toughness and adhesive elasticity in the model (11.59).

Except a note in Section 11.4, we entirely omitted models with large

strains. Let us, however, point out that the advantage of the concept

of energetic solutions is that the quasistatic delamination models can

be relatively easily formulated in large strains, cf. also [26, Sec. 4.2.3], in

contrast to other weak-solution concepts or to dynamical viscous models

of the type (11.88).

Finally, the authors would like to point out that further intensive

theoretical and computational research in the interface damage and contact
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mechanics has continued since the revision and acceptance of this chapter

in 2017. An amendment [158–187] of the References added in 2022 is surely

not complete and only briefly documents ongoing activity in this field.
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[37] Benešová B., 2009. Modeling of shape-memory alloys on the mesoscopic
level, in P. Sittner et al. (eds.), Proc. ESOMAT 2009 EDP Sci., pp. 1–7.
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crack in a thin adhesive layer between orthotropic materials: An application
to composite interlaminar fracture toughness test, CMES-Comp. Model.
Eng. Sci., 58, 247–270.
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conventional displacement BIE and the BIE formulations of the first and
second kind in frictionless contact problems, Eng. Anal. Bound. Elem., 26,
815–826.
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[79] Mielke A., Rossi R., Savaré G., 2016. Balanced-Viscosity solutions for multi-
rate systems, J. Physics, Conf. Series, 727, 012010.

[80] Thomas M., 2010. Rate-independent damage processes in nonlinearly elastic
materials, PhD thesis, Inst. f. Math., Humboldt-Universität zu Berlin.

[81] Thomas M., Mielke A., 2010. Damage of nonlinearly elastic materials at
small strain — Existence and regularity results, Zeits. Angew. Math. Mech.,
90, 88–112.
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BEM implementation of quasistatic linear visco-elasticity. Int. J. Solids
Struct. 51, 2261–2271.

[141] Rittel D., 1999. Thermomechanical aspects of dynamic crack initiation, Int.
J. Fracture, 99, 199–209.
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Abstract

The coupled criterion predicts the crack nucleation at stress concentration
point. It is a twofold criterion that uses conditions for energy and tensile
stress and involves both toughness and tensile strength of the material. In
general, the crack jumps a finite length and then either stops or goes on
growing. It has proven its effectiveness in many situations encountered in
homogeneous materials like V- and U-notches and predictions fairly agree with
the experimental measures. It can also be used to study specific mechanisms
of degradation of composites such as delamination or fiber debonding. It has
recently been used successfully to predict the initiation of delamination from
a stress-free edge, the applications discussed in this chapter mainly concern
the deviation of transverse cracks by an interface and the crack kinking out of
an interface. A brief digression is also made in the case of interfaces showing
an angle.

Contents

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 580

12.2 The Coupled Criterion . . . . . . . . . . . . . . . . . . . . 581

12.3 Matched Asymptotic Expansions . . . . . . . . . . . . . . 586

12.4 Application to the Crack Onset at a V-notch

in a Homogeneous Material . . . . . . . . . . . . . . . . . 589

12.5 Application to the Deflection of Transverse Cracks . . . . 590

12.6 The Cook and Gordon Mechanism . . . . . . . . . . . . . 596

579

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1142/9781800611887_0012


580 D. Leguillon & E. Martin

12.7 The Interface Crack Growing Along the

Interface — Delamination . . . . . . . . . . . . . . . . . . 601

12.8 The Crack Kinking out of the Interface . . . . . . . . . . 602

12.9 The Interface Corner . . . . . . . . . . . . . . . . . . . . 605

12.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 607

12.1. Introduction

Delamination is the main cause of failure of multi-materials and especially

of composite laminates, the components separate leading to the total ruin

or at least to a weaken structure. This topic is still subject of numerous

works and a detailed and recent list of references can be found in [1] for a

better overview of the problem. There are at least two important origins to

delamination under static loading [2]; the first one is the classic initiation

process which occurs at the intersection of a free edge with the interface

between two layers. It is a zone of stress concentration described in elasticity

by a singular stress field [1, 3]. The other one is less obvious because it is

an internal process and therefore not directly detectable: the deflection of

transverse cracks present in the most disoriented layers relatively to the

tensile direction [4–6]. The classical situation in a laminate is the presence

of plies 90◦ oriented with respect to the loading direction. Transverse

microcracks are then generated which coalesce to form a transverse crack

which is deflected when it reaches the interface with a 0◦ ply. This deflection
mechanism originates a delamination crack [7]. Crack deflection at the

fiber/matrix interface is also a prerequisite for the activation of toughening

mechanisms like multiple matrix cracking in ceramic matrix composites

(CMC) [8, 9]. Once delamination takes place, the crack can grow along the

interface and at the end separate the components or it can kink into one of

the adjacent materials.

We propose, in this chapter, to present the coupled criterion allowing

the prediction of crack nucleation at stress concentration points [10, 11]. It

combines stress and energy conditions which allow to get rid of the definition

of a characteristic fracture length selected more or less arbitrarily. This

criterion has been applied successfully to several situations in composite and

laminated materials: delamination originating from a stress-free edge within

a generalized plane strain elasticity framework [1, 12], fiber debonding

[13–15]. It is illustrated herein by two mechanisms, the transverse crack

deflection by an interface [16, 17] and the crack kinking out of an interface

[18–21]. The analysis will be developed in plane strain and should be
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theoretically extended to 3D although a number of technical difficulties

emerge [22, 23]. A brief digression is also made in the case of interfaces

showing an angle.

12.2. The Coupled Criterion

To establish this criterion, the better generic model is the 3-point bending

test on a V-notched specimen made of a homogeneous material (Fig. 12.1).

In composite materials, it applies at the intersection of the interface

between two layers and a free edge for instance [1], or at the end of a

transverse crack impinging on an interface as illustrated in the next sections.

The coupled criterion is based on a twofold condition to predict the

nucleation of cracks in areas of stress concentrations in brittle materials:

a condition on the maximum tensile or shear stress that a structure can

sustain and an energy balance between the stored energy and the energy

required to induce fracture [10]. The first condition refers to the tensile

strength σc (or shear strength τc) while the other relies on the toughness

Gc of the material (or interface). These two conditions must be satisfied

simultaneously.

The form taken by these two conditions come from the theory of

singularities and the asymptotic expansions of the displacement field U and

the stress field σ in the vicinity of the origin so-called Williams’ expansion

[24] (in polar coordinates with origin at the singular point formed by the

notch root)

{
U(r, θ) = C + krλu(θ) + · · · ,
σ(r, θ) = k rλ−1s(θ) + · · · , (12.1)

Fig. 12.1. The 3-point bending test on a V-notched homogeneous specimen.
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λ is the leading singularity exponent (1/2 ≤ λ ≤ 1 for a V-notch),

k (MPa.m1−λ) is the generalized stress intensity factor (GSIF), u(θ) and

s(θ) are two angular functions and C is a constant (the rigid translation of

the origin). Coefficient k depends on the whole geometry of the structure

and on the remote applied load. Dots hold for less significant terms in the

expansion. The exponent and the angular functions depend only on the

local geometry and elastic properties; they are solutions to an eigenvalue

problem and are either known analytically in some simple cases or can

anyway be determined numerically using a simple algorithm. Clearly, the

stress components tend to infinity as r → 0, this is why it is called a singular

point.

Note that here and in the following, we only address the tensile stress

but extension to the shear component is straightforward.

The GSIF k can be computed using a path independent integral Ψ

[25, 26], valid for any elastic fields satisfying the equilibrium to 0 (i.e.,

vanishing boundary conditions and balance equation within the domain

surrounded by the integration path)

k =
Ψ(U(r, θ), r−λu

−(θ))

Ψ(rλu(θ), r−λu−(θ))
with

Ψ(U, V ) =
1

2

∫
Γ

(σ(U).n.V − σ(V ).n.U)ds, (12.2)

where Γ is a contour encompassing the notch root and starting and finishing

on the stress-free edges of the notch, n its normal pointing toward the origin.

Relation (12.2) is based on two properties

(1) If λ is an eigenvalue then there is also −λ. The so-called dual mode [25]

or “super singular” function [27] r−λu−(θ) is a mathematical solution to

the previous eigenvalue problem which has presently no special physical

meaning (in particular, the elastic energy associated with this function

is unbounded in the vicinity of the origin).

(2) For any pair of eigensolutions rαuα(θ) and rβuβ(θ), β �= −α ⇒
Ψ(rαuα(θ), r

βuα(θ)) = 0. It is a kind of bi-orthogonality property (be

careful that Ψ is not a scalar product) which allows the extraction of

coefficient k. This result is a consequence of the path independence

of Ψ.

Here, the only role of the dual mode is to be a mathematical extraction

function, however these modes will play a greater role in the matched
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asymptotic expansions procedures both for the inner and outer ones (see

(12.14) and (12.15) later in Section 12.3).

The stress condition (e.g., the maximum tensile stress criterion)

involves the tensile component σ of the stress tensor σ acting on the

presupposed crack path defined by the direction θ0 prior to its onset,

it provides an upper bound to the admissible crack extension lengths a

(λ− 1 < 0)

σ = krλ−1s(θ0) + · · · ≥ σc for 0 ≤ r ≤ a⇒ kaλ−1s(θ0) ≥ σc. (12.3)

The coefficient s(θ0) is a dimensionless constant derived from s which can

be normalized to s(θ0) = 1 if the failure direction (i.e., θ0) is known [25].

Relation (12.3)2 is enough to imply σ ≥ σc along the whole presupposed

crack path since σ is a decreasing function of the distance to the singular

point.

As will be shown in Section 12.3, expansions (12.1) can be used to

define an expansion of the potential energy variation when a small crack

extension appears in direction θ0. Its leading term provides a lower bound

of the crack extension length (2λ− 1 > 0)

Ginc(θ0) = −W (a)−W (0)

a
= A(θ0)k

2a2λ−1 + · · · ≥ Gc, (12.4)

where W (x) is the potential energy of the structure embedding a crack

extension with length x. Ginc(θ0) is so-called incremental energy release

rate, because it depends on the increment a, emphasis is put on the fact that

we do not consider the limit as a→ 0 as it is done in the Griffith criterion

[28]. The incremental and differential criterion are identical if λ = 1/2.

It is the rate of potential energy change prior to and following the onset

of a new crack with length a. The scaling coefficient A(θ0) (MPa−1) is

another constant depending on the local properties and on the direction

θ0 of the short crack but not on the remote applied load which occurs in

(12.4) through the only coefficient k. A complete definition of A is given in

the next section.

The compatibility between these two inequalities provides a charac-

teristic length ac at initiation (Fig. 12.2)

ac =
Gc
A(θ0)

(
s(θ0)

σc

)2

. (12.5)

Initiation is in general (i.e., if λ > 1/2) an unstable mechanism. The

crack jumps the length ac and then go on growing or not, but ac is not
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584 D. Leguillon & E. Martin

Fig. 12.2. Schematic view of the determination of ac (12.5). (1) For a small remote load,
crack extension lengths fulfilling the stress and the energy conditions are incompatible.
(2) When the remote load increases, the two bounds come closer to each other. (3) Failure
occurs when the two bounds merge giving ac. Arrows indicate the motion of curves and
points when the remote load increases.

defined as a crack arrest length. It means essentially that below this length

the balance between the stored energy and the energy consumed during

failure does not hold true, no crack smaller than ac can be observed. This

jump length is still a function of θ0.

Then we deduce an Irwin-like [29] condition on the GSIF k which plays

the classical role of the stress intensity factor (SIF) KI

k ≥ kc =

(
Gc
A(θ0)

)1−λ(
σc
s(θ0)

)2λ−1

. (12.6)

For a crack embedded in a homogeneous body, then λ = 1/2, k = KI ,

relation (12.6) coincides with the well-known Irwin criterion. A straight

edge in a homogeneous material is a limit case where there is no stress

concentration, then λ = 1 and inequality (12.6) coincides with the

maximum tensile stress criterion.
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Interaction of Cracks with Interfaces 585

The direction θ0 was assumed to be known, if not, one has to check

all the possible directions and maximize the denominator in (12.6), i.e.,

minimize the value of kc.

A single mode has been involved in (12.1), for a V-notch it corresponds

to the symmetric case as shown in Fig. 12.1. Generalizations can be made

to account for more complex loadings, it is then necessary to determine

both the load causing failure and the direction of the nucleating crack [30].

The computation of the scaling coefficient A(θ0), using matched

asymptotic expansions, will be the topic of the next section. For simplicity,

the dependency on θ0 will be omitted.

Remark. Martin et al. [1, 31, 32] and Hebel et al. [33] and their coworkers

operate the coupled criterion numerically without going through the semi-

analytical asymptotic expansions procedure. The tensile stress σ along

the presupposed crack path and the incremental energy release rate Ginc

(12.4) are extracted from a direct finite elements (FE) computation which

requires bringing a special care to the mesh refinement in the vicinity of

the region where the new crack initiates. Inequalities (12.3) and (12.4)

are employed without going through the calculation of λ, k, s and A and

reduce to

σ = σFE(r) ≥ σc for 0 ≤ r ≤ a and

Ginc = −WFE(a)−WFE(0)

a
≥ Gc (12.7)

and a is the smaller length fulfilling the two inequalities. Indeed (12.7) is

the most general definition of the coupled criterion that can be used in all

cases even if the functions σc and G
inc are non-monotonic. Such a situation

has been encountered in [32] in the study of the fiber-matrix debonding,

as well as in [34, 35] when studying different cracking mechanisms in a

laminated ceramic material designed with compressive residual stresses, or

in [36] about the multi-cracking phenomenon in an oxide layer, again in the

presence of residual stresses.

This approach allows studying situations that cannot be taken into

account in the asymptotic approach, like crack arrest after a short initiation

for instance. However, it does not reveal directly (analytically) the role

played by different geometric parameters of the structure like the layer

thickness in case of an adhesive layer or an interphase for instance [37].
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586 D. Leguillon & E. Martin

Fig. 12.3. Onset of a short crack with length a at the root of the V-notch.

12.3. Matched Asymptotic Expansions

Solving numerically an elasticity problem in a domain Ωa embedding a

short crack of length a at the root of the V-notch (Fig. 12.3) presents some

difficulties because of the small size of the perturbation. Needs for drastic

mesh refinements prevent to take into account too small details.

It is better trying to represent the solution in the form of an outer

expansion or far field

Ua(x1, x2) = U0(x1, x2) + small correction, (12.8)

where U0 is solution to the same elasticity problem, but now posed on the

unperturbed domain Ω0 (Fig. 12.1) that can be considered as the limit of

Ωa as a→ 0 (the short crack is not visible).

It is clear that this solution U0 is a satisfying approximation of Ua

away from the perturbation, i.e., outside a neighborhood of it, and thence

its designation as the outer field (or far field, or remote field).

Evidently, this information is incomplete, particularly when we are

interested in the fracture mechanisms. We therefore dilate the space

variables by introducing the change of variables yi = xi/a. In the limit

when a→ 0, we obtain an unbounded domain Ωin (looking like the enlarge

frame in Fig. 12.3) in which the length of the crack is now equal to 1.

We then search for a different representation of the solution under the

form of an expansion known as inner expansion or near field

Ua(x1, x2) = Ua(ay1, ay2) = F0(a)V
0(y1, y2) + F1(a)V

1(y1, y2) + · · · ,
(12.9)
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Interaction of Cracks with Interfaces 587

where F1(a)/F0(a) → 0 as a → 0. But conditions at infinity lack to have

well-posed problems for V 0 and V 1. Matching rules provide these missing

conditions. There must be an intermediate zone (close to the perturbation

for the far field and far from it for the near field) where both inner and

outer expansions are valid.

The behavior of the far field near the origin is described by the

expansion in powers of r as previously encountered in Eq. (12.1)

U0(x1, x2) = C + krλu(θ) + · · · . (12.10)

Then the matching conditions can be written as follows:

F0(a)V
0(y1, y2) ≈ C, F 1(a)V 1(y1, y2) ≈ kaλρλu(θ) (12.11)

when ρ = r/a =
√
y21 + y22 → ∞ (the symbol ≈ means here “behaves like

at infinity”), thus

F0(a) = 1; V 0(y1, y2) = C; F1(a) = kaλ; V 1(y1, y2) ≈ ρλu(θ).

(12.12)

This matching statement is nothing else than the so-called remote load at

infinity. Proceeding by superposition, it comes

V 1(y1, y2) = ρλu(θ) + V̂
1
(y1, y2) with V̂

1
(y1, y2) ≈ 0. (12.13)

More precisely, the behavior of V̂
1
(y1, y2) at infinity can be described by

the dual mode ρ−λu−(θ) to ρλu(θ) (see Section 12.2)

V̂
1
(y1, y2) = κρ−λu−(θ) + · · · . (12.14)

This expansion is the analogous to (12.10) but at infinity now, κ is the

GSIF and missing terms tend to 0 faster than ρ−λ at infinity. This detail

is generally useless for our purpose, but it may play a role in other issues.

It has been used recently to determine the length of a crack using full field

measurements and digital image correlation (DIC) [38]. It allows specifying

the small correction mentioned in (12.8)

Ua(x1, x2) = U0(x1, x2) + kκa2λ(r−λu−(θ) + Û
1
(x1, x2)) + · · · . (12.15)

Finally, eq. (12.9) rewrites

Ua(x1, x2) = Ua(ay1, ay2) = C + kaλV 1(y1, y2) + · · · . (12.16)
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588 D. Leguillon & E. Martin

The function V 1(y1, y2) is computed once for all by FE in an artificially

bounded (at a large distance of the perturbation) domain with either

prescribed displacements or forces along the new fictitious boundary.

We have now to our disposal a description of the elastic solution prior

to and following the onset of a short crack and we are able to calculate the

change in potential energy W (a)−W (0) which can be expressed by mean

of the path independent integral Ψ already encountered in (12.2):

− (W (a)−W (0)) = Ψ(Ua, U0). (12.17)

Then replacing the above expansions, once for a = 0 and once for

a �= 0, into (12.17) leads to the announced expression (12.4) with Ginc =

−(W (a)−W (0))/a and

A = Ψ(V 1(y1, y2), ρ
λu(θ)). (12.18)

Figure 12.4 shows the dimensionless function A∗ = E∗A (where E∗ = E

in plane stress and E∗ = E/(1 − ν2) in plane strain, with E Young’s

modulus and ν Poisson’s ratio of the homogeneous isotropic material) for

different V-notch openings ω (Fig. 12.1) and for a crack located along

the bisector (symmetric case). It can be seen as a master curve valid for

any elastic isotropic material, the role of Poisson’s ratio in A has been

verified numerically. Note that A∗ = 2π for ω = 0◦ as a consequence of

the normalization of the eigenmode (12.1). It is such that the tensile stress

0

2

4

6

8

0 30 60 90 120 150 180

A*

ω (°)

Fig. 12.4. The dimensionless coefficient A∗ vs. the V-notch opening ω in the symmetric
case.
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Interaction of Cracks with Interfaces 589

σ = k/rλ−1 along the bisector, leading to σ = k/
√
r for ω = 0◦ (a crack)

whereas it is usually σ = k/
√
2πr.

12.4. Application to the Crack Onset at a V-notch in a

Homogeneous Material

Tensile tests have been carried out on PMMA V-notched specimens (E =

3250MPa, ν = 0.3, Gc = 0.325MPa.mm, σc = 75MPa) for different

V-notch openings from 30 to 160◦ (Fig. 12.5) [39].

The tensile test was then numerically simulated by finite elements for an

arbitrary prescribed load F0 (note here that special care must be taken given

the lack of symmetry of the specimen) and the GSIF k0 was extracted using

(12.2). A scaling with the critical value kc (12.6) provides the corresponding

force F = F0 × kc/k0 at failure.

A comparison between predicted and measured failure forces is

illustrated in Fig. 12.6 which exhibits a fair agreement.

The above results rely on a symmetric loading. The generalization to

more complex cases is straightforward. The two terms Williams’ expansion

(12.1) can be written as{
U(r, θ) = C + k1r

λ1u1(θ) + k2r
λ2u2(θ) + · · ·

σ(r, θ) = k1 r
λ1−1s1(θ) + k2 r

λ2−1s2(θ) + · · · with 1/2 ≤ λ1 ≤ λ2 ≤ 1.

(12.19)

Fig. 12.5. The PMMA compact tension V-notched specimen (CTS).
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0
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Fig. 12.6. Applied force F at failure of a V-notched specimens of PMMA as a function
of the notch opening ω. Comparison between experiments (diamonds) and prediction
(solid line) using the coupled criterion [39].

The leading term (previously without index and now with the index 1 in

(12.19)) is associated with a symmetric mode whereas the corresponding

mode of the second term is anti-symmetric (thus in the previous case k2 = 0

because of symmetry). Using matched asymptotic expansions and applying

the coupled criterion leads to more intricate relations taking into account

a mode mix parameter [30] (see also Sections 12.7 and 12.8 on that topic).

12.5. Application to the Deflection of Transverse Cracks

We now consider a transverse crack as depicted schematically in Fig. 12.7.

Despite a pre-existing crack, the singular exponent at its tip which impinges

an interface is not 1/2 as usual and the situation differs from that of a

crack (Fig. 12.8). For homogeneous isotropic components, if E2 > E1 (first

case) then λ > 1/2 (weak singularity, it is less harmful than a crack) and

vice versa if E2 < E1 (second case) then λ < 1/2 (strong singularity,

more harmful than a crack) [40]. Here Ei holds for Young’s modulus of

ply number i (it is assumed that the two Poisson’s ratios ν1 and ν2 equal,

otherwise the rule is close to the above one but slightly altered by the

contrast in ν). This obviously leads to substantially different results in

terms of rupture.
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Interaction of Cracks with Interfaces 591

Fig. 12.7. Schematic view of a transverse crack impinging on an interface.

0

0.2

0.4

0.6

0.8

–3 –2 –1 0 1 2 3

λ

Ln(E2/E1)

Fig. 12.8. The singular exponent vs. Young’s modulus ratio of the two adjacent
materials for equal Poisson’s ratio ν1 = ν2 = 0.3 in the two materials.

We immediately notice, according to (12.4), that if a→ 0 thenGinc → 0

in the first case whereas Ginc → ∞ in the second. This property also

affects the (differential) energy release rate G of a crack approaching and

crossing the interface. When the crack approaches, it remains a ligament

with length l between the crack tip and the interface (Fig. 12.13) and

G → 0 (respectively, G → ∞) for a weak singularity (respectively, strong

singularity) as l → 0. Symmetrically, after crossing the interface the crack

tip is at a distance a of it (Fig. 12.7) and G increases from 0 (weak

singularity) or decreases from infinity (strong singularity) as a increases.

This behavior is shown in Fig. 12.9, for different Young’s moduli contrast,

E2/E1 = 0.1, 0.2, 0.5, 1, 2, 5 and 10. Results are obtained using FE
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0

–4 –3 –2 –1 0 1 2 3

G

l a

Fig. 12.9. The behavior of the energy release rate when a crack approaches an interface
(left) and then crosses it (right) for different Young’s moduli contrast, E2/E1 = 0.1
(dashed line and diamonds), 0.2 (dashed line and squares), 0.5 (dashed line and triangles),
1 (solid line and circles), 2 (solid line and triangles), 5 (solid line and squares) and
10 (solid line and diamonds). Units are meaningless, the emphasis is put on the general
trends: increasing or decreasing functions when approaching the interface.

Fig. 12.10. The mechanisms of crack penetration and deflection.

and a variable crack tip location, counted negative if the crack is growing

toward the interface and positive after the crossing (Fig. 12.9). Even if the

energy is globally calculated at the structure level, it requires a strong mesh

refinement in the area of interest to have a good geometrical description.

The question that arises now is the following: does such a transverse

crack stop, penetrate material 2 or deflect along the interface to give a

delamination crack (Fig. 12.10)?

Let us consider again inequality (12.4) in two cases, penetration in

material 2 (index p) and deflection along the interface (index d), G
(1)
c and
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Interaction of Cracks with Interfaces 593

G
(2)
c hold, respectively, for the interface and material 2 toughness

Ginc
d = Adk

2a2λ−1
d + · · · ≥ G(1)

c and Ginc
p = Apk

2a2λ−1
p + · · · ≥ G(2)

c .

(12.20)

Two cases can be considered, a double symmetric deflection (Fig. 12.10)

or a single asymmetric one; the only change occurs in the coefficient Ad but

does not lead to a big difference [41]. The forthcoming analysis will be

carried out in the first case.

Deflection is promoted if the first inequality in (12.20) is fulfilled

whereas the second one is not, then

G
(1)
c

G
(2)
c

= R ≤ Ad
Ap

(
ad
ap

)2λ−1

. (12.21)

The dimensionless ratio Ad/Ap is plotted in Fig. 12.11 for various

material contrasts E2/E1 (Ei is Young’s modulus of material i and ν1 =

ν2 = 0.3).

He and Hutchinson [42] obtained a similar result (although differently)

but simplified thanks to a dubious assumption [43, 44]. They consider the

(differential) energy release rates Gp and Gd, respectively, at the tip of a

0

1

0.5

–3 –2 –1 0 1 2 3
Ln(E2/E1)

Ad/Ap

Fig. 12.11. The dimensionless ratio Ad/Ap vs. Young’s moduli ratio of the two adjacent
materials for a double symmetric deflection.
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594 D. Leguillon & E. Martin

penetrated crack and a deflected one, the two crack extensions being equal,

i.e., ad = ap, and obtain a condition on the toughness ratio of the interface

and material 2 which is clearly equivalent to the ratio Ad/Ap according to

(12.20) if ad = ap

R ≤ Gd
Gp

. (12.22)

A discussion on this specific point can be found in [45, 46].

Clearly, it is possible to determine the two characteristic lengths ad
and ap involved in (12.21) using the stress condition provided λ > 1/2

(otherwise both G and σ are decreasing functions of the distance to the

singular point and the coupled criterion can no longer be used).

Case λ > 1/2. According to (12.5) (σ
(I)
c and σ

(2)
c hold for the tensile

strengths of the interface and material 2 respectively) it

ad =
G

(I)
c

Ad

(
sd

σ
(I)
c

)2

; ap =
G

(2)
c

Ap

(
sp

σ
(2)
c

)2

. (12.23)

Thus, deflection is promoted if

R ≤ Ad
Ap

(
sd
sp

σ
(2)
c

σ
(I)
c

) 2λ−1
1−λ

. (12.24)

The special case λ = 1 cannot be met; it would correspond to an infinitely

compliant material 1 compared to material 2. Knowing that the ratio sd/sp
remains of the same order of magnitude than 1, it is clear in (12.24) that

the tensile strengths ratio plays a crucial role which can significantly alter

the criterion proposed by He and Hutchinson.

As illustrated in Fig. 12.12, the deflection will be even more and more

promoted as material 2 is more and more resistant (i.e., σ
(2)
c > σ

(1)
c ). It is

to be noted that Parmigiani and Thouless [45] derive the same tendency

with the use of cohesive zone models (CZM).

Reference is made in both cases to the tensile stress; it is clear

for penetration but less obvious for deflection. However, considering the

eigenmode governing the stress field before crack propagation, one can check

that the tensile component σ is equal or larger than the shear one τ , the

ratio σ/τ grows from 1 to 2.8 as E2/E1 varies from 1 to 10. Knowing that,

in addition, the shear failure is generally more difficult than in tension, it

seems reasonable to consider only the tensile component.
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0

1

0.5

2

1.5
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1

4

Ln(E2/E1)

R

0.25

Fig. 12.12. Failure map of the criterion (12.24) for different values of the strengths

ratio σ
(2)
c /σ

(1)
c = 0.25, 1, 4 function of the material contrast E2/E1. The dashed line

corresponds to Ad/Ap (Fig. 12.11). Below the continuous line, conditions are favorable
to a deflection along the interface, above to the penetration in material 2.

This analysis can be included in a homogenization process where the

domain shown in Fig. 12.7 would be the representative volume element

(RVE). Playing on the slenderness of this cell allows taking into account

different densities of transverse cracks [5].

Case λ < 1/2. The coupled criterion approach treated above is no longer

valid because the energy release rate is now a decreasing function of the

distance to the singular point (see (12.4)) and the energy condition no

longer gives any lower bound for the crack extension length [42, 47]. Under

a monotonic loading the crack grows continuously, there is no crack jump.

Moreover, according to (12.20), Gd and Gp tend to infinity as ad and ap
decrease to 0 which prevent the direct use of the energy release rate at

the very beginning of the crack growth process. No rigorous conclusion can

be derived in this situation. He and Hutchinson [42] still propose to use

(12.22) or equivalently the ratio Ad/Ap. Another approach based on the

maximum dissipated energy is proposed by Leguillon et al. [41], however

it better corresponds to the geometrical situation analyzed in the following

section (Fig. 12.13).
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596 D. Leguillon & E. Martin

12.6. The Cook and Gordon Mechanism

Due to the decay to 0 or the unbounded growth of the energy release rate

(Fig. 12.9), it should be pointed out that the geometric situation described

in Fig. 12.7 cannot be achieved by a crack growing in material 1 and

approaching the interface. It can only be obtained by a mechanical action

like a saw cut.

Otherwise, we have to consider a crack in material 1 with its tip at small

distance l of the interface as shown in Fig. 12.13 [46, 47] and a possible

debonding of the interface ahead of the crack tip as Cook and Gordon [48]

studied.

Assuming a small increment δl 
 l at the tip of this crack and according

to (12.4), the (differential) energy release rate is

G1 = − lim
δad→0

W (l + δl)−W (l)

δl
= k2A1 lim

δad→0

(l + δl)2λ − l2λ

δl
+ · · ·

= 2λk2A1l
2λ−1 + · · · . (12.25)

A1 is given by (12.18) where the perturbation is the small ligament with

width l instead of a crack extension. Moreover, since the crack is growing

in material 1

G1 = G(1)
c ⇒ k2l2λ−1 =

G
(1)
c

2λA1
. (12.26)

This relation means that, in these conditions, knowing l or the applied load

is somewhat equivalent.

Case 1: If λ > 1/2, G1 decreases to 0 as l → 0 and thus drops below G
(1)
c

(material 1 toughness). An overload must be brought for the situation to

evolve. Then a competition arises: the crack still grows in material 1, the

Fig. 12.13. A crack growing in material 1 and approaching the interface at a distance l.
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(a) (b) (c)

Fig. 12.14. The competition between the crack growth in material 1 (a), the crack jump
in material 2 (b) and the interface debonding (c).

interface debonds ahead of the crack tip or the crack jumps and penetrates

material 2 (Fig. 12.14) [46]. This latter mechanism will not be discussed

here. Another mechanism called step-over, where the crack reinitiates in the

second material, leaving a ligament in its wake, was discussed in [46, 49].

There are now two small parameters l and ad (respectively, ap) in case

of debonding (respectively, penetration), which is an additional difficulty. If

one is very small compared to the other, it can be neglected in a first step. If

they are of the same order of magnitude the expansions can be indifferently

carried out with respect to one or the other small parameter. For technical

reasons it is easier to use l. By analogy with the single parameter case, the

stress and energy conditions now write (we refer to [50] for the details of

the proof) {
σ = klλ−1σ̃(μd) ≥ σ

(I)
c ,

Ginc
d = k2Bd(μd)l

2λ−1 ≥ G
(I)
c ,

(12.27)

where μd = ad/l. The function Bd (Fig. 12.15) is an increasing function

of μd and plays the role of Ad. It is derived from the calculation of A (2)

considering three cases: the “unperturbed” one (Fig. 12.7) and successively

cases illustrated in Figs. 12.13 and 12.14(b) or 12.14(c). Whereas σ̃ is a

decreasing function (Fig. 12.16) and plays the role of s, it is the tensile

stress associated with V 1 along the presupposed crack path prior to any

crack extension (i.e. with the inner term calculated on the geometry of

Fig. 12.13).

The equation providing the dimensionless characteristic length μd
derives from (12.26) and (12.27)2

Bd(μd) = 2λA1
G

(I)
c

G
(1)
c

. (12.28)

The dimensionless debonding length μd is small if the interface toughness

G
(I)
c is small.
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Fig. 12.15. The function Bd(μ) (MPa−1) for a material contrast E2/E1 = 10.

For a material contrast E2/E1 = 10, λ = 0.667 (Fig. 12.8), A1 =

0.479MPa−1, thus ifG
(I)
c = G

(1)
c , then from (12.26)Bd(μd) = 0.639MPa−1,

μd/2 = 1.9 (Fig. 12.15) and σ̃(μd) = 0.345 (Fig. 12.16). Thus, the condition

for an interface debonding ahead of the primary crack is

k ≥ kc =

(
G

(I)
c

Bd(μd)

)1−λ(
σ
(I)
c

σ̃(μd)

)2λ−1

. (12.29)

Note that using (12.26) and (12.27)1 gives l, although it is not useful to

settle the criterion (12.29) which requires only μd

l =
G

(1)
c

2λA1

(
σ̃(μd)

σ
(I)
c

)2

. (12.30)

The ligament width is small if the tensile strength σ
(I)
c is high. Since ad =

μdl and according to (12.28) and (12.30), the debond length is large for a

high toughness and a small tensile strength of the interface which is often

the case for polymer adhesives for instance.

The primary crack may stop or not at the distance l, it depends on

how the energy release rate G1 evolves after the onset of the debonding.

Figure 12.17 shows the ratio γ = G1/G
(1)
c function of the dimensionless

debonding length μd still for E2/E1 = 10 and ν = 0.3 in both materials.
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Fig. 12.16. The function σ̃(μ) for a material contrast E2/E1 = 10.

Obviously, on the one hand, if the characteristic debonding length μd is

smaller than a given value (roughly μd/2 = 4 in the present case, Fig. 12.17)

the energy release rate increases as debond occurs and the primary crack

restarts and breaks definitely the ligament. On the other hand, this ligament

does not disappear and thus can only be observed if the debonding length

is large (μd/2 = 4 in the present case).

Case 2: If λ < 1/2, G1 increases as l → 0. For a given l, if the load (i.e.,

a given GSIF k) is such that (12.26) holds true then the crack accelerates

toward the interface. As it impinges on the interface, there is an excess of

energy in the balance

ΔW1 = kA1l
2λ −G(1)

c l = G(1)
c

(
1

2λ
− 1

)
l. (12.31)

Then the crack deflects and the (differential) energy release rate Gd
decreases as the debond length increases (it is calculated using a small

increment δad 
 ad at the tip of the deflected crack and passing to the

limit δad → 0 like for G1, see (12.25)). Following (12.25) and (12.26), it

drops below the interface toughness at a distance ad such that

Gd = 2λk2Ada
2λ−1
d = G(I)

c ⇒
(ad
l

)2λ−1

=
G

(I)
c

G
(1)
c

A1

Ad
. (12.32)
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Fig. 12.17. The evolution of the energy release rate (normalized by G
(1)
c ) at the tip

of the primary crack after the onset of the interface debonding for a material contrast
E2/E1 = 10.

At this point, the excess of energy is now

ΔW = ΔW1 +ΔWd =
(
G(1)
c l +G(I)

c ad

)( 1

2λ
− 1

)
. (12.33)

Thus, the crack can go on growing on a length δad until it consumes this

excess of energy

δad =
ΔW

G
(I)
c

=

(
G

(1)
c

G
(I)
c

l + ad

)(
1

2λ
− 1

)
. (12.34)

Of course, ad + δad is an upper bound of the delamination lengths, part

of the excess of energy can be dissipated by dynamic effects, elastic waves

providing noise for example.

As already mentioned, the comparison with a crack advancing in

a straight line and penetrating material 2 is not considered here. The

mechanism is more difficult to describe and is the subject of a work in

progress.

The modeling described in Sections 12.5 and 12.6 extends to the

anisotropic case provided the problem still splits into a plane and an

antiplane problems. It is the case for the cross-ply laminates in CFRP,

each layer being orthotropic in the appropriate basis, but not for angle-ply

laminates [1].
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12.7. The Interface Crack Growing Along the

Interface — Delamination

As above, the analysis is restricted to 2D or generalized 2D framework. All

the results described in Sections 12.2 and 12.3 can be extended to the case

of the interface crack (Fig. 12.18) characterized by a complex exponent with

a real part 0.5 describing the singularity at its tip. Williams’ expansion in

the vicinity of O (the upper bar denotes the complex conjugate) can be

written as a particular case of expansion (12.19)⎧⎨
⎩
U(r, θ) = C +K r1/2+iεu ¯(θ) + K̄ r1/2−iεu(θ) + · · · ,
σ(r, θ) = K r−1/2+iεs(θ) + K̄ r−1/2−iεs̄(θ) + · · · .

(12.35)

Notations are similar to that of Section 12.2, K is the complex

stress intensity factor and ε is a real number function of the contrast

between the adjacent materials [51, 52]. Note that, in this so-called open

model, complex exponents involve oscillations and lead to some intricate

formulas and even to overlapping of the two crack faces. However, in most

cases of bi-materials, this overlapping zone is extremely small making

the approximation admissible [52] and avoiding a much more complex

formulation involving a contact problem [53].

It is convenient to use a dimensionless mode mix parameter m [52],

a kind of generalization of the usual parameter m = KII/KI , the main

difference being that now it depends on r

m(r) =
K̄

K
r−2iε. (12.36)

Thus (12.35) can be rewritten to highlight the role of K⎧⎨
⎩
U(r, θ) = C +Kr1/2+iε (u(θ) +m(r)ū(θ) + · · · ),
σ(r, θ) = Kr−1/2+iε(s(θ) +m(r) s̄(θ) + · · · ).

(12.37)

Fig. 12.18. Growth of the interface crack — Delamination.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



602 D. Leguillon & E. Martin

Despite the oscillations of the displacement and stress fields, fortunately,

the energy release rate does not involve oscillations

G = −∂W
P

∂l
= 2KK̄χ+ · · · , (12.38)

where χ is a known real constant parameter [52], then Griffith’s criterion

can still be written in its usual form

G ≥ Gc, (12.39)

where Gc is the interface toughness, a “material” parameter that is difficult

to determine because it may depend on the mode mix [54–56].

12.8. The Crack Kinking out of the Interface

A new difficulty arises in this case, unlike the delamination crack, the energy

release rate G, i.e., the limit

lim
δl→0

W (0)−W (δl)

δl

does not exist due to oscillating terms like sin(ε ln δl)). To overcome this

difficulty, various solutions are suggested in the literature: (i) to take into

account a contact zone at the crack tip [53]; to neglect ε that is often

small (≤0.1 for isotropic bimaterials) [18]; (iii) to measure the quantities of

interest at a given fixed distance of O [52].

We propose an alternative approach: to use the T-stress (that plays a

role only in the case of crack kinking) and the coupled criterion. We will

develop this less traditional approach in this section.

The T-stress occurs as an additional term in the Williams expansion

(12.35)⎧⎨
⎩
U(r, θ) = C +K r1/2+iεu ¯(θ) + K̄ r1/2−iεu(θ) + T rt(θ) + · · · ,
σ(r, θ) = K r−1/2+iεs(θ) + K̄ r−1/2−iεs̄(θ) + T τ(θ) + · · · ,

(12.40)

where the real function rt(θ) is such that the associated stress field τ

is constant and fulfills τ11 = 1, τ12 = τ22 = 0, and where T is the

corresponding real generalized stress intensity factor.

There are now two mode mix parameters, both depending on r

m(r) =
K̄

K
r−2iε; M(r) =

T

K
r1/2−iε (12.41)
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Fig. 12.19. The crack kinking out of the interface.

allowing to rewrite (12.40) as⎧⎨
⎩
U(r, θ) = C +Kr1/2+iε (u(θ) +m(r)ū(θ) +M(r) t(θ) + · · · ),
σ(r, θ) = Kr−1/2+iε(s(θ) +m(r) s̄(θ) +M(r) τ (θ) + · · · )

(12.42)

as well as the incremental energy release rate and energy condition (α is

the kink angle (Fig. 12.19))

Ginc = −δW/δl = KK̄X(α,m(δl), M(δl)) + · · · ≥ Gc, (12.43)

where X is a coefficient depending on α that can be computed from a

matched asymptotic expansions procedure [17].

The stress condition takes the following form:

KK̄Y (α,m(δl),M(δl)) ≥ δl σ2
c with

Y (α,m(δl),M(δl)) = |sθθ(α) +m(δl) s̄θθ(α) +M(δl) τθθ(α) + · · · |2
(12.44)

leading to a complex version of the coupled criterion [57]. The compatibility

between the two conditions gives an equation for the crack initiation length

δlc function of α

δlc
X(α,m(δlc),M(δlc))

Y (α,m(δlc),M(δlc))
=
Gc

σ2
c

. (12.45)

The indisputable advantage of the approach is that δlc is not arbitrarily

chosen. Once (12.45) is solved, a condition on |K| comes out for the crack

initiation in the direction α

|K| ≥ Kα =

√
Gc

X(α,m(δlc),M(δlc))
, Kf = Min

α
Kα. (12.46)

The actual kink angle αc maximizes the denominator, i.e., minimizes Kα

giving Kf (i.e., |K| at failure) (generalization of the G-max criterion).
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604 D. Leguillon & E. Martin

Fig. 12.20. 3-point bending test on a notched bi-layer and crack kinking out of the
interface.

It must be pointed out that the T-stress together with the coupled

criterion defines an initiation length that allows getting rid of the oscillation

terms in the prediction of the critical load and the deflection angle of a crack

kinking out of an interface.

As an application of the complex coupled criterion, the following

simulation of the 3-point bending test on a bi-material (Fig. 12.20) is

proposed with F/L = 0.25, H/L = 0.2.

The parameterM is Young’s modulus ratio. IfM > 1 (M = 2, 10, 50),

the stiffer material (E1 = 300GPa, σ1c = 400MPa, GIc = 0.05MPa mm,

KIc = 4.06MPa m1/2) is in the upper position and the stiffness of the

compliant material varies. Otherwise, M < 1 (R = 0.5, 0.1, 0.02), the

compliant material (E1 = 3GPa, σ1c =75 MPa, GIc = 0.35MPa mm,KIc =

1.07MPa m1/2) is in the upper position and the stiffness of the bottom

material varies. In all cases ν = 0.3.

The particular case M = 1 is given for comparison with

K =
1

2
(KI + iKII) and u(θ) = uI(θ)− iuII(θ). (12.47)

A constant force is applied in all cases, here we are only interested in the

kink angle not the load at failure. Results are presented in Table 12.1. It

is worth noting that the sign of ε is a convention since both + and −
occur in the expansion. In the two last rows of Table 12.1, numbers in

italic correspond to the same analysis but neglecting T , i.e., with T = 0 in

the equations. Obviously, neglecting the T-stress leads in some cases to a

significant discrepancy in terms of critical load and kink angle.

The influence of the T-stress on the kink angle is stronger in the stiffest

material leading to a larger kink angle. Such a feature can be observed

in layered ceramics [58, 59], although the schematic situation illustrated

in Fig. 12.21 is slightly different from the present one (there is no long
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Table 12.1. Parameters resulting of the simulation of the 3-point bending test.
Numbers in italic correspond to neglecting T .

M ε Im(K)/Re(K) T/Re(K) (m−1/2) αc (deg.) Kf/KIc

100 0.091 0.41 37.4 90 30 0.07 0.17
75 0.090 0.38 31.6 90 30 0.09 0.21
50 0.089 0.41 37.8 90 40 0.12 0.22
10 0.075 0.49 62.8 70 40 0.23 0.28
2 0.030 0.75 65.2 60 50 0.33 0.35
1 0.000 0.93 81.8 60 50 0.38 0.39
0.5 −0.030 −1.14 47.7 50 50 0.47 048

0.1 −0.075 −1.49 15.8 40 40 0.63 0.63
0.02 −0.089 −1.58 11.9 30 30 0.73 0.73
0.013 −0.090 −1.59 −35.4 30 30 0.75 0.75
0.01 −0.091 −1.59 −38.1 30 30 0.76 0.75

Fig. 12.21. Schematic fracture pattern in bending of a laminated ceramic made of
compliant (light grey) and stiff (dark grey) layers.

interface debonding) and cannot be directly compared. The above result is

still waiting for an experimental evidence.

For a complete analysis the competition between the deflection

mechanism and the delamination growth should be analyzed.

12.9. The Interface Corner

This case of non-smooth interface occurs in many structures and in

particular in electronic devices [60, 61]. In this latter case material 1

is for instance copper and material 2 a dielectric (a porous ceramic)

(Fig. 12.22). There is a stress concentration (a singularity) at the corner

whose intensity depends on the contrast between the materials [62]. The

singularity exponents are real and the associated angular modes are solution

to an eigenvalue problem where the usual boundary conditions in θ are
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606 D. Leguillon & E. Martin

Fig. 12.22. A non-smooth interface between two materials.

0
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0.5
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–7.5 –2.5 2.5

Sliding

Sliding not allowed

12

λ

Ln(E /E )

Fig. 12.23. The singularity exponents at a right-angle corner of an interface, function
of the Young’s modulus contrast between the materials, for a perfect bonding (in gray)
and when sliding is allowed (in black). The solid line is associated with the symmetric
mode and the dashed one with the antisymmetric mode.

replaced with a periodicity condition. With a perfect bonding there are two

weak singularities, i.e., 0.5 ≤ λ1 ≤ λ2 ≤ 1 (Fig. 12.23).

In case of damage and debonding, depending on the applied load, either

the interface opens or slides. In the first case, i.e., in case of opening, the

singularity is the usual 90◦. notch singularity in the matrix with λ1 = 0.545

and λ2 = 0.906 (independent of the matrix stiffness [24]) since there is

no longer any contact between the matrix and the inclusion. When sliding

is allowed along the interfaces (without friction) the singularities become

strong (Fig. 12.23) if the inclusion is stiffer than the matrix. Such a property

has a significant influence on the fracture mechanisms resulting of the stress

concentration and the competition between different fracture mechanisms

depicted in Fig. 12.24 can be studied.
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Fig. 12.24. Various scenarios of damage at the corner of an interface [63, 64].

Fig. 12.25. A schematic view of a cutting tool and the formation of a crack ahead of
the tool.

Among others, a possible scenario is that interface debonding occurs

first (Fig. 12.24 left), then there is no longer perfect bonding and the

generally strong singularities due to sliding lead to a matrix crack nucleation

(Fig. 12.24 middle and right).

Another interesting example is given by a cutting tool (Fig. 12.25)

where a stiff wedge is inserted into a more compliant material, with

sliding along the two faces of the wedge giving rise to a strong singularity

facilitating the growth of a crack.

12.10. Conclusion

Plane strain elasticity is the main assumption of this chapter but the

coupled criterion can be extended without major difficulties to a generalized

plane strain framework allowing in particular to analyze the initiation

of delamination of angle-ply laminates [1, 12]. The analysis of the crack

deflection by an interface together with the mechanism of crack kinking out

of an interface developed herein, cover a wide range of problems of failure

in composite laminates; especially since the anisotropy, which has not been
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608 D. Leguillon & E. Martin

mentioned in this chapter, do not complicate things too much as long as

the assumption of plane or generalized plane elasticity still holds true.

It is obviously an extension to 3D that raises the most difficulties. There

are no major conceptual changes, but everything becomes technically much

more complicated. The crack extension is no longer simply described by two

parameters, e.g., direction and length; the complete geometry must be taken

into account. Attempts were made to predict the nucleation of small lens-

shaped cracks along a straight crack front subjected to a mode III remote

loading [22], and to predict delamination of an interface starting from a

wedge [23]. It is worth noting also the experiments and the simulations

of mode I+III crack nucleation in slanted V-notched specimens under a

4-point bending loading [65, 66]. Nevertheless, it is clear that much remains

to be done in this domain.
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Abstract

An approach to the evaluation of linear elastic solutions in anisotropic
multimaterial corners under generalized plane-strain or plane-stress conditions
is developed. This approach works for quite general configurations of piecewise
homogeneous multimaterial corners covering discontinuities in geometry,
materials and boundary conditions. Open and closed (periodic) corners
including any finite number of single-material wedges converging at the corner

tip are considered. General homogeneous boundary conditions and sliding
friction contact can be imposed at corner boundaries and perfect adhesion or
sliding friction contact can be imposed at corner interfaces. An anisotropic dry
friction model is generally assumed, representing contact between surfaces with
a strongly oriented surface topography or texture. A semi-analytic approach
to the corner singularity analysis based on the Lekhnitskii–Stroh formalism
of anisotropic elasticity, a transfer matrix concept for single-material wedges
and a matrix formalism for boundary and interface conditions, is developed
and implemented in a symbolic computation tool. A least-squares fitting
technique for extracting generalized stress intensity factors (GSIFs) from
finite element and boundary element results is proposed and implemented.
Singularity analysis of a crack terminating at a ply interface in a laminate
and of a bimaterial corner in a double-lap joint between a composite laminate
and a metal layer is carried out as an application of the developed theory.
A criterion for failure initiation at a closed corner tip based on GSIFs and
the associated generalized fracture toughnesses is proposed, and a novel
experimental procedure for the determination of the corresponding failure
envelope is introduced and accomplished. Finally, the procedure developed is
applied to removing or reducing stress singularities in some bimaterial joints.
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13.1. Introduction

Composites are heterogeneous materials, which on microscales and

mesoscales are usually considered as piecewise homogeneous materials.

Therefore, models of composites and their adhesive joints with other

composites or metals on micro-, meso- or macroscale often include interfaces

between dissimilar materials, sometimes with potential cracks either along

interfaces or terminating at interfaces [1]. Singular points, where there are

discontinuities in the idealized geometry, material, interface or boundary

conditions, can easily be identified in these models. We refer to a

neighborhood of a singular point as a corner, and to the singular point

itself as the corner tip (having in mind a 2D model). In particular, we refer

to a neighborhood of a singular point where several materials meet as a

multimaterial corner, see Figs. 13.1 and 13.2, and definitions in Section 13.3.

Linear elastic solutions for models of composites and their adhesive

joints under mechanical and thermal loads may involve unbounded stresses

at a corner tip, called singular stresses [2–8]. After the first fundamental
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Fig. 13.1. A multimaterial corner (2D view).
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Fig. 13.2. Local Cartesian coordinate systems at a multimaterial corner (3D view).
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contributions analysing singular stresses at homogeneous isotropic elastic

corners in [9, 10], see also [11], considerable effort has been made by

many authors to analyze singular stresses at multimaterial isotropic and

anisotropic elastic corners [12–25]. A rigorous mathematical analysis of

these solutions can be found in [26, 27].

The present work is focused on linear elastic anisotropic materials sub-

jected to a generalized plane-strain state [28, 29] where three-dimensional

(3D) displacements depend on only two Cartesian coordinates (or on the

corresponding polar coordinates), namely ui = ui(x1, x2) = ui(r, θ) with

i = 1, 2, 3 or i = r, θ, 3. The results obtained can easily be adapted to

generalized plane-stress states [29] if required. The majority of practical

problems found in composites can be studied under these hypotheses.

In general, a singular elastic solution in a neighborhood of the corner tip

can be represented by the following asymptotic series expansion (a rigorous

mathematical justification can be found in the fundamental works [30, 31],

see also [2–5, 26, 27]), given by products of power-logarithmic terms in

radial coordinate and angular functions:

ui(r, θ) ∼=
N∑
n=1

Q∑
q=0

L∑
l=0

Knqlr
λn+q logl rg

(nql)
i (θ) + · · · , (13.1)

where Knql are generalized stress intensity factors (GSIFs), λn are

characteristic or singular exponents (eigenvalues), and g
(nql)
i (θ) are

characteristic or singular angular shape functions (eigenfunctions), N ≥ 1

and Q ≥ 0 can be finite or infinite numbers whereas L ≥ 0 is a finite

number.

The terms with the exponent q=0 are referred to as principal terms,

because the terms with q≥ 1 are due to the curvature of the corner

boundaries and interfaces, the material non-homogeneity in the radial

direction, non-homogeneous boundary or interface conditions or body

forces in the neighborhood of the corner tip. In the present work, for

the sake of simplicity, only straight boundaries and interfaces, piecewise

homogeneous materials (in particular, those which are homogeneous in

the radial direction), homogeneous boundary and interface conditions and

vanishing body forces are considered in the neighborhood of the corner

tip. Thus, Q = 0, the index q being omitted hereinafter. The so-called

characteristic exponents λn are defined by the roots of a complex analytic

(holomorphic) function given as the determinant of a matrix, referred to as

a characteristic matrix, whose elements are also complex analytic functions.
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618 V. Mantič, A. Barroso & F. Paŕıs

The null space of this characteristic matrix determines the characteristic

angular shape functions g
(nql)
i (θ). The vanishing determinant condition

defines a transcendental equation referred to as a characteristic equation

(eigenequation) of the corner, which depends on the problem configuration

in the neighborhood of the corner tip: geometry, material properties,

and boundary and interface conditions. Under the above assumptions,

L ≥ 1 is associated only with special cases with repeated roots of the

characteristic equation of the corner, whose algebraic multiplicity is larger

than the geometric multiplicity [7, 28, 32, 33]. For the sake of simplicity,

L = 0 is assumed, and the index l is omitted as well. In view of the

above assumptions, the displacements and stresses in the neighborhood

of the corner tip can be represented by the following asymptotic series

expansions:

ui(r, θ) ∼=
N∑
n=1

Knr
λng

(n)
i (θ) + · · · , (13.2)

σij(r, θ) ∼=
N∑
n=1

Knr
λn−1f

(n)
ij (θ) + · · · . (13.3)

If the number of terms in the series N is finite, a regular remainder

term vanishing at the corner tip should be added to these series to obtain

the complete solution in the corner. The terms in these series, referred

to as power-type singularities, solve the elliptic system of three partial

differential equations of generalized plane strain and satisfy the boundary

and interface conditions in the neighborhood of the corner tip. All power

type singularities are defined by three elements: the characteristic exponent

λn, the characteristic angular shape functions g
(n)
i (θ) for displacements

and f
(n)
ij (θ) for stresses, and the generalized stress intensity factor (GSIF)

Kn. The characteristic angular functions are smooth functions inside each

homogeneous material in the corner tip neighborhood, but may be non-

smooth or even discontinuous at material interfaces. In an elastic boundary-

value problem with a domain including one or more corners, the associated

characteristic exponents and functions depend only on the local problem

configuration (geometry, material properties, and boundary and interface

conditions) in a neighborhood of the corner tip, whereas the GSIFs depend

on the global problem configuration. If the boundary-value problem with

vanishing body forces is linear, the GSIFs are linear functionals of the

boundary conditions.
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The rigid body motions are included in (13.2) and (13.3) for λn = 0

(translations) and λn = 1 (small rotations) with appropriate definitions of

g
(n)
i (θ) and the corresponding f

(n)
ij (θ) = 0. The terms with 0 < λn < 1

give rise to unbounded (singular) stresses with a finite elastic strain energy.

It is assumed that λn are naturally ordered satisfying Reλn ≤ Reλn+1 (Re

denotes the real part of a complex number).

Many different approaches to the corner singularity analysis, the

evaluation of the characteristic exponents and functions, have been

proposed in the past. In particular, with reference to the singularity analysis

of a linear elastic anisotropic multimaterial corner in a generalized plane-

strain state, several analytical, semi-analytical and numerical approaches

are available at present. A numerical approach [2, 13–15] is expected to

be more general and capable of analyzing corner singularity problems

not tractable by analytical or semi-analytical approaches. The advantages

of an analytical or semi-analytical approach, which provides an explicit

closed-form expression of the characteristic equation of the corner, are

its essentially arbitrarily high precision, fast computation and excellent

possibilities for parametric studies and for understanding the influence of

different parameters of the local corner configuration on the values and

nature of the characteristic exponents and the behavior of characteristic

functions.

Following the original proposal by Ting [16], several authors [18–21]

have shown that for the development of a general semi-analytical approach

to the singularity analysis of linear elastic anisotropic multimaterial corners

in a generalized plane-strain state (assuming perfect adhesion between

materials) it is very advantageous to employ the powerful Lekhnitskii–

Stroh formalism of anisotropic elasticity [34–36], see also [28, 29, 37],

together with a transfer matrix for a single-material angular sector (single-

material wedge) in the corner. In fact, this methodology is essentially

fully analytical except for the numerical evaluation of the complex roots

of the Lekhnitskii–Stroh sextic polynomial for each anisotropic material

in the corner. In the case of homogenized unidirectional fiber-reinforced

composite laminas, represented by transversely isotropic materials, the

roots of this sextic polynomial can be evaluated analytically leading to

a fully analytical approach for corner singularity analysis [25]. It is worth

pointing out that the application of the transfer matrix concept for all

the single-material wedges in the corner allows the size of the matrix in

the vanishing determinant condition to be made as small as possible. It

should also be mentioned that the expressions introduced in [19, 21] can be
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620 V. Mantič, A. Barroso & F. Paŕıs

applied directly to the corner singularity analysis for any kind of anisotropic

material, namely non-degenerate, degenerate or extraordinary degenerate

with a lower geometric than algebraic multiplicity of the repeated roots of

the sextic polynomial, according to the classification in [38].

The above-described methodology was suitably adapted by Mantič

et al. [22] to the simpler case of the singularity analysis of linear elastic

anisotropic multimaterial corners in antiplane strain, governed by a scalar

linear second-order elliptic equation (a generalization of the Laplace

equation).

A general semi-analytical approach to the corner singularity analysis

for linear elliptic systems of second-order partial differential equations in

the plane was developed by Costabel and Dauge [17, 39], employing their

previous fundamental mathematical results [31]. This general mathematical

framework covers, as a particular case, linear elastic anisotropic materials

under generalized plane-strain conditions. Their approach was implemented

in a computational tool capable of carrying out the singularity analysis of

multimaterial corners including anisotropic non-degenerate materials [17].

It is interesting to observe that, although not apparent at first sight,

the approach due to Costabel and Dauge is in essence closely related to

the above-described approaches based on the Lekhnitskii–Stroh formalism.

In their approach, first, the complex roots of the symbol determinant of the

partial differential system of linear elasticity in the plane are found, and

then, the solution basis in the form of terms in the series expansion (13.2)

is constructed analytically. This symbol determinant is, in fact, given by

the Lekhnitskii–Stroh sextic polynomial.

Whereas, as discussed above, an arbitrarily high accuracy can

be achieved in the evaluation of characteristic exponents and functions,

the accuracy in the evaluation of GSIFs is, in general, substantially

worse because a numerical solution of the global elastic problem (typically

by means of finite or boundary element methods, FEM or BEM), or

experimental tests (e.g., using photoelasticity), and usually also some

post-processing of the results are needed [6, 8, 40, 41], see Section 13.6 for

other references. Nevertheless, a few fast and highly accurate methods for

the evaluation of stresses in the presence of crack and corner singularities

in isotropic elastic materials are already available [41, 42].

In real composite structures, only high values of stresses (high stress

concentrations), instead of singular stresses, are expected at these corners;

first because strict discontinuities are hardly present in a real structure (e.g.,

a sharp corner tip in the model is usually rounded in a real structure),
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Computational Procedure for Singularity Analysis in Multimaterial Corners 621

and second because a zone of nonlinear behavior (due to large strains,

plasticity, damage, etc.) usually appears in the neighborhood of the

corner tip.

The failure of a composite specimen, structure or joint may be initiated

at a corner due to these high stress concentration there. Nevertheless,

if the size of the nonlinear zone is sufficiently small with respect to a

geometrical characteristic length (adjacent layer thickness, crack length,

corner side length, etc.) the linear elastic solution for the idealized model

may satisfactorily represent the solution in almost the whole volume of

the structure and it will essentially determine the solution behavior in

the nonlinear zone. In this case, failure initiation at a corner is governed

by the linear elastic solution, and in particular by its asymptotic series

expansion in the neighborhood of the corner tip, given by GSIFs, which

could then be used in predictions of strength. A typical form of failure

initiation at a corner tip, also considered in the present study, is the onset

of a crack [9, 43–54]. In fact, the ultimate aim of the present study is

to contribute to improving the accuracy and reliability of the strength

predictions of composites in cases where a failure initiates at a multimaterial

corner in the form of a crack.

The overall objective of the present work is the development of:

(i) a general semi-analytical procedure for the singularity analysis of linear

elastic anisotropic multimaterial corners in generalized plane strain (i.e.,

the evaluation of characteristic exponents and functions) with frictionless

or friction contact surfaces in the corner, (ii) a general and sufficiently

accurate and reliable numerical procedure for the extraction of GSIFs in

these corners from FEM or BEM results and (iii) a procedure for failure

assessment of corners in composites and their joints.

For the first objective, the methodology developed in [19] is generalized

to include boundary surfaces and interfaces with frictionless or friction

contact in the neighborhood of the corner tip. Although several relevant

studies of singular elastic solutions at interface cracks and corners with

frictionless contact or sliding friction contact have been published for

isotropic [55–61] and also for anisotropic materials [62–75], it seems that

a fully general approach to the singularity analysis of elastic anisotropic

multimaterial corners in generalized plane strain including sliding frictional

surfaces has not been developed yet. One of the open issues is related

to the angle between the friction shear stress vector and the relative

tangential displacement vector in the case where the in-plane and antiplane

displacements are coupled. This fact is the reason for including in the
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622 V. Mantič, A. Barroso & F. Paŕıs

present work a general and powerful matrix formalism for imposing rather

general boundary and interface conditions, in particular frictionless and

frictional sliding contact, by generalizing the methodology introduced

in [19, 71]. This matrix formalism, which is especially suitable for a

straightforward computational implementation, allows the characteristic

corner matrix to be assembled in a fully automatic way for any finite number

of materials and contact surfaces in the corner.

With reference to the second objective, a least-squares procedure for

the extraction of multiple GSIFs at this kind of corner is developed and

implemented [40] as a computational tool for post-processing results of

a BEM code [75–79] solving boundary-value problems with linear elastic

anisotropic materials in generalized plane strain.

The above-described computation tools are used to study a crack

terminating at the interface between two plies in a [0/90]S laminate

subjected to longitudinal tension and a critical bimaterial corner in an

adhesively bonded double-lap joint. An altered configuration of the corner

in this double-lap joint including an interface crack with sliding friction

contact is also studied.

With reference to the third objective, the results of the singularity

analysis for the critical corner in the double-lap joint are further used

when analysing experimental results obtained by testing a novel modified

configuration of the Brazilian disc specimen including the same bimaterial

corner [80, 81] with two stress singularities. These tests provide a rough

approximation of the failure envelope in the plane of GSIFs normalized

by the pertinent values of the generalized fracture toughnesses. A corner

failure criterion based on this failure envelope is proposed. The results for

real adhesively bonded double-lap joints show a satisfactory agreement with

the proposed failure criterion. The procedure developed can be applied

as a general methodology for the failure assessment of these kind of

multimaterial corners.

13.2. Lekhnitskii–Stroh Formalism for Linear Elastic

Anisotropic Materials

The Lekhnitskii–Stroh complex-variable formalism [34–36, 82], or simply

Stroh formalism, is a powerful and efficient theoretical tool for the analysis

of anisotropic elastic problems. This section summarizes the fundamentals

of this formalism employed in the analysis of singular stresses at multilateral

corners in generalized plane strain. A comprehensive explanation of the
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Computational Procedure for Singularity Analysis in Multimaterial Corners 623

Lekhnitskii–Stroh formalism and of its numerous applications can be found

in [28, 29, 37]. The application of the theoretical framework presented here

to generalized plane-stress problems is straightforward; see [29] for the

pertinent conversions of material constants.

13.2.1. Basic equations

Let xi (i = 1, 2, 3) be a Cartesian coordinate system. The constitutive law

of a linear elastic anisotropic material relating the Cartesian components

of stresses σij and displacements ui has the following form, at small strains

εij =
1
2 (ui,j + uj,i):

σij = Cijklεkl = Cijkluk,l, (13.4)

where Cijkl is the positive definite and symmetric fourth-order tensor of

elastic stiffnesses, satisfying the symmetry relations Cijkl = Cjikl = Cklij

and the positivity condition for the strain energy density 1
2Cijklεijεkl =

1
2σijεij > 0 for any non-zero εij . Then, the equilibrium equations (in the

absence of body forces) can be written in terms of displacements as

Cijkluk,lj = 0. (13.5)

Under generalized plane-strain conditions the displacement field

depends only on the plane coordinates x1 and x2, i.e., ui = ui(x1, x2)

(i = 1, 2, 3). Hence, ε33 = 0. In this case (13.5) represents a linear elliptic

system of three second-order partial differential equations in two dimensions

for the 3D displacement vector field ui. Let a solution of (13.5) be written

as a function of a variable z defined by a linear combination of x1 and x2,

ui = aif(z), with z = x1 + px2, (13.6)

where f(z) is an arbitrary analytic function of z, while p and ai are

constants to be determined.

By differentiating the displacements in (13.6) twice with respect to xl
and xj and substituting in (13.5), the following condition for the number

p and vector a is obtained, taking into account that f(z) is an arbitrary

function:

[Ci1k1 + p(Ci1k2 + Ci2k1) + p2Ci2k2]ak = 0. (13.7)

Let the 3× 3 matrices Q, R and T be defined as

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2, (13.8)
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624 V. Mantič, A. Barroso & F. Paŕıs

then, (13.7) can be written in the matrix form:

[Q+ p(R+RT ) + p2T]a = 0. (13.9)

It can be shown that Q and T are symmetric and positive definite [28, 29].

The components of the stress tensor σi1 and σi2 can be obtained by

substituting the derivatives of the displacements uk,l = akf
′(z)(δ1l + pδ2l)

and the definitions in (13.8) into (13.4),

σi1 = (Qik + pRik)akf
′(z), σi2 = (Rki + pTik)akf

′(z). (13.10)

σ33 is determined using the constitutive law and the condition ε33 = 0. The

relations (13.10) can be rewritten as

σi1 = −pbif ′(z), σi2 = bif
′(z), (13.11)

by defining

b = (RT + pT)a = −1

p
(Q+ pR)a. (13.12)

By introducing the stress function vector ϕ as

ϕi = bif(z), (13.13)

the stress tensor components in (13.10) can be expressed as

σi1 = −ϕi,2, σi2 = ϕi,1. (13.14)

The homogeneous linear system in (13.9) has a non-trivial solution if

and only if its determinant is zero,

|Q+ p(R+RT ) + p2T| = 0. (13.15)

The determinant in (13.15) is a polynomial of six degrees with real

coefficients in a single variable p. The condition for a vanishing determinant

in (13.15) is referred to as the Lekhnitskii–Stroh sextic equation of the

anisotropic material in generalized plane strain. This polynomial has six

complex roots (three pairs of complex conjugate values), called eigenvalues,

pα (α = 1, . . . , 6). These eigenvalues are usually sorted by the sign of the
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Computational Procedure for Singularity Analysis in Multimaterial Corners 625

imaginary part of pα as follows (Im denotes the imaginary part and the

overbar the complex conjugate value):

Im pα > 0, pα+3 = p̄α (α = 1, 2, 3). (13.16)

Let aα denote the eigenvector associated with pα (α = 1, 2, 3) in (13.9).

bα is obtained from (13.12). Then,

aα+3 = āα and bα+3 = b̄α (α = 1, 2, 3). (13.17)

13.2.2. Sextic eigen-relation: Stroh orthogonality and

closure relations

The two equalities in (13.12) can be rewritten in the form:

[ −Q 03×3

−RT I3×3

] [
aα

bα

]
= pα

[
R I3×3

T 03×3

][
aα

bα

]
, (13.18)

where I3×3 and 03×3 are the 3× 3 identity and zero matrices, respectively.

Multiplying (13.18) by the inverse of the 6× 6 matrix on the right-hand

side of (13.18) leads to the sextic eigen-relation:[
−T−1RT T−1

RT−1RT −Q −RT−1

][
aα
bα

]
= pα

[
aα
bα

]
⇒ Nξα = pαξα, (13.19)

where N is the 6 × 6 fundamental elasticity matrix [83], ξTα = (aTα ,bTα ) is

the right eigenvector of N (N is non-symmetric) and pα is the associated

eigenvalue.

Equation (13.19) is valid for all α when N has three linearly

independent eigenvectors ξα (α = 1, 2, 3). Then, N is called simple if all

the pα are different and semisimple if there are repeated pα but with three

independent eigenvectors ξα (α = 1, 2, 3). The associated materials are

referred to as non-degenerate materials.

If N has less than three linearly independent eigenvectors ξα associated

with pα (α = 1, 2, 3), i.e., the algebraic multiplicity of a repeated eigenvalue

is larger than its geometric multiplicity, some expressions of the Stroh

formalism have to be modified [28, 84–86].

When there are two linearly independent eigenvectors ξα associated

with pα (α=1, 2, 3), N is called non-semisimple and the associated
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626 V. Mantič, A. Barroso & F. Paŕıs

materials are known as degenerate materials. Then, for p1 = p2,

Nξ1 = p1ξ1, Nξ2 = p1ξ2 + ξ1, Nξ3 = p3ξ3, (13.20)

where ξ2 is a generalized eigenvector.

When there is only one linearly independent eigenvector ξα associated

with pα (α=1, 2, 3), N is called extraordinary non-semisimple, and the

associated materials are known as extraordinary degenerate materials.

Then, for p1 = p2 = p3 = p,

Nξ1 = pξ1, Nξ2 = pξ2 + ξ1, Nξ3 = pξ3 + ξ2, (13.21)

where ξ2 and ξ3 are generalized eigenvectors.

For each case, the relations satisfied by the eigenvalues pα and the

associated eigenvectors ξTα = (aTα ,bTα ) can be presented in the following

explicit form:

• Non-degenerate case (three linearly independent eigenvectors). For

α = 1, 2, 3,

[Q+ (R+RT )pα +Tp2α]aα = 0, (13.22)

bα = (RT + pαT)aα = − 1

pα
(Q+ pαR)aα. (13.23)

• Degenerate case (two linearly independent eigenvectors). For α = 1,3

Eq. (13.22) holds, and for the generalized eigenvector ξT2 = (aT2 ,b
T
2 )

with p2 = p1 = p.

−{Q+ (R+RT )p+Tp2}a2 = −[2pT+R+RT ]a1,

b2 = Ta1 + [RT + pT]a2.
(13.24)

• Extraordinary degenerate case (one linearly independent eigenvector).

Denoting p1 = p2 = p3 = p, for (p1, ξ1) Eq. (13.22) holds with α = 1,

for (p2, ξ2) Eq. (13.24) holds, and for the generalized eigenvector ξT3 =

(aT3 ,b
T
3 ):

−[Q+ (R+RT )p+Tp2]a3 = −[2pT+R+RT ]a2 −Ta1,

b3 = Ta2 + [RT + pT]a3.
(13.25)

See [19, 38], for further details of the classification of N.
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Computational Procedure for Singularity Analysis in Multimaterial Corners 627

The eigenvectors or generalized eigenvectors ξTα = (aTα ,b
T
α ) define the

(3 × 3) complex matrices, A = [a1, a2, a3] and B = [b1,b2,b3], which

are employed in representations of the displacement and stress function

vectors.

Inasmuch as N is non-symmetric, the left eigenvector fulfills the

relation:

NTη = pη, (13.26)

where η = (bT , aT ). It is easy to show that the right and left eigenvectors

for the different eigenvalues are orthogonal:

ηα · ξβ = 0, for pα �= pβ. (13.27)

In general the following Stroh orthogonality and closure relations

(written in a compact form) can be deduced, after a suitable normalization

of the eigenvectors (in particular, the eigenvectors are normalized according

to ηα · ξβ = δαβ):

XX−1 = X−1X = I6×6, (13.28)

where

X =

[
A Ā

B B̄

]
, X−1 =

[
ΓBT ΓAT

ΓB̄T ¯ΓAT

]
, (13.29)

I6×6 is the 6× 6 identity matrix and Γ is expressed as

ΓND =

⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦, ΓD =

⎡
⎢⎣
0 1 0

1 0 0

0 0 1

⎤
⎥⎦, ΓED =

⎡
⎢⎣
0 0 1

0 1 0

1 0 0

⎤
⎥⎦,

(13.30)

with superscripts ND, D and ED referring to the non-degenerate,

degenerate and extraordinary degenerate cases, respectively.

Degenerate cases appear, strictly speaking, when a particular com-

bination of the elastic stiffnesses of the material leads to the Lekhnitskii–

Stroh sextic equation (13.15) with repeated roots (eigenvalues) whose

algebraic multiplicity is larger than its geometric multiplicity, see (13.9).

Thus, from an engineering point of view, the degenerate cases might be

considered as very particular cases, and any degenerate case can be obtained

as a limit of non-degenerate cases with respect to a continuous variation of
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628 V. Mantič, A. Barroso & F. Paŕıs

the elastic stiffnesses. However, it should be stressed that in such a limit

procedure the behavior of the eigenvectors ξα, and correspondingly of the

matrices A and B, can be discontinuous, in particular their magnitudes

can become infinite.

For composite materials reinforced with long fibers, which typically

behave as transversely isotropic materials, the particular spatial orienta-

tions of these materials can lead to a non-semisimple N, cf. [25, 37, 87].

The fact that a spatial orientation of some materials, irrespective of the

values of the elastic stiffnesses, can lead to a non-semisimple N, makes the

analysis of degenerate cases relevant for applications of the Lekhnitskii–

Stroh formalism to composite materials.

13.2.3. Representation of displacement and stress

function vectors

The displacement and stress function vector solution of an anisotropic

elastic problem under generalized plane-strain conditions can be expressed

as a linear combination of terms written in compact (sextic) form as

follows [19, 28, 84–86]:

w(x1, x2) = X

[
F(x1, x2) 03×3

03×3 F̃(x1, x2)

]
v, with

w =

[
u

ϕ

]
and v =

[
q

q̃

]
, (13.31)

where q= (q1, q2, q3)
T and q̃=(q̃1, q̃2, q̃3)

T are in general 3 × 1 constant

vectors with real or complex components, and the elements of the 3 × 3

matrices F and F̃ are defined by a complex analytic function f of complex

variables zα = x1 + pαx2 and z̄α = x1 + p̄αx2, and by its first and second

derivatives f ′ and f ′′. The structure of F and F̃ depends on the number of

linearly independent eigenvectors ξα, as follows,

• Non-degenerate case:

F =

⎡
⎢⎣
f(z1) 0 0

0 f(z2) 0

0 0 f(z3)

⎤
⎥⎦, F̃ =

⎡
⎢⎣
f(z̄1) 0 0

0 f(z̄2) 0

0 0 f(z̄3)

⎤
⎥⎦. (13.32)
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Computational Procedure for Singularity Analysis in Multimaterial Corners 629

• Degenerate case (z1 = z2):

F =

⎡
⎢⎢⎢⎣
f(z1) x2f

′(z1) 0

0 f(z1) 0

0 0 f(z3)

⎤
⎥⎥⎥⎦, F̃ =

⎡
⎢⎢⎢⎣
f(z̄1) x2f

′(z̄1) 0

0 f(z̄1) 0

0 0 f(z̄3)

⎤
⎥⎥⎥⎦.
(13.33)

• Extraordinary degenerate case (z1 = z2 = z3 = z):

F =

⎡
⎢⎢⎢⎢⎢⎢⎣
f(z) x2f

′(z)
1

2
x22f

′′(z)

0 f(z) x2f
′(z)

0 0 f(z)

⎤
⎥⎥⎥⎥⎥⎥⎦, F̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣
f(z̄) x2f

′(z̄)
1

2
x22f

′′(z̄)

0 f(z̄) x2f
′(z̄)

0 0 f(z̄)

⎤
⎥⎥⎥⎥⎥⎥⎦.

(13.34)

Finally, in view of (13.14), the traction vector t at a point (x1, x2) on

a contour, with the unit normal vector n = (n1, n2) to this contour at

(x1, x2), can be computed by the tangential derivative of ϕ with respect to

this contour,

t(x1, x2) = −∂ϕ
∂s

(x1, x2), (13.35)

where s = (−n2, n1) is the unit tangential vector to this contour. Thus, a

zero traction t along a contour corresponds to a constant (possibly zero)

stress function vector ϕ along this contour.

13.3. Elastic Multimaterial Corner

13.3.1. Corner configuration

Consider an elastic anisotropic multimaterial corner composed of a finite

number of single-material wedges with plane faces intersecting at a

straight corner edge coincident with the x3-axis of the Cartesian and

cylindrical coordinate systems (x1, x2, x3) and (r, θ, x3), respectively. Let

the corner be subjected to a generalized plane-strain state with zero body

forces and constant interface conditions at the plane interfaces between

the single-material wedges. Perfect bonding (traction equilibrium and

displacement continuity), friction and frictionless sliding are considered

at these interfaces. We distinguish between an open corner with two

outer plane boundary faces, intersecting at the corner edge, where either
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630 V. Mantič, A. Barroso & F. Paŕıs

constant homogeneous orthogonal or sliding friction boundary conditions

are prescribed, and a closed corner (also called a periodic corner) with

no such outer boundary faces. A homogeneous orthogonal boundary

condition represents a general case of either displacement, traction or mixed

homogeneous boundary conditions where the displacement and traction

vectors are perpendicular to each other (including the case where one of

them is zero), cf. [12, 19, 28, 71, 88].

Typical 2D and 3D representations of an open corner are shown in

Figs. 13.1 and 13.2. Notice that the corner tip in Fig. 13.1 is a 2D view of the

corner edge in Fig. 13.2. Let the corner contain M (M ≥ 1) single-material

wedges (in the following also referred to as materials), where material Mm

(m = 1, . . . ,M) is defined by angles θ in the angular sector θm−1 < θ < θm.

In an open corner, the boundary conditions are defined at angles θ0 and

θM , where 0◦ < θM − θ0 ≤ 360◦ and the interface conditions at θm(m =

1, . . . ,M − 1). In a closed corner, the interface conditions are prescribed at

θm(m = 0, . . . ,M), where θM − θ0 = 360◦.
Let the sequence of all materials in the corner be partitioned to

subsequences of the maximum length of consecutive materials with perfect

bonding at the common interfaces. The materials in such a subsequence

are grouped together and referred to as a wedge. The number of wedges in

a corner is W ≥ 1 (W ≤ M), and the sequence of wedges is indexed by

subscript w (w = 1, . . . ,W ), see Fig. 13.1. Wedge w is defined by angles θ

in the angular sector ϑw−1 < θ < ϑw. Thus, ϑ0 = θ0 and ϑW = θM . As

shown in Section 13.5.1, the fact that materials in a wedge are perfectly

bonded together allows us to work advantageously with a wedge as if it

were a single entity, by defining a transfer matrix for the whole wedge.

It follows from the wedge definition that friction or frictionless sliding is

prescribed at the interface between two consecutive wedges. If there is no

such interface in the corner the whole multimaterial corner is considered as

a wedge, i.e., W = 1.

The present friction model can be described as a rate-independent dry

Coulomb friction model with a linear variation of the limit shear traction

with respect to the normal traction. Surface topography and texture can

be isotropic or anisotropic. This sometimes requires a generalization of

the standard isotropic friction model. Suitable anisotropic friction models

with either an associated sliding rule (given by a version of the maximum

dissipation principle) or a non-associated sliding rule have been studied

in [89–92], see also [93]. Without loss of generality, we assume that suitable,

physically based or experimentally determined, functions defining the angle
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Computational Procedure for Singularity Analysis in Multimaterial Corners 631

of the sliding velocity ωu and kinetic (or dynamic) friction coefficient μ in

terms of the angle of the frictional shear traction ω are given at each friction

surface by:

ωu = ωu(ω) (sliding rule),

μ = μ(ω) > 0 (friction rule), (13.36)

where both angles, ωu and ω, are measured with respect to the coordinate

system in the wedge face.

Functions ωu(ω) and μ(ω) are periodic with period 2π. In the case

of an associated sliding rule, the polar diagram of the directionally

dependent friction coefficient μ(ω) is typically given by an ellipse

with the following relationship for the sliding angle tan(ωu − α) =

(μ(0◦ + α)/μ(90◦ + α))2 tan(ω−α), where μ(0◦+α) and μ(90◦+α) define
the major and minor semi-axes of this ellipse rotated by an angle α with

respect to the coordinate system. In the usual isotropic friction model

ωu = ω and μ is a constant independent of ω, the ellipse being replaced by

a circle.

13.3.2. Boundary and interface conditions:

Matrix formalism

In this section, a powerful matrix formalism for a compact representation

of different boundary and interface conditions in the multimaterial corner,

suitable for an efficient computer implementation, is introduced.

13.3.2.1. Coordinate systems

The following orthonormal vector basis attached to the wedge faces,

cf. [19, 71], is employed to define the homogeneous orthogonal boundary

and interface conditions:

(sr(ϑ), s3,n(ϑ)), (13.37)

with the Cartesian components of these vectors defined as

sr(ϑ) =

⎛
⎜⎝
− cosϑ

− sinϑ

0

⎞
⎟⎠, s3 =

⎛
⎝0

0

1

⎞
⎠, n(ϑ) =

⎛
⎝− sinϑ

cosϑ

0

⎞
⎠, (13.38)

where ϑ is the wedge face angle. Additionally, when defining the sliding

friction condition, the following three orthonormal vector bases attached to
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632 V. Mantič, A. Barroso & F. Paŕıs

the wedge faces are employed:

(k(ϑ, ω),m(ϑ, ω),n(ϑ)), (13.39)

(k(ϑ, ωu),m(ϑ, ωu),n(ϑ)), (13.40)

(nμ(ϑ, ω, μ), sμ(ϑ, ω, μ),m(ϑ, ω)), (13.41)

with

k(ϑ, ω) = cosωsr(ϑ) + sinωs3, (13.42)

m(ϑ, ω) = − sinωsr(ϑ) + cosωs3, (13.43)

nμ(ϑ, ω, μ) =
n(ϑ) + μk(ϑ, ω)√

1 + μ2
, (13.44)

sμ(ϑ, ω, μ) =
k(ϑ, ω)− μn(ϑ)√

1 + μ2
, (13.45)

where ω and ωu, respectively, are the angles measured from the vector sr(ϑ)

and are the directions of the friction shear and sliding in the wedge face,

and μ is the corresponding kinetic (or dynamic) friction coefficient at the

wedge face. Notice that, in the isotropic friction model the vector bases in

(13.39) and (13.40) coincide. Subscript w has been omitted in the above

vector definitions for the sake of simplicity.

13.3.2.2. Boundary condition matrices

The usual homogeneous orthogonal boundary conditions for the first and

last corner faces, w = 0 andW , can be expressed formally, in view of (13.35)

and assuming a zero stress function vector ϕ at the corner edge (r = 0), by

a linear relation for r >0:

Du(ϑw)u(r, ϑw) +Dϕ(ϑw)ϕ(r, ϑw) = 0, (13.46)

where Du(ϑw) and Dϕ(ϑw) are 3 × 3 real matrices defined in Table 13.1,

fulfilling the following orthogonality relations, cf. [19, 71]:

Du(ϑw)D
T
ϕ(ϑw) = Dϕ(ϑw)D

T
u (ϑw) = 0, (13.47)

with superscript T denoting the transpose.

In general, the boundary conditions of friction contact are nonlinear,

because of the unilateral Signorini conditions of impenetrability and non-

adhesion, and the Amontons–Coulomb law for dry friction. Nevertheless,
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Computational Procedure for Singularity Analysis in Multimaterial Corners 633

Table 13.1. Boundary condition matrices Du and Dϕ for homogeneous
orthogonal boundary conditions, with ϑ = ϑw for w = 0 and W .

Matrix definition

Boundary condition Du(ϑ) Dϕ(ϑ)

Free 03×3 I3×3

Fixed I3×3 03×3

Symmetry (only uθ restricted) [n(ϑ), 0,0]T [0, sr(ϑ), s3]T

Antisymmetry (only uθ allowed) [sr(ϑ), s3, 0]T [0,0,n(ϑ)]T

Only ur restricted [sr(ϑ), 0, 0]T [0,n(ϑ), s3]T

Only ur allowed [n(ϑ), s3, 0]T [0,0, sr(ϑ)]T

Only u3 restricted [s3,0,0]T [0, sr(ϑ),n(ϑ)]T

Only u3 allowed [sr(ϑ),n(ϑ), 0]T [0,0, s3]T

Table 13.2. Boundary condition matrices Du, Dϕ, D̃u and D̃ϕ for Coulomb sliding
friction, with ϑ = ϑw, ω = ωw and ωu = ωu

w(ωw) and μ = μw(ωw) for w = 0 and W .

Du(ϑ, ω, ωu) = [n(ϑ), 0,m(ϑ, ωu), 0]T Dϕ(ϑ, ω, μ) = [0, sμ(ϑ, ω, μ), 0,m(ϑ, ω)]T

D̃u(ϑ, ω, ωu) = [0,k(ϑ, ωu)]T D̃ϕ(ϑ, ω, μ) = [nμ(ϑ, ω, μ), 0]T

under the present hypothesis that the whole face is sliding in the same

direction, i.e., ω, ωu and μ are constant at the whole face, and assuming a

monotonic loading from the unloaded state, the sliding friction boundary

condition at the first and last corner faces, w = 0 and W , can also be

expressed formally by a linear relation, cf. [71]:

Du(ϑw, ωw, ω
u
w(ωw))u(r, ϑw) +Dϕ(ϑw, ωw, μw(ωw))ϕ(r, ϑw) = 0,

(13.48)

where Du(ϑw, ωw, ω
u
w(ωw)) and Dϕ(ϑw, ωw, μw(ωw)) are 4×3 real matrices

defined in Table 13.2. These matrices, however, do not fulfill orthogonality

relations similar to (13.47). The fact that these matrices are rectangular,

instead of the square matrices used in (13.46), implying four boundary

conditions instead of three as would be expected, is associated with the

fact that a certain direction of shear traction (or equivalently the sliding

direction) is assumed here, although in general it is unknown. Recall, that

the friction coefficient μ has only positive values. The fulfilment of the

compression condition (the normal stresses are negative or vanish) and the

dissipative character of friction (the friction shear stress is exerted in a
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634 V. Mantič, A. Barroso & F. Paŕıs

direction that opposes sliding) should be checked at the wedge face after

the problem is solved.

Notice that the boundary condition of frictionless sliding is referred to

in Table 13.1 as a symmetry boundary condition, which requires a check

after the problem is solved to ensure that the compression condition (the

normal stresses are negative or vanish) is fulfilled at the wedge face.

In the following, a 6 × 6 real matrix DBC including all the previously

defined boundary condition matrices, is introduced and applied to partition

the 6 × 1 vector w defined in (13.31) into the prescribed and unknown

subvectors. We refer to DBC as the main boundary-condition-matrix. DBC

is defined for homogeneous orthogonal boundary conditions and a sliding

friction boundary condition, for a wedge face of angle ϑw, for w = 0 and

W , respectively, as

DBC(ϑw) =

[
Du(ϑw) Dϕ(ϑw)

D̃u(ϑw) D̃ϕ(ϑw)

]
=

[
Du(ϑw) Dϕ(ϑw)

Dϕ(ϑw) Du(ϑw)

]
(13.49)

and

DBC(ϑw, ωw, μw(ωw), ω
u
w(ωw)) =

[
Du(ϑw, ωw, ω

u
w) Dϕ(ϑw, ωw, μw)

D̃u(ϑw, ωw, ω
u
w) D̃ϕ(ϑw, ωw, μw)

]
,

(13.50)

where the 2×3 real matrices D̃u(ϑw, ωw, ω
u
w) and D̃ϕ(ϑw, ωw, μw) are given

in Table 13.2. It is straightforward to check that DBC is an orthogonal

matrix, i.e.,

DBCD
T
BC = DT

BCDBC = I6×6, (13.51)

where I6×6 is the 6× 6 identity matrix. Evidently ωw, μw and ωuw
can be different for w = 0 and W . As shown in Section 13.5.2, the

general orthogonality relation (13.51) is very useful in the application of

different boundary conditions in the corner singularity analysis. Although

an orthogonality relation analogous to (13.51) obtained for orthogonal

boundary conditions can be found in [28] (Section 14.1) and [88] in a slightly

different context, the orthogonality relation (13.51) appears to be new for

Coulomb sliding friction for both isotropic and anisotropic friction models.

It is easy to show that if the vector w(r, ϑw) in (13.31) is multiplied

from the left by the matrix DBC , given either by (13.49) or (13.50), the

prescribed and the unknown components of w(r, ϑw) appear grouped in
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Computational Procedure for Singularity Analysis in Multimaterial Corners 635

two separate blocks, wP (r, ϑw) and wU (r, ϑw), respectively,

DBCw(r, ϑw) =

[
wP (r, ϑw)

wU (r, ϑw)

]
. (13.52)

As follows from the above relations, wP (r, ϑw) = 0 and wU (r, ϑw) are

3 × 1 vectors for orthogonal boundary conditions, whereas they are 4 × 1

and 2× 1 vectors, respectively, for friction sliding. From the orthogonality

relation (13.51) and the fact that wP (r, ϑw) is a zero vector, it is obtained,

for w = 0 and W , that

w(r, ϑw) = DT
BC

wU (r, ϑw)

[
wP (r, ϑw)

]
=

[
D̃T
u

D̃T
ϕ

]
wU (r, ϑw) = D̃T

BCwU (r, ϑw).

(13.53)

Inasmuch as the order of the prescribed and unknown variables is not

relevant, the definition of the main boundary-condition matrix DBC is not

unique, e.g. equivalent definitions can be obtained by permutations of rows

corresponding to wP (r, ϑw) and wU (r, ϑw) separately.

13.3.2.3. Interface condition matrices

Similarly as in (13.46) and (13.48), the interface conditions between the

wedges, for frictionless or frictional sliding, respectively, can be expressed,

using (13.35) and assuming a zero stress function vector ϕ at the corner

edge (r = 0), formally by linear relations for r > 0 and 1 ≤ w ≤W − 1:

D1(ϑw)ww(r, ϑw) +D2(ϑw)ww+1(r, ϑw) = 0, (13.54)

and

D1(ϑw, ωw, μw(ωw), ω
u
w(ωw))ww(r, ϑw)

+D2(ϑw, ωw, μw(ωw), ω
u
w(ωw))ww+1(r, ϑw) = 0, (13.55)

where Di(ϑw) and Di(ϑw, ωw, μw, ω
u
w) (i = 1, 2), respectively, are real

6 × 6 and 7 × 6 matrices defined in Tables 13.3 and 13.4, ww(r, ϑw) and

ww+1(r, ϑw), respectively, are 6 × 1 vectors of displacements and stress

functions (13.31) associated with the wedges of number w and w + 1 and

defined at the wedge interface given by the angle ϑw.

A matrix analogous to the matrix DBC in the case of boundary

conditions is defined and applied for interface conditions as well. A 12× 12
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636 V. Mantič, A. Barroso & F. Paŕıs

Table 13.3. Interface condition matrices D1, D2, D̃1 and D̃2

for frictionless sliding, with ϑ = ϑw and 1 ≤ w ≤ W − 1.

D1(ϑ) =
1√
2

[−n(ϑ) 03×1 03×3 03×1

03×1 sr(ϑ) −I3×3 s3

]T

D2(ϑ) =
1√
2

[
n(ϑ) 03×1 03×3 03×1

03×1 sr(ϑ) I3×3 s3

]T

D̃1(ϑ) =
1√
2

[
n(ϑ) 03×1

√
2sr(ϑ) 03×1

√
2s3 03×1

03×1 n(ϑ) 03×1 03×1 03×1 03×1

]T

D̃2(ϑ) =
1√
2

[
n(ϑ) 03×1 03×1

√
2sr(ϑ) 03×1

√
2s3

03×1 n(ϑ) 03×1 03×1 03×1 03×1

]T

Table 13.4. Interface condition matrices D1, D2, D̃1 and D̃2 for sliding
friction, with ϑ = ϑw, ω = ωw, ωu = ωu

w(ωw), μ = μw(ωw) and 1 ≤ w ≤ W−1.

D1(ϑ, ω, μ, ωu) = 1√
2

[−n(ϑ) 03×1 03×3 −m(ϑ, ωu) 03×1

03×1 sμ(ϑ, ω, μ) −I3×3 03×1 m(ϑ, ω)

]T

D2(ϑ, ω, μ, ωu) = 1√
2

[
n(ϑ) 03×1 03×3 m(ϑ, ωu) 03×1

03×1 sμ(ϑ, ω, μ) I3×3 03×1 m(ϑ, ω)

]T

D̃1(ϑ, ω, μ, ωu) = 1√
2

[
n(ϑ) 03×1

√
2k(ϑ, ωu) 03×1 m(ϑ, ωu)

03×1 nμ(ϑ, ω, μ) 03×1 03×1 03×1

]T

D̃2(ϑ, ω, μ, ωu) = 1√
2

[
n(ϑ) 03×1 03×1

√
2k(ϑ, ωu) m(ϑ, ωu)

03×1 nμ(ϑ, ω, μ) 03×1 03×1 03×1

]T

real matrix DI is defined for the frictionless and frictional sliding interface

conditions, respectively, as

DI(ϑw) =

[
D1(ϑw) D2(ϑw)

D̃1(ϑw) D̃2(ϑw)

]
(13.56)

and

DI(ϑw , ωw, μw(ωw), ω
u
w(ωw))

=

[
D1(ϑw, ωw, μw, ω

u
w) D2(ϑw, ωw, μw, ω

u
w)

D̃1(ϑw, ωw, μw, ω
u
w) D̃2(ϑw, ωw, μw, ω

u
w)

]
, (13.57)
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Computational Procedure for Singularity Analysis in Multimaterial Corners 637

where D̃i(ϑw) and D̃i(ϑw, ωw, μw(ωw), ω
u
w(ωw)) (i = 1, 2), respectively, are

6×6 and 5×6 real matrices, defined in Tables 13.3 and 13.4. We refer to DI

as the main interface-condition matrix. We can check by direct evaluation

that DI is an orthogonal matrix, i.e.,

DID
T
I = DT

I DI = I12×12, (13.58)

where I12×12 is the 12 × 12 identity matrix. This general orthogonality

relation will be useful in Section 13.5.2 when applying interface conditions

in the corner singularity analysis.

Similarly, as for the boundary conditions, the fact that the matrices

in (13.55) are rectangular, instead of the square matrices used in (13.54),

in particular implying seven interface conditions instead of six as would be

expected, is associated with the fact that some direction of friction shear

traction (or equivalently sliding direction) is assumed here, although in

general it is unknown. The fulfilment of the compression condition and the

dissipative character of friction should be checked at the interface after the

problem is solved.

The frictionless sliding condition also requires a check after the problem

is solved to ensure the compression condition is fulfilled at the interface.

By multiplying the 12 × 1 vector (wT
w(r, ϑw),w

T
w+1(r, ϑw))

T from the

left by the matrix DI , given either by (13.56) or (13.57), the prescribed

and the unknown components of w(r, ϑw) appear grouped in two separate

blocks, wP (r, ϑw) and wU (r, ϑw), respectively,

DI

[
ww(r, ϑw)

ww+1(r, ϑw)

]
=

[
wP (r, ϑw)

wU (r, ϑw)

]
. (13.59)

As follows from the above relations, wP (r, ϑw) = 0 and wU (r, ϑw) are 6×1

vectors for frictionless sliding, whereas they are 7 × 1 and 5 × 1 vectors,

respectively, for sliding friction. From the orthogonality relation (13.58) and

the fact that wP (r, ϑw) is a zero vector, we obtain, for 1 ≤ w ≤ W − 1,

that [
ww(r, ϑw)

ww+1(r, ϑw)

]
= DT

I

[
wP (r, ϑw)

wU (r, ϑw)

]
=

[
D̃T

1

D̃T
2

]
wU (r, ϑw). (13.60)

Similarly, as for the boundary conditions, the definition of the main

interface-condition matrix DI is not unique, e.g., equivalent definitions

can be obtained by permutations of rows corresponding to wP (r, ϑw) and

wU (r, ϑw) separately.
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638 V. Mantič, A. Barroso & F. Paŕıs

In the case of a closed corner, ϑW = ϑ0 and wW+1(r, ϑW ) should

be replaced by w1(r, ϑ0) in the relations (13.59) and (13.60), written for

w = W . This is why a closed corner is sometimes referred to as periodic

corner.

Finally, it should be mentioned that for a genuine 2D problem, where

the in-plane-strain state can be uncoupled from the antiplane-strain state,

the above vectors and matrices are correspondingly reduced. In particular,

a significant reduction takes place in the sliding friction case, where a

somewhat unpleasant feature with more boundary or interface conditions

than usual, and consequently with rectangular boundary or interface

condition matrices, is removed, as we know a priori that the sliding takes

place in the x1−x2 plane, thus ω = ωu and ω equals either 0◦ or ±180◦.
Subsequently the vectors s3 and m and the angles ω and ωu essentially

disappear from the formulation, cf. [71].

13.4. Singular Elastic Solution in a Single-Material Wedge:

Transfer Matrix

The particular geometrical configuration of the multimaterial corner shown

in Fig. 13.1 allows us to take advantage of the transfer matrix concept

similarly as in [16, 19]. The idea is explained briefly in the following. Let

us assume a particular kind of elastic state in a single-material wedge Mm

(defined by the angular sector between θm−1 and θm), allowing separation

of the variables in polar coordinates with the same radial dependence in

all components of the displacement and stress function vectors. Then, we

can relate the displacement and stress function vectors at both outer radial

faces of the wedge, wm(r, θm−1) and wm(r, θm), by a transfer matrix Em.

It should be stressed that such a transfer matrix depends on the kind of the

elastic state considered. If we can enforce continuity of the displacement and

stress function vectors across interfaces between several perfectly bonded

single-material wedges we arrive at a transfer matrix for the whole sequence

of bonded wedges simply by sequentially multiplying the transfer matrices

of all the single-material wedges in the sequence.

With reference to the representation of the displacement and stress

function vector in (13.31) for the analysis of problems with stress

singularities, in this section we will assume the following simple form for

the complex analytic functions, in view of (13.2) and (13.3):

f(zα) = zλα and f(z̄α) = z̄λα (α = 1, 2, 3), (13.61)
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Computational Procedure for Singularity Analysis in Multimaterial Corners 639

where λ is a real or complex characteristic exponent. The complex variables

zα and z̄α in (13.61) can be expressed as

zα = x1 + pαx2 = r(cos θ + pα sin θ) = rζα(θ),

z̄α = x1 + p̄αx2 = r(cos θ + p̄α sin θ) = rζ̄α(θ),
(13.62)

considering the polar coordinate system (r, θ) centered at the corner tip

(r=0).

13.4.1. Non-degenerate materials

Let us assume that the material in a single-material wedge Mm is non-

degenerate, see Section 13.2. Then, by substituting (13.61) into (13.31) and

taking into account (13.32), the displacement and stress function vector

fields in this wedge can be written in the following compact form:

w(r, θ) = rλXZλ(θ)v, w(r, θ) =

[
u(r, θ)

ϕ(r, θ)

]
, v =

[
q

q̃

]
, (13.63)

where X is defined in (13.29), and Zλ(θ) is a diagonal matrix

Zλ(θ) =

[ 〈ζλ∗ (θ)〉 03×3

03×3 〈ζ̄λ∗ (θ)〉
]
, (13.64)

and

〈ζλ∗ (θ)〉 = diag[ζλ1 (θ), ζ
λ
2 (θ), ζ

λ
3 (θ)],

〈ζ̄λ∗ (θ)〉 = diag[ζ̄λ1 (θ), ζ̄
λ
2 (θ), ζ̄

λ
3 (θ)],

with

ζλα(θ) = (cos θ + pα sin θ)
λ and ζ̄λα(θ) = (cos θ + p̄α sin θ)

λ.

Thus, F and F̃ in (13.32) are expressed as

F(x1, x2) = rλ
〈
ζλ∗ (θ)

〉
, F̃(x1, x2) = rλ

〈
ζ̄λ∗ (θ)

〉
. (13.65)

According to (13.63), if 0<λ< 1 (or 0<Re(λ)< 1, if λ is a complex

number), the associated stresses become singular at the origin of

coordinates, i.e., they may become unbounded for r → 0+. If λ is a real

number, then q̃ is the complex conjugate of q, and u and ϕ are also real

functions. If λ is a complex number, then q̃ is not necessarily the complex

conjugate of q, and u and ϕ are also complex functions. It can be deduced
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640 V. Mantič, A. Barroso & F. Paŕıs

that if λ is a solution, then λ̄ is also a solution, and the superposition of the

solutions (13.63) for λ and λ̄ leads to real-valued expressions of u and ϕ.

If (13.63) is evaluated for the single-material wedge Mm at θ = θm−1

and θ = θm, and v is eliminated, we obtain:

wm(r, θm−1)= r
λXZλ(θm−1)v

wm(r, θm)= rλXZλ(θm)v
⇒wm(r, θm)=Em(λ, θm, θm−1)wm(r, θm−1),

(13.66)

where

Em(λ, θm, θm−1) = XZλ(θm)[Zλ(θm−1)]
−1X−1. (13.67)

The 3 × 3 complex matrix Em(λ, θm, θm−1), referred to as the transfer

matrix for the single-material wedge Mm, depends on the wedge material

properties, through the matrix X and its inverse X−1 defined in (13.29)

and the eigenvalues pα, on the wedge geometry, given by the angles θm−1

and θm, and on the characteristic exponent λ. An explicit expression for

Zλ(θm)[Zλ(θm−1)]
−1 is obtained following [16, 94],

Zλ(θm)[Zλ(θm−1)]
−1 = Zλ(θm, θm−1)

=

[
〈ζλ∗ (θm, θm−1)〉 03×3

03×3 〈ζ̄λ∗ (θm, θm−1)〉

]
, (13.68)

where

〈ζλ∗ (θm, θm−1)〉 = diag[ζλ1 (θm, θm−1), ζ
λ
2 (θm, θm−1), ζ

λ
3 (θm, θm−1)],

(13.69)

with

ζα(θm, θm−1) =
ζα(θm)

ζα(θm−1)
= cos(θm − θm−1) + pα(θm−1) sin(θm − θm−1),

(13.70)

and

pα(θm−1) =
pα cos(θm−1)− sin(θm−1)

pα sin(θm−1) + cos(θm−1)
. (13.71)

13.4.2. Degenerate materials

Let us assume that the material in a single-material wedge Mm is

degenerate, see Section 13.2. Then, by substituting (13.61) for (α = 1, 3)
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Computational Procedure for Singularity Analysis in Multimaterial Corners 641

into (13.31) and taking into account (13.33), the displacement and stress

function vector fields in this wedge can be written in the following compact

form:

w(r, θ) = rλXZ(θ, λ)v, w(r, θ) =

[
u(r, θ)

ϕ(r, θ)

]
, v =

[
q

q̃

]
, (13.72)

where X is defined in (13.29), and Z(θ, λ) is defined as

Z(θ, λ) =

[
Ψ(p∗, θ, λ) 03×3

03×3 Ψ(p̄∗, θ, λ)

]
, (13.73)

with

Ψ(p∗, θ, λ) =

⎡
⎢⎢⎢⎣
ζλ1 (θ) K(p1, θ, λ)ζ

λ
1 (θ) 0

0 ζλ1 (θ) 0

0 0 ζλ3 (θ)

⎤
⎥⎥⎥⎦,

K(p1, θ, λ) =
λ sin(θ)

ζ1(θ)
. (13.74)

Now, by applying a procedure similar to that of the previous section,

first evaluating (13.72) at θ = θm−1 and θ = θm, and then eliminating v,

we again arrive at

wm(r, θm) = Em (λ, θm, θm−1)w(r, θm−1), (13.75)

where

Em(λ, θm, θm−1) = XZ(θm, λ)[Z(θm−1, λ)]
−1X−1 (13.76)

is the transfer matrix for the single-material wedge Mm with a degenerate

material. According to [19]

Z(θm, λ)[Z(θm−1, λ)]
−1 =

[
Ψ(p∗, θm, θm−1, λ) 03×3

03×3 Ψ(p̄∗, θm, θm−1, λ)

]
,

(13.77)
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642 V. Mantič, A. Barroso & F. Paŕıs

where

Ψ(p∗, θm, θm−1, λ)

=

⎡
⎢⎣
ζλ1 (θm, θm−1) K(p1, θm, θm−1, λ)ζ

λ
1 (θm, θm−1) 0

0 ζλ1 (θm, θm−1) 0

0 0 ζλ3 (θm, θm−1)

⎤
⎥⎦,

(13.78)

with ζα(θm, θm−1) defined in (13.70) and

K(p1, θm, θm−1, λ) =
λ sin(θm − θm−1)

ζ1(θm)ζ1(θm−1)
. (13.79)

Isotropic materials are a typical example of degenerate anisotropic

materials with a triple eigenvalue p = i =
√−1 and two linearly

independent eigenvectors. All the above expressions for these materials

simplify due to the fact that ζα(θ) = cos θ + i sin θ = eiθ. In particular,

ζα(θm, θm−1) in (13.70) and K in (13.79) can be rewritten as

ζα(θm, θm−1) = ei (θm−θm−1), and K(i, θm, θm−1, λ)

=
λ sin(θm − θm−1)

ei(θm+θm−1)
. (13.80)

Expressions for the complex matrices A and B for an isotropic elastic

material in [19, 28] define the complex matrix X in (13.29).

13.4.3. Extraordinary degenerate materials

Let us assume that the material in a single-material wedge Mm is

extraordinary degenerate, see Section 13.2. Then, by substituting (13.61)

with pα = p, zα = z and ζα(θ) = ζ(θ) = cos θ + p sin θ, into (13.31) and

taking into account (13.34), the displacement and stress function vector

fields in this wedge can be written in the form (13.72), where

Z(θ, λ) =

[
Ψ(p, θ, λ) 03×3

03×3 Ψ(p̄, θ, λ)

]
, (13.81)
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with

Ψ(p, θ, λ) = ζλ(θ)

⎡
⎢⎢⎢⎢⎣
1 K(p, θ, λ)

1

2
(1− λ−1)K2(p, θ, λ)

0 1 K(p, θ, λ)

0 0 1

⎤
⎥⎥⎥⎥⎦,

K(p, θ, λ) =
λ sin(θ)

ζ(θ)
. (13.82)

By applying a procedure similar to that of the previous sections, we

arrive at transfer expressions in the same form as in (13.75) and (13.76),

where, according to [19],

Z(θm, λ)[Z(θm−1, λ)]
−1 =

[
Ψ(p, θm, θm−1, λ) 03×3

03×3 Ψ(p̄, θm, θm−1, λ)

]
,

(13.83)

Ψ(p, θm, θm−1, λ) = ζλ(θm, θm−1)

×

⎡
⎢⎣
1 K(p, θm, θm−1, λ) K(p, θm, θm−1, λ)Z(p, θm, θm−1, λ)

0 1 K(p, θm, θm−1, λ)

0 0 1

⎤
⎥⎦,

(13.84)

and ζ(θm, θm−1) is defined similarly as in (13.70), K(p, θm, θm−1, λ) is

defined similarly as in (13.79), and Z(p, θm, θm−1, λ) is defined as

Z(p, θm, θm−1, λ) =
1

2

(
K(p, θm, θm−1, λ)− sin θm−1

ζ(θm−1)
− sin θm
ζ(θm)

)
. (13.85)

13.5. Characteristic System for the Singularity Analysis

of an Elastic Multimaterial Corner

Closed-form expressions of the transfer matrix for a single-material wedge

made of any anisotropic linear elastic material were obtained in Section 13.4

by assuming a simple power law form f(zα) = zλα for the complex analytic

functions appearing in a general representation of any elastic solution in

the Lekhnitskii–Stroh formalism (13.31). In the present section, this transfer

matrix is used first to generate the transfer matrix of a sequence of perfectly

bonded single-material wedges and then to assemble the corresponding
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644 V. Mantič, A. Barroso & F. Paŕıs

characteristic system (also called an eigensystem) of the multimaterial

corner with some boundary and/or interface conditions. The solution of

this characteristic system gives the characteristic exponents of the corner

problem and characteristic angular functions defining the singular elastic

state in the corner. The formulation is quite general considering any finite

number of single-material wedges bonded or with friction or frictionless

contact between them, and any homogeneous orthogonal or contact

boundary conditions for an open corner. Isotropic and also anisotropic

friction contact conditions may be considered at the contact faces. The

powerful matrix formalism introduced in the previous sections allows us to

write general expressions in a compact form suitable for a straightforward

computer implementation.

13.5.1. Transfer matrix for a multimaterial wedge

Let a multimaterial wedge w (w = 1, . . . ,W ), see Fig. 13.1, be defined

by a sequence of perfectly bonded single-material wedges with indices m =

iw, iw+1, . . . , jw−1, jw, where iw and jw are the indices of the first and last

material in the wedge w. Notice that θiw−1 = ϑw−1 and θjw = ϑw. Then,

a wedge transfer matrix can be defined as follows. Using the continuity

conditions corresponding to the hypothesis of perfect bonding between the

materials wm(r, θm) = wm+1(r, θm) (iw ≤ m < m+1 ≤ jw), and the 6× 6

transfer matrix Em(λ) for each single-material wedge, it is easy to arrive at

the transfer relation for the wedge w, relating the elastic variables between

the wedge external faces at angles ϑw−1 and ϑw:

ww(r, ϑw) = Kw(λ)ww(r, ϑw−1)

or [
uw(r, ϑw)

ϕw(r, ϑw)

]
=

⎡
⎣K(1)

w (λ) K
(2)
w (λ)

K
(3)
w (λ) K

(4)
w (λ)

⎤
⎦[uw(r, ϑw−1)

ϕw(r, ϑw−1)

]
, (13.86)

where the expression for the 6× 6 wedge transfer matrix Kw is obtained

by the sequential product of the transfer matrices Em(λ) of all the single-

material wedges in the multimaterial wedge w,

Kw(λ) = Ejw (λ) · Ejw−1(λ) · · · Eiw+1(λ) ·Eiw (λ). (13.87)

The transfer relation (13.86) can be rewritten in the following matrix

form suitable for the easy assembly of the characteristic system of a
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Computational Procedure for Singularity Analysis in Multimaterial Corners 645

multimaterial corner:

[Kw(λ) − I6×6]

[
ww(r, ϑw−1)

ww(r, ϑw)

]
= 06×1. (13.88)

13.5.2. Characteristic system assembly

The following linear system collects all the wedge transfer relations (13.88)

for the corner,

Kcorner ext.(λ)wcorner ext. = 06W×1, (13.89)

where the 6W × 12W extended complex matrix of transfer relations of the

multimaterial corner is defined as

Kcorner ext.(λ)

=

⎡
⎢⎢⎢⎢⎢⎢⎣
K1(λ) −I6×6 06×6 06×6 · · · · · · 06×6

06×6 06×6 K2(λ) −I6×6 · · ·
..

· · · 06×6

. ...
...

...
. . .

...
...

06×6 06×6 06×6 06×6 · · · KW (λ) −I6×6

⎤
⎥⎥⎥⎥⎥⎥⎦ (13.90)

and the 12W × 1 vector of elastic variables at wedge faces in the corner is

defined as

wcorner ext. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ..

w1(r, ϑ0)

w1(r, ϑ1)

w2(r, ϑ1)

w2(r, ϑ2)

.

wW (r, ϑW−1)

wW (r, ϑW )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13.91)

Let ϑ = (ϑ0, ϑ1, . . . , ϑW−1, ϑW ) define the vector of polar angles of

wedge faces in the whole multimaterial corner. Let the sliding friction

condition be prescribed at F (0 ≤ F ≤W +1) boundary faces or interfaces

(between wedges) whose polar angles are given by the sequence ϑki (i =

1, . . . , F ) and 0 ≤ k1 < k2 < · · · < kF−1 < kF ≤ W . The corresponding

functions defining the friction coefficients μki(ωki) and the angles of sliding

direction ωuki(ωki) in terms of a priori unknown angles of frictional shear

traction ωki are gathered in the following vectors of the assumed functions
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646 V. Mantič, A. Barroso & F. Paŕıs

μ = (μk1 , μk2 , . . . , μkF−1 , μkF ) and ωu = (ωuk1 , ω
u
k2
, . . . , ωukF−1

, ωukF ).

Additionally, we define the vector of unknown values of the angles of

frictional shear traction ω = (ωk1 , ωk2 , . . . , ωkF−1 , ωkF ). In the following

expressions, for the simple case of isotropic friction, the vector ωu can be

omitted as the angles of friction shear stress and sliding angles coincide

and the vector μ represents just friction coefficient values at each contact

surface, independent of the angles of friction shear stress.

13.5.2.1. Open multimaterial corner

The following 12W × 12W extended matrix of boundary and interface

conditions for an open multimaterial corner collects all the matrices for

the boundary and interface conditions of the multimaterial corner in a

way that it is compatible with the definition of the vector wcorner ext.

in (13.91):

Dcorner ext.(ϑ,ω,μ,ω
u) = blocked diag[DBC(ϑ0),DI(ϑ1), . . . ,DBC(ϑW )]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

DBC(ϑ0) 06×12 06×12 · · · 06×6

012×6 DI(ϑ1) 012×12

..

· · · 012×6

. ...
...

. . .
...

06×6 06×12 06×12 · · · DBC(ϑW )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦. (13.92)

Notice that some or all of the boundary or interface condition matrices,

DBC or DI , included in the definition of Dcorner ext.(ϑ,ω,μ,ω
u) may

additionally depend on the values of the angle of friction shear stress, and

on the assumed functions for the friction coefficient and for the angle of

sliding at the pertinent boundary surface or interface, which have not been

explicitly indicated in the right-hand side of (13.92) for the sake of notation

simplicity. When there are no sliding friction conditions in the corner, ω,

μ and ωu are omitted in (13.92). The matrix Dcorner ext.(ϑ,ω,μ,ω
u) is

orthogonal because of the orthogonality relations (13.51) and (13.58) of the

diagonal submatrices.

By reordering the vector of elastic variables at the wedge faces in (13.91)

into subvectors of prescribed and unknown variables according to the

boundary and interface condition relations (13.52) and (13.59), respectively,

the vector denoted aswcorner PU is obtained. This 12W×1 vector is reduced

to a (6W − F )× 1 vector wcorner U by omitting the prescribed zero values
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Computational Procedure for Singularity Analysis in Multimaterial Corners 647

of these variables,

wcorner PU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ..

wP (r, ϑ0)

wU (r, ϑ0)

wP (r, ϑ1)

wU (r, ϑ1)

.

wP (r, ϑW )

wU (r, ϑW )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, wcorner U =

⎡
⎢⎢⎢⎢⎢⎢⎣ ..

wU (r, ϑ0)

wU (r, ϑ1)

.

wU (r, ϑW )

⎤
⎥⎥⎥⎥⎥⎥⎦. (13.93)

By collecting all the boundary and interface condition relations in the

corner, (13.52) and (13.59), respectively, we can write, first,

wcorner PU = Dcorner ext.(ϑ,ω,μ,ω
u)wcorner ext. (13.94)

and, then, taking into account that Dcorner ext.(ϑ,ω,μ,ω
u) is an orthogonal

matrix,

wcorner ext. = DT
corner ext.(ϑ,ω,μ,ω

u)wcorner PU. (13.95)

In fact, the last relation collects all the relations (13.53) and (13.60)

for the boundary surfaces and interfaces of an open multimaterial corner.

By substituting this relation into (13.89) we obtain

Kcorner ext.(λ)D
T
corner ext.(ϑ,ω,μ,ω

u)wcorner PU = 06W×1. (13.96)

Finally, by removing the columns of the matrix Kcorner ext.(λ)

DT
corner ext.(ϑ,ω,m,ωu) multiplied by the prescribed zero values ofw(r, ϑw)

(w = 0,W ) the final form of the characteristic system for the singularity

analysis of an open multimaterial corner (also called a corner eigensystem)

is achieved:

Kcorner(λ,ω)wcorner U = 06W×1, (13.97)

where only the unknown values of λ and ω remain as arguments of the

characteristic matrix of an open multimaterial corner

Kcorner(λ,ω)

=

⎡
⎢⎢⎢
⎢⎢⎢
⎣

K1D̃
T
BC(ϑ0) −D̃T

1 (ϑ1) 06×n2 · · · 06×nW−1 06×nW

06×n0 K2D̃
T
2 (ϑ1) −D̃T

1 (ϑ2) · · · 06×nW−1 06×nW

..

. ...
...

. . .
...

...

06×n0 06×n1 06×n2 · · · KW D̃T
2 (ϑW−1) −D̃T

BC(ϑW )

⎤
⎥⎥⎥
⎥⎥⎥
⎦
,

(13.98)
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648 V. Mantič, A. Barroso & F. Paŕıs

nw is the number of rows in matrices D̃BC(ϑw), for w = 0, W , and (defind

in (13.53)) in the matrices D̃i(ϑw), for w = 1, . . . ,W − 1 and i = 1, 2.

Thus, according to Section 13.3.2, nw = 3, for w = 0, W , and nw = 6, for

w = 1, . . . ,W − 1, except for the faces where the sliding friction condition

is prescribed at ϑw, then nw is smaller by 1, i.e. nw = 2 and nw = 5,

respectively. Therefore, the matrix Kcorner(λ) is a 6W × 6W square matrix

if the sliding friction condition is not prescribed at any boundary surface

or interface of the corner (i.e., F = 0), whereas with a sliding friction

condition at one or more corner boundary surfaces or interfaces (i.e., F >

0) Kcorner(λ,ω) is a 6W × (6W − F ) rectangular matrix. In general, the

elements of the matrix Kcorner(λ,ω) are transcendental complex analytic

functions (holomorphic functions) of λ, including also real parameters ω for

sliding friction conditions.

It is instructive to see how the characteristic matrix of the corner

Kcorner(λ,ω) simplifies when there is only one wedge (i.e., W = 1) to a

6 × 6, 6 × 5 or 6 × 4 matrix, respectively, depending on whether there are

none, or one or two boundary surfaces with a sliding friction condition:

Kcorner(λ,ω) = [K1(λ)D̃
T
BC(ϑ0) −D̃T

BC(ϑ1)]. (13.99)

When there are only orthogonal boundary conditions prescribed at both

boundary surfaces of the wedge (W = 1), the characteristic system can

further be reduced, as in [19] (see also [22]), to the form:

Kcorner reduced(λ)wU (r, ϑ0) = 0, (13.100)

where

Kcorner reduced(λ) = Du(ϑ1)K
(1)
1 (λ)D̃T

u (ϑ0) +Du(ϑ1)K
(2)
1 (λ)D̃T

ϕ(ϑ0)

+Dϕ(ϑ1)K
(3)
1 (λ)D̃T

u (ϑ0) +Dϕ(ϑ1)K
(4)
1 (λ)D̃T

ϕ(ϑ0)

(13.101)

is a 3 × 3 matrix defined by partitioning the wedge transfer matrix K1(λ)

to four 3× 3 matrices in (13.86).

13.5.2.2. Closed multimaterial corner (periodic corner)

The following 12W × 12W extended rectangular matrix of interface

conditions for a closed multimaterial corner collects all the matrices of

interface conditions of the corner in such a way that it is compatible with
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Computational Procedure for Singularity Analysis in Multimaterial Corners 649

the definition of vector wcorner ext. in (13.91):

Dcorner ext.(ϑ,ω,μ,ω
u)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D2(ϑ0) 0n′
0×12 0n′

0×12 · · · 0n′
0×12 D1(ϑW )

D̃2(ϑ0) 0n0×12 0n0×12 · · · 0n0×12 D̃1(ϑW )

012×6 DI(ϑ1) 012×12 · · · 012×12 012×6

..

. ...
...

. . .
...

...

012×6 012×12 012×12 · · · DI(ϑW−1) 012×6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(13.102)

where n0 = nW is the number of rows in the matrices D̃2(ϑ0) and D̃1(ϑW ),

and n0 + n′
0 = 12.

Comments similar to those given after Eq. (13.92) are valid here as

well. In particular, the matrix Dcorner ext.(ϑ,ω,μ,ω
u) is orthogonal. Recall

that ϑW = ϑ0 + 360◦.
By reordering the vector of elastic variables for the wedge faces in

(13.91) into subvectors of prescribed and unknown variables according to

the interface condition relation (13.59), the vector denoted as wcorner PU is

obtained. This 12W×1 vector is reduced to a (6W − F )×1 vectorwcorner U

by omitting the prescribed zero values of these variables,

wcorner PU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

..

wP (r, ϑ0)
wU (r, ϑ0)

wP (r, ϑ1)

wU (r, ϑ1)

.

wP (r, ϑW−1)

wU (r, ϑW−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, wcorner U =

⎡
⎢⎢⎢⎢⎢⎢⎣ ..

wU (r, ϑ0)

wU (r, ϑ1)

.

wU (r, ϑW−1)

⎤
⎥⎥⎥⎥⎥⎥⎦. (13.103)

Several differences with respect to the similar vectors in (13.93) should be

noted. In particular, while wP (r, ϑ0) and wU (r, ϑ0) are 3 × 1 vectors (or

4 × 1 and 2 × 1, respectively, for a sliding friction condition) in (13.93),

representing the prescribed boundary conditions and unknowns at the

corner boundary at ϑ0, and similarly for ϑW , they are 6 × 1 vectors (or

7 × 1 and 5 × 1, respectively, for a sliding friction condition) in (13.103),

representing the prescribed interface conditions and interface unknowns.

By collecting all the interface condition relations in the corner (13.59),

we can write, first,

wcorner PU = Dcorner ext.(ϑ,ω,μ,ω
u)wcorner ext. (13.104)
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650 V. Mantič, A. Barroso & F. Paŕıs

and, then, taking into account that Dcorner ext.(ϑ,ω,μ,ω
u) is an orthogonal

matrix,

wcorner ext. = DT
corner ext.(ϑ,ω,μ,ω

u)wcorner PU. (13.105)

In fact, the last relation collects all the relations (13.60) for the interfaces

of a closed multimaterial corner. By substituting this relation into (13.89)

we obtain

Kcorner ext.(λ)D
T
corner ext.(ϑ,ω,μ,ω

u)wcorner PU = 06W×1. (13.106)

Finally, by removing the columns of the matrix Kcorner ext.(λ)

DT
corner ext.(ϑ,ω,μ,ω

u) multiplied by the prescribed zero values of

wP (r, ϑw) (w = 0,W −1) the final form of the characteristic system for the

singularity analysis of a closed multimaterial corner (also called a corner

eigensystem) is achieved:

Kcorner(λ,ω)wcorner U = 06W×1, (13.107)

where only the unknown values of λ and ω remain as arguments of the

characteristic matrix of a closed multimaterial corner

Kcorner(λ,ω)

=

⎡
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎣

K1D̃
T
2 (ϑ0) −D̃T

1 (ϑ1) 06×n2 · · · 06×nW−2 06×nW−1

06×n0 K2D̃
T
2 (ϑ1) −D̃T

1 (ϑ2) · · · 06×nW−2 06×nW−1

..

. ...
...

. . .
...

...

06×n0 06×n1 06×n2 · · · KW−1D̃
T
2 (ϑW−2) −D̃T

1 (ϑW−1)

−D̃T
1 (ϑ0) 06×n1 06×n2 · · · 06×nW−2 KW D̃T

2 (ϑW−1)

⎤
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎦
,

(13.108)

nw is the number of rows in the matrices D̃i(ϑw), for w = 0, . . . ,W −1 and

i = 1, 2. Thus, according to Section 13.3.2, nw = 6 for w = 0, . . . ,W − 1,

except for the interfaces where the sliding friction condition is prescribed

at ϑw, nw then being smaller by 1, i.e., nw = 5. Therefore, the matrix

Kcorner(λ) is a 6W × 6W square matrix if the sliding friction condition is

not prescribed at any corner interface (i.e., F = 0), whereas with the sliding

friction condition at one or more corner interfaces (i.e., F > 0)Kcorner(λ,ω)

is a 6W × (6W − F ) rectangular matrix.
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13.5.3. Solution of the characteristic system — Singular

elastic solution

We are looking for non-trivial solutions wcorner U �= 0 of the homogeneous

linear system (13.97) or (13.107), respectively, for an open or closed corner,

which define the characteristic (singular) elastic solutions of the corner

verifying the prescribed boundary and/or interface conditions. Any non-

trivial solution wcorner U �= 0 of (13.97) or (13.107) is a (right) null vector

of the matrix Kcorner(λ,ω). Thus, first we need to find the characteristic

(singular) values of λ and ω, which will provide a rank deficient matrix

Kcorner(λ,ω) (rank Kcorner(λ,ω) < 6W −F ) with a non-trivial (right) null

space.

In the most usual case without friction contact conditions, i.e., when

F = 0, the linear system (13.97) or (13.107), with a 6W×6W square matrix,

is a kind of nonlinear eigenvalue problem of the multimaterial corner

Kcorner(λ)wcorner U = 06W×1. (13.109)

The usual procedure for solving this nonlinear eigenvalue problem

begins by finding the roots λ of the matrix determinant, which are the

solutions of the characteristic equation of the corner (also called the corner

eigenequation),

detKcorner(λ) = 0. (13.110)

These roots, referred to as the characteristic (singular) exponents (also

called eigenvalues), are fundamental in the corner singularity analysis. From

the above, in general detKcorner(λ) is a transcendental complex analytic

function (a holomorphic function) of λ. Characteristic exponents usually

form an infinite discrete set in the complex plane defining an infinite set

of characteristic elastic solutions for the considered corner configuration.

It can be shown that if a complex λ is root of (13.110), its complex conjugate

λ̄ is a root of (13.110) as well. While characteristic exponents λ with Reλ >

0 lead to elastic solutions in the corner with a finite elastic strain energy,

Reλ < 0 correspond to elastic solutions with infinite strain energy, due to

a non-integrable singularity at the corner tip. In particular, characteristic

exponents with 0 < Reλ < 1 correspond to singular elastic solutions in the

corner with unbounded stresses and strains at the corner tip but a finite

elastic strain energy.

With friction contact conditions, i.e., when F ≥ 1, linear system (13.97)

or (13.107), with a 6W×(6W−F ) rectangular matrix, is an overdetermined
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652 V. Mantič, A. Barroso & F. Paŕıs

homogeneous system. An efficient and reliable way to determine if it has a

non-trivial solution for some particular values of λ and ω, and to evaluate

such a non-trivial solution, is to compute the singular value decomposition

(SVD) of the matrix Kcorner(λ,ω) [95, 96], by evaluating singular values

σi ≥ 0 (i = 1, . . . , 6W − F ). Let σmin(Kcorner(λ,ω)) denote the smallest

singular value. Then, the characteristic exponents λ and characteristic

friction-angles ω (which in the isotropic friction case coincide with the

characteristic sliding angles ωu) are determined by solving the following

characteristic equation of the corner with sliding friction contact:

σmin(Kcorner(λ,ω)) = 0. (13.111)

Due to the periodicity of the functions of ωki (i = 1, . . . F ) involved in

the definition of Kcorner(λ,ω), see (13.36) and (13.42)–(13.45), we typically

search for characteristic friction angles in the interval −180◦ ≤ ωki < 180◦.
It may be useful to write the characteristic equation of the corner as

a condition for a vanishing determinant, which is (at least theoretically)

equivalent to (13.111), by taking into account that the squares of the

singular values σ2
i are eigenvalues of the matrix of the least-squares system

for (13.97) or (13.107),

det(KT
corner(λ,ω)Kcorner(λ,ω)) = 0. (13.112)

An advantage of this explicit form of the characteristic equation of the

corner, in comparison with (13.111), is that we can search for roots of

a transcendental complex analytic function of λ and ωki (providing the

functions in (13.36) are also analytic functions) similarly as in (13.110).

However, a disadvantage of (13.112) may be that the algebraic multiplicity

of the roots λ is doubled.

Previous formulations for a corner singularity with sliding friction

contact are usually limited to corner configurations with uncoupled plane-

strain and antiplane-strain states [68, 70, 71, 73]. The novelty of the present

formulation is that in a corner singularity problem with friction under

generalized plane-strain conditions we find not only the characteristic

exponents λ as usual, but also the characteristic friction angles ω, which

solve the characteristic equation of the corner, (13.111) or (13.112).

It should be stressed that the present procedure leads to a closed-form

analytic expression of the matrix Kcorner(λ,ω), where the only numerically

computed values are the roots pα of the Lekhnitskii–Stroh sextic equation
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Computational Procedure for Singularity Analysis in Multimaterial Corners 653

for anisotropic materials (13.15), if analytic expressions of these roots are

not available. With the exception of very simple corner configurations, a

computational tool for symbolic computations should be used to evaluate

a closed-form expression of Kcorner(λ,ω). Furthermore, such a tool for

symbolic computation can be used to evaluate a closed-form analytic

expression of the corner eigenequation (13.110) or (13.112). In the present

work, Mathematica [97] has successfully been used for these purposes.

Finding the real or complex roots λ of nonlinear eigenequations

in the form of a vanishing determinant condition in (13.110) (and

similarly in (13.112)), which are in general given by complex analytic

functions (holomorphic functions), can be efficiently carried out by Muller’s

method [98, 99] or by more sophisticated algorithms [100]. Nevertheless,

special care should be taken in finding all the roots in a region of interest,

usually defined by an interval of the real part of λ, e.g., 0 < Reλ ≤ 1.

For this purpose, the argument principle (e.g., [101]) is an excellent tool

for identifying the number of roots of a holomorphic function, e.g., h(λ) =

detKcorner(λ), in a particular region of the complex plane. According to the

argument principle, the following integral along a closed contour C (without

self-intersections) in the complex plane:

J =
1

2πi

∮
C

h′(λ)
h(λ)

dλ, (13.113)

with h′(λ) denoting the complex derivative of h(λ), gives the change in the

argument of h(λ) around this contour (the difference between the final and

initial values of the continuously varying polar angle of the complex number

h(λ)) divided by 2π,

J =
1

2π
[arg(h(λ))]C . (13.114)

It can be shown that J equals the number of zeros of h(λ) (which has no

poles), including their multiplicity, inside the domain defined by C. This

statement is valid if there are no zeros of h(λ) on the contour C itself. The

integral in (13.113) can be evaluated by a numerical quadrature, usually

giving a number very close to an integer representing the number of zeros

of h(λ). Nevertheless, in the present work we employ the representation

(13.114). A couple of examples of applications of the argument principle

are given in Sections 13.7.1 and 13.7.2.
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654 V. Mantič, A. Barroso & F. Paŕıs

With sliding friction conditions at some corner surfaces, and taking

into account that a singular value of a matrix is always a real non-

negative number, it appears that an efficient way of finding the solutions

of the characteristic equation of the corner (13.111) is to apply a global

minimization procedure to σmin(Kcorner(λ,ω)) as an objective function of

λ and ω from a feasible region of interest, e.g., defined by 0 < Reλ < 1 and

−180◦ ≤ ωki < 180◦. The region of interest should be thoroughly explored

by an automatic and reliable minimization procedure capable of finding all

the minimizer pairs λ and ω for which the objective function vanishes, i.e.,

σmin(Kcorner(λ,ω)) = 0. Note that the minimization procedure requires the

computation of the SVD of Kcorner(λ,ω) for all pairs λ and ω considered

in the minimization iterations.

Once a particular value of the characteristic exponent λ, and with

friction contact also of the vector of the characteristic friction angles ω,

is obtained as a solution of the characteristic equation of the corner, the

corresponding behavior of the displacements and stresses inside the corner

can easily be computed. The procedure starts by computing a corresponding

non-trivial solutionwcorner U �= 0 of the homogeneous linear systems (13.97)

or (13.107) considering a fixed value of the radial coordinate r, e.g., r = 1.

The values of wcorner U with the pertinent radial dependence are obtained

by multiplying it by rλ, wcorner U(r) = rλwcorner U(r = 1). Completing

wcorner U with zero values of wP(r, ϑw), see (13.93) and (13.103), leads to

the corresponding wcorner PU �= 0. Then, wcorner ext. in (13.91) is evaluated

by means of (13.95) or (13.105). Now, from ww(r, ϑw−1), known for any

w = 1, . . . ,W , we can compute wm(r, θm−1) for all single-material wedges

in a multimaterial wedge w, with indices m = iw, . . . , jw, by sequentially

employing the transfer relation (13.66). Finally, we compute the Cartesian

components of the displacement and stress function vectors, u(r, θ) and

ϕ(r, θ), inside a single-material wedge m by a transfer relation analogous

to (13.66):

wm(r, θ) = Em (λ, θ, θm−1)wm(r, θm−1) for θm−1 ≤ θ ≤ θm.

(13.115)

Then, the displacement vector and stress tensor in cylindrical

coordinates are obtained as follows [28, Sec. 7.3]:

ur = −sTr (θ)u(r, θ), uθ = nT (θ)u(r, θ), u3 = sT3 u(r, θ), (13.116)
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Computational Procedure for Singularity Analysis in Multimaterial Corners 655

and

σrr = sTr (θ)ϕ,θ(r, θ)/r, σθθ = nT (θ)ϕ,r(r, θ),

σrθ = −nT (θ)ϕ,θ(r, θ)/r = −sTr (θ)ϕ,r(r, θ),

σr3 = −sT3 (θ)ϕ,θ(r, θ)/r, σθ3 = sT3 (θ)ϕ,r(r, θ), (13.117)

and σ33 is evaluated from the condition ε33 = 0. Taking into account that

if wcorner U �= 0 is a solution of the homogeneous linear system (13.97) or

(13.107) then also cwcorner U, where c �= 0, solves this system as well, it is

useful to standardize the corresponding singular elastic solution obtained in

the corner. A practical approach is to make a stress component at a suitably

defined position in the corner equal to a given constant, e.g., requiring

σθθ(r = 1, θ∗) = (2π)Reλ−1 [102] where θ∗ is a specific angle in the corner

(the angle of a wedge face, angle of the corner symmetry or antisymmetry

plane if it exists, etc.). In this way, the standardized characteristic angular

functions g
(n)
i (θ) and f

(n)
ij (θ) introduced in (13.2) and (13.3) are defined for

a particular characteristic exponent λ = λn.

With reference to the corner singularity analysis with friction contact

conditions, and as explained in Section 13.3.2, each solution of the

characteristic equation of the corner (13.111) obtained should be checked

to see if it satisfies the compression condition (σθθ(r, ϑw) ≤ 0) and the

friction dissipation condition (although the relative tangential displacement

obtained by the solution of the characteristic system is parallel to k(ϑw , ω
u),

we still should check its orientation with respect to the friction shear stress

to guarantee the dissipative character of the friction) at all the friction

surfaces of the corner. It appears that oscillatory solutions for a complex

characteristic exponent λ are not compatible with these compression

and friction dissipation conditions; consequently only real characteristic

exponents λ are essentially admissible. Nevertheless, it is well known that

complex characteristic exponents λ may appear in cracks at the straight

interface between two anisotropic bodies with a frictionless contact zone

at the crack tip [65–70]. Thus, assuming solution continuity with respect

to a vanishing friction coefficient, it can be expected that similar complex

characteristic exponents λ can also appear for sliding friction contact in

a corner singularity analysis, a hypothesis that should still be checked

numerically. Although, strictly speaking, such solutions are not admissible,

in the global problem solution the portion of the contact zone adjacent to
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656 V. Mantič, A. Barroso & F. Paŕıs

the corner tip, where these compression and friction dissipation conditions

can be violated, could be of a very small size with respect to other

characteristic lengths of the whole problem. Then, such a solution might

be accepted, in the same way that crack face overlapping in an oscillatory

solution of an open model of interface cracks is accepted with the hypothesis

of small scale contact [103].

13.6. Evaluation of GSIFs

When the characteristic exponents λn and the characteristic angular

shape functions g
(n)
i (θ) and f

(n)
ij (θ) in the asymptotic series expansions

of the elastic solution in a corner in (13.2) and (13.3) are known, the

only unknowns in these series to be determined are the generalized

stress intensity factors Kn (GSIFs), which are coefficients of power-type

singularities. The evaluation of the GSIFs usually requires a numerical

model of the whole problem. Techniques for the evaluation of GSIFs

can roughly be divided into four basic groups, see Table 13.5, according

to their local or global character and whether they are implemented in

the solution or post-processing stage of FEM or BEM analysis. Local

techniques are usually sensitive to the accuracy of the numerical solution

for stresses or displacements close to the corner tip, while global techniques,

working also, or only, with the elastic solution far from the corner tip, are

less sensitive to the solution accuracy at the corner tip. Techniques for

extracting GSIFs from a numerical FEM or BEM solution in the post-

processing stage do not need to be incorporated into the FEM or BEM

codes, but do not typically have as good accuracy as methods which directly

incorporate the singularity shape functions into the problem discretization,

usually requiring a modification of these codes. References for techniques in

Table 13.5. Classification of procedures for the evaluation of GSIFs.

Local/Global techniques Global techniques

Extraction of GSIFs from
FEM or BEM solution in
the post-processing stage

Least-squares
fitting [40, 108–111]

Conservative integrals
[2, 105, 107, 112–117]

Local techniques Global techniques

Incorporation of singularity
shape functions in
problem discretization

Quarter point
elements [118–120] and
other singularity
elements [121]

Functions in the whole
domain or boundary
[41, 122]
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Computational Procedure for Singularity Analysis in Multimaterial Corners 657

these groups are included in Table 13.5; further information can be found

in [6, 8, 41]. Examples of the evaluation of GSIFs involving anisotropic

materials can be found in [104, 105] by means of the H-integral, and

in [106, 107] by means of the M -integral along with other techniques.

13.6.1. Least-squares fitting technique

The technique presented in this section is based on least-squares fitting of

the finite asymptotic series expansions in (13.2) and (13.3) to the numerical

results for the displacements and/or stresses in a multimaterial corner [40].

This is a reliable, accurate and easy-to-use technique for the extraction

of GSIFs with no need to modify the FEM or BEM code applied. It has

no limits for the number of power stress singularities considered in the

analysis and shows an acceptable robustness when employing numerical

results relatively far from the corner tip.

The technique minimizes an error function J

J(K1, . . . , KN) = aJu(K1, . . . , KN ) + bJσ(K1, . . . , KN ) (a, b ≥ 0),

(13.118)

with

Ju(K1, . . . , KN ) =
∑

α=r,θ,3

Nr∑
i=1

Nθ∑
j=1

aα

×[useriesα (ri, θj, K1, . . . , KN)− uBEMα (ri, θj)]
2 (aα ≥ 0),

(13.119)

Jσ(K1, . . . , KN ) =
∑

α=r,θ,3

Nr∑
i=1

Nθ∑
j=1

bα

×[tseriesα (ri, θj , K1, . . . , KN)− tBEMα (ri, θj)]
2 (bα ≥ 0),

(13.120)

where Ju and Jσ compute the sums of squares of differences between the

numerical and analytical solution in terms of displacements and stresses,

respectively, at a number of points (usually nodes of a mesh) given by polar

coordinates (ri, θj). The numerical and analytical solutions are denoted

with the superscripts ‘BEM ’ and ‘series ’, as the first is obtained from a

BEM model in the present work and the second is given by the asymptotic

series expansion in (13.2) and (13.3). In (13.118), a and b are weighting
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658 V. Mantič, A. Barroso & F. Paŕıs

factors, which allow us to consider only displacements (a, b) = (1, 0), only

stresses (a, b) = (0, 1) or both (a, b) = (l−2, σ−2), l and σ being some

characteristic length and stress values so that the terms given by the

displacements and stresses have values of the same order of magnitude.

Similarly, the dimensionless weighting factors in (13.119) and (13.120),

aα and bα, allow the isolated components of the nodal displacements and

tractions to be used. The points used for the evaluation of J in (13.118)

are placed in the present work, without loss of generality, along radial lines

defined by the corner boundaries and interfaces. This is a natural option

when a BEM model is used as any BEM mesh has nodes at these locations.

Thus, Nr and Nθ in (13.119) and (13.120) denote the number of BEM nodes

at each radial line and the number of radial lines employed, respectively,

as schematically illustrated in Fig. 13.3. Nevertheless, when using an FEM

model, J can be evaluated at an arbitrary set of nodes in the corner.

The set of GSIFs Kn (n = 1, . . . , N) which minimizes J is obtained by

solving the following linear system of equations:

∂J(K1, . . . , KN)

∂Kj
= 0 (j = 1, . . . , N). (13.121)

The present technique admits solutions with complex values of

GSIFs. If a characteristic exponent λ is a complex number, as in the

open model of interface cracks, then its complex conjugate λ̄ is also a

characteristic exponent. The associated GSIF is also a complex number

K = KR + iKI, where KR and KI are real numbers. In this case, two

real terms can be included in (13.2) and (13.3) instead of two complex

terms. In the representation of displacements, one term would be equal

to KR Re�rλ gi(θ)� and the other to KI Im�rλ gi(θ)�, while in the

Nr

Nr

Nr
Nr

Nr
j=1

j=2

...

j=3

j=Nθ -1

j=Nθ

Fig. 13.3. BEM nodes for least-squares fitting.
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Computational Procedure for Singularity Analysis in Multimaterial Corners 659

representation of stresses, one term would be equal to KR Re�rλ−1 fij(θ)�
and the other to KI Im�rλ−1 fij(θ)�.

13.6.2. Implementation, accuracy and robustness

We will now briefly discuss additional issues regarding the implementation,

accuracy and robustness of the above technique. First, the linear system

arising from (13.121) is calculated explicitly. For the sake of simplicity and

without loss of generality, let only the radial displacement component ur
be included in the error function J , by choosing ar =1, aθ = a3 = 0, a = 1

and b = 0. The displacement ur at a point p (usually a BEM mesh node)

defined by the radius ri and polar angle θj is approximated by using N

terms of the asymptotic series expansion representation (13.2) as

useriesr (ri, θj) ∼=
N∑
n=1

Knr
λn

i g(n)r (θj) =
N∑
n=1

apnKn, (13.122)

where apn = rλn

i g
(n)
r (θj) is the coefficient for the Kn term of the series

expansion of ur in (13.2) evaluated at the point p with the polar coordinates

(ri, θj). The derivative of the error function J with respect to Kj evaluated

at P points (p = 1, . . . , P ) is a linear function of Kn (n = 1, . . . , N), which

can be expressed as follows:

∂J

∂Kj
= 2

P∑
p=1

{
N∑
n=1

apnKn − uBEMr (p)

}
apj

= 2
P∑
p=1

{
N∑
n=1

apnKnapj − apju
BEM
r (p)

}
= 0, (13.123)

where uBEM
r (p) = uBEM

r (ri, θj) denotes the displacement ur at the point p.

Equation (13.123) is written in matrix notation as

AT ·A ·K = AT · b, (13.124)

where A is a P × N matrix, P and N being respectively the number of

points (nodes) used for building the error function J , and the number of

terms in the series (13.2) expansion (the number of GSIF values). As long

as the number of points P is greater than the number of terms considered

for the displacement representationN , A is a rectangular matrix with more

rows than columns and thus expected to have full rank N. K is the N × 1
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vector of unknowns (GSIF values) and b is the P × 1 vector of numerical

results for ur at the chosen points. Hence,

A =

⎡
⎢⎣
a11 · · · a1N
...

...

aP1 · · · aPN

⎤
⎥⎦, K =

⎡
⎢⎣ ..

K1

.

KN

⎤
⎥⎦, b =

⎡
⎢⎣ ..

b1
.

bP

⎤
⎥⎦. (13.125)

It is clear that the N ×N square matrix AT ·A can have rank=N if

and only if the number of points P is equal to or greater than the number

N of GSIFs to be calculated. Only in that case can the inverse of AT ·A
exist and be computed.

Equation (13.124) is a typical matrix expression that appears when

solving an overdetermined linear system

A ·K = b, (13.126)

using the 2-norm minimization minK‖A ·K− b‖2, see [95, 96]. Notice that

the fulfilment of (13.126) corresponds to the vanishing differences in the

error function J , i.e., J = 0.

The solution b of the full rank least-squares problem is theoretically

unique. Nevertheless, due to the nature of the matrix components apn =

rλn

i g
(n)
r (θj), the evaluation of the matrix AT ·A using only points very close

to the corner tip has been shown to give rise to ill-conditioned matrices with

numerically computed rank (AT ·A) < N . This ill-conditioning includes the

cases in which the number of points P exceeds the number of GSIF terms N

and the matrix A has numerically computed full rank N . The conditioning

number for the 2-matrix norm [95, 96] κ(A) = ‖A‖2‖A+‖2 = σmax/σmin,

where A+ is the pseudoinverse of A, and σmax and σmin, respectively,

are the maximum and minimum singular values of A, gives an indication

of the conditioning of the problem. It has numerically been verified [40]

that κ(A) in these cases (in which the number of points P exceeds only

slightly the number of GSIF terms N) may be around 103 times higher than

the conditioning number obtained in those cases where P is much greater

than N .

Also the relative proximity between the nodes chosen for the evaluation

of the error function J or, equivalently, matrix A has been shown to affect

the numerical conditioning of AT ·A. When consecutive nodes are chosen

for the evaluation of J , the number of points needed for AT · A to have

numerically computed full rank has been shown to be significantly greater

than when non-consecutive nodes are chosen.
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Taking all these considerations into account, the least-squares solution

has been computed in the present work, solving the system in (13.126)

by means of the QR decomposition of matrix A, which is known to be

more accurate than directly solving the system in (13.124) with a possibly

ill-conditioned matrix AT ·A.

13.7. Examples of Singularity Analysis

Two problems regarding multimaterial corners with composite materials are

studied applying the computational tools developed in the previous sections

and implemented in Mathematica [97] and numerical BEM codes [78, 79]

with the aim of showing the capabilities of these tools and validating

them. Both problems are of unquestionable engineering interest. The first

is related to failure initiation in cross-ply laminates [0/90]s under tension.

The second deals with the failure analysis of an adhesively bonded double-

lap joint (between a composite laminate [0n] and an aluminium plate using

an epoxy adhesive layer) subjected to tension load.

13.7.1. Transverse crack terminating at the interface in a

[0/90]S laminate

A transverse crack in the inner 90◦ ply of a cross-ply [0/90]S laminate under

tensile loading is considered, see [79] and Fig. 13.4(a). The transverse crack

terminates perpendicularly at the interface with the outer 0◦ plies and the

crack faces are assumed to be free. The neighborhood of the crack tip can

be considered as a trimaterial corner, Fig. 13.4(b). The elastic properties

of the unidirectional fiber-reinforced plastic ply (AS4/8552) considered as

an orthotropic material are E11 = 141.3GPa, E22 = E33 = 9.58GPa,

G12 = G13 = 5.0GPa, G23 = 3.5GPa, ν12 = ν13 = 0.3, ν23 = 0.32, where

subscript 1 denotes the fiber direction. The material in both plies is the same

but they have a different spatial orientation. Due to the material symmetries

and corner configuration, the in-plane and antiplane displacements are

uncoupled.

In this study, first a complete singularity analysis of the trimaterial

corner shown in Fig. 13.4(b) is carried out by solving (13.110) by finding

characteristic exponents with 0 < Reλ < 2. The influence of the treatment

of material degeneracy in the Lekhnitskii–Stroh formalism on the accuracy

of the singularity analysis results is discussed. Then, the whole problem

shown in Fig. 13.4(a) is solved by means of a BEM model such as that
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662 V. Mantič, A. Barroso & F. Paŕıs

90o ply
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55

 m
m

0.
55

 m
m

1.
10
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90o0o 0o

(a)

(b)

Fig. 13.4. (a) Cross-ply [0/90]S laminate under tensile loading with a transverse crack
terminated at the interface. (b) Neighborhood of the transverse crack tip.

used in [79], a few GSIFs are evaluated by a least-squares fitting procedure

(Section 13.6), and finally, to check the computational tools developed in the

present work, the stresses computed by BEM at interior points of the corner

are compared with those derived from the series approximation (13.3).

The roots of the characteristic equation of the corner (13.110) are

found, by means of the argument principle (13.114), inside a rectangular

contour in the complex plane defined by its corners 0.1− i0.9, 1.95− i0.9,

1.95 + i0.9 and 0.1 + i0.9, see Fig. 13.5; no roots exist along this contour.

The argument principle indicates that inside the contour, in the domain

with 0.1 < Reλ < 1.95 and −0.9 < Imλ < 0.9, there are 11 roots

of (13.110), including their multiplicities. The characteristic exponents

found are: λ1 = 0.471654 (antiplane), λ2 = 0.521510 (antisymmetric),

λ3 = 0.669888 (symmetric), λ4,5,6 = 1 (a root of multiplicity three,

one for rigid body rotation, one is an antiplane term and the third is a

symmetric term), λ7 = 1.52834 (antiplane), λ8 = 1.73425 (symmetric),

λ9,10 = 1.84194 ± 0.308109i (both antisymmetric) and λ11 = 1.89369

(symmetric). The labels symmetric and antisymmetric refer to plane-strain

elastic solutions corresponding to particular terms in (13.2) and (13.3),

which are symmetric or antisymmetric with respect to the transverse crack

plane, whereas the label antiplane refers to an antiplane elastic solution
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Fig. 13.5. Characteristic exponents for the open trimaterial corner in Fig. 13.4(b).

corresponding to a term in (13.2) and (13.3). In the case of complex roots,

special care should be taken to identify them, especially those having

Reλ > 1, because of typically large variations in the determinant of the

characteristic matrix there, making it difficult to find roots using standard

algorithms such as Muller’s method [98, 99], and thus more sophisticated

algorithms may be required [100].

In many previous works on corner singularity analysis with anisotropic

materials, only non-degenerate materials (in the Lekhnitskii–Stroh

formalism of anisotropic elasticity) are treated explicitly, so it seems

useful to analyse briefly the possible influence of an approximation of

a degenerate material by a non-degenerate one on the results of the

singularity analysis. For instance, let the unidirectional fiber-reinforced

plastic ply (AS4/8552) be modeled as an elastic transversely isotropic

material (instead of an orthotropic one) defined by five independent elastic

constants (instead of nine): E = 9.58GPa and ν = 0.32 define its isotropic

behavior in the 2–3 plane, and E11 = 141.3GPa, ν12 = ν13 = 0.3

and G12 = G13 = 5.0GPa. Notice that the shear modulus in the 2–3

plane is G = E/2(1 + ν) = 3.629GPa (instead of G23 = 3.5GPa

as given by the manufacturer considering this ply as an orthotropic

material). A change in the spatial orientation of a transversely isotropic

material can lead to a mathematical degeneracy in the Lekhnitskii–Stroh

formalism [25, 36, 87] and if explicit expressions of theA andBmatrices for

the corresponding degenerate material are not available, only approximate
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Fig. 13.6. Influence of the fiber-angle perturbation φ in the 90◦ ply on the characteristic
exponents for the open trimaterial corner in Fig. 13.4(b).

singularity analysis of a corner including this material can be carried out

through using a small perturbation of the elastic constants or spatial

orientation of the material leading to a non-degenerate case. However,

the accuracy of the results obtained by such a procedure is not known

a priori. To illustrate these facts, Fig. 13.6 shows the numerical results

for the characteristic exponents λ1 (antiplane), λ2 (antisymmetric) and

λ3 (symmetric), considering small perturbations of the spatial orientation

of the transversely isotropic material. These characteristic exponents were

obtained using a specific Mathematica [97] code developed for this kind

of material in [25], employing standard machine precision for floating

point computation, which is about 15–16 decimal digits. In particular,

the influence of the fiber-angle perturbation φ of the 90◦ ply, which is a

degenerate case [25], is studied. The relative error of the actual value of

λi with respect to the solution for a vanishing fiber-angle perturbation

φ = 0◦ is plotted as a function of φ. Numerical instabilities are seen for

small fiber-angle perturbations. Consequently, the characteristic exponents

obtained by approximating a degenerate material (φ = 0◦) with a non-

degenerate one (φ �= 0◦) with a sufficiently small fiber-angle perturbation

may lead to significant numerical errors, as the threshold angle below which

numerical instabilities appear is a priori unknown, and depends on the

corner configuration. Therefore, in the present work all the mathematically

degenerate cases are dealt with using the corresponding expressions

introduced in the previous sections, which provide high accuracy in the

evaluation of characteristic exponents and functions.
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Computational Procedure for Singularity Analysis in Multimaterial Corners 665

The plane-strain solution of the elastic problem defined in

Fig. 13.4(a) is symmetric with respect to the transverse crack plane,

and the crack is expected to open because of the tensile load

applied perpendicularly to this plane. Thus, only the characteristic

exponents marked as symmetric in Fig. 13.5, namely λ3 =0.669888

for singular stresses and λ6 =1, λ8 =1.73425 and λ11 =1.89369 for

finite stresses, are included in the 2D asymptotic series expansions

(13.2) and (13.3) in the neighborhood of the transverse crack tip. The

GSIFs extracted from the BEM results using the least-squares fitting

technique, standardized following [102] in such a way that the stress

component σθθ|θ=0◦ =K/(2πr)1−λ, are Kr(λ=1) = −0.0000203291MPa,

K3(λ=0.669888) = 0.561634MPa ·mm0.330112, K6(λ=1) = 0.694945MPa,

K8(λ=1.73425) = 0.522112MPa ·mm−0.73425 and K11(λ=1.89369) = −
0.288119MPa ·mm−0.89369, the Kr term being associated with rigid body

rotation. The BEM results used in the least-squares fitting are the two

displacement components (ur, uθ) along the radial lines emerging from

the corner tip at θ = 90◦ and 180◦, computed at the nodes of the BEM

mesh in the range 10−5mm < r < 0.3mm. Figure 13.7 shows the results

for the stress components as functions of the angular coordinate θ, for a

fixed radial coordinate r = 0.1mm, obtained by both the BEM model

and the asymptotic series approximation (13.3) using the extracted GSIFs
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Fig. 13.7. Stress components evaluated by BEM and by the asymptotic series expansion
at a distance r = 0.1mm from the corner tip.
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666 V. Mantič, A. Barroso & F. Paŕıs

values. The fitting of both approximations for all three stress components

is excellent along the whole range of θ. As could be expected, in view of the

relative stiffnesses of the plies in the load direction parallel to the interface

(the 0◦ ply is much stiffer than 90◦ ply), much higher stresses are observed

in the 0◦ than in 90◦ ply. Notice the discontinuity of the σr stress component

at the interface (θ = 90◦) between the 0◦ and 90◦ plies.

13.7.2. Bimaterial corner in an adhesively bonded

double-lap joint

13.7.2.1. Singularity analysis of a closed corner

In an adhesively bonded double-lap joint between an aluminium plate

and a composite laminate [0n] with an epoxy adhesive layer as shown

in Fig. 13.8, several multimaterial corners can be identified. We will look

at corner B, a closed bimaterial corner (the two materials are perfectly

bonded at both interfaces), because it is a critical point at which failure

typically initiates in this type of joint [123, 124]. The elastic properties

of the unidirectional fiber-reinforced plastic ply are the same as in the

first example in Section 13.7.1; the elastic properties of the adhesive are

E = 3.0 GPa and ν = 0.35 and of the aluminium E = 68.67GPa and

ν = 0.33. Thermal stresses, which could arise in the curing process, are not

considered [125].

In this study, first a comprehensive singularity analysis of the closed

bimaterial corner B, Fig. 13.8, is carried out solving (13.110) by finding

characteristic exponents with 0 < Reλ < 1.5. Then, the double-lap joint

problem shown in Fig. 13.8 is solved by means of a BEM model such as that

metal

adhesive

metal

adhesive
0o

adhesive

0o

adhesive
adhesive

0o

adhesive

0o

metal

adhesive

metal

adhesive

CFRP [0]12

(2.2 mm thickness)Aluminium
(3.2 mm thickness)

12.5 mm

A B C D

Adhesive layer
thickness = 0.1 mm

Fig. 13.8. Multimaterial corners in an adhesively bonded double-lap joint between an
aluminium plate and two carbon-fiber-reinforced polymer (CFRP) laminates.
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Computational Procedure for Singularity Analysis in Multimaterial Corners 667

used in [124]. Three GSIFs for elastic plane-strain solutions are evaluated by

a least-squares fitting procedure (Section 13.6), and finally, in order to check

the computational tools developed in the present work, a displacement

component computed by BEM at interior points of the corner is compared

with the series approximation (13.2), identifying the contribution of each

term in the series expansion.

The roots of the characteristic equation of the corner (13.110) are

found, using the argument principle (13.114), inside a rectangular contour

in the complex plane defined by its corners 0.1− i0.9, 1.5− i0.9, 1.5 + i0.9

and 0.1 + i0.9, see Fig. 13.9; there are no roots along this contour. The

argument principle indicates that inside the contour, in the domain with

0.1 < Reλ < 1.5 and −0.9 < Imλ < 0.9, there are six roots of (13.110),

including their multiplicities. The characteristic exponents found are all

real numbers: λ1 = 0.763236, λ2 = 0.813696, λ3 = 0.889389, λ4 = 1,

λ5 = 1.106980, λ6 = 1.185066, all having a multiplicity equal to 1. The roots

λ2 and λ6 correspond to antiplane solutions, while λ4 is for rigid body

rotation.

The elastic problem of the double-lap joint defined in Fig. 13.8 is solved

under plane-strain conditions. Thus, only two characteristic exponents λ1 =

0.763236 and λ3 = 0.889389 for singular stresses and one characteristic

exponent λ5 = 1.106980 for finite stresses are considered in the following

series approximations of the displacements (where the rigid body rotation
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Fig. 13.9. Characteristic exponents for the closed bimaterial corner B in Fig. 13.8.
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668 V. Mantič, A. Barroso & F. Paŕıs

term is also included) and stresses in the neighborhood of the corner tip:

ui(r, θ) ∼= K1r
0.763236g

(1)
i (θ) +K3r

0.889389g
(3)
i (θ)

+K4r
1g

(4)
i (θ) +K5r

1.106980g
(5)
i (θ), (13.127)

σij(r, θ) ∼= K1

r0.236764
f
(1)
ij (θ) +

K3

r0.110611
f
(3)
ij (θ) +K5r

0.106980f
(5)
ij (θ).

(13.128)

As an example, Fig. 13.10 shows the angular shape functions for the

first singular term with λ1 = 0.763236. Recall that f
(n)
ij are dimensionless

functions whereas the dimension of g
(n)
i (with the exception of the

dimensionless g
(4)
i for rigid body rotation) is F−1L2 where F and L denote

force and length, respectively. Notice that all the characteristic angular

shape functions shown in Fig. 13.10 are continuous except for f
(1)
rr , which

suffers jumps at the interfaces (θ = 0◦ and 90◦).
The plane-strain solution of the elastic problem shown in Fig. 13.8 can

be obtained analysing only half of the aluminium plate and one CFRP

laminate because of the problem symmetry. The right end of the CFRP

laminate is fixed while the left end of the aluminium plate has a tensile

stress of 125MPa. Figure 13.11 shows a detail (for the overlap area) of the

deformed shape calculated by the BEM model employed.
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Fig. 13.10. Angular shape functions for λ1: g
(1)
r (θ), g

(1)
θ (θ), f

(1)
θθ (θ), f

(1)
rθ (θ) and f

(1)
rr (θ).
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Fig. 13.11. Deformed shape of the BEM mesh and undeformed boundaries, detail of
the overlap zone (in mm).
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Fig. 13.12. Displacement component ur evaluated by BEM and by the asymptotic series
expansion at r = 0.0194mm from the corner B tip.

The GSIFs extracted from the BEM results using the least-

squares fitting technique [40], standardized as proposed by [102] in

such a way that the stress component σθθ|θ=0◦ =K/(2πr)1−λ, are

Kr=K4(λ=1) = − 0.00356242MPa, K1(λ=0.763236) = −0.00275036MPa ·
mm0.236764, K2(λ=0.889389) = 0.0273839MPa ·mm0.110611, K3(λ=1.106980) =

−0.0114328MPa ·mm−0.10698. The BEM results used in the least-squares

fitting are the two displacement components (ur, uθ) along the radial lines

emerging from the corner tip at θ = 0◦ and 90◦. The BEM mesh has

a progressive mesh refinement towards the corner tip, with the smallest

element having a length of 10−8mm; the selected range of the nodes is

from 10−6mm to 0.025mm. Figure 13.12 shows the results for the ur
displacement component as a function of the angular coordinate θ, for a
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670 V. Mantič, A. Barroso & F. Paŕıs

fixed radial coordinate r = 0.0194mm, obtained by the BEM model and by

the asymptotic series approximation (13.2) particularized in (13.127) using

the extracted GSIFs values. The contribution of each term in (13.127) is

also indicated, showing that even the approximation given by the two-term

series (term 1 + term 2) is reasonably close to the BEM results while the

fitting of BEM results by the three-term series approximation (term 1 +

term 2 + term 3) is excellent along the whole range of θ.

13.7.2.2. Singularity analysis of a corner including an interface

crack with sliding friction contact

This section shows some results of a singularity analysis of the corner B in

Fig. 13.8 altered by the presence of a crack at the interface between the

composite lamina and adhesive at θ = 90◦. Such cracks were observed in

experimental tests of double-lap joints [123, 124]. During the service life

of this kind of joint and in testing under cyclic loading, the crack faces

can make contact with each other and slide in any direction. To show

the capability of the computational tools developed for the singularity

analysis of sliding friction contact with coupled in-plane and antiplane

displacements, the angle of the fibers in the unidirectional composite lamina

was changed from φ = 0◦ (parallel to the load in the original configuration in

Fig. 13.8) to φ = 90◦ (perpendicular to the load), while the fibers keep their

horizontal position indicated in Fig. 13.8. An isotropic Coulomb friction

model, with ω = ωu in (13.36), is considered with a relatively large value

for the friction coefficient μ = 1, in order to have a noteworthy influence of

friction on the solution behavior.

Solutions of the characteristic equation of the corner (13.111) are given

by pairs of characteristic exponents λ and characteristic friction angles ω.

We searched for 0 < λ < 1 and −180◦ ≤ ω < 180◦. Plots of the contours of

the function σmin(Kcorner(λ, ω)) from (13.111) for φ = 0◦ and 40◦ are shown
in Fig. 13.13 as examples. Some of the zeros (global minima) are indicated

by arrows. For the case φ = 0◦, Fig. 13.13(a), besides the expected values of

the characteristic friction angles ω = 0◦, ±90◦, ±180◦, characteristic values
at ω = ±79.7◦ are unexpectedly found, which represent singular elastic

solutions with coupled in-plane and antiplane displacements, in spite of the

symmetry of this corner configuration with respect to the plane (x1–x2).

For the case φ = 40◦, Fig. 13.13(b), all the singular solutions found have

coupled in-plane and antiplane displacements as expected due to the non-

symmetric corner configuration. For all the solutions of (13.111) the energy
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ω

λ

ω

λ
(a) (b)

Fig. 13.13. Contour plots of σmin(Kcorner(λ, ω)) from (13.111) for fiber angles
(a) φ = 0◦ and (b) φ = 40◦.

dissipation condition under proportional loading (Section 13.5.3) is checked

a posteriori, the arrows in Fig. 13.13 showing only those solutions (global

minima) which satisfy this condition.

The solutions of (13.111) are plotted in Fig. 13.14 as functions of the

fiber angle φ. Only solutions satisfying the energy dissipation condition are

shown and the same symbols are used in both plots for the corresponding

values of λ and ω. Only slight variations in the values of λ and ω are

observed. Some of the series of characteristic values shown in Fig. 13.14 are

shorter than others because, surprisingly, the singular elastic solutions with

the remaining characteristic values violate the energy dissipation condition.

13.8. Failure Criterion for a Multimaterial Closed Corner

Based on Generalized Fracture Toughness

This section introduces a quite general criterion for failure initiation at a

multimaterial corner based on generalized stress intensity factors (GSIFs)

and associated generalized fracture toughnesses. It is necessary to have

an experimental procedure capable of generating the corresponding failure

envelope covering all fracture mode mixities.

Consider a multimaterial corner under a plane strain with two stress

singularities, represented by two terms (typically referred to as singular

modes) in the asymptotic series expansion (13.3) defined by characteristic
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Fig. 13.14. Plots of (a) characteristic exponents λ and (b) characteristic friction angles
ω for corner B, Fig. 13.8, for a crack in sliding friction contact with friction coefficient
μ = 1. Only characteristic values with singular elastic solutions satisfying the energy
dissipation condition are shown.

exponents λ1 and λ2, which are assumed to govern the failure initiation at

the corner tip through the associated GSIFs K1 and K2. Then, a general

corner failure criterion can be expressed as

K = κC(ψ), (13.129)
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where

K =

√(
K1

K1C

)2

+

(
K2

K2C

)2

(13.130)

is a normalized GSIF modulus (a dimensionless magnitude), ψ is a

normalized fracture-mode-mixity angle,

tanψ =
K2/K2C

K1/K1C
, (13.131)

and κC(ψ) is a dimensionless function of ψ giving the critical value of

K. K1C and K2C are the generalized fracture-toughness values for pure

singular modes, i.e., when either K2 or K1 equals zero, respectively. In

particular, they can be chosen so that κC(0
◦) = κC(90

◦) = 1. ψ = 0◦

corresponds to K1 > 0 and K2 = 0 while ψ = 90◦ to K2 > 0 and

K1 = 0. Unlike the traditional fracture-mode-mixity definition for a crack,

tanψ = (K2/K1), the inclusion of the generalized fracture toughnesses in

(13.131) is due to the different dimensions of K1 andK2 in the present case.

The parameterization (ψ, κC(ψ)) defines a hypothetical failure envelope

curve in the plane (K1/K1C , K2/K2C).

The size-scale effect should be taken into account when evaluating

GSIFs in geometrically similar specimens. From dimensional analysis, a

GSIF can be expressed as [80]

Kk = σnomR
1−λkAk, (13.132)

where σnom is the nominal stress in the specimen, R is a characteristic

length of the specimen and Ak is a shape factor that takes into account the

geometry and material properties of the specimen.

Whereas a numerical procedure for the evaluation of GSIFs was

proposed in Section 13.6 and applied in Section 13.7, the determination of

particular values of K1C and K2C, and of the whole failure envelope curve

κC(ψ), requires the experimental testing of samples including the corner

under several loading conditions. For the particular case of the bimaterial

closed corner B in the adhesively bonded joint in Fig. 13.8, a suitable

procedure proposed in [80,81] can be used to experimentally determineK1C,

K2C and κC(ψ). This procedure is based on a novel modified configuration

of the Brazilian disc specimen, including the bimaterial corner tip at the

centre of the disc (Fig. 13.15(a)) and subjected to a diametrical compression

P at an angle α (Fig. 13.15(b)).
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Fig. 13.15. Brazilian disc specimen with the bimaterial corner. (a) Geometry.
(b) Loading.
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Fig. 13.16. Standardized values of K1 and K2 in the Brazilian disc specimen under
diametrical compression.

GSIFs K1 and K2 were extracted from FEM results in [80] by

employing the least-squares fitting technique presented in Section 13.6.

The numerical results for a particular configuration (t=1mm, R=1mm

and P =100N) are depicted in Fig. 13.16. The diametrical compression

orientations providing (approximately) pure singular modes are α ≈ 13◦

and α ≈ 115◦ for K2 ≈ 0, and α ≈ 60◦ and α ≈ 143◦ for K1 ≈ 0. Angles

α ≈ 13◦ and α ≈ 143◦, giving positive values of the non-vanishing GSIFs,

were chosen to determine the generalized fracture toughnesses K1C and

K2C , respectively. Let P
exp denote the experimental load for which failure

initiation in the corner is observed, texp the real specimen thickness and

Rexp the real specimen radius. Then the following equation, obtained from
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(13.132), is used to determine K1C and K2C :

KkC = KFEM
k

tFEM

texp
RFEM

Rexp

P exp

PFEM

(
Rexp

RFEM

)1−λk

= KFEM
k

σexp
nom

σFEM
nom

(
Rexp

RFEM

)1−λk

, (13.133)

where superscript ‘FEM’ denotes values from the above defined FEM

model, and σFEM
nom and σexp

nom are nominal stresses in the FEM model and

the real specimen, respectively.

Figure 13.17 shows a real sample after failure and a scheme for the

failure path for α ≈ 13◦, the angle used to determine K1C .

Experimental tests corresponding to any orientation of the diametrical

compression define critical pairs of GSIFs for which failure initiates in the

corner. All the critical pairs of GSIFs obtained can be represented in the

plane (K1/K1C , K2/K2C) as shown in Fig. 13.18; see [81] for the details of

these experiments. In Fig. 13.18, light (blue) circles are experimental results

of single tests for particular load orientations (the load orientation α is

indicated on the plot), and black circles are the average values at the same

load orientation (α = 150◦ has only one specimen). The continuous line

interpolates the black circles and represents an approximation of the failure

envelope curve, which can be used to define the corner failure criterion

in (13.129). Representations of the loading angle range leading to results

in each quadrant in Fig. 13.18 are plotted schematically to visualize the

correspondence between the loading angle α and the critical pairs of GSIFs.

In addition to the experimental results obtained by the Brazilian disc

specimen, Fig. 13.18 shows another set of experimental results obtained

26º

13o

Fig. 13.17. Brazilian disc specimen tested (left) and failure path scheme (right) for a
loading angle α ≈ 13◦.
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Fig. 13.18. Experimental results for the critical pairs of GSIFs in the Brazilian disc
specimens (circle marks) and double-lap joint specimens (triangular marks) and an
approximation of the corner failure envelope.

previously by Barroso and co-workers [123,124]. These results, indicated

by black triangles in Fig. 13.18, represent the critical pairs of GSIFs for

which complete failure was observed in real double-lap joints between the

unidirectional CFRP laminate and aluminium, see Fig. 13.8, subjected

to tension. Notice that both specimens, the Brazilian disc specimen and

the double-lap joint, have the same corner configuration at the corner

tip with reference to geometry and materials. The critical pairs of GSIFs

shown in Fig. 13.18 for both sets of experiments for the same fracture-

mode-mixity are very close. The observed agreement between both sets of

experiments is quite significant as the double-lap joints, although having the

same local corner configuration, are completely different in size, geometry

and manufacturing process from the Brazilian disc specimens. While the

Brazilian disc specimens were manufactured in an autoclave and their
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characteristic length (the radius) is 17mm, the double-lap joint specimens

were manufactured in a hot plate press and their characteristic length

is 0.1mm (the adhesive layer thickness). Additionally, the Brazilian disc

specimens were tested only a few days after manufacture whereas the

double-lap joints were tested a long time after manufacture (about half

a year); this delay might lead to strength degradation due to moisture

absorption.

It is important to notice that the novel experimental procedure

employing the Brazilian disc specimen can directly be applied to the

generation of failure criteria based on generalized fracture toughness for

other multimaterial closed corners with two stress singularities under plane

strain. In fact, placing a very thin strip of Teflon� at the interface so

that it emerges from the corner tip can imitate a crack, as in [126] for a

straight interface, allowing the present procedure to be applied to open

multimaterial corners with a corner angle ϑW − ϑ0 = 360◦.

13.9. Removal of Stress Singularities in Bimaterial Joints

An interesting application of the singularity analysis developed in this

chapter is the so-called stress singularity removal which consists in the

determination of an appropriate local geometry configuration, for each

particular problem, which eliminates the stress singularities present in

the original structure or specimen, or at least substantially reduces their

severity. In view of (13.3), it means that the real part of the first

characteristic exponent becomes Reλ1 ≥ 1, or equivalently, considering

the order of stress singularity δ = 1 − λ, Reδ1 ≤ 0. In configurations

of samples with multimaterial corners generated by tabs bonded at the

sample ends or by the presence of a bimaterial joint, the determination

of the strength values may be greatly affected by the stress singularities

arising at these points. Eliminating the stress singularity (or substantially

relieving its severity) allows the determination of the strength values not

affected (or less affected) by the presence of these singular points. This idea

has been successfully applied by the authors and co-workers to various

problems [127, 128, 134], two of them will be briefly presented in the

following sections.

13.9.1. Tensile and shear strength in bimaterial samples

Tensile and shear strength in homogeneous materials can easily be

determined by using standard tensile and Iosipescu specimens. In both
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Fig. 13.19. Tensile and Iosipescu specimens with one or two materials.

configurations, the normal and shear stresses are quite uniform within

the failure area, see Figs. 13.19(a) and (c), their values at the instant of

failure being accepted as strength values. When trying to use these test

configurations in the strength determination of bimaterial samples, the

stresses at the interface are far from being uniform, due to the presence

of stress singularities at the free edge of the samples, see a schematic

representation in Figs. 13.19(b) and (d).

With such stress profiles, at the instant of failure, a strength value

based on the (resultant) failure load divided by the failure area of interface

would not be representative of the real strength of interface. In such cases,

the evaluation of the characteristic exponents can help in modifying the

local bimaterial-corner configuration to remove the stress singularity.

The characteristic exponents depend on the local material properties,

local geometry and local boundary conditions. Obviously, the material

properties cannot be modified, but the local geometry can be modified by

changing, for instance, one single-material wedge angle, as schematically

depicted in Fig. 13.20 [127, 128].

For a practical illustration of the stress singularity removal procedure,

consider the bimaterial system formed by a structural epoxy adhesive FM-

73M0.6 (E = 3.0GPa, ν = 0.35) and a unidirectional carbon fiber laminate

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Computational Procedure for Singularity Analysis in Multimaterial Corners 679

α
α

Fig. 13.20. Characteristic exponents for the adhesive-CFRP bimaterial system.

CFRP, AS4-8552 (E11 = 141.3GPa, E22 = E33 = 9.58GPa, G12 = G13 =

5.0GPa, G23 = 3.5GPa, ν12 = ν13 = 0.3, ν23 = 0.32, where subindex 1

defines the fiber direction) with the fiber direction perpendicular to the

bimaterial interface. With such material and geometrical configuration, the

characteristic exponents associated to the bimaterial corner, and computed

under the assumption of generalized plane strain, are shown in Fig. 13.20.

From the results shown in Fig. 13.20 it is clear that for a local

geometrical configuration close to α = 65◦, the stress singularity vanishes.

This fact can be easily verified by a numerical analysis of the joint, whose

results are depicted in Fig. 13.21. The normal stresses perpendicular to

the interface (normalized by the remote applied tension), Fig. 13.21(a),

and shear stresses, Fig. 13.21(b), along the interface are shown for both

the unmodified and modified bimaterial-corner configurations (both in

generalized plane strain and plane stress). In the modified configurations,

the stresses are quite uniform along the interface, providing in this way a

new more reliable and accurate methodology for the measurement of the

joint strength calculated as the failure load divided by the cross sectional

area of the failure surface.

In both modified samples (for tensile and shear strength measurements)

a notch was made at the epoxy side to get a wedge of angle 65◦,
which is approximately the angle for which the stress singularity vanishes,

i.e., Reλ1 � 1 and equivalently Reδ1 � 0. Figure 13.22 shows the

load-displacement results of the tensile tests. Four samples from each

configuration (4 without and 4 with notch) were tested. The samples with

the notch showed a 92% increase of tensile strength value compared with
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σ
σ

(a)

(b)

Fig. 13.21. (a) Normal stresses and (b) shear stresses along the specimen interface.

the original samples without notch. For the Iosipescu test, results were not

as clear as in the tensile case, and the shear strength for the samples without

and with notch were found to be quite similar. This result can be associated

with the fact that in the tensile test configuration the notch is made all

around the perimeter of the sample, at the bimaterial interface border line

eliminating a lot of potential places for failure initiation with singularities.

However, in the shear case, the notch is only performed at the thickness

side, see Fig. 13.21(b), were the shear stress singularity appears, which is a

small length compared to the whole perimeter of the interface. Moreover,

the plasticity effects in Iosipescu shear specimen are more important than

in tensile specimen, at least according to the von Misses plasticity criterion.
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Fig. 13.22. Tensile test results for the bimaterial samples without and with a notch.

13.9.2. Removal or reduction of stress singularities

associated to tabs bonding in standard

composite testing

In the testing of standard coupons in composite materials, specifically

designed tabs are bonded to specimens to achieve a smooth load transfer

from the testing machine to the specimen. Nevertheless, the usage of these

tabs creates critical points at tab locations, namely multimaterial corners,

where premature failure can take place due to stress singularities appearing

there. Two examples are studied in what follows, both related with

geometrical modifications of the local tab geometry to remove the stress

singularities at these locations or to reduce their severity. The first example

is related to the compression testing of thick composite laminates, while the

second deals with the intralaminar shear stiffness/strength determination

in composite materials using the off-axis test.

13.9.2.1. Compression test of thick composite laminates

It is well known and documented in literature that thick composite

laminates exhibit less compression strength values than the same materials

with less thickness [129]. A reason for this effect is the difficulty in
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(a)

(b)

Fig. 13.23. (a) Original and (b) modified configurations of the compression sample
geometry.

applying the compressive load to the thick specimen by means of tabs and

the secondary compressive loads perpendicular to the thickness. Various

devices have been proposed to try to solve this problem, see [129] for a

comprehensive review.

As an example, Fig. 13.23(a) shows the standard sample geometry, with

tabs designed for the ICSTM fixture [130] developed at Imperial College

London. A local modification was proposed in [129] and carried out at the

tab end, see Fig. 13.23(b) (showing due to symmetry only one quarter of

the sample), which led to a higher compression strength.

The compression strength increment was associated to a benign stress

profile at the tab ends. This fact was observed by means of numerical

analysis in [129] and is briefly analyzed by the stress singularity approach

in the following.

The characteristic exponents are evaluated for different mechanical

and geometrical parameters defining the local corner configuration. The

mechanical properties of the composite laminate, the composite tab and

the adhesive are: Composite Laminate T300/914 (E11 = 129GPa, E22 =

E33 = 8.4GPa, G12 = G31 = 4.2GPa, G23 = 3.0GPa, ν21 = ν31 = 0.02,

ν32 = 0.40), composite tab Woven EGlass/epoxy (E11 = 27GPa, E22 =

29GPa, E33 = 7GPa, G12 = 7.4, G31 = G23 = 4.0GPa, ν21 = 0.2,

ν31 = ν32 = 0.30), adhesive 3M Scotchweld (E = 2.87GPa, ν = 0.37).

Figure 13.24(a) shows the order of stress singularity for the original

corner configuration in which the tab angle varies between 0◦ (no tab, no
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α

α

(a)

(b)

Fig. 13.24. Order of stress singularities for the (a) original and (b) modified
configurations of the tab-end geometry.

singularity) and 90◦ (original configuration). The stiffness of the tab has

also been modified to see its influence in the stress singularity evaluation.

Figure 13.24(b) shows the order of stress singularity for the most

critical corner of the proposed modified configuration, the three-material

corner between the composite laminate, the tab and the adhesive. In this
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case also the tab-adhesive angle is moved between 15◦ and 155◦ and the

mechanical properties of the tab material (E11, E22 and E33) were modified

in the parametrical study. For some angle values (around α = 50◦) the

orders of stress singularity become complex conjugates. It is clear from

the results shown in Fig. 13.24(b) that the modification proposed in [129]

was an accurate choice, as the order of stress singularity for the original

configuration (Fig. 13.24(a), α = 90◦) which is near 0.5, decreases to 0.2

(Fig. 13.24(b), α = 45◦). Any other choice would lead to higher values of

the order of stress singularity, i.e., more severe stress singularities. This fact,

which was observed numerically in [129] is confirmed here, for all possible

angles, by the stress singularity analysis of the corner.

What is additionally observed in the present analysis is that a softer

tab material (Eii/2, i = 1, 2, 3) would give a lower order of stress singularity

for all geometrical configurations studied, see Fig 13.24(b).

13.9.2.2. Off-axis test of unidirectional composite materials

The off-axis test is a standard test to determine the intralaminar stiffness

and strength of unidirectional composite materials [131]. The test consists

in a tensile test of a unidirectional composite material, but with a fiber

orientation different than 0◦ (the load orientation), typically at 10◦ with

respect to the load orientation. It is well known that to make the shear

stress field more uniform and to avoid a premature failure at the tab

locations due to the stress concentrations, some modifications have been

proposed in literature, like pinned specimens or large aspect ratios of the

specimens, there are also proposals that use particular tab angles, which

depend on the fiber orientation [132, 133], which are easier to implement.

In particular, the idea of using tabs with a certain inclination, it proposes

different inclinations for different off-axis fiber orientations (Fig. 13.25), is

also explored in the present work by means of stress singularities removal.

The hypothesis for the present analysis is that clamped conditions can be

assumed at the tab location.

β
α

Fig. 13.25. Off-axis sample with oblique tabs.
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Fig. 13.26. Stress singularity orders for the off-axis sample with oblique tabs.

The stress singularity order δ1 for corner A (Fig. 13.25), which is more

critical than corner B, are plotted in Fig. 13.26, for generalized plane strain,

for different fiber angle α and tab angle β. The optimum tab angles for each

fiber orientation, those leading to the stress singularity order δ1 = 0, are:

β = 22◦ (for α = 10◦), β = 23◦ (for α = 15◦), β = 26◦ (for α = 20◦)
and β = 27◦ (for α = 5◦). These tab-fiber combinations should be used as

an optimum configuration in the determination of the intralaminar shear

strength of composite materials when using this type of test. Actually, the

stress singularity orders for the standard straight tabs (β = 90◦) are the

highest ones, in the range 0◦ < β < 90◦ for all α values considered, thus

leading to the most severe stress singularities there.

13.10. Conclusions

A novel procedure for the singularity analysis of linear elastic anisotropic

multimaterial (piecewise homogeneous) corners in generalized plane strain

including sliding friction contact surfaces has been developed and

implemented. This semi-analytic approach, based on the Lekhnitskii–Stroh

formalism of anisotropic materials, handles any kind of linear elastic

material. The approach avoids numerical uncertainties and instabilities,

which may appear when degenerate materials are treated as limit cases of

non-degenerate materials. Specifically in the generation of the characteristic

matrix of the corner, only the complex roots of the Lekhnitskii–

Stroh sextic polynomial for an anisotropic material must, in general,
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be evaluated numerically. Nevertheless, for specific kinds of material,

for example, transversely isotropic materials representing homogenized

unidirectional fiber-reinforced composites, even these roots can be evaluated

analytically for any orientation of the material axes. The application of

the transfer matrix concept for homogeneous single-material wedges along

with a powerful matrix formalism for prescribed boundary and interface

(transmission) conditions leads to a fully automatic generation of the

characteristic system for open and closed (periodic) corners including any

finite number of wedges and frictionless or frictional contact surfaces and

any homogeneous orthogonal boundary conditions.

A general anisotropic friction model was considered. It is useful

for modeling contact between anisotropic materials, in particular for

unidirectional composite laminas. If the angles of friction shear stresses

and relative tangential displacements in a contact surface are not known

a priori, which is the case where the in-plane and antiplane displacements

are coupled, these angles should be determined when solving the corner

characteristic equation. In this case, the corner characteristic equation

includes, in addition to the characteristic exponent, one or more extra

unknowns — the angles of friction shear stresses, depending on the number

of friction contact surfaces in the corner. This fact appears to be a new

feature of a corner characteristic equation to the best knowledge of the

authors. The general procedure developed for the corner singularity analysis

is very suitable for straightforward computational implementation.

A general post-processing procedure to extract multiple generalized

stress intensity factors for multimaterial corners from a numerical solution

obtained by FEM or BEM has also been presented, implemented and tested.

The procedure employs least-squares fitting of a finite asymptotic series

expansion of the singular solution at the corner to the numerical results in

displacements and/or stresses along the boundaries and interfaces in the

corner. The procedure has no special requirements regarding the accuracy

of the numerical results close to the corner tip, where larger errors in the

numerical solution are expected.

Singularity corner analyses have been carried out for a couple of

examples of multimaterial corners in composites specimens: a transverse

crack terminating at the interface between plies in a [0/90]S laminate, and

a closed corner in a double-lap joint between a composite and a metal. The

computational tool developed has been validated by comparing the BEM

solution with the computed finite series approximation at the corner at a set

distance to the corner tip, whereas their values along the corner boundaries
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were used in the fitting procedure. Furthermore, the corner in the latter

example was altered to include a friction interface crack, an additional

parametric study having been carried out for this particular case.

A novel experimental procedure for the determination of generalized

fracture-toughness values and the subsequent generation of a failure

criterion for closed anisotropic multimaterial corners under plane strain

with two singularities has been proposed and tested. The procedure is

based on a kind of Brazilian disc specimen with the corner tip at its

centre and loaded in compression at any position along the external

perimeter. A failure envelope curve in the plane of the generalized stress

intensity factors normalized by the generalized fracture-toughness values

has been determined experimentally, and used in the formulation of a failure

criterion for corners of this kind. Satisfactory agreement has been observed

between the predictions of this failure criterion and the failure loads of

a real double-lap joint between a composite and a metal including such

a corner. Finally, some examples of applications of the singularity analysis

procedure presented here for the successful elimination or reduction of stress

singularities in bimaterial joints are shown.
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[26] Nicaise S., Sändig A.-M., 1994. General interface problems I/II, Math.
Method Appl. Sci., 17, 395–450.

[27] Nicaise S., Sändig A.-M., 1999. Transmission problems for the Laplace and
elasticity operators: Regularity and boundary integral formulation, Math.
Mod. Meth. Appl. Sci., 9, 855–898.

[28] Ting T.C.T., 1996. Anisotropic Elasticity: Theory and Applications, Oxford
University Press, New York.

[29] Hwu C., 2010. Anisotropic Elastic Plates, Springer, New York.
[30] Kondratiev V.A., 1967. Boundary-value problems for elliptic equations in

domains with conical or angular points, Trans. Moscow Math. Soc., 16,
227–313.

[31] Costabel M., Dauge M., 1993. Construction of corner singularities for
Agmon–Douglis–Niremberg elliptic systems, Matematische Nachr., 162,
209–237.

[32] Dempsey J.P., 1995. Power-logarithmic stress singularities at bi-material
corners and interface cracks, J. Adhes. Sci. Technol., 9, 253–265.

[33] Sinclair G.B., 1999. Logarithmic stress singularities resulting from various
boundary conditions in angular corners of plates in extension, J. Appl.
Mech., 66, 556–559.

[34] Lekhnitskii S.G., 1938. Some cases of the elastic equilibrium of a
homogeneous cylinder with arbitrary anisotropy, Appl. Math. Mech.
(Prikladnaya Matematrikai Mekhanika), 2, 345–367 (in Russian).

[35] Stroh A.N., 1958. Dislocations and cracks in anisotropic elasticity, Philos.
Mag. 3, 625–646.

[36] Stroh A.N., 1962. Steady state problems in anisotropic elasticity, J. Math.
Phys., 41, 77–103.

[37] Tanuma K., 2007. Stroh Formalism and Rayleigh Waves, Springer,
New York.

[38] Ting T.C.T., 1999. A modified Lekhnitskii formalism à la Stroh for
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coupled in-plane and antiplane
displacements, 670, 686

coupled multiphysics problem, 397

coupled physics at interface, 420–433

coupled stretching bending, 121,
123–124, 126, 128, 134, 138–139,
150

coupled thermomechanical behavior,
387

crack arrest length, 584

crack band model, 460–461, 463, 470

crack deflection, 580, 590–595, 599,
604–605, 607

crack density, 467, 487

cracked interface, 549
crack growth resistance, 445–446
crack impinging on an interface, 581,

591
crack initiation, 548, 585, 603
crack initiation and propagation,

444–458
crack jump, 579, 583, 595
crack kinking, 579–580, 602–605
crack networks, 479
crack nucleation, 579–581, 608
crack onset, 589–590
crack penetration, 592
cracks in laminates, 121, 124, 143
crack terminating at an interface,

622, 661–666, 686
crack tip, 446
crack-tip damage zone, 444
crack tunneling, 465–468
Crank–Nicolson scheme, 555, 557
critical energy release rate, 443, 446,

468
cross-ply, 169, 465, 600, 661–662
curse of dimensionality, 389, 397
cylindrical shell, 38–39, 67, 177–178,

187, 189

D

damage, 500, 535, 537, 550–551,
606–607

damage activation function, 468–469
damage-dependent friction, 565
damage evolution, 441, 444, 487
damage initiation, 440, 448, 458, 563
damage localization, 459, 461, 470,

490
damage mechanisms, 439, 441, 444,

451, 464, 490
damage modes, 440, 464
damage parameter, 548
damage process zone, 470
damage tolerance, 443
damage variable, 447–448, 460,

468–469, 486, 499
Darcy conductivity, 112
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Index 701

Darcy permeability, 75

Darcy’s law, 107, 109, 404

debonding, 295–296, 313, 497, 499,
518, 531, 560–565, 596–600,
605–607

degenerate anisotropic plate, 123,
126, 128

delamination, 262, 440–443, 450–451,
456, 467, 470, 478, 484–485,
487–488, 500, 513, 542, 550,
565–566, 579–580, 592, 601, 605,
608

delamination band, 489

delamination evolution, 487, 545–546

delamination initiation, 482–483, 488,
545

delamination length, 600

delamination parameter, 522,
528–529, 531, 554

delamination patterns, 486

delamination propagation, 458

delamination variable, 517, 537, 560

dielectric, 605

differential equation, 503

dilute suspension, 387, 392

dimensional analysis, 673

direct method, 508

Dirichlet boundary condition, 404,
424, 499, 521, 528

Dirichlet problem, 83

discrete damage mechanics (DDM),
441

discrete dissipation potential, 528

discrete incremental problem, 528

displacement and stress function
vector, 137, 627–628, 638–639,
641–642, 654

displacement control, 463, 533, 538

displacement field, 23, 60, 105, 122,
125, 157, 162–163, 165, 170, 173,
406, 410, 446, 479–480, 499, 521,
581, 623

displacement formalism, 123,
127–128, 131

dissipation distance, 512–513, 520,
537, 540

dissipation potential, 499, 522

dissipative character of friction, 633,
637, 655

double-lap joint, 613, 622, 666–667,
670, 676–677, 686–687

doubly curved shell, 165

doubly nonlinear degenerate
parabolic/elliptic variational
inclusions, 501

driving force, 502, 505, 514, 518, 533,
536–538

dry friction, 551, 613, 632

duality-based solver, 528

dual mode, 582, 587

ductile damage, 453

dynamic adhesive contact, 552–558

dynamic elasticity, 333, 335, 339

E

effective activation, 537, 554

effective coefficients of heat
conductivity, 8

effective elastic coefficient, 11, 13–14,
16–17, 20, 29, 36–38, 64, 338–339,
346, 356, 358

effective stiffness moduli, 2–3, 19,
25–28, 37, 42–44, 47, 66

eigenfunctions, 617–618

eigensolution, 582

eigensystem, 644

eigenvalue, 128, 136, 248, 268, 270,
300, 344–358, 371, 391, 525, 582,
625, 642

eigenvalue problem, 317, 343,
347–348, 351, 361, 582, 605

eigenvector, 128, 130, 133–134, 136,
304, 312–313, 315, 344–345,
347–348, 350–354, 361, 371, 391,
625, 628, 642

elastic anisotropic multimaterial
corners, 619–621, 629, 687

elastic boundary value problem, 618
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702 Index

elastic-brittle delamination, 497,
524–525

elastic-brittle interface, 544

elastic delamination model, 499

elastic scaling function, 97–101

elastic solution, 270, 406, 451, 588,
643, 656, 662

elastic strain energy, 298, 464, 619,
651

elastic wave equation, 337, 339

elastic waves, 552–553, 600

elasticity problem, 5, 23, 123, 134,
150, 397, 586

elasticity tensor, 97, 99, 302–303,
333–334, 337, 340, 358–360, 362,
367

electrical conductivity, 4, 95

electro-elastic composite laminate,
123, 139, 142

electro-elastic laminate, 124, 138, 148

electromagnetic models in laminates,
419–420

elliptic 2D problem, 403

elliptic system, 618

elliptical hole, 139–143, 146

ellipticity, 297, 299, 302, 304, 306,
310, 313–315

energetic solution, 506–514, 521–523,
526–527, 529–530, 532–534, 540,
545, 560, 566

energy inequality, 504, 506–507, 515,
540

energy release rate (ERR), 445, 450,
502, 591–593, 595, 599, 602

ensemble averaging, 79–82, 97

equivalent single layer model (ESL),
155, 158–159, 178, 187, 189, 200,
203

ergodicity, 80–81, 96

Ericksen constitutive equation,
417–418

expanded Stroh-like formalism,
135–139

extended finite element method
(x-FEM), 439, 442, 444, 470, 478,
481, 483, 485, 489, 527

extraction of generalized stress
intensity factor (GSIF), 582, 602,
621, 656

extraordinary degenerate material,
620, 626–627, 629, 642–643

extraordinary non-semisimple matrix,
626

F

failure criteria, 443, 464–465, 468,
471, 677

failure envelope, 613, 622, 671, 673,
675, 687

failure initiation, 613, 621, 661,
671–672, 674, 680

fiber bridging, 450–451, 454, 548

fiber coating, 16

fiber debonding, 295, 313, 315, 329,
562, 565, 579–580

fiber diameter, 334, 423, 560

fiber failure, 440, 467, 469, 489

fiber-fiber interactions, 391–392

fiber fracture, 441, 443, 464, 469

fiber kinking, 295–297, 312, 314–315,
329, 443, 465

fiber ligament, 474

fiber-matrix debonding, 295–296, 298,
313, 315, 329, 440, 443, 500,
561–562, 564–565, 579–580, 585

fiber/matrix interface, 441–442, 580

fiber-matrix interface crack, 564

fiber-reinforced composite, 16, 138,
144, 148, 476, 538, 560–565, 619

fiber-reinforced material, 476

fiber-reinforced polymer, 385

fiber splitting, 295, 314

fiber suspension, 388, 390–395

fiber volume fraction, 8, 560

finite bending, 259, 261, 263, 276,
281–282, 287, 289–291

finite elasticity, 103–106, 108–109
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Index 703

finite element method (FEM), 17,
113, 158, 177, 180, 211, 470, 483,
485, 526–527, 620–621, 656–658,
674–675, 686

finite flexure, 261, 276, 288

first-order plate theory, 122

first Piola–Kirchhoff stress, 103,
264–265, 282, 301, 324, 336

flow-induced microstructure, 396

flow in porous media, 107, 111, 404

flow rule, 103, 502

flow rule for delamination, 551

forming process, 385, 389, 393, 396,
433

fractional-step splitting, 555

fractional-step time discretization,
541

fracture, 230, 440–441, 446, 458, 551,
581

fracture (Griffith, Irwin) criterion,
445–447, 451, 520, 583–584, 602

fracture (failure) direction, 470, 473,
583, 585, 603, 608

fracture energy, 448, 462, 464, 468,
544, 548, 562

fracture localization, 458–464

fracture mechanics, 465, 502

fracture mechanism, 586, 606

fracture model, 444, 539

fracture-mode-mixity, 457–458, 540,
545, 547, 550, 559, 562, 671, 673,
676

fracture-mode-mixity angle, 538–539,
544–545, 673

fracture-mode sensitivity, 539, 544

fracture pattern, 605

fracture plane, 453, 464, 478

fracture process zone, 445–446,
448–451, 454–456, 548

fracture propagation, 439, 448

fracture (crack) surface, 457, 459,
462, 465, 475, 477, 479–482

fracture toughness, 444–445, 447–448,
450–453, 455, 457–458, 466, 470,

518, 520, 527, 566, 579, 593–594,
596, 598

free edge, 487–488, 579–582, 678

friction coefficient, 551–552, 631, 633,
645–646, 655, 670, 672

friction contact, 454, 497, 551, 564,
632–633, 651, 654–655, 686

friction dissipation condition,
655–656, 671–672

friction interface crack, 687
friction sliding, 635

frictional sliding interface, 636
frictionless contact, 499, 520, 564,

621–622, 644, 655, 686
frictionless sliding condition, 629–630,

636–637

fullerene, 385

functionally graded, 112, 226,
228–229

functional space, 401, 404

fundamental elasticity matrix, 127,
130, 134, 137, 625

G

Gauss quadratures, 479, 481–482

generalized eigenvector, 348, 351–354,
371, 626–627

generalized fracture toughness, 613,
622, 671–677, 687

generalized plane strain, 135, 580,
607, 613, 617–624, 629, 652, 679,
685

generalized plane stress, 613, 617,
623

generalized stress intensity factor
(GSIF), 582, 613, 617–618,
621–622, 656–657, 671, 686–687

general laminated plates, 123–124,
128

geometric multiplicity, 618, 625, 627
geometrical imperfections, 217,

244–245, 250

global-optimization problem, 510

grains, 76–77, 79, 83, 85, 89, 92–93,
95, 99
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704 Index

graphene, 385
Green–Lagrange strain, 178, 221, 224,

234, 477

Green’s function, 124
grid-reinforced composite, 1, 3, 13–20,

68

grid-reinforced composite plate, 37,
44–45

grid-reinforced composite shell,
36–47, 68

H

hardening, 102, 111, 441, 458–459,
541, 543, 548, 550

hardening exponent, 266
healing, 500, 506, 554, 560

heat conductivity, 7–8, 559
heat flow, 141–142
heat-transfer coefficient, 559

hierarchy of bounds, 81, 97, 106
hierarchy of mesoscale bounds,

108

high-order plate theory, 122
Hilber–Hughes–Taylor scheme,

555

Hill–Mandel condition, 75, 77, 79, 95,
101, 104, 107

H-integral, 657

homogeneous boundary condition,
613, 617

homogeneous orthogonal boundary
condition, 630–634, 644, 686

homogeneous orthogonal interface
condition, 631

homogenization, 1, 3, 7, 11–12, 22, 25,
27, 61, 63–64, 67–68, 75, 112–113,
366, 370–371, 470, 500, 560, 595

homogenization composite shell
model, 1, 3–4

honeycomb, 28–29, 47
honeycomb sandwich composite shell,

22, 27, 63, 66
hot plate press, 677
hygrothermal, 121, 123

hygrothermal stresses, 141

I

ill-conditioned matrix, 660–661

ill-conditioning, 148, 273

ill-posed, 460, 462

imperfect bonding, 276

imperfect interface, 259, 274–276,
284, 287–289, 421

implicit scheme, 555

implicit time discretization, 497, 507,
526

inclusion, 3, 7, 11, 13, 25, 76, 78, 104,
109, 111–112, 124, 446, 514, 606

incremental boundary-value problem,
264

incremental elasticity tensor, 336,
338, 357, 359–360, 362–364, 366,
372, 374, 379–380

incremental energy release rate, 583,
585, 603

incremental problem, 503, 508–510,
528, 560

incremental variational problem, 508

initial stress, 333–381, 554

inner expansion, 586

in situ consolidation, 420–421,
426–432

in situ effect, 465

in situ shear strength, 466

in situ strength, 443, 465–466

integral transform, 12

interface, 5, 7, 11, 25, 161, 163–165,
171–172, 209, 212, 216, 218,
229–231, 240–241, 248, 251–252,
259, 262, 266–269, 273, 276, 284,
291, 388, 419, 421, 446, 486, 488,
499, 531, 547, 563, 579–581,
591–592, 594, 596, 615, 680

interface condition matrix, 613, 618,
629–630, 635, 637–638, 644,
646–648

interface corner, 605–607

interface crack, 601, 621–622, 670–671

interface damage, 457, 564, 567

interface fracture energy, 500, 561
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Index 705

interface fracture toughness, 531,
593–594, 597–599, 602

interface stiffness, 537
interfacial plasticity, 500
interlaminar damage, 253, 441
interlaminar delamination, 467
interlaminar fracture toughness, 458,

483
interlaminar strength, 458
interlaminar stresses, 160–161, 165,

167, 169, 172, 197, 203, 212, 217
internal variable, 103, 468, 499, 501,

528
intralaminar damage, 253, 441–443,

464, 468–469
intralaminar damage (mechanisms)

modes, 441, 464, 469, 475–476
intralaminar shear strength, 681,

685
inverse analysis, 388
inverse identification, 387
inverse problem, 366–367, 566
Irwin criterion, 584
isotropic Coulomb friction, 670
isotropic friction, 630–631, 634

J

J2-deformation theory, 262, 266–268,
273–275, 291

Jeffery equation, 389, 391–393, 395
J-integral, 446

K

kinematic descriptions, 446, 464
kinematic hypotheses, 406, 428
kinematic model, 159, 175, 177
kinematic predictions, 392
kinematics, 387, 389, 391–393,

417
kinematics of a crack, 476
kinematics of the cracked material,

471
kinetic energy, 555
kinetic (or dynamic) friction

coefficient, 631–632

kinetic theory, 389

Kirchhoff hypothesis, 158

Kirchhoff–Love theory, 202, 211, 214,
222

Kirchhoff’s assumptions, 122, 125

Koiter model, 158, 187, 190

Koiter’s recommendation, 161–162,
168, 172, 203

L

Lagrange multipliers, 264, 316, 560

laminate conductivity, 400

laminate permeability, 404

laminated ceramic, 585, 605

laminated composite material, 13

laminated composite shell, 41

laminated composites, 12–13, 125,
439–490, 558

laminated plate, 122, 133, 155, 162,
169, 171, 467

laminated shells, 155, 194

layer interface, 160

layer-wise theories, 170, 172–173

least-squares, 613, 622, 652, 656–658,
660–662, 665, 667, 669, 686

left eigenvector, 627

Lekhnitskii bending formalism, 123

Lekhnitskii formalism, 123, 127–128

Lekhnitskii multilayered theory, 155,
161–162, 170, 201

Lekhnitskii–Ren plate theory,
162–163, 171

Lekhnitskii–Stroh formalism, 613,
619–620, 622–629, 643, 661, 663,
685

Lekhnitskii–Stroh sextic equation,
627, 652

Lekhnitskii–Stroh sextic polynomial,
619–620, 685

ligament, 591, 596–597, 599

limiting velocity, 344, 346, 354

linear elastic anisotropic material,
617, 622–623
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706 Index

linear elastic fracture mechanics
(LEFM), 445, 448–449, 451–453,
458

linear elastic solution, 449, 461, 613,
615, 621

linear elasticity, 109, 111, 519, 620
linear elasticity problem, 406
linear elliptic system, 620, 623

linear scaling, 391
linear second-order elliptic equation,

620
linear softening law, 460, 468

linear thermoelasticity, 110–111
Lipschitz domain, 519
longitudinal splitting, 473–474
long-wavelength, 261, 291
long wavelength limit, 333–334

loss of ellipticity, 261, 267, 273–276,
295–329, 460

lubrication hypotheses, 428

M

macroscale, 6, 93, 95, 99, 615
magnetic permeability, 4

major symmetry, 336, 338, 339, 341,
359

matched asymptotic expansion, 582,
585–590, 603

material eigen-relation, 126–129,
132–133

material scaling diagram, 75, 83, 93,
100

material softening, 444–446, 449, 453
matrix crack nucleation, 607
matrix cracking, 440–441, 443, 456,

464–465, 468–473, 475–476,
478–479, 482–484, 486–489, 580

matrix failure, 295–298, 315–316, 329,
468

matrix formalism, 613, 622, 631, 644,
686

matrix plasticity, 441
matrix splitting, 470

matrix-inclusion composite, 104
matrix/reinforcement interface, 33

maximum, 463

maximum tensile stress criterion,
583–584

maximum-dissipation principle, 502,
518, 541

Maxwell equations, 419

mesh sensitivity, 462

mesoscale, 75, 77, 79, 81, 89, 92,
94–99, 101, 103, 111–112, 441–444,
615

mesoscale bounds, 110

mesoscale random field, 113

mesoscale window, 109

microcrack, 445, 459, 471, 580

micromechanical scale, 441, 443

microscale, 77, 95, 99, 442

microstructural optimization, 112

minimum dissipation-potential
principle, 502, 513

minimum-energy principle, 501

minor symmetry, 336, 338, 359

M -integral, 657

mixed formalism, 123, 127–128,
130–131

mixed interpolation of tensorial
components (MITC), 159, 177,
179–181, 185, 188, 201

mixed-mode bending (MMB), 458,
544

mixed-mode cohesive law, 231,
456–457

mixed-mode delamination, 514, 541

mixed-mode fracture, 231, 456, 544

Mode I, 230–231, 542, 559

Mode II, 149, 456, 458, 483, 538–539,
541–544, 551, 554, 559, 562–563

model order reduction, 398

moisture transfer, 141–142

monolithic approach, 528

Mooney–Rivlin material, 262, 265,
267–268, 273–275, 280, 282–283,
291

moulding manufacturing, 420

multilayer cylindrical shell, 178

multilayer structure, 200, 259, 275
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Index 707

multilayered beam, 170
multilayered composite, 482
multilayered composite shell, 37, 387
multilayered composites plate, 387
multilayered plate, 156, 163, 165, 197
multilayered shell, 156, 159, 181, 189
multilayered structure, 156–160, 170,

197, 201–202
multilayered theories, 158
multilinear cohesive law, 454, 546–548
multilinear softening laws, 454
multimaterial corner, 613, 615–616,

621–622, 630–631, 644–645, 651,
671

multimaterial wedge, 644, 654
multi-physics in laminates, 395–420
multi-scale modeling, 1, 386, 392–393
multi-threshold delamination,

546–548

mutual-recovery sequence, 511, 518,
523, 525, 535, 543

N

Naghdi model, 158, 187, 190
nanodiamond, 385
network shell, 27, 66

Neumann problem, 83
neutral axis, 261, 281–282
Newtonian fluid, 385, 389–393, 395,

427
Newtonian suspending fluid, 394
nonlinear behavior, 621
nonlinear eigenvalue problem, 651

nonlinear elasticity, 105, 110–111,
299

nonlinear fracture mechanics
(NLFM), 446, 448, 452

non-associated sliding rule, 630

non-associative model, 537, 540,
545

non-degenerate anisotropic plate, 123,
128–129

non-degenerate materials, 639–640

non-homogeneous incremental
solution, 268

non-interpenetration of matter,
519

non-Newtonian fluid, 385, 393–395
non-penetration condition, 528
non-semisimple matrix, 625, 628

non-smooth interface, 606
normal-compliance, 551, 555
normality condition, 502
notch-ductility, 453
notch sensitivity, 453
null space, 618, 651

O

objective function, 529, 654
open corner, 613, 629–630, 644
open model of interface crack, 656,

658
open multimaterial corner, 646–647
optimization, 12, 22, 387, 566
orthogonality relation, 632–635, 637,

646

orthonormal vector bases, 631
orthotropic, 600
orthotropic composite shell, 36, 68
orthotropic grid-reinforced

composite, 1

orthotropic grid-reinforced composite
plate, 63

orthotropic grid-reinforced composite
shell, 3, 29–36, 63

orthotropic layer, 162, 164, 266,
600

orthotropic material, 13, 22, 27, 48,
50–51, 66, 125, 144, 226, 266–267,
335, 358–366, 371–381, 661, 663

orthotropic plate, 162
orthotropic properties, 441, 443,

472

orthotropic reinforcement, 3, 14–17,
29–30, 36, 38–39, 41–44

oscillatory solution, 655–656
outer expansion, 586–587
overdetermined homogeneous system,

651
overdetermined linear system, 660
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708 Index

P

parabolic equation, 555

parabolic system, 514

particle rotary velocity, 394–395

path independent integral, 582, 588

penetration, 592, 594–595, 597

perfect bonding, 5, 94, 262, 273, 275,
284, 288–289, 522, 606–607,
629–630, 638, 644

periodic boundary condition, 459, 560

periodic composite, 12–13

periodic composite material, 9

periodic composite structure, 5, 9

periodic smart composite structure,
59

permeability, 107, 109, 111, 419

permeability tensor, 404, 416

permittivity, 419

perturbation formula, 333–335, 360,
362–363, 366, 373, 379–381

phase velocity, 333

phase velocity of body waves, 344

phase velocity of Rayleigh waves,
333–335, 340, 347, 353–363, 366,
369, 371–372, 380–381

piecewise homogeneous materials,
615, 617

piezoelectric actuator, 59, 62–65

piezoelectric anisotropic elasticity,
138

piezoelectric effect, 138

piezoelectric material, 55, 134, 138,
148

plane strain, 261–264, 267, 273–275,
282, 299, 306–309, 313–314,
318–320, 322, 325, 459, 580, 588,
607, 638, 652, 662, 665, 668, 671,
687

plane stress, 135, 144, 211, 530, 588,
679

plastic coating, 263

plasticity, 75, 102–103, 109, 111, 449,
453, 458, 502, 543, 548, 550, 553,
621, 680

plate, 1, 20–22, 27, 37, 44–45, 47, 58,
62–68, 112, 121–150, 155–203, 276,
281–282, 291, 387–388, 395–397,
406–408, 467, 661, 666, 668

plate geometry, 397, 400, 406,
410–411

plate theory, 122, 155, 166, 171, 387,
396, 406

ply interface, 469, 479, 481

Poisson locking, 187, 214–215, 222,
235

Poisson point process, 109

Poisson’s ratio, 38, 102, 144, 186,
188, 222, 229, 530, 561, 588,
590–591

polarization, 340, 344–345, 356, 372

polarization ratio of Rayleigh waves,
333, 335–336, 371, 373–375,
379–381

polycrystal, 77, 80, 91, 94–96, 100,
112

polycrystalline aggregate, 76–77, 79

porous ceramic, 605

porous media, 77, 107–109, 111, 404,
416

post-processing, 161, 171, 620, 622,
656

power-law constitutive equation, 391

power-law fluid, 415, 427

power-logarithmic terms, 617

power spectral density, 421

power-type singularities, 618, 656

prestressed anisotropic medium, 358,
360, 362, 371, 374, 379

prestressed elastic medium, 336

prestressed elastic solid, 291

prestressed half-space, 333–335,
379–380

principal stresses, 264, 281

principle of virtual displacements
(PVD), 163, 181, 202, 476

process zone length, 448, 450,
453–455
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Index 709

proper generalized decomposition
(PGD), 389, 398, 400, 419–420,
422–423

pseudoinverse, 660

Q

QR decomposition, 661
quadratic programming problem, 528
quarter point element, 656
quasi-brittle, 445–446, 452, 460
quasi-brittle delamination, 454
quasi-brittle fracture mechanics, 453
quasi-brittle material, 446, 452, 460
quasistatic, 499, 552, 565
quasistatic brittle delamination,

519–524
quasistatic delamination, 507, 566
quasistatic equilibrium, 448
quasistatic rate-independent

evolution, 497, 501–503

R

R-curve, 445–446, 450–451, 453–455
radial mesh, 473–474
random checkerboard, 77, 93–95, 101
random compliance tensor, 97
random composite, 75, 77, 108, 112
random conductivity tensor, 81
random field, 80
random fluid-saturated material, 109
randomizing effect, 391
randomizing mechanism, 390
random locations, 467
random material, 76–77, 113
random medium, 79, 81, 97
random microstructure, 77, 81, 93,

112
random polycrystal, 77–93, 95–101
random process, 421
random resistivity tensor, 81
random stiffness tensor, 97
random surfaces, 421
rate-independent, 499, 566, 630
rate-independent delamination, 541,

552

rate-independent model, 500

rate-independent problem, 514

Rayleigh waves, 333–381

rebonding, 500

reinforced shell, 1–2, 4, 22, 39, 42

reinforcement volume fraction, 17,
19–20, 43–44

Reissner–Mindlin assumptions, 158,
222

Reissner–Mindlin theory, 156, 167,
202, 211, 214, 222

Reissner mixed variational theorem,
165–167, 202

Reissner multilayered theories, 155

Reissner–Murakami–Carrera theory,
165–170, 172, 199, 202

Reissner theorem, 170, 201

relaxation time, 394

repeated roots, 618, 620, 627

representative volume element (RVE),
75–78, 92, 95, 101, 103, 105–106,
109, 111–113, 442, 459, 595

rescaling of time, 499, 553

residual stress, 585

resin flow, 415

resin transfer moulding (RTM), 397,
404–406

resistivity, 93

resistivity tensor, 79, 82

Riccati equation, 349–350

right-angle corner, 606

right eigenvector, 625

rigid cluster, 392

Rivlin–Ericksen second-order fluid
model, 393

S

sandwich composite shell, 1, 3–4,
27–28, 66, 68

sandwich composite shell with
honeycomb, 23

sandwich shell, 51–52, 216, 260

scale-dependent bounds, 77, 80–81,
84–85, 96, 112
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scaling, 75, 106, 109, 111–113, 451,
527, 535, 544, 550, 589

scaling coefficient, 583, 585

scaling effects, 451, 465

scaling factor, 422

scaling functions, 75–113

scaling law, 77–78, 95, 453

second-order fluid model, 394

second-order viscoelastic fluid, 393

second Piola–Kirchhoff stress, 224,
228, 230, 477

second Piola–Kirchhoff static
quantities, 223

semi-energetic solution, 515

semi-implicit time discretization, 539

sensor, 53–54, 57

sextic eigen-relation, 341, 347, 625

sextic polynomial, 619–620

shear band, 260, 266–268, 274, 329,
471, 559

shear deformation theory, 122, 156,
164, 169, 211, 230

shear flow, 391, 394–395

shear locking, 188, 235, 472–474

shear strength, 453, 456–457,
464–465, 581, 677, 679–680

shell, 1–68, 147, 155–203, 209–253,
387–388, 395–397, 406, 409–411

shell (finite) element, 147, 159, 170,
177–180, 201, 216–217, 223, 226,
232, 234–241, 246, 248, 387, 470,
474

shell geometry, 170, 397

shell structure, 155, 158, 177, 187, 227

shell theory, 166, 168, 187, 209, 211,
213, 252, 387, 396, 406

short wavelength limit, 274

Signorini (unilateral) contact, 520,
551, 554, 632

Signorini problem, 529

single-material wedge, 613, 619,
629–630, 638–640, 642, 644, 654,
678, 686

single-walled carbon nanotube
(SWCNT), 37, 39–40

singular angular shape functions, 617

singular elastic solution, 617, 621,
638–643, 651–656, 670–672

singular exponent, 590–591, 617, 651

singular point, 581–583, 594–595, 615,
677

singular stresses, 446, 580, 615, 617,
619–620, 622, 665, 667

singular value decomposition (SVD),
415, 652

singularity analysis, 613–687

singularity exponent, 605, 651

size effect, 446, 451, 453, 463, 490

sliding friction condition, 631, 633,
648–649

sliding friction contact, 613, 621–622,
630, 636–637, 652, 655, 670–672,
685

sliding rule, 630–631

slip weakening, 554

smart composite material, 1, 4, 22,
52–68

smart composite shell, 58, 62–67

smart composite structure, 62

smart material, 53–54

smart nanocomposite material, 59

smart sandwich composite shell, 63

smart structure, 54, 57

smeared crack, 472–473, 475–476

snap-back, 463, 469

Sobolev functional space, 424

Sobolev–Slobodetskii space, 522

softening, 448, 459, 463

softening law, 447, 453, 490

spatial average, 80

spatial discretization, 525, 531, 558

splitting, 453, 474

splitting cracks, 473–474

squeeze flow, 388, 411–418, 420–421,
426–427, 432

stability inequality, 507, 540

standard reinforced polymers flow
models, 387

statistical volume element (SVE), 75,
77–78, 109, 111–112

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Index 711

step-over mechanism, 597

stiffness matrix, 113, 181, 236, 241,
479–480, 528

stochastic boundary-value problem,
79, 83

stochastic finite element method, 112

stochastic fluctuations, 459

stochastic micromechanics, 75, 77, 79,
95

stochastic optimization, 529

Stokes flow, 412, 414, 418

Stokes flow in the resin layers, 416

Stokeslet distribution, 394

stored energy, 95, 504, 512, 521, 537,
540–541, 544–545, 557, 559–560,
581, 584

stored energy density, 521

stored energy functional, 500, 520,
528

strain localization, 276, 462, 468

strain softening, 442–443, 460, 462,
468–470, 472, 475

strength prediction, 489, 621

stress concentration, 139, 440, 458,
467, 470, 473–475, 581, 584,
605–606, 620–621, 684

stress concentration point, 579–580

stress function vector, 137, 624,
628–629, 632, 635, 638

stress intensity factor (SIF), 143, 145,
149, 584

stress singularity, 449, 677–685

strict convexity, 511

Stroh formalism, 121, 123, 127–128,
333–335, 339, 348, 352, 371, 622,
625

Stroh-like bending formalism, 123

Stroh-like formalism, 121, 123–124,
128, 132–134, 150

Stroh orthogonality and closure
relations, 625–628

strong convexity, 338, 346, 355, 373

strong ellipticity, 299, 304, 309–311

strong ellipticity condition, 304,
308–310, 314, 317–318, 328,
338–339, 341

strong singularity, 590–591, 607

structural scale, 442, 444
subdifferential, 501, 503, 525, 550
subsonic range, 347–348, 354–355,

358, 364
surface asperities, 421

surface temperature, 559–560
surface texture, 613, 630
surface topography, 613, 630
symbol determinant, 620
symmetric composite shell, 195–198
symmetric laminated plate, 164, 192
symmetric mode, 590, 606, 662–664

T

tangential slip, 541, 545
temperature-dependent reptation

time, 421
tensile strength, 40, 456–457, 579,

581, 594, 598, 677, 679
tensile stress, 451, 474, 563, 579, 582,

585, 588, 594, 597, 668
thermal barrier coating, 228
thermal conductivity, 13, 75, 77, 424,

432–433
thermal (heat) conductivity tensor, 8,

75, 77–82, 95, 400, 559
thermal expansion coefficient, 59,

62–64, 102, 111, 558–559
thermodynamics of adhesive contacts,

558–560
thermoelasticity, 101–102, 109, 136
thermoplastic composite material,

419–420, 433

thick shell, 190, 194–195, 212
thin 3D composite layer, 21–22
thin plate, 44, 122–123, 156
thin shell, 159, 188, 190, 194, 211
thin-laminated plates, 121–122
thin-walled composite reinforced

structure, 1, 20–29, 68
three-material corner, 683
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time discretization, 500, 515, 555
toughness, 76

traction-separation law (TSL),
229–231, 537, 560

transcendental equation, 618

transfer matrix, 272–273, 613, 619,
630, 638, 648, 686

transfer matrix for a multimaterial
wedge, 644–645

transfer matrix for a single-material
wedge, 640–641, 643

transport coefficient, 4

transverse compression, 465
transverse crack, 441, 482–484,

486–488, 579–580, 590, 592, 595,
661–662, 665

transversely isotropic materials,
301–302, 309, 333–335, 357, 362,
366–368, 370, 619, 628, 663–664,
686

transversely isotropic particles, 393
transverse matrix crack, 442–443,

464–465, 467, 470, 479, 483, 486
transverse normal strain, 168, 171,

222

transverse normal stress, 164,
169–172, 214

transverse shear deformation, 122,
158

transverse shear force, 125, 129, 132

transverse shear strain, 125, 164, 211,
240

transverse shear stress, 158, 160, 162,
164–165, 167–172

transverse tensile strength, 457,
465–466

transverse transport process, 5

trilinear cohesive law, 455–457
trimaterial corner, 661

two-sided energy inequality, 510, 529

U

ultrasonic, 334, 347

unidirectional carbon fiber laminate,
242, 676, 678

unidirectional compact tension
specimen, 472

unidirectional composite material,
684–685

unidirectional fiber-reinforced
composite, 125, 619, 686

unidirectional fiber-reinforced plastic
ply, 661, 663, 666

unidirectional fibrous composite
material, 189

unidirectional laminate, 145, 442, 465

unidirectional open-hole tension
specimen, 473

unidirectional process, 511–512, 520

unidirectional test specimen, 450

uniform bending moments, 124,
139–141

uniform boundary condition, 79, 82,
96, 108

uniform charges, 142

uniform crack spacing, 467

uniform displacement boundary
condition, 105, 107

uniform heat flow, 124, 141–142, 147

uniform moisture transfer, 124,
141–142

uniform stretching, 124, 139–141

uniform temperature change,
147–148

uniform traction boundary condition,
105–107

uniformly-loaded specimen, 452

unilateral contact, 555

unilateral Signorini condition,
632

unit cell, 9–11, 14, 17–20, 22–23, 26,
29–30, 40, 43, 48, 53–54, 58, 442,
560

unit-cell model, 443

unit-cell problem, 1, 3, 7–8, 11–13,
15, 24–25, 27, 33, 35, 42, 61–62,
66–68, 560

unstable fracture, 448

unsymmetric laminate, 122, 144,
146–147
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V

vanishing determinant condition,
618–619, 624, 652–653

variational form, 166, 209, 215,
217

variational method, 503
variational models of fracture,

528
variational principle, 96, 217,

232–233, 501
variational statement, 163, 182
virtual crack closure technique

(VCCT), 218, 445
viscoelastic fluid, 393, 395
V-notch, 581–582, 585–586, 588–590,

608
void, 432, 441, 445, 459
void nucleation, 446
volume fraction, 13, 16–17, 19–20, 39,

42–44, 46–47, 76, 93, 95, 228–229,
560

W

wafer-reinforced shell, 1, 3, 23, 27, 68
wave propagation, 344, 555

wavelength, 249, 273, 290, 334
weak boundary condition, 405
weak form, 166, 172, 232–233,

400–418, 424–426, 552
weak singularity, 590–591
weak solution, 503, 505–506, 513–519,

566
wedge, 607–608, 613–687
wedge interface, 635
wedge transfer matrix, 638, 644,

648
Weissenberg number, 393, 395
wide-sense stationary (WSS), 80–81,

96
Williams expansion, 581, 589,

601–602

Y

Young’s modulus, 38–39, 41, 144,
186, 188, 249, 447, 472, 530, 561,
588, 590–593, 604, 606

Z

zig-zag theory, 155–161, 167–168, 173,
189–190, 197, 202–203, 212, 216

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Vol. 9 Buckling and Postbuckling Structures II:
Experimental, Analytical and Numerical Studies
edited by B. G. Falzon (Queen’s University Belfast, UK) and 
M. H. Ferri Aliabadi (Imperial College London, UK) 

Vol. 8 Structural Health Monitoring for Advanced Composite Structures
edited by M. H. Aliabadi and Z. Sharif Khodaei 
(Imperial College London, UK)

Vol. 7 Active Control of Aircraft Cabin Noise
by I. Dimino (CIRA, The Italian Aerospace Research Centre, Italy) 
and M. H. Aliabadi (Imperial College London, UK)

Vol. 6 Woven Composites
edited by M. H. Aliabadi (Imperial College London, UK)

Vol. 5 Mathematical Methods and Models in Composites
edited by V. Mantič (University of Seville, Spain)

Vol. 4 Boundary Element Methods in Engineering and Sciences
by M. H. Aliabadi (Imperial College London, UK) and
P. Wen (Queen Mary University of London, UK)

Vol. 3 Multiscale Modeling in Solid Mechanics: Computational Approaches
edited by U. Galvanetto and M. H. Aliabadi 
(Imperial College London, UK)

Vol. 2 Advances in Multiphysics Simulation and Experimental Testing 
of MEMS
edited by A. Frangi, C. Cercignani (Politecnico di Milano, Italy),
S. Mukherjee (Cornell University, USA) and N. Aluru 
(University of Illinois at Urbana Champaign, USA)

Vol. 1 Buckling and Postbuckling Structures: 
Experimental, Analytical and Numerical Studies
edited by B. G. Falzon and M. H. Aliabadi 
(Imperial College London, UK) 

Computational and Experimental Methods in Structures

(Continued from page ii)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om


	Contents
	Preface
	About the Editor
	1. Micromechanical Modeling of Advanced Composites and Smart Composite Structures Using the Asymptotic Homogenization Method
	1.1. Introduction
	1.2. Asymptotic Homogenization Method
	1.3. Unit-Cell Problems
	1.4. Three-Dimensional Grid-Reinforced Composites
	1.4.1. Examples of 3D grid-reinforced composite structures

	1.5. Asymptotic Homogenization of Thin-Walled Composite Reinforced Structures
	1.6. Generally Orthotropic Grid-Reinforced Composite Shell
	1.6.1. Calculation of the effective elastic coefficients

	1.7. Examples of Grid-Reinforced Composite Shells with Orthotropic Reinforcements
	1.8. Sandwich Composite Shells with Cellular Cores
	1.8.1. Examples of sandwich shells

	1.9. Smart Composite Materials and Structures
	1.9.1. Asymptotic homogenization of 3D smart composite materials
	1.9.2. Asymptotic homogenization of smart composite shells and plates

	1.10. Conclusion
	References

	2. Scaling Functions in Spatially Random Composites
	2.1. Introduction
	2.2. Conductivity of Random Polycrystals
	2.2.1. The Hill–Mandel condition
	2.2.2. Bounds on the conductivity
	2.2.3. Scaling function in heat conduction
	2.2.4. Some properties of and bounds on the scaling function
	2.2.5. Numerical simulations
	2.2.6. Constructing the scaling function

	2.3. Conductivity of Planar Random Checkerboards
	2.3.1. Governing equations

	2.4. Elastic Properties of Random Polycrystals
	2.4.1. The Hill–Mandel condition
	2.4.2. Bounds on the elastic response
	2.4.3. Elastic scaling function

	2.5. Elastic Properties of Planar Random Checkerboards
	2.6. Scaling in Inelastic and Nonlinear Materials
	2.6.1. Thermoelasticity
	2.6.2. Elasto-plasticity
	2.6.3. Finite elasticity
	2.6.4. Permeability of porous media
	2.6.5. Comparative numerical results

	2.7. Conclusions
	Acknowledgments
	References

	3. Stroh-Like Formalism for General Thin-Laminated Plates and Its Applications
	3.1. Introduction
	3.2. Stroh-Like Formalism
	3.3. Extended Stroh-Like Formalism — Hygrothermal Stresses
	3.4. Expanded Stroh-Like Formalism — Electro-Elastic Laminates
	3.5. Holes and Cracks
	3.5.1. Holes in laminates under uniform stretching and bending moments
	3.5.2. Holes in laminates under uniform heat flow and moisture transfer
	3.5.3. Holes in electro-elastic laminates under uniform loads and charges
	3.5.4. Cracks in laminates

	3.6. Numerical Examples
	3.6.1. Holes
	3.6.2. Thermal environment
	3.6.3. Electro-elastic coupling
	3.6.4. Cracks

	3.7. Conclusions
	Acknowledgments
	References

	4. Classical, Refined, Zig-Zag, Layer-Wise Models and Best Theory Diagrams for Laminated Structures
	4.1. Introduction
	4.2. Who First Proposed a Zig-Zag Theory?
	4.3. The Lekhnitskii–Ren Theory
	4.4. The Ambartsumian–Whitney–Rath–Das Theory
	4.5. The Reissner–Murakami–Carrera Theory
	4.6. Remarks on the Theories
	4.7. A Brief Discussion on Layer-Wise Theories
	4.8. Best Theory Diagrams via the Axiomatic/Asymptotic Method
	4.8.1. The axiomatic/asymptotic method
	4.8.2. The Best Theory Diagram

	4.9. CUF Shell Finite Elements
	4.9.1. Geometry of cylindrical shells
	4.9.2. MITC method
	4.9.3. Governing equations

	4.10. Numerical Examples
	4.11. Best Theory Diagrams
	4.11.1. Plates
	4.11.2. Shells

	4.12. Conclusions
	References

	5. A Modeling Framework for the Analysis of Instabilities and Delamination in Composite Shells
	5.1. Introduction
	5.1.1. Review of shell formulations
	5.1.2. Finite element formulations for shells
	5.1.3. Instabilities in thin-walled composite engineering systems
	5.1.4. Overview

	5.2. Shell Formulation: 7-Parameter Model
	5.2.1. Differential geometry and fundamental equations
	5.2.2. Three-dimensional shell parametrization
	5.2.3. Solid shell parametrization

	5.3. Constitutive Formulations for the Shell
	5.3.1. Layered composite shells
	5.3.2. Functionally graded isotropic shells

	5.4. Cohesive Interface for Large Deformation Analysis
	5.5. Computational Framework and Finite Element Formulation
	5.5.1. Variational basis
	5.5.2. Shell finite element discretization
	5.5.2.1. Displacement formulation supplemented by EAS
	5.5.2.2. Interpolation of the incompatible strains
	5.5.2.3. The ANS method

	5.5.3. Interface finite element discretization

	5.6. Representative Applications
	5.6.1. Postbuckling analysis of composite stiffened panel
	5.6.2. Wrinkling–delamination analysis of composite systems

	5.7. Concluding Remarks
	Acknowledgments
	References

	6. Bifurcation of Elastic Multilayers
	6.1. Introduction
	6.2. Notations and Governing Equations
	6.3. Uniaxial Tension/Compression of an Elastic Multilayer
	6.3.1. Equations for a layer
	6.3.1.1. Traction free at the external surface of the multilayer
	6.3.1.2. Bonding to an elastic half-space at the external surface of the multilayer
	6.3.1.3. Bonding to an undeformable substrate at the external surface of the multilayer
	6.3.1.4. Bonding to an undeformable substrate with a compliant interface at the external surface of the multilayer

	6.3.2. Bifurcation criterion
	6.3.3. Results and discussion
	6.3.3.1. Layer bonded to a half-space
	6.3.3.2. Periodic multilayered structures


	6.4. Bending of Elastic Multilayers with Imperfect Interfaces
	6.4.1. Kinematics
	6.4.2. Stress
	6.4.3. Incremental bifurcations superimposed on finite bending of an elastic multilayered structure
	6.4.4. An example: Bifurcation of a bilayer
	6.4.5. Experiments on coated and uncoated rubber blocks under bending

	6.5. Conclusions
	Acknowledgments
	References

	7. Instabilities Associated with Loss of Ellipticity in Fiber-Reinforced Nonlinearly Elastic Solids
	7.1. Introduction
	7.2. Compressible Materials in Three Dimensions
	7.2.1. Kinematics
	7.2.2. Elasticity
	7.2.3. Equilibrium and ellipticity considerations
	7.2.4. Reinforcing models

	7.3. Specialization to Plane Strain Deformations
	7.3.1. Ellipticity of the reinforcing model F(I4)
	7.3.1.1. Failure of ellipticity

	7.3.2. Ellipticity of a hybrid reinforcing model

	7.4. Incompressible Materials
	7.4.1. Plane strain

	7.5. Strong Discontinuities
	7.5.1. Piecewise homogeneous deformation gradients
	7.5.2. Energy considerations
	7.5.3. Illustrations
	7.5.3.1. Example 1: An orthogonal kink
	7.5.3.2. Example 2: A weak kink


	7.6. Concluding Remarks
	References

	8. Propagation of Rayleigh Waves in Anisotropic Media and an Inverse Problem in the Characterization of Initial Stress
	8.1. Introduction
	8.2. Basic Elasticity in Anisotropic Materials with Initial Stress
	8.3. The Stroh Formalism for Dynamic Elasticity
	8.4. Rayleigh Waves in Anisotropic Materials
	8.5. Perturbation of the Phase Velocity of Rayleigh Waves in Prestressed Anisotropic Media When the Base Material is Orthotropic
	8.6. An Inverse Problem on Recovery of Initial Stress
	8.7. Perturbation of the Polarization Ratio of Rayleigh Waves in Prestressed Anisotropic Media When the Base Material is Orthotropic
	Acknowledgments
	References

	9. Advanced Mathematical Models and Efficient Numerical Simulation in Composite Processes
	9.1. Introduction
	9.2. Reinforced Polymers
	9.2.1. Fiber suspensions in Newtonian fluids
	9.2.2. Fiber suspensions in non-Newtonian fluids

	9.3. Multi-Physics in Laminates
	9.3.1. PGD at a glance
	9.3.2. Heat transfer in laminates
	9.3.2.1. Computing R(x) from S(z)
	9.3.2.2. Computing S(z) from R(x)

	9.3.3. 3D RTM
	9.3.4. The elastic problem defined in plate domains
	9.3.5. 3D elastic problem in a shell domain
	9.3.5.1. Shell representation
	9.3.5.2. Weak form
	9.3.5.3. In-plane–out-of-plane separated representation

	9.3.6. Squeeze flow in composite laminates
	9.3.6.1. Stokes model
	9.3.6.2. Power-law fluid
	9.3.6.3. Brinkman’s model
	9.3.6.4. Squeeze flow of multiaxial laminates

	9.3.7. Electromagnetic models in laminates

	9.4. Coupled Physics at Interfaces
	9.4.1. Surface representation
	9.4.2. High-resolution numerical solution
	9.4.3. Surface evolution during the in-situ consolidation
	9.4.4. Consolidation simulation strategy

	9.5. Conclusions
	References

	10. Modeling Fracture and Complex Crack Networks in Laminated Composites
	10.1. Introduction: Damage Idealization and Scale
	10.2. Crack Initiation and Propagation
	10.2.1. Linear elastic fracture of composites
	10.2.2. Cohesive laws
	10.2.2.1. Length of the fracture process zone
	10.2.2.2. Size effects
	10.2.2.3. Softening law and the R-curve effect
	10.2.2.4. Mixed-mode cohesive laws


	10.3. Continuum Representation of Material Response
	10.3.1. Distributed damage vs. localization of fracture
	10.3.2. Idealization of damage modes in composite materials
	10.3.3. Failure criteria and strength
	10.3.4. Crack tunneling and in situ strength
	10.3.5. Continuum damage models for composite materials

	10.4. CDM: Limitations
	10.5. Bridging the Gap between DDM and CDM
	10.6. Regularized x-FEM (Rx-FEM) Framework
	10.6.1. Matrix crack modeling using Rx-FEM

	10.7. Rx-FEM Simulations
	10.7.1. Transverse crack tension test
	10.7.2. Effect of ply thickness
	10.7.3. Internal delamination vs. edge delamination

	10.8. Conclusions
	Acknowledgments
	References

	11. Delamination and Adhesive Contacts, Their Mathematical Modeling and Numerical Treatment
	11.1. Introduction
	11.2. Concepts in Quasistatic Rate-Independent Evolution
	11.3. Mathematical Concepts to Solve the System (11.4)
	11.3.1. General weak solutions — Local solutions
	11.3.2. Weak solutions conserving energy: Energetic solutions
	11.3.3. Weak solutions of stress-driven types

	11.4. Quasistatic Brittle Delamination, The Griffith Concept
	11.5. Elastic-Brittle Delamination
	11.5.1. The model and its asymptotics to brittle delamination
	11.5.2. Numerical implementation
	11.5.3. Illustrative examples

	11.6. Various Refinements and Enhancements
	11.6.1. Cohesive contacts
	11.6.2. Delamination in Modes I, II and mixed modes
	11.6.3. Multi-threshold delamination
	11.6.4. Combinations with other inelastic processes in bulk
	11.6.5. Another inelastic process on the surface: Friction
	11.6.6. Dynamical adhesive contact in visco-elastic materials
	11.6.7. Thermodynamics of adhesive contacts

	11.7. Applications to Fiber-Reinforced Composites
	11.8. Conclusion
	Acknowledgments
	References

	12. Interaction of Cracks with Interfaces
	12.1. Introduction
	12.2. The Coupled Criterion
	12.3. Matched Asymptotic Expansions
	12.4. Application to the Crack Onset at a V-notch in a Homogeneous Material
	12.5. Application to the Deflection of Transverse Cracks
	12.6. The Cook and Gordon Mechanism
	12.7. The Interface Crack Growing Along the Interface — Delamination
	12.8. The Crack Kinking out of the Interface
	12.9. The Interface Corner
	12.10. Conclusion
	References

	13. Computational Procedure for Singularity Analysis of Anisotropic Elastic Multimaterial Corners — Applications to Composites and Their Joints
	13.1. Introduction
	13.2. Lekhnitskii–Stroh Formalism for Linear Elastic Anisotropic Materials
	13.2.1. Basic equations
	13.2.2. Sextic eigen-relation: Stroh orthogonality and closure relations
	13.2.3. Representation of displacement and stress function vectors

	13.3. Elastic Multimaterial Corner
	13.3.1. Corner configuration
	13.3.2. Boundary and interface conditions: Matrix formalism
	13.3.2.1. Coordinate systems
	13.3.2.2. Boundary condition matrices
	13.3.2.3. Interface condition matrices


	13.4. Singular Elastic Solution in a Single-Material Wedge: Transfer Matrix
	13.4.1. Non-degenerate materials
	13.4.2. Degenerate materials
	13.4.3. Extraordinary degenerate materials

	13.5. Characteristic System for the Singularity Analysis of an Elastic Multimaterial Corner
	13.5.1. Transfer matrix for a multimaterial wedge
	13.5.2. Characteristic system assembly
	13.5.2.1. Open multimaterial corner
	13.5.2.2. Closed multimaterial corner (periodic corner)

	13.5.3. Solution of the characteristic system — Singular elastic solution

	13.6. Evaluation of GSIFs
	13.6.1. Least-squares fitting technique
	13.6.2. Implementation, accuracy and robustness

	13.7. Examples of Singularity Analysis
	13.7.1. Transverse crack terminating at the interface in a [0/90]S laminate
	13.7.2. Bimaterial corner in an adhesively bonded double-lap joint
	13.7.2.1. Singularity analysis of a closed corner
	13.7.2.2. Singularity analysis of a corner including an interface crack with sliding friction contact


	13.8. Failure Criterion for a Multimaterial Closed Corner Based on Generalized Fracture Toughness
	13.9. Removal of Stress Singularities in Bimaterial Joints
	13.9.1. Tensile and shear strength in bimaterial samples
	13.9.2. Removal or reduction of stress singularities associated to tabs bonding in standard composite testing
	13.9.2.1. Compression test of thick composite laminates
	13.9.2.2. Off-axis test of unidirectional composite materials


	13.10. Conclusions
	Acknowledgments
	References

	Index



