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PREFACE

A number of books devoted to different aspects of both theoretical and applied rheology 
were published in the last 20 years. The keyword in the last sentence is “different aspects.” 
Rheology has a unique structure with its own language, fundamental principles, original 
concepts, rigorous experimental methods, and a set of well-documented observations with 
inherent interrelations between various branches of natural science and numerous practical 
applications.

By examining the enormous volume of rheological literature and meeting various 
people interested in rheology (university teachers, students, applied scientist, and engi-
neers), the authors felt the need for a systematic presentation of the subject matter in one 
book − a book that includes all components of rheology and presents them as an indepen-
dent branch of natural science. 

However, it became apparent from the early planning stages that some information 
would need to be omitted to provide a clear presentation of the concepts, methods, and 
applications which constitute the essence of efforts that created this science. The wish to 
present all aspects of rheology will inevitably lead to a book of enormous size. Every 
attempt to write a scientific book is personal and objective; objective because science ben-
efits from objective assessments and personal because our experiences make us feel that 
certain aspects are more important than others. In our case, we are university teachers and 
researchers primarily in the field of applied rheology. An attentive reader will most likely 
find some reflections of our personal preferences.

Considering the book's goals and the tasks, the authors tried to limit the choice of ref-
erences to the first publications on a particular subject, including reviews and papers pro-
viding the most expressive examples and illustrations of the topics under discussion. 
Accordingly, a significant number of original publications are not mentioned. It is regret-
table because any serious publication is worth mentioning.

The authors hope that the readers of the book will benefit from our presentation of 
rheology as an interrelated system of concepts, principal phenomena, experimental meth-
ods, and directions of their application. Our rheology is also a science interwoven with 
other branches of theoretical and applied sciences. We take many opportunities to empha-
size these links because they enrich science, make it easier to understand and apply, and 
this also helps to fulfill our goals concisely expressed in the book title. To amplify its use-
fulness as a teaching tool, all chapters of the book contain questions to be used by readers 
to assess their knowledge of a particular subject. Answers to these questions are included 
in the last part of the book. 

Finally, the authors are glad to fulfill their pleasing duty to thank Dr. Andrei Andri-
anov (Moscow State University) for his technical assistance in preparing the computer 
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versions of many figures and realizing the liaison between the authors. The authors are 
also grateful to Dr. Sayata Ghose for painstaking proofreading and making corrections for 
this book. 

Special gratitude goes to Professor J.L. White, who read the book's manuscript and 
made many valuable comments, which helped enrich the presented text.

We express our deep gratitude to publishers of various journals (Advances in Poly-
mer Science, Colloid Journal, European Polymer Journal, International Journal of Poly-
meric Materials, Journal of Applied Polymer Science, Journal of Macromolecular 
Science, Journal of Non-Newtonian Fluid Mechanics, Journal of Polymer Science, Journal 
of Rheology, Macromolecular Chemie, Polymer, Polymer Engineering and Science, Poly-
mer Science USSR, Reviews of Scientific Instruments, Rheologica Acta) and books (Rhe-
ology of Elastomers by P. Mason and N. Wookey (eds), A Practical Approach to Rheology 
and Rheometry by G. Schramm for permission to use figures from their publications.

Alexander Ya. Malkin, 
Moscow, Russia

Avraam I. Isayev
Akron, Ohio, USA

July, 2005
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PREFACE TO THE 2ND EDITION

In preparing the Second Edition of this book, the book's general structure is maintained, 
and some necessary corrections and additions are made. The most important recent results 
published in periodicals till the middle of 2011 are added. In particular, Section 2.8.1 of 
Chapter 2, Section 3.5.2 of Chapter 3, and Subsection 5.8.1.2 of Chapter 5 are modified. A 
new Subsection 5.6.2.6 on Capillary breakup in elongational rheometry is added. Further-
more, Section 3.2.3 on the Viscosity of anisotropic liquids and Section 3.6.3 on Instabili-
ties of the flow of elastic fluids of Chapter 3 are completely rewritten. Many other 
modifications in the text are made, and some new figures are added. Also, all the detected 
misprints and errors found by ourselves or pointed out by colleagues are corrected. 

After the publication of the First Edition of the book, a lot of comments and advice 
from our friends and colleagues were received. We are very grateful to all of them for con-
structive criticism and valuable comments.

We are also grateful to our Editor, Dr. G. Wypych, for his hard work in improving the 
manuscript and making it ready for publication.

Alexander Ya. Malkin,
Moscow, Russia

Avraam I. Isayev
Akron, Ohio, USA

August 2011
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PREFACE TO THE 3RD EDITION

In the 3rd Edition of the book, we updated the material paying special attention to the 
issues which have become the hot spots of rheology during the last decade. These are such 
topics as the rheology of polymeric materials containing fillers, the concept of heterogene-
ity of the flow, including the effect of shear-banding, and new ideas in understanding the 
visco-plastic media. We have added references to the mostly up-to-date publications in 
these fields. 

We are grateful to readers who were kind to bring to our attention some misprints 
and not quite clear explanations used in the former editions. Necessary corrections have 
been implemented.

We hope that this book is continued to be used by students and young researchers 
who only start their careers in the intriguing world of the rheology of real materials sur-
rounding us in our life.

Alexander Ya. Malkin,
Moscow, Russia

Avraam I. Isayev
Akron, Ohio, USA

December 2016
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PREFACE TO THE 4TH EDITION

Rheology is a living and developing science. Every month. various journals, publish doz-
ens of papers devoted to general problems and foundation of rheology as well as applica-
tion of the rheological methods for solving different applied tasks in the oil industry and 
food production, road building, and polymer technology, etc. It is not possible and not 
necessary to collect all this information, but among these publications, one can find new 
approaches and conceptions which have value for different aspects of rheology. In prepar-
ing the new edition of the book, we tried to catch this new knowledge or put emphasis on 
some old works that obtained modified reflections. First of all, the corrections touched on 
understanding the nature of instabilities in the flow of viscoelastic liquids, the concept of 
plasticity as the part of elastoplastic behavior of highly concentrated suspensions, some 
details in the capillary viscometry.

We are grateful to our colleagues who spent their time and were kind to point out 
some unclear places in the text and made advice concerning a more rigorous description of 
some theoretical aspects of rheology.

This book is addressed to students and young researchers interested in expanding 
their theoretical background and applied science-based knowledge and plan to continue 
their carrier in physics and technology of complex liquids related to rheological measure-
ments.

Alexander Ya. Malkin
Moscow, Russia

Avraam I. Isayev
Akron, OH, USA

December 2021
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2 Introduction. Rheology: Subject and Goals

New methods are needed to characterize and measure their properties. New fields of appli-
cation can be expected from the application of new concepts and the results of studies. All 
these are the essence of rheology.

Superposition of liquid-like and solid-like features in the behavior of technological 
materials is directly regarded as the consequence of time effects, i.e., the results of obser-
vations depend on a time scale. Possibly, this is the most common feature of the materials 
which were listed above. Time by itself has no meaning, but time is a reflection of changes 
in material structure taking place during the period of observation (or experiment). 

The primary method of rheology consists of constructing models, which are useful in 
qualitative or (better) quantitative descriptions of experimental results of different materi-
als' mechanical behavior. Any natural science pretends to deal with reality and does so by 
means of phenomenological models. Any model is created not to reflect all but the most 
important characteristic features of an object. The concepts of liquids and solids are also 
models, and their formal (mathematical) representation originated from the classical 
works by Isaac Newton and Robert Hooke. 

Newton (1687) reflected upon resistance of liquids to a cylinder rotating in a vessel. 
His ideas were converted to a more accurate form by Stokes, who formulated a general 
law of liquid-like behavior, known as the Newton-Stokes law. According to this concept, 
the deformation rate is expected to be proportional to stress, and the constant coefficient of 
proportionality is called viscosity, which is a material parameter of liquid. This law 
assumes that, in flow of liquids, a force (or resistance to flow) is proportional to a velocity 
(of movement). 

Hooke (1676) formulated a similar proposal concerning the properties of solids. The 
law, named after him, was translated to modern form by Bernoulli and then by Euler. 
Hooke’s law states that in the deformation of solids, stress is proportional to deformation. 
The coefficient of proportionality is called Young’s modulus. 

Both models represent properties of many real materials and work well in describing 
their behavior with a considerably high degree of accuracy. However, there are many other 
materials that are not described by the Newton-Stokes and the Hooke laws. Rheology 
relies on the concept that non-Newtonian and non-Hookean materials exist in reality. 
These materials are interesting from both theoretical and applied aspects, and that is why 
such materials must be the objects of investigation. 

It is important to emphasize that every model describes the properties of real materi-
als with a different degree of approximation. The Newton-Stokes and Hooke laws are not 
exceptions, and more strict and complex laws and equations give a much better approxi-
mation of reality than the classical Newton-Stokes and Hooke laws known from school 
years.

Both basic phenomenological (i.e., taken as probable assumptions, but only assump-
tions) relationships (the Newton-Stokes and Hooke laws) do not include the inherent 
structure of matter. Because matter consists of molecules and intermolecular empty 
spaces, every material is heterogeneous. At the same time, an observer sees a body as a 
homogeneous continuous mass without holes and empty spaces. The obvious way out of 
these contradictory evidence lies in the idea of the space scale of observation. This scale 
can be small enough to distinguish individual molecules or their parts. Then, molecules 
can be combined in regular arrangements, such as crystals, and then crystals can be orga-
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nized in super-crystalline (or super-molecular) arrangements. All this leads to the concept 
of material structure, i.e., more or less well-organized and regularly spaced shapes. The 
structure might be well determined. This is the case, for example, of reinforced plastics 
and monocrystals. In other cases, “structure” can mean complex intermolecular interac-
tions, which cannot be observed by direct methods. Rheology is especially interested in 
structured materials because their properties change due to the influence of applied forces 
on the structure of matter.

The definition of rheology as a branch of natural science and the subject of rheologi-
cal studies can be formulated based on the following argument. Traditionally, rheology is 
defined as “the study of deformations and flow of matter” (College Dictionary). However, 
this definition is ambiguous. The definition is close to the mechanics of continuum and 
does not distinguish special features of rheology. 

The following points should be emphasized:
• Rheological studies are not about “deformation and flow” but about properties of 

matter determining its behavior, i.e., its reaction to deformation and flow.
• Rheology deals with materials having properties not described by the models of 

Newton-Stokes and Hooke. It is a negative statement (the rule of contraries). The 
positive statement is that rheology studies materials are having properties 
described by any relationship between force and deformation. In this sense, the 
Newton-Stokes and Hooke laws are limiting cases formally lying on the border 
of rheology. The subject of rheology is not about all matters, but only those for 
which non-linear dependencies between forces and deformations or rates of 
deformations are the main characteristics. 

• Rheology is interested in materials, deformation of which results in superposition
of viscous and elastic effects.

• Rheology studies materials with structure changes under the influence of applied 
forces. 

One of the keywords in rheology is the behavior of various real continuous media. 
What is the meaning of “behavior”? For a body of finite size, it is a relationship between 
external action (forces applied to a body) and internal reaction (changes of a body shape). 
For continuous media, this approach is extrapolated to a point, and the relationship 
between forces and deformations at this point (i.e., changes of distance between two arbi-
trary points in a body) is examined. Thus, by discussing what happens in a body at a point 
of reference, the problem of a geometrical form of a body as such is avoided, but the sub-
ject of investigations are only its substantial, inherent properties. 

The first main goal of rheology consists of establishing the relationship between 
applied forces and geometrical effects induced by these forces at a point. The mathemati-
cal form of this relationship is called the rheological equation of state, or the constitutive 
equation. The Newton-Stokes and Hooke laws are the simplest examples of such equa-
tions. Rheological equations of state can be (and they are!) very different for numerous 
real materials. The rheological equations of state found for different materials are used to 
solve macroscopic problems related to the continuum mechanics of these materials. Any 
equation is just a model of physical reality.

The independent second goal of rheology consists of establishing relationships 
between the rheological properties of the material and its molecular structure (composi-
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tion). This is related to estimating the quality of materials, understanding laws of molecu-
lar movements and intermolecular interactions. The term microrheology, related to 
classical works by Einstein (1906, 1911), devoted to viscous properties of suspensions, is 
sometimes used in this line of thought. It means that the key interest is devoted not only to 
movements of physical points but also to what happens inside a point during the deforma-
tion of the medium. Therefore, it is a search for rheological equations of the state of differ-
ent materials based on the basic physical concepts. Then, the constants entering these 
models are related to various molecular parameters of the material. 

In its origin, the term “rheology” applies to flowing media since the main root of the 
word means “to flow” (rheo in Greek). But it is very difficult to classify the material as 
solid or fluid, and, therefore, this term is now used for any material. As a result, many ana-
lytical methods used for solids and liquids are very similar. The majority of publications 
devoted to rheology and, consequently, the largest part of this book deal with flowing 
materials, whereas rheology of solids is frequently treated as a part of the mechanics of 
solids and discussed as a separate branch of science. 

The place of rheology among other natural sciences and applied problems is shown 
in Figure 1. Rheology is a multi-disciplinary science having many relationships with fun-
damental physics and chemistry, as well as many applications in technology and engineer-
ing of materials and many fields of biological sciences. 

Indeed, the connection between rheology and physics consists of explanation and 
predictions of rheological properties based on knowledge of the molecular structure and 
fundamental laws of physics (molecular physics, statistical physics, thermodynamics, and 
so on). The connection between rheology and chemistry consists of existing experimental 
evidence of a direct correlation between chemical parameters (molecular mass and molec-
ular mass distribution, chemical structure, intermolecular interactions, etc.) and rheologi-
cal properties; therefore, it is possible to synthesize materials with desirable properties.

The second layer of interrelations consists of the connection between rheology and 
mechanics of continuum. The results of rheological studies give the background for the 

 Fig. 1. Rheology as an interdisciplinary science − its place among other sciences.
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formulation of boundary problems in solid-state mechanics as well as in dynamics of liq-
uids. This includes governing equations and their solutions to find numerical values of 
macro-parameters, such as pressure, forces, displacements, etc.

In the framework of solid-state mechanics, such effects as long-term behavior, engi-
neering properties of materials as well as their technological properties are the direct 
objects of rheological analysis. Solutions of boundary problems in dynamics of liquids are 
used for the analysis of flow in technology (calculation of pressure and output, resistance 
to movement of solid bodies in liquids, and so on), as well as for standardization of the 
methods of quality control in the technology of liquid products.

It is worthwhile to list materials for which the rheological analysis is the most 
important. In fact, such a list should include all materials because the Newton-Stokes and 
Hooke laws are the limiting cases only. However, the following list gives an impression of 
fields that cannot be developed without the participation of rheological studies:

• metals, alloys, and composites at large deformations and different technological 
operations

• concrete, ceramics, glass, and rigid plastics (including reinforced plastics) at long 
periods of loading

• polymer melts and solutions, including filled composites, rubbers
• foodstuffs
• lubricants, greases, sealants
• pharmaceuticals and cosmetics
• colloid systems, including emulsions and detergents of any types
• paints and printing inks
• mud, coal, mineral dispersions, and pulps
• soils, glaciers, and other geological formations
• biological materials such as bones, muscles, and body liquids (blood, saliva, 

synovial liquid, and others). 
It is worth mentioning that polymers and plastics continue to be the main object of rheo-
logical studies, and at least half of the publications on rheology are devoted to them.

To recapitulate, it seems useful to point out that the main ideas of the Introduction
permit us to compose a dictionary of rheology.

Rheology is a science concerned with the mechanical properties of various solid-like, 
liquid-like, and intermediate technological and natural products. It accomplishes its goals 
by means of models representing principal peculiarities of behavior of these materials. 
The behavior of the material is a relationship between forces and changes of shape. A 
model gives a mathematical formulation of such a relationship. Rheological properties are 
expressed by the model structure (i.e., its mathematical image), and values of constants 
included in the model are characteristics of the material.

Rheological models are related to a point, which is a physical object including a suf-
ficient number of molecules to neglect the molecular structure of matter and treat it as a 
continuum. The rheological analysis is based on the use of continuum theories, meaning 
that the following is assumed:

• there is no discontinuity in the transition from one geometrical point to another, 
and the mathematical analysis of infinitesimal quantities can be used; discontinu-
ities appear only at boundaries
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• properties of the material may change in space (due to the gradient of concentra-
tion in multicomponent mixtures, temperature distribution, or other reasons), but 
such changes occur gradually; these changes are reflected in space dependencies 
of material properties entering equations of continuum theories which must be 
formulated separately for any part of material surrounded by the boundary sur-
faces at which discontinuity takes place

• continuity theories may include an idea of anisotropy of properties of material 
along with different directions.

The rheological behavior of material depends on time and space scales of observa-
tion (experiment). The former is important as a measure of the ratio of the (time) rate of 
inherent processes in a material to the time of experiment and/or observation; the latter 
determines the necessity to treat material as homo- or heterogeneous.

The results of the macroscopic description of the behavior of real engineering and 
biological media, based on their rheological properties, are used in numerous applications 
related to the technology of synthesis, processing, and shaping various materials listed 
above.

LITERATURE
Many books devoted to rheology were published during the 70-year history of this science. It is not possible to 
list all of them. The most important books which gave the input to the development of rheology and reviewed 
results of principal rheological schools are cited in the text of this book. The same concerns many historically 
important and original publications.

The modern history of rheology began with the publication of several books in the 1940s, which had a great 
impact on the education of future generations of rheologists. Among them, it is necessary to recall:

T. Alfrey, Mechanical Behavior of High Polymers, Interscience, N.Y. 1948.
M. Reiner, Twelve Lectures on Theoretical Rheology, North Holland Publ. Co., Amsterdam. 1949.
G.W. Scott Blair, A Survey of General and Applied Rheology, Pitman, London, 1949.

Those who are interested in special aspects of rheology may like to pay attention to the following books pub-
lished more recently. 
1 Deepak Doraiswamy, The origin of rheology: For a short historical excursion see 

http://sydney.edu.au/engineering/aeromech/rheology/Origin_of_Rheology.pdf
The development of rheology including sketches devoted to people who played the most important role in

 rheology can be found in a monograph: 
R.I. Tanner, K. Walters, Rheology: A Historical Perspective, Elsevier, Amsterdam, 1998.

2 The state of rheology and the main results obtained until 1969 were summarized in a five-volume book
 Rheology. Theory and Applications, Ed. F.R. Eirich, v. 1-5, Academic Press, London, 1956-1959. 

One can find a comprehensive analysis of rheology in the following books: 
J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, NY, 1980.
C.W. Macosko, Rheology: Principles. Measurements and Applications, VCH, New York, 1993. 
F.A. Morrison, Understanding Rheology, Oxford University Press, New York, 2001.

3 The following books are devoted to the general theoretical background of rheology:
G. Astarita, G. Marucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.
R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, v. 1-2, Wiley, New York, 1987.

 M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford Science Publisher, Oxford, 1986.
J. Furukawa, Physical Chemistry of Polymer Rheology, Springer, Berlin, 2003.

 H. Giesekus, Phänomenologische Rheologie: Eine einführung, Springer, Berlin, 1995.
R.R. Huilgol, N. Phan-Thien, Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam, 1997. 
G.D.C. Kuiken, Thermodynamics of Irreversible Processes: Application to Diffusion and Rheology,

 Wiley, New York, 1994.
R.G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston, 1988.
R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.
A.I. Leonov, A.N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman

 and Hall, London, 1994.
A.S. Lodge, Elastic Liquids, Academic Press, London, 1960.
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H.C. Öttinger, Stochastic Processes in Polymer Fluids, Springer, Berlin, 1996.
W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon, 1978.
N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelasticity, Springer, Berlin, 1989.
A.S. Wineman, K.R. Rajagopal, Mechanical Response of Polymers: Introduction, Cambridge University

 Press, Cambridge, 2000.
4 The following monographs were devoted to different materials extensively studied by rheological methods:

D. Acierno, A.A. Collyer (Eds.), Rheology and Processing of Liquid Crystal Polymers, Chapman and
 Hall, London, 1996.

J.M.V. Blanshard, P. Lillford, Food Structure and Behavior, Academic Press, London, 1987.
O.E. Briskoe, Asphalt Rheology: Relationship to Mixture, ASTM, Philadelphia, 1987.
P. Coussot, Mudflow Rheology and Dynamics, A.A. Balkema, Rotterdam, 1997.
D.A. Drew, D.D. Joseph, S.L. Pasman (Eds.), Particulate Flows: Processing and Rheology, Springer,

 New York, 1998. 
H.A. Faradi, J.M. Faubion (Eds.), Dough Rheology and Baked Products Texture, Van Nostrand 
Reinhold, New York, 1990.
Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer, New York, 1993.
R.K. Gupta, Polymer and Composite Rheology, Marcel Dekker, New York, 2000.
B.G. Higgins, Coating Fundamentals: Suspension Rheology for Coating, TAPPI Press, Atlanta, 1988. 
M.J. Keedwell, Rheology and Soil Mechanics, Elsevier Science, London, 1984.
D. Laba (Ed.), Rheological Properties of Cosmetics and Toiletries, Marcel Dekker, New York, 1993.
G.D.O Lowe (Ed.), Clinical Blood Rheology, CRC Press, Boca Raton, 1988.
J.M. Mazumdar, Biofluids Mechanics, World Scientific, Singapore, 1992.
W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersion, Cambridge University Press, 
Cambridge, 1989.
A.V. Shenoy, Rheology of Filled Polymer Systems, Kluwer, Dordrecht, 1999.
G.V. Vinogradov, A.Ya. Malkin, Rheology of Polymers, Springer, Berlin, 1980.

5 Applied problems of rheology are presented (in addition to the above-listed monographs) in the books:
V. Capasso, Mathematical Modeling of Polymer Processing, Springer, Berlin, 2003.
J.M. Dealy, K.F. Wissbrun, Melt Rheology and Its Role in Plastics Processing, Van Nostrand, New York,
1990.
C.D. Han, Rheology in Polymer Processing, Academic Press, NY, 1976.
C.D. Han, Multiphase Flow in Polymer Processing, Academic Press, NY, 1981.
A.I. Isayev (Ed.), Injection and Compression Molding Fundamentals, Marcel Dekker, New York, 1987.
A.I. Isayev (Ed.), Modeling of Polymer Processing. Recent Developments, Hanser, Munich, 1991. 
J.M. Piau, J.F. Agassant (Eds), Rheology for Polymer Melt Processing, Elsevier, Amsterdam, 1996.
R.I. Tanner, Engineering Rheology, 2nd Edition, Oxford University Press, Oxford, 2000.
M.R. Kamal, A.I. Isayev and S.-J. Liu (Eds.), Injection Molding Technology and Fundamentals, 
Hanser, Munich, 2009.
J.F. Steffe, Rheological Methods in Food Process Engineering, 2nd Edition, Freeman Press, East 
Lansing, 1996.
J.L. White, Principles of Polymer Engineering Rheology, Wiley, New York, 1990.

6 Experimental methods of rheology are discussed in the following books:
H.A. Barnes, J. F. Hutton, K. Walter, An Introduction to Rheology, Elsevier, Amsterdam, 1989.
D.V. Boger, K. Walters, Rheological Phenomena in Focus, Elsevier, Amsterdam, 1993.
A. Collyer, D.W. Clegg (Eds), Rheological Measurement, Chapman and Hall, London, 1998.
A. Collyer (Ed.), Techniques in Rheological Measurement, Chapman and Hall, London, 1993.
J.M. Dealy, Rheometers for Molten Plastics. A Practical Guide to Testing and Property 
Measurement, Van Nostrand Reinhold, New York, 1982. 
J.M. Dealy, P.C. Saucier, Rheology in Plastics Quality Control, Hanser, Munich, 2000.
G.F. Fuller, Optical Rheometry of Complex Liquids, Oxford University Press, New York, 1995.
H. Janeschitz-Kriegl, Polymer Melt Rheology and Flow Birefringence, Springer, Berlin, 1983.
W.-M. Kulicke, B.C. Clasen, Viscometry in Polymers and Polyelectrolytes, Springer, Berlin, 2004.
V.I. Levitas, Large Deformation of Materials with Complex Rheological Properties at Normal and

 High Pressures, Nova Science, New York, 1996. 
A.Ya. Malkin, A.A. Askadsky, V.V. Kovriga, A.E. Chalykh, Experimental Methods of Polymer Physics,

 Prentice-Hall, Englewood Cliffs, 1983. 
K. Walters, Rheometry, Chapman and Hall, London, 1975.
R.W. Whorlow, Rheological Techniques, Ellis Harwood, New York, 1992.

7 Computational methods are very important in applications of rheology because of the rather complicated 
equations used in the calculation. However, although many papers in journals have been published, only 
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a very limited number of books are devoted to this problem, for example:
T. J. Chung, Computational Fluid Dynamics, Cambridge University Press, New York, 2002.
M. J. Crochet, A. R. Davies, K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier,

 Amsterdam, 1984.
R.G. Owens, T.N. Phillips, Computational Rheology, Imperial College Press, London, 2002.
J.R.A. Pearson, S.M. Richardson (Eds), Computational Analysis in Polymer Processing, Applied 
Science Publishers, London, 1983.
C. Pozdrikidis, Fluid Dynamics. Theory, Computation and Numerical Simulation, Kluwer Academic

 Publisher, Dordrecht, 2001.
C.L. Tucker (Ed.), Computer Modeling for Polymer Processing, Hanser, Munich, 1989.

Papers devoted to rheology appear in a large number of journals, but there are six special journals devoted to rhe-
ology, as follows:

Journal of Rheology
Journal of Non-Newtonian Fluid Mechanics
Nihon Reorogi Gakkaishi (Journal of Society of Rheology Japan)
Rheologica Acta 
Applied Rheology 
Korea-Australia Rheology Journal

New results in different branches of rheology can be found in these journals.



1

CONTINUUM MECHANICS 
AS A FOUNDATION OF RHEOLOGY

Rheology is a science dealing with the deformation and flow of matter. Relationships 
between stresses and deformations are the fundamental concepts of continuum mechanics, 
which are discussed in this chapter. The modern history of rheology was marked by the 
publication of several books1 in the 1940s, which impacted the education of future genera-
tions of rheologists.

1.1 STRESSES
Internal stresses are directly related to forces applied to a body regardless of their origin. 
Only in special cases do internal stresses exist in the absence of external forces. These are, 
for example, thermal stresses caused by temperature inhomogeneity throughout a body or 
frozen stresses stored as a result of the thermal and/or mechanical history of a body treat-
ment caused by its heterogeneity.
1.1.1 GENERAL THEORY

Any external force applied to a body leads 
either to a movement of the body as a 
whole or to a change of its initial shape. 
Both may occur simultaneously. The move-
ment of a body in space and/or its rotation 
around its center of gravity, with no change 

to its shape, is a subject of study by mechanics, and as such is not discussed in this book. 
The principal focus of our discussion here are changes that occur inside a body on the 
application of an external force. The applied forces create dynamic reactions at any point 
of a body, which are characterized by a physical factor called stress.

Stress can be explained using a simple example. Let us consider a body (a bar). The 
area of its normal cross-section is S (Fig. 1.1.1). The force, F, is normal to the surface, S. 
The specific force at any point of the cross-section equals F/S. The ratio is normal stress
or tensile stress, σE:

[1.1.1]

i.e., stress is the force per unit of the surface area. The force at any surface may not be 
constant, i.e., be a function of coordinates. For example, a train moving on rails presses 

σE F S⁄=

Figure 1.1.1. A bar loaded with a normal force.
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rails at local zones (where wheels touch the rail). The force is then distributed within the 
rail according to a complex pattern of stress distribution. 

In our case, we do not consider force distribution because we have selected a small 
surface area, ΔS. A relative (specific) force, ΔF, acting on the area of ΔS is used to calcu-
late the ratio ΔF/ΔS. By decreasing the surface area, we eventually come to its limiting 
form, as follows:

, at , i.e., [1.1.2]

This is a more general and exact definition of stress than given by Eq. 1.1.1 because 
it is related to a reference point, such as the surface area, ΔS. However, the definition is 
still not complete. A force at the area ΔS can have any direction, therefore a force is, in 
fact, a vector F. This vector can be decomposed into three components along three coordi-
nate axes, in particular, it can be decomposed to one perpendicular and two tangential 
components. The perpendicular component is normal stress, and the tangential compo-
nents are shear stresses.

The selection of a small area ΔS is 
arbitrary, therefore it is better expressed by 
vector n, which determines the orientation
of ΔS to the normal orientation. The stress 
is described by a combination of two vec-
tors, F and n, defined at any reference 
point. This is shown in Fig. 1.1.2. The stress 
is a derivative dF/dn, and it is independent 
of the coordinate axis. Any vector is a phys-
ical object existing regardless of the choice 
of a coordinate system. 

In practical applications, it is more convenient to operate with its projections on the 
coordinate axes rather than with a vector itself. Any vector can be decomposed into its 
three projections on the orthogonal coordinate axes; let it be Cartesian coordinates, x1, x2, 
and x3.2 

It follows from the above explanations that a complete characterization of stress as a 
physical object requires the identification of two vectors: a force and a normal orientation 
to the surface to which this vector is applied. The physical objects determined in such a 
manner are called tensors, and that is why stress is a value of tensor nature.

Let both vectors, F and n, defined at any reference point, be represented by their 
three projections along the orthogonal coordinate axes:

n = n(n1, n2, n3)

F = F(F1, F2, F3)

Nine values can be obtained from three projections of force on the surfaces deter-
mined by the three coordinate vectors. All values of force, Fi (i = 1, 2, 3), must be divided 
by the surface area to give the components of a stress tensor, σij. The first index gives the 
orientation of a force, and the second index designates the orientation of a surface.

The result is written in the table form (matrix), as follows: 

σ limΔF
ΔS
-------= ΔS 0→ σ dF

dS
------=

Figure 1.1.2. Definition of the stress tensor − two vec-
tors: force, F, and orientation of a surface, n.
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[1.1.3]

where the components of the stress tensor, σij, mean the following: the first column rep-
resents components of a force (a force vector) that acts on the plane normal to the x1 axis, 
the second column gives the same for x2 axis, and the third for x3 axis. The directions to 
the normal are indicated by the second indices. 

The matrix contains all components (projections) of a force vector applied to differ-
ent planes at an arbitrary point inside a body. In order to emphasize that this set of param-
eters presents a single physical object, i.e., stress tensor,3 it is usual to put the table 
between the brackets.

Fig. 1.1.3 shows all components of the stress 
tensor acting on a selected point. The components 
having the same numbers in their index are normal 
stresses, which are equivalent to the initial definition 
of the normal stress in Eq. 1.1.1, and all values with 
different numbers in the index are shear stresses.

All components of the stress tensor are deter-
mined at a point, and they can be constant or variable 
in space (inside a medium). It all depends on the dis-
tribution of external forces applied to a body. For 
example, the force field is homogeneous in Fig. 
1.1.1, and thus a stress tensor is constant (inside a 
body). But the stress field (or stress distribution) is 
very complex in many other cases, for example, in a 
liquid flowing inside a channel or in the case of a 
roof covered with snow. 

The values of the stress tensor components 
depend on the orientation of coordinate axes. They 

change with the rotation of the coordinate axes in space, though the stress state at this 
point is the same. It is important to remember that, regardless of the choice of the coordi-
nate axes, this is the same physical object, invariant to the choice of the coordinate axis. 

Some fundamental facts concerning the stress tensor (and any other tensor) are dis-
cussed below. 

Comments − operations with tensors
     There are several general rules concerning operations with objects of a tensor nature.4 Two of them will be 
used in this chapter. 
     The first is the rule of summation of tensors. Tensor A is the sum of tensors B and C if components of A, aij, 
are the sum of components bij and cij with the same indices, i.e., the equality A = B + C means that aij = bij + cij.
     The second is the rule of multiplication of a tensor by a constant. Tensor A equals the product of a scalar con-
stant k and a tensor B if components of A, aij, are equal to kbij, i.e., the equality A = kB means that aij = kbij. The 
unit tensor (also called the Kronecker delta, δij) will be used below. This object is defined as a tensor, for which 
all diagonal (normal) components are equal to 1 and all shear components (when ) are equal to zero.

σ
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

=

i j≠

Figure 1.1.3. Three-dimensional stress state, 
a definition of the stress tensor components.
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1.1.2 LAW OF EQUALITY OF CONJUGATED STRESSES 
Let us consider a plane section of a unit 
cube in Fig. 1.1.3. The section is shown in 
Fig. 1.1.4. The rotational equilibrium con-
dition about the central point of the square 
immediately gives equality

The same is true for any other pair of 
shear stresses. The general rule can be for-
mulated as

[1.1.4]

These equalities are known as the 
Cauchy rule.5 

The result means that only three inde-
pendent shear components of the stress ten-
sor exist, and the stress state at a point is 

completely defined by six independent values: three normal, σ11, σ22, and σ33, and three 
shear stresses, σ12, σ13, and σ23.

However, it is necessary to mention that some special materials may exist, for which 
the Cauchy rule is invalid. It can happen if there is an inherent moment of forces acting 
inside any element of a medium.
1.1.3 PRINCIPAL STRESSES
The concept of principal stresses is a consequence of the dependence of stresses on the 
orientation of a surface. If stress components change on the rotation of the coordinate 
axes, there must be such orientation of axes, at which the numerical values of these com-
ponents are extreme (maximum or minimum).

This idea is illustrated by a simple 
two-dimensional example generated from 
Fig. 1.1.1. Let the bar be cut at some angle 
α, as shown in Fig. 1.1.5, and let the force 
F act at this angle α to the plane aa. Then, 
it is easy to calculate two components of 
the vector F − normal and tangential forces, 
Fn and Fσ, respectively:

;  

Then, the stress tensor components can be found, taking into account that the surface 
area of the inclined cross-section is S/sinα. Stress components, related to the force per unit 
of surface area, are found as follows: 

σ12 σ21=

σi j σji=

Fn F αsin= Fσ F αcos=

Figure 1.1.4. Two-dimensional (plane) stress state.

Figure 1.1.5. Stresses on the inclined section of a bar − 
decomposition of a normal force at the arbitrary ori-
ented surface.
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normal stress, σE 

[1.1.5]

shear stress, σ 

[1.1.6]

where  σ0 =F/S.
The following special orientations can be found in a body: 

  at α = 90o the normal stress σE = σ0 is at maximum, and the shear stress σ = 0;
  at α = 45o the normal stress σE = σ0/2 and the shear stress σ = σ0 is at maximum;
  at α = 0o both σE and σ are equal zero, i.e., this plane is free from stresses.

The discussion shows that, at any arbitrary orientation (or direction) of a body, both 
normal and shear stresses may exist. Moreover, there is always a direction at which the 
normal or the shear stresses are at maximum. The last observation is very important 
because various media resist the application of extension (normal) force or shear (tangen-
tial) force in different manners. For example, it is difficult to compress liquid (compres-
sion is achieved by the application of negative normal stresses) but it is very easy to shear 
liquid (to move one layer sliding over another). Another case: when a thin film is 
stretched, it breaks as a result of action of normal stresses, but shear stresses are practi-
cally negligible in this case.

The above examples are only illustrations of a general idea that all components of a 
stress tensor depend on the orientation of a surface because the size of a vector projection 
depends on the orientation of axes in space.

The theory of operations with tensor objects gives the general rules and equations for 
calculating components of the stress tensor in a three-dimensional stress state. The simpler 
equations for a two-dimensional stress state (“plane stress state”) are given by Eqs. 1.1.5 
and 1.1.6. Theoretical analysis shows that for any arbitrary stress tensor it is possible to 
find three orthogonal (i.e., perpendicular to each other) directions, at which normal 
stresses are extreme and shear stresses are absent (see Fig. 1.1.5). The normal stresses σii
are maximum along with the directions at which shear stresses are absent, σij = 0 ( ). 
These normal stresses are called the principal stresses. 

The existence of the principal stresses constitutes a general law for any stress tensor. 
In fact, it is a particular case of a more general statement: the existence of three principal 
values is the general law for any tensor.

The concept of the principal stresses permits finding a minimal number of parame-
ters that characterize the stress state at any point. It is more difficult to compare stress 
states at different points of a body or in different bodies operating with six independent 
components of the stress tensor acting along different directions. It is much easier to do so 
dealing with only three normal principal stresses. All numerical values of the components 

σE
Fn
S
----- αsin F

S
--- 2 αsin σ0

2αsin= = =

σ
Fσ

S
------ αsin F

S
--- α αcossin

σ0
2
----- 2αsin= = =

i j≠
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of a stress tensor depend on the choice of the coordinate axes, while the principal stresses 
do not.

The “threshold” effects on the material behavior can be treated in an unambiguous 
manner using the principal stresses as a criterion of an event, but not separate components 
of a stress tensor. It means that physical phenomena caused by the application of mechan-
ical forces can be considered in terms of principal stresses. The examples include phase 
transition induced by applied forces; heat dissipation in the flow; storage of elastic energy; 
non-sag properties of some semi-liquid materials; rupture of solid bodies; the slow move-
ment of snow with a sudden transition to avalanche; sand or mud on slopes, etc. The 
observed physical effects are usually caused by the principal stress which attains maxi-
mum value. 
1.1.4 INVARIANTS OF A STRESS TENSOR
Knowledge of the principal stresses allows us to distinguish between different stress states 
of matter (e.g., three different values of the principal stresses or all principal stresses hav-
ing the same value, etc.). 

The principal stresses are characteristic of the stress state of a body (at a given point). 
They are not influenced by orientation. In other words, they are invariant to the choice of 
orientation. 

How to calculate principal stresses if all components of the stress tensor are known 
for some arbitrary coordinate system is thus an essential practical question. The theory of 
tensors gives an answer to this question in the form of a cubic algebraic equation: 

[1.1.7]

and principal stresses denoted as σ1, σ2, and σ3 appear to be the three roots of this equa-
tion. These roots are evidently expressed through coefficients of Eq. 1.1.7 − I1, I2, and I3. 
These coefficients are constructed by means of all components of a stress tensor for arbi-
trary orthogonal orientations in space as:

[1.1.7a]

[1.1.8a]

[1.1.9a]

The principal stresses σ1, σ2, and σ3 do not depend on the orientation of axes of a unit 
cube (at a point) in space but they are expressed by values of I1, I2, and I3. This leads to the 
conclusion that I1, I2, and I3 are also invariant with respect to the choice of directions of 
orientation and that is why they are usually called invariants of a stress tensor at a point. 
According to its structure (the power of the components), I1 is the first (linear), I2 is the 
second (quadratic), and I3 is the third (cubic) invariant. The invariants can also be 
expressed via the principal stresses only. These formulas are easily written based on Eqs. 
1.1.7a -1.1.9a. 

[1.1.7b]

σ3 I1σ2– I2σ I3–+ 0=

I1 σ11 σ22 σ33+ +=

I2 σ11σ22 σ11σ33 σ22σ33 σ12
2 σ13

2 σ23
2+ +( )–+ +=

I3 σ11σ22σ33 2σ12σ13σ23 σ11σ23
2 σ22σ13

2 σ33σ12
2+ +( )–+=

I1 σ1 σ2 σ3+ +=
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[1.1.8b]

[1.1.9b]

Any combination of invariants I1, I2, and I3 is also invariant with respect to the orien-
tation of axes in space. Various mathematical structures of invariants can be derived but it 
is a fundamental result that three and only three independent values of such kind exist.

Invariants are characteristics of the physical state of matter under the action of 
forces, either internal or external. This means that neither any stress by itself nor its arbi-
trary combination but only invariants determine a possibility of occurrence of various 
physical effects and threshold phenomena, some of which were mentioned above. 

The fundamental principle says that the physical effects must be independent of the 
choice of a coordinate system which is quite arbitrary, and that is why invariants (as the 
combination of principal stresses), which are values independent of a coordinate system, 
govern physical phenomena, which occur because of the application of mechanical forces.

In many practical applications, a two-dimensional (also known as plane stress) state 
exists with stress in the third direction 
being absent. Thin-walled articles having 
stress-free outer surfaces (e.g., balloons, 
membranes, and covers) are typical exam-
ples. The analysis of the two-dimensional 
stress state is an adequate solution in these 
cases. “Thin” means that the dimension in 
the direction normal to the surface is much 
smaller than in the other two directions. 

Examples. Stresses in a thin-wall cylinder
Internal pressure, p, in a thin-wall cylinder, closed by lids from both sides is typical of vessels working 

under pressure (chemical reactors, boilers, tubes in tires, and so on). Only normal stresses, σθ and σz, act inside a 
wall, where σθ is the stress acting in the circumferential direction and σz is the longitudinal stress (see Fig. 1.1.6). 
The values of these stresses are calculated from 

, and 

where R is the radius of a cylinder, and δ is the thickness of its wall.
This is a typical two-dimensional (plane) stress state, where both components of normal stresses are princi-

pal stresses and shear stresses are absent.
A long thin cylinder is twisted by applying a torque, T. 
Torque is produced by relative turning, rotating, or twisting of a cylinder (inner or outer with no effect on 

the result). Shear stress, σ, can be calculated from

Generalization of plane stress state causes all components containing the index “3” 
to vanish, which gives the full stress tensor as in Eq. 1.1.10 instead of Eq. 1.1.3:

I2 σ1σ2 σ1σ3 σ2σ3+ +=

I3 σ1σ2σ3=

σθ
pR
δ

-------= σz
pR
2δ
-------=

σ 2T
π 2R δ+( )2δ
-------------------------------=

Figure 1.1.6. A thin-wall cylinder loaded by the inner 
pressure − stresses in the wall.
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[1.1.10]

In this case, one principal stress, σ3, is zero and two other, σ1 and σ2, are the roots of 
a quadratic (but not cubic) algebraic equation as follows:

[1.1.11]

There are two simple cases of the plane stress state: simple (or unidimensional) ten-
sion and simple shear. In the first case: σ1 = σ11 = σE and σ2 = 0. In the second case: σ11 = 
σ22 = 0,  and therefore σ1 = σ and σ2 = -σ. The last example demonstrates that, 
even when only shear stresses are applied, there are two orthogonal planes in a matter 
where only normal stresses act.
1.1.5 HYDROSTATIC PRESSURE − SPHERICAL TENSOR AND DEVIATOR

It seems pertinent that only normal stresses 
can change the volume of a body, while 
shear stresses may distort its form (shape). 
For this reason, it appears to be reasonable 
to divide a stress tensor into two compo-
nents. 

Fig. 1.1.7 shows the compression of a 
body under hydrostatic pressure. The main 
feature of hydrostatic pressure is the 
absence of shear stresses; hence, all stress 
components with exception of the normal 
stresses are equal to zero, and the stress ten-
sor can be written as follows:

            [1.1.12]

All principal stresses are the same and 
equal to -p:

        [1.1.13]

and the “minus” sign shows that the force is directed inside an element of a matter. 
Eq. 1.1.12 can be written in a short form using the above-discussed rules of operation 

with tensors: 

[1.1.14]

It means that  σii = -p (the same two indexes of σ) and  σij = 0 (if ).

σ
σ11 σ12 0
σ21 σ22 0
0 0 0

=

σ1 2,
σ11 σ22+

2
----------------------

σ11 σ22+
2

---------------------- 
 

2
σ12

2+±=

σ σ12≡

σ
p– 0 0

0 p– 0
0 0 p–

=

σ1 σ2 σ3 p–= = =

σi j pδij–=

i j≠

Figure 1.1.7. Hydrostatic pressure, p − all-directional 
(tri-axial) compression of a unit cube.
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This stress tensor shows that shear stresses are absent in any direction in space. The 
tensor explains hydrostatic pressure shown in Fig. 1.1.7. The hydrostatic pressure is 
expressed as

[1.1.15]

The last definition of hydrostatic pressure is true for any stress state, even when σ11, 
σ22, and σ33 are not equal to each other. Eq. 1.1.15 is considered as a general definition of 
pressure, and the stress tensor, Eq. 1.1.12, is called the spherical stress tensor.

However, one intriguing question arises: whether the value -I1/3, calculated accord-
ing to Eq. 1.1.15, and called pressure, has the same physical meaning as the pressure used 
in thermodynamic relationships. Certainly, it is true for hydrostatic pressure when all nor-
mal stress components are the same, but this equivalence is assumed to be valid for an 
arbitrary stress state, though, possibly, it needs separate experimental evidence.

For the plane shear stress state, as was shown above,  σ1 = -σ2 = σ and σ3 = 0. The 
same conclusion is correct for all other shear components of the stress tensor. It means that 
in simple shear, I1 = 0, i.e., hydrostatic pressure is absent (p = 0). This shows that shear 
stresses do not influence the volume of a body but may change its shape.

It is now possible to write down a general expression for any stress tensor by separat-
ing the hydrostatic component. In this approach, all shear stresses remain untouched and 
each diagonal member of the tensor becomes equal to (σij − p).

This part of the stress tensor (complete tensor minus hydrostatic component) is 
called a deviator or deviatoric part of the stress tensor. It is thought that this part of the ten-
sor is responsible for changes in the shape of a body but not its volume. 

Uniaxial extension
The idea of splitting a stress tensor into spherical and deviatoric parts is well illustrated by 
the example of uniaxial stretching. It results in a body extension and it most likely leads to 
a volume change of a body. The question arises if the uniaxial extension is equivalent to 
negative hydrostatic pressure? Stress tensor for a uniaxial extension is written as

[1.1.16]

Similar to Fig. 1.1.1, all other forces except normal force, F, are absent. Therefore, 
there is no reason for other stress components, except for σ11, and that is why all compo-
nents in the matrix 1.1.16 equal zero (in particular σ22 = σ33 = 0), except for σ11 = σE.

It is now possible to split this tensor into hydrostatic and deviatoric parts, separating 
hydrostatic pressure (the remaining part of the stress tensor is the deviator). The deviator 
is simply a difference between full stress tensor and hydrostatic pressure. Then, the stress 
tensor for a uniaxial extension can be written as:

p
σ11 σ22 σ33+ +

3
------------------------------------–

I1
3
----–= =

σ
σE 0 0
0 0 0
0 0 0

=
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[1.1.17]

Any component of the full stress tensor, σ, equals the sum of the components of both 
addenda with the same indices; for example:

and 

The last rearrangements prove that Eqs. 1.1.16 and 1.1.17 are equivalent. 
Comparison of Eqs. 1.1.12 and 1.1.17 shows that the uniaxial extension is not equiv-

alent to hydrostatic pressure (the sign is not essential in this discussion) as the former 
leads to the appearance of a deviatoric component of the stress tensor too. In particular, it 
means that in the case of uniaxial extension it is possible to find such directions in a body 
where the shear stress exists − contrary to hydrostatic pressure where the shear stresses are 
principally absent (see discussion of Fig. 1.1.7).

The interpretation of the uniaxial extension as the sum of hydrostatic pressure and 
deviator explains that one-dimensional tension creates not only negative pressure (“nega-
tive” means that stresses are oriented outward of unit areas inside a body) but also differ-
ent normal stresses acting in all directions. This is the physical reason why all dimensions 
of a body change in the uniaxial tension (increase along the direction of the extension but 
decrease in perpendicular (lateral) directions). 

Some comments and examples
The uniaxial extension is important for many technical applications. In particular, this mode of loading is 

frequently used in material testing. Stress calculations in uniaxial extension need to be done very accurately. At 
first glance, the problem is well represented by Eq. 1.1.1. However, two limitations are essential. First, this equa-
tion is valid only far from the ends, because stress distribution near the ends of a sample is determined by details 
of force application, which is usually not uniform. Thus, the stresses can be calculated from Eq. 1.1.1 only for 
long samples. Second, the cross-sectional area of the sample changes with extension. Therefore Eq. 1.1.1 only 
describes the initial state of a sample. In technical applications, stress is often calculated without considering 
such effects. It is correct then to consider it as some “conventional” or “engineering” stress.

 A loading under own weight of a sample sus-
pended at one end is a special case of uniaxial exten-
sion. The normal (extensional) stress is caused by the 
gravitational force. The maximum stress, σmax, acts at 
the cross-section at which it is suspended. This stress 
equals σmax = ρgL (where ρ is density, g is the gravita-
tional acceleration and L is the length of the sample). 
The σmax increases as the sample length increases. 

There exists a length of the sample at which σmax exceeds the material strength. This limiting length, correspond-

σ pδi j–

2
3
---σE 0 0

0 1
3
---σE– 0

0 0 1
3
---σE–

+ pδi j–
σE
3

------
2 0 0
0 1– 0
0 0 1–

+= =

σ11 p– 2
3
---σE+ 1

3
---σE

2
3
---σE+ σE= = =

σ22 σ33 p– 1
3
---σE– 1

3
---σE

1
3
---σE– 0= = = =

Figure 1.1.8. A sagging fiber loaded by a distributed 
load.
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ing to σmax can be used as a measure of the material’s strength. Such measure is used in engineering practice for 
characterizing the strength of fibers expressed by a “breaking length”.

Analysis of uniaxial loading can be useful in solving many practical problems. For example, let us consider 
a horizontal fiber (string, rope, etc.) loaded by a distributed load, q (Fig.1.1.8). This distributed load can be its 
own weight, snow cover, strong wind, etc. Load provokes the sagging of a flexible material. The application of 
the extension force, F, is one possibility of counteracting too extensive, unacceptable sagging. The length 
between the anchoring points at both sides is L. Then the height of the maximum sagging, H, is calculated from:

      

There is a direct correspondence between extending force and sagging height. The increase of extension 
force results in the decrease in sagging. However, the force cannot be too large because the increase in stress may 
eventually exceed the strength limit of a fiber.

1.1.6 EQUILIBRIUM (BALANCE) EQUATIONS
The distribution of stresses throughout a 
body is described by equilibrium (or bal-
ance) equations as formulated by Navier,6

Poisson,7 and Cauchy8 in their classical 
studies. In essence, it is a form of Newton’s 
second law written for a continuum because 
the sum of all forces at a point equals to the 
product of mass (of this point) multiplied 
by acceleration.

A “point” in the theoretical analysis is 
an elementary (infinitesimal) space with 
sides oriented along the orthogonal coordi-
nate axes (in Fig. 1.1.9 this space is a cube 
in the Cartesian coordinates). The idea of 
the analysis consists of a projection of all 

the external forces on the faces of the cube along three coordinate axes and their sum 
equals zero.

Forces are continuously changing at infinitesimal distances along the axis. If there is 
no special case having discontinuities in force, it is reasonable to think that, for example, a 
force on the left-hand face of the cube (Fig. 1.1.9) equals to σ22, and on the parallel right-
hand face it equals 

The last relationship supposes that stress σ22 changes by infinitesimally small value 
to σ’22 at a small distance dx2. 

Other forces also exist and need to be taken into account in the formulation of the 
balance equations. These are forces, presented by the vector X(X1, X2, X3) per unit vol-
ume, and inertia forces equal (per unit volume) to ρa, where ρ is the density of matter and 
a(a1, a2, a3) is a vector of acceleration. 

H qL2

8F
---------=

σ'22 σ22
∂σ22
∂x2
-----------dx2+=

Figure 1.1.9. Components of the stress tensor in Carte-
sian coordinates − illustration of the stress difference at 
parallel cube faces along the infinitesimal distance. 
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Then, writing the sum of projections of all forces (stresses are multiplied by the unit 
areas of the cube face) and dividing them all by dx1dx2dx3 (which is an infinitesimally 
small value of the higher order), one comes to equilibrium (or balance) equations or equa-
tions of momentum conservation. For all three coordinate axes, this gives the following 
system of equations: 

[1.1.18]

The system of Eqs. 1.1.18 includes pressure gradients of normal components of the 
stress tensor. Sometimes, the pressure gradient is written separately and in this case, σ11, 
σ22, and σ33 must be regarded as deviatoric components of the stress tensor. 

For many rheological applications, it is reasonable to treat problems restricted to 
static equilibrium, and in such cases a = 0. The existence of a body force is important, for 
example, if movement occurs because of the action of gravity (e.g., sagging paints or seal-
ants from vertical or inclined surfaces, the flow of glaciers, etc.). However, in many cases 
the influence of these forces is negligible and it is possible to assume that X = 0.

Then it is possible to omit the last two members of the balance equations and to sim-
plify the system of Eqs. 1.1.18. This simplified (and usually used) system of balance equa-
tions is written as follows:

[1.1.19]

Equilibrium can be considered with respect to different coordinate systems but not 
restricted to a Cartesian system. The choice of coordinates is only a question of conve-
nience in solving a specific boundary problem. The choice of the coordinate system 
depends, generally, on the shape and the type of symmetry of a geometrical space which is 
the most convenient for an application. For example, if the round shells or tubes with one 
axis of symmetry are discussed, the most convenient coordinate system is cylindrical polar 
coordinates with r, z, and θ axes. 

Components of the stress tensor in the cylindrical (polar) coordinates are shown in 
Fig. 1.1.10. The static balance equations in the absence of inertia forces, a = 0, and volume 
− body − forces, X = 0, for the point (or infinitesimal volume element), shown in Fig. 

∂σ11
∂x1
-----------

∂σ12
∂x2
-----------

∂σ13
∂x3
----------- X1+ + + ρa1=

∂σ21
∂x1

-----------
∂σ22
∂x2
-----------

∂σ23
∂x3
----------- X2+ + + ρa2=

∂σ31
∂x1
-----------

∂σ32
∂x2
-----------

∂σ33
∂x3
----------- X3+ + + ρa3=

∂σ11
∂x1
-----------

∂σ12
∂x2
-----------

∂σ13
∂x3
-----------+ + 0=

∂σ21
∂x1

-----------
∂σ22
∂x2
-----------

∂σ23
∂x3
-----------+ + 0=

∂σ31
∂x1
-----------

∂σ32
∂x2
-----------

∂σ33
∂x3
-----------+ + 0=
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1.1.10, represent equilibrium conditions with respect to r, z, and θ directions. These equa-
tions can be written as:

[1.1.20]

The meaning of the stress tensor components is explained in Fig. 1.1.10.
Some practical cases are symmetrical to the z axis so that all terms containing z 

become zero as does the shear stress σrθ. In some cases, the cylindrical bodies can be very 
long and variations of stresses along the axis of 
symmetry are absent (or can be taken as negligi-
bly small). This allows us to continue simplifi-
cation of the balance equations written in the 
cylindrical coordinates. In this case, the balance 
equations reduce to

    [1.1.21]

All shear components of the stress tensor 
are absent.

All systems of balance equations, Eqs. 
1.1.18 - 1.1.20, contain 6 unknown space func-
tions (formally they contain 9 stress tensor com-
ponents, but the use of the Cauchy rule 
decreases this number to 6), i.e., the stress com-
ponents depend on space coordinates in an 
inhomogeneous stress field. In order to close 
the system of equations − to make it complete −

it is necessary to add the constitutive equations, connecting stress components with defor-
mations. This is the central problem of rheology because these equations express the rheo-
logical properties of matter.

1.2 DEFORMATIONS
1.2.1 DEFORMATIONS AND DISPLACEMENTS 
1.2.1.1 Deformations
The result of the action of external forces can either be the movement of a body in space or 
a change to its shape. Continuum mechanics is interested in changes occurring inside a 
body. The change of body shape is essentially the change of distances between different 

∂σrr
∂r

----------
∂σrz
∂z

---------- 1
r
---

∂σrθ

∂θ
-----------

σrr σθθ–
r

---------------------+ + + 0=

∂σθr
∂r

----------- 1
r
---

∂σθθ

∂θ
-----------

∂σθz
∂z

-----------
2σθr

r
-----------+ + + 0=

∂σzr
∂r

---------- 1
r
---

∂σzθ

∂θ
-----------

∂σzz
∂z

-----------
σzr
r

-------+ + + 0=

∂ ∂⁄

dσrr
dr

----------
σrr σθθ–

r
---------------------+ 0=

Figure 1.1.10. Components of the stress tensor in 
cylindrical (polar) coordinate system.
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sites inside the material, and this phenome-
non is called deformation. Deformation is 
just a geometrical concept and all interpre-
tations of this concept have clear geometri-
cal images.

The change of distances between 
points inside a body can be monitored by 
following changes of very small (infinitesi-
mally small) distances between two neigh-
boring points.

Let the initial distance between two 
points A and B in the material be ds (Fig. 
1.2.1). For some reason, they both move 
and their new positions become A' and B'. 
Their movement in space is not of interest 
by itself for continuum mechanics. Only the 
new distance between them, which 
becomes, ds', is of interest. Moreover, the 

absolute value of the difference ( ) is also not important for continuum mechanics, 
because the initial length ds might be arbitrary. Only the relative change of the distance 
between two points is relevant, and it is determined as

[1.2.1]

The distance between points A and B is infinitesimal. Assuming that a body after 
deformation remains continuous (between sites A and B), the distance between points A' 
and B' is still infinitesimal.

The definition, Eq. 1.2.1, is not tied to any coordinate system, and it means that ε is a 
scalar object. However, this value can be expressed through components of the tensor of 
deformation (or strain).9 

Square of ds is calculated as:

[1.2.2]

Here, three Cartesian coordinates are defined as x1, x2, and x3.
The square of the length (ds’)2 is calculated from

[1.2.3]

The coordinates of the new position of the A'B' length are calculated from

[1.2.4]

ds' ds–

ε ds' ds–
ds

------------------=

ds( )2 dx1( )2 dx2( )2 dx3( )2+ +=

ds'( )2 dx'1( )2 dx'2( )2 dx'3( )2+ +=

dx'1 1
∂u1
∂x1
--------+ 

  dx1
∂u1
∂x2
--------dx2

∂u1
∂x3
--------dx3+ +=

dx'2
∂u2
∂x1
--------dx1 1

∂u2
∂x2
--------+ 

  dx2
∂u2
∂x3
--------dx3+ +=

Figure 1.2.1. Displacements of two points in a body − 
the origin of deformations.
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With neglecting the terms of higher orders than dx, it is easy to calculate the differ-
ence (ds')2 − (ds)2, which equals to

+

           + [1.2.5]

The change of length is expressed by six values of εij, which can be expressed in 
symmetric form as

[1.2.6]

The indices i and j are used instead of 1, 2, and 3 for brevity to not repeat Eq. 1.2.6 
for six components of εij.

The values εij are not equal to the change of length of the distance AB but are only 
the measures of this change.

It is possible to prove that the values are components of a tensor, and this tensor is 
called the tensor of large deformations.10 The complete expression for εij consists of linear 
(first term in Eq. 1.2.6) and quadratic (second term in Eq. 1.2.6) terms. 

If derivatives in Eq. 1.2.6 are small (<< 1) and their pairs of products, which enter 
into the second right-hand side term in Eq. 1.2.6, are negligibly smaller than derivatives, 
relationships can be further simplified. The derivatives can be omitted, and only the first 
term of the equation remains. This only holds true for small deformations, and that is why 
the tensor consisting of only of the first derivatives is called a tensor of small or infinitesi-
mal deformation (or strain). This tensor, dij, can be written as follows:

[1.2.7]

The first row of the tensor dij represents the projections of deformations along the x1
axis, and so on.

It is worth repeating that the components of εij tensor, as defined by Eq. 1.2.1, were 
calculated based on pure geometrical arguments. The final result of these calculations is 
given by Eq. 1.2.6, or in the case of small deformations, by Eq. 1.2.7. 

In the separate sections, the small deformation tensor, dij, and the complete (large 
deformation) tensor, εij, will be further discussed.
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1.2.1.2 DISPLACEMENTS
As shown in section 1.1.1, any tensor can be defined by two vectors. It is similar to defor-
mations. The position of any site (point) in a body is characterized by its radius vector, r. 
Two sites are involved in the definition of deformation, A and B. Therefore it is necessary 
to introduce two vectors: r1 for point A and r2 for the point B. 

The value ui, entering Eq. 1.2.6 via expressions for εij, characterizes projections of 
the displacement vector, u, which represents the movement of the site A into its new posi-
tion A'.

The quantitative determination of deformation can be accomplished by following 
displacement, u = (dr1 − dr2). The result of subtraction of two vectors is also a vector, and 
it can be expressed by its three projections: u(u1, u2, u3). Relative displacement is 
expressed as (dr1 − dr2)/dr1. This object − contrary to the vector u − is characterized not 
only by its length but also by its orientation in space. Since two vectors, u and x(x1, x2, x3), 
describe the relative displacement, the latter is of tensorial nature. Indeed, deformation 
and relative displacement are tensors, and components of both tensors can be calculated 
through the derivative du/dx. It is also pertinent that there are nine such values (three pro-
jections of vector u and three of vector x), as it could be expected for a tensor. 

The values of all derivatives are dimensionless and they are expressed in absolute 
numbers or percents.

The tensor of relative displacement, g, is, by definition,

g = grad u [1.2.8]

and it can be written via the components, gij, of this tensor

g = [1.2.9]

The first row includes derivatives of the u1-component of displacement along the 
three coordinate axes, the second row is the same for the u2-component, and the third, for 
the u3-component of the vector u.

The displacement tensor, defined by Eq. 1.2.9, is not deformation. 
It is quite evident that the tensors dij and gij are not equivalent. The difference 

between them becomes clear if one decomposes the components of the tensor gij into two 
parts in the following manner:

[1.2.10]

The first, the so-called symmetrical, part of the tensor gij, coincides with the defor-
mation tensor dij, but it is evident that the deformations are something different than the 
displacements.
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The sense of this difference or the meaning of the second, the so-called antisymmet-
rical, part of the displacement tensor is explained in Fig. 1.2.2. Let us follow the deforma-
tion of an infinitesimal two-dimensional (plane) body element drawn here as a rectangle in 
the left diagram. Two displacements, u2 and u1, having gradients du2/dx1 and -du1/dx2, may 
occur as shown in the central part of Fig. 1.2.2. Now, let us superimpose these two dis-
placements, as shown in the right diagram. It is evident from Fig. 1.2.2 that the summation 
of du2/dx1 and -du1/dx2 does not lead to deformation but to the rotation of the body ele-
ment. It means that the second term in Eq. 1.2.10 represents rotation, but not deformation. 
It can be written in the following manner:

[1.2.11]

where θij is given by the following equation:

[1.2.12]

These values are the components of the tensor of rotations (vorticity) of infinitesimal 
volumes inside a body. Thus displacement at any point of a body is a sum of deformation 
and rotation.

gij dij θi j+=

θij
1
2
---

∂ui
∂xj
-------

∂uj
∂xi
-------– 

 =

Figure 1.2.2. Superposition of two shear deformations leading to rotation of an element in a body.
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1.2.2 INFINITESIMAL DEFORMATIONS: PRINCIPAL VALUES AND  
          INVARIANTS
The pure geometrical analysis demonstrates that the diagonal components of tensor dij 
expressed by Eq. 1.2.7 are equivalent to relative elongations (extension ratios) and non-
diagonal components are shear or changes of angles between two orthogonal lines at a 
point.

The tensor of small (infinitesimal) deformations has all the general features of any 
other tensor, for example, the stress tensor discussed above. In particular, it is possible to 
calculate the principal values and invariants of this tensor using the same equations as for 
the stress tensor, only with changes in symbols. However, the invariants of the deforma-
tion tensor have a definite geometrical interpretation.

For the infinitesimal deformation tensor, the principal deformations, d1, d2, and d3, 
are extensions in three orthogonal directions. It can be illustrated by deformations in the 
vicinity of some arbitrary point. Let us represent an infinitely small volume in a body as a 
sphere (Fig. 1.2.3) with a center positioned at a point A and radius of the sphere dr (infini-
tesimal small length). The coordinates of the central point A are x1, x2, and x3. As a result 
of movements and displacements, the following changes have taken place in a body: point 
A has moved to a new position A*, the directions of the radii AB, AC, and AD have 
changed to the directions A*B*, A*C*, and A*D*, respectively. As a result, the sphere 
itself has transformed into an ellipsoid with semi-axes of length (1 + d1)dr, (1 + d2)dr, and 
(1 + d3)dr, respectively.

The deformations characterize the change in the shape of a volume element of the 
body on the transition from a sphere to an ellipsoid. Besides they determine the relative 
change in volume, εV, which can be written as follows:

A simple calculation shows that

εV
Vell Vsph–

Vsph
--------------------------=

Figure 1.2.3. Transformation of a sphere into an ellipsoid as a consequence of three principal deformations along 
their axes.
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[1.2.13]

It is very easy to show that εV is expressed by invariants of the deformation tensor. 
The change in volume must not be associated with a choice of the coordinate system, and 
the invariants do not depend on the coordinate axes. Therefore, only invariants can deter-
mine the change of volume. The relationship between invariants is simple if deformations 
are small and it is possible to neglect quadratic terms in Eq. 1.2.13. Eq. 1.2.13 gives the 
following result:

[1.2.14]

i.e., volumetric changes are equal to the first (linear) invariant of the tensor of infinitesi-
mal deformations and that is its physical meaning.

The volumetric changes in deformation can also be represented by extension ratios, 
λi. For this purpose, let us (conditionally) cut out a small rectangular parallel slab, at some 
site in a body, oriented along the principal axes. Let the length of its edges be a, b and c 
before deformation, and let them become a*, b*, and c* as a result of deformation. Then, 
the extension ratios are:

λ1 = a*/a; λ2 = b*/b; λ3 = c*/c

The volume change is calculated as 

[1.2.15]

The last equation shows a very simple rule of the constancy of volume in deforma-
tions of any type:

[1.2.16]

Like any other tensor, the deformation tensor, dij, can be decomposed into spherical 
and deviatoric parts. The first invariant is the volume change. It is possible to write:

[1.2.17]

The second term, on the right-hand side of the equation, is a deviatoric part, dij
(dev) of 

the dij tensor which describes shape transformations occurring without changes in volume. 
Splitting the deformation tensor, dij, into spherical and deviatoric parts corresponds to sep-
arating the complete deformation into changes of volume and shape. 
1.2.3 LARGE (FINITE) DEFORMATIONS
The difference between small (infinitesimal) and large (finite) deformations depends on 
the values of derivatives in Eq. 1.2.6. If all derivatives are much smaller than 1, the qua-
dratic terms, i.e., products of derivatives (in parentheses), can be neglected and the tensor 
dij is used instead of εij.

In the discussion of the concept of large deformations, it is always assumed that a 
reference state of deformation can be established. In this sense, the flow of liquid may not 
be considered as a deformation because all states are equivalent. The liquid does not have 

εV 1 d1+( ) 1 d2+( ) 1 d3+( ) 1–=

εV d1 d2 d3+ +=

V* V–
V

------------------ ΔV
V

-------- a*b*c*
abc

------------------- 1– λ1λ2λ3 1–= = =

λ1λ2λ3 1=

dij
εV
3
-----δij dij

dev( )+=
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an initial (or reference) state. That is why only materials having memory of their initial 
state are important in determining deformations. Having such an approach, it is very easy 
to illustrate the essential difference between small and large deformations, using the sim-
plest model of uniaxial extension from Fig. 1.2.4. Let a fiber (or a bar) of the length l0 be 
stretched by Δl. The simple question is: what is the deformation in this case?

In the first case, let l0 = 1 and Δl = 0.1. The so-called engineering measure of defor-
mation is 

[1.2.18]

and in the example under discussion  ε* = 0.1 or 10%.
The reasoning becomes more complex if Δl is comparable with l, for example, let Δl 

be equal 1. An engineering measure of deformation is the characteristic of the change of 
specimen length, and ε* = 1 (or 100%). But this approach to the definition of deformation 
contains an inherent contradiction. Let us compare two situations, drawn in Fig. 1.2.4. In 
the first case (case I), the increase in the length occurs in two consequent steps: initially by 
Δl1 and then, separately, Δl2. Then, the deformation in the first step is ε1* = Δl1/l0, and, in 
the second step, it is ε2* = Δl2/l1, because the initial length of the sample in the second step 
is l1. The total deformation, εtotal, is the sum of both deformations, as follows

where l0 is the initial length of the sample and l1 = l0 + Δl1. 
In the second case (case II), the increase of the length is achieved just in one step. 

This increase equals (Δl1 + Δl2) and the total deformation is calculated from

ε* Δl
l0
-----=

εtotal
I ε1

* ε2
*+

Δl1
l0

--------
Δl2
l1

--------+
l0 Δl1 Δl2+( ) Δl1

2+
l0l1

----------------------------------------------= = =

εtotal
II Δl1 Δl2+

l0
----------------------

l0 Δl1 Δl2+( ) Δl1
2 Δl1Δl2+ +

l0l1
--------------------------------------------------------------------= =

Figure 1.2.4. Two ways of realization of large deformation − two-step extension (I) or one-step extension (II).
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If elongations are small (Δl1 << 1, and Δl2 << 1), the difference between εI
total and 

 is negligible. However, if it is not so, then the above-written formulas clearly 
demonstrate that , i.e., the final results of the extension are different. This 
contradicts the physical meaning of the experiment interpretation: in reality, the final 
result is the same in both cases and the sample does not “know” which way it was brought 
to the final state, whereas calculations show a difference. This contradiction appears only 
as a result of large deformations because if deformations are small, the quadratic terms in 
formulas for εtotal are negligible in comparison to the linear terms.

It becomes apparent that there is a need to introduce such a measure of deformation 
that does not depend on the sequence of operations. Such measure is called a logarithmic 
or the Hencky strain measure,11 εH, which is defined by: 

[1.2.19]

It is easy to prove that large deformations analyzed by this measure obey the law of 
additivity. Therefore, in the example discussed above, the resulting deformation, deter-
mined by the Hencky strain measure, does not depend on the history of deformation, as 
required:

and

Some other measures of large deformations are also used in the rheological litera-
ture. For example, let a fiber (or a bar) of the initial length l0 be stretched and increase its 
length by Δl. The extension ratio, λ, equals (Δl + l0)/l0. Then 

and according to the definition given by Eq. 1.2.6

[1.2.20]

This measure of large deformations was introduced by George Green.12 The large 
deformation tensor, used in continuum mechanics and based on the definition expressed 
by Eq. 1.2.6, is called a Cauchy-Green tensor, Cij, and it is defined as

[1.2.21]

where δij is the Kronecker delta.
Similar to the tensor defined by Eq. 1.2.6, a Cauchy-Green tensor of finite deforma-

tions characterizes the change in distance between two arbitrary sites at a “point”: 
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Another tensor of large deformations is also frequently used. This is the inverse (or 
reciprocal) tensor to the Cauchy-Green tensor, Cij, named the Finger tensor, Cij

-1.13

According to the definition, the relationship between both tensors is 

[1.2.22]

The principal components of the large deformation tensor, εi, are expressed by equa-
tion equivalent to Eq. 1.2.20:

[1.2.23]

where λi are the principal elongation ratios.
The principal values of the tensors Cij and Cij

-1 are also expressed via the principal 
elongation ratios:

; and [1.2.24]

The first invariants of both tensors, CI,inv, are as follows:

; and [1.2.25]

Introducing different measures of deformations does not exclude the main question 
regarding the initial state − point of reference of the deformed state. The importance of 
this question has already been demonstrated by the example of large deformations in uni-
axial extensions. For static states, this problem can be solved by introducing the Hencky 
measure of deformations. The same problem appears and becomes more pertinent for a 
continuously moving medium where the position of deformed elements of a body is 
changing in time and it is necessary to describe the process or the rate of deformation. This 
problem will be discussed in more detail in Section 1.3.2.
1.2.4 SPECIAL CASES OF DEFORMATIONS − UNIAXIAL ELONGATION AND 
         SIMPLE SHEAR
1.2.4.1 Uniaxial elongation and Poisson’s ratio 
Experiments show that a sample being stretched in the axial direction changes dimensions 
in the lateral direction. The relation between relative changes of dimensions in the lateral 
and the axial directions cannot be established on the basis of pure geometrical arguments 
because this relation reflects an inherent, independent property of the material. The ratio 
of relative lateral contraction to the relative longitudinal extension is the quantitative char-
acteristic of material property. This property of material is called Poisson’s ratio.7 

Let the radius of the cross-section of a bar in the initial state be r0, and the length, l0. 
If its elongation is Δl, and, as a result of stretching, the radius is decreased by Δr, then, by 
definition, Poisson’s ratio, μ, is:

[1.2.26]

It is now easy to calculate the volume change, resulting from uniaxial stretching. The 
relative change of volume, ΔV/V0, is

CijCij
1– δij=
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2
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2–=

CI inv, λ1
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2– λ2
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[1.2.27]

where V0 = πr0
2l0 is the initial volume of a sample (in a non-deformed state). 

For small deformations Δl << l0 and consequently Δr << r0. In this case, Eq. 1.2.27 
gives

[1.2.28]

Poisson’s ratio is a measure of volume changes during small deformations. From Eq. 
1.2.28, one can see that deformations occur without volume changes when μ = 0.5. For 
solid materials, μ < 0.5, (for many solid materials ). This means that their 
elongation is accompanied by an increase in specific volume. Only some rubbers and 
polymer melts  deform without volume changes.

The concept of Poisson’s ratio allows one to use the general method of decomposing 
the deformation tensor, dij, into spherical and deviatoric terms for a uniaxial extension. If 

, and deformation in uniaxial extension equals ε*, the tensor of infinitesimal defor-
mations, Eq. 1.2.7, for such cases can be written as:

[1.2.29]

The structure of this sum is very similar to the structure of the stress tensor decom-
posed into two parts (compare with the analogous procedure in section 1.1).

A more precise analysis of Eq. 1.2.27 shows, however, that for large deformations 
Eq. 1.2.28 is not valid, and the rule of μ = 0.5, as the condition for maintaining the con-
stant volume at stretching, has no general meaning. Indeed, preserving a formal definition 
of Eq. 1.2.26 for Poisson’s ratio, according to Eq. 1.2.27, the condition for V = 0 is:

[1.2.30]

If ε << 1, Eq 1.2.30 is converted to an ordinary condition μ = 0.5, but in the more 
general case it is not true. 
Example − Poisson’s ratio in finite deformations

Let the bar be stretched by 9 times (e.g., rubber ribbon or melted fiber). It means that l/l0 = 8 and the vol-
ume can remain unchanged if the final radius becomes equal to 1/3 of its initial value. Then Δr/r0 = 2/3. In this 
case, according to Eq 1.2.30, and following the formal definition, Eq. 1.2.25, μ = 1/12. 

This example shows that adaptation of infinitesimal deformation mechanics (μ = 0.5 as a necessary condi-
tion for the constant volume at extension) to the domain of large deformations must not be done in a straightfor-
ward manner. 

1.2.4.2 Simple shear and pure shear
The movement of all fluids and liquid-like materials is based on the model of sliding of 
neighboring layers relative to each other. This is a case of simple shear. Simple shear is 
also realized in several modes of deformations of solids, such as, for example, twisting 
long tubes or wires.
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The schemes of two-dimensional 
(plane) simple shear for an element of a 
body in small deformation, and for a gen-
eral case of arbitrary deformation, are 
shown in Figs. 1.2.5 a and b, respectively. 
Along the direction of shear marked by an 
arrow, a displacement, u1, takes place. Its 
gradient, du1/dx2, is determined by the 
slope which is denoted as:

           [1.2.31]

Since the length of linear elements, 
which were directed before deformation in 
the x2 direction, is changed in shear, one 
more displacement component, u2, appears. 
It is related to the change in the length of 
the segment OA, which, after displacement, 
becomes equal to OA*:

[1.2.32]

The value of γ = du1/dx2 in a simple shear determines all components of the tensor at 
large deformations. According to the definition of the εij tensor, its components are:

; [1.2.33]

This tensor is graphically illustrated in Fig. 1.2.5 b in which the components of the 
tensor, εij, are marked by arrows (factor 0.5 is omitted in drawing this figure). The appear-
ance of a diagonal component in the deformation tensor in a simple shear is a direct conse-
quence of large deformations. It is a second-order effect because ε22 is proportional to γ2

and its value becomes negligible if γ << 1. This phenomenon is known as the Poynting 
effect,14 which is observed in wire twisting (their length slightly changes). Twisting is an 
example of shear deformation, and the observed change of the length is regarded as rela-
tive to the ε22 component of the deformation tensor.

Shear produces a shift between the direction of shear, x1, and the orientation of the 
principal axis. The shift is denoted by an angle, α, as shown in Fig. 1.2.5 b. The angle can 
be calculated from:

[1.2.34] 

The main components of the deformation tensor may be written as follows:

; ; [1.2.35]

γ αtan
du1
dx2
--------= =

OA* OA–
OA

--------------------------- 1 γ2+( )
1 2⁄

1–=

ε12 ε21 0.5γ= = ε22 0.5γ2=

α 1
2
---arc γ 2⁄( )tan=

ε11 αcot= ε22 αtan= ε33 1=

Figure 1.2.5. Small (a) and large (b) deformations in 
simple shear.
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The results obtained from Eqs. 1.2.35 indicate that in simple shear no volume change 
occurs because the product ε1ε2ε3 = 1

Expressions for the components of the Cauchy-Green and the Finger tensors in shear 
are important for future discussion concerning rheological models of elastic bodies of dif-
ferent types. Direct calculations give the following expressions for Cij and Cij

-1:

  and  [1.2.36]

In a simple shear, not only the lengths of linear elements change (e.g., along the prin-
cipal directions), but the rotation of the elements of a body also takes place. This effect is 
well seen in Fig. 1.2.5, where the angle of rotation, θ, of the diagonal element from OC to 
OC* position, is shown.

Shear deformation in this figure is due to displacement, AA*, and α is its gradient. 
Any gradient of displacement consists of deformation and rotation, which in general form 
is expressed by Eq. 1.2.11. For a small displacement, the angle of rotation, θ = α/2, is 
used, unlike for large deformations, where the general Eq. 1.2.10 is applicable.

It is possible to find such shear conditions 
where no rotation occurs. This case, called pure 
shear, is based on the definition of θij from Eq. 
1.2.12.  θij = 0 if all differences of the displacement 
gradients equal zero. For the simple shear, this con-
dition has the following form: du1/dx2 = du2/dx1.

A geometrical image of pure shear is drawn in 
Fig. 1.2.6. In pure shear, the diagonal AB of the 
small square (at some point) moves, due to deforma-
tion, into new position A*B*, parallel to its initial 
position, and the diagonal OM does not change its 
position at all, being only extended to OM*. There-
fore, no element of the body undergoes rotation.

Fig. 1.2.6 can be obtained in a different way. It 
is quite evident that transition from the square 
OAMB to the rhomb OA*M*B* can be achieved by 
pressing the square along the direction AB, with 

simultaneous stretching along the direction OM. It means that pure shear can be realized 
through the superposition of two uniaxial extension deformations (with different signs).

The difference between simple shear and pure shear is the same as the difference 
between deformation and displacement. This difference may appear important in formula-
tions of constitutive equations describing rheological properties and behavior of real mate-
rials.

C
1 γ 0

γ 1 γ2+ 0
0 0 1

= C 1– 1 γ2+ γ– 0
γ– 1 0

0 0 1

=

Figure 1.2.6. Pure shear of an element of a 
body.
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1.3 KINEMATICS OF DEFORMATIONS
1.3.1 RATES OF DEFORMATION AND VORTICITY
The motion of a body is characterized by velocity, which is a vector. If velocity at any 
given point of a body is the same, it means that the body moves as a whole and no defor-
mation takes place. The deformation appears only as a consequence of a velocity gradient 
at a “point”, which means that two neighboring locations (the distance between them 
being infinitesimal) move with different velocities. If velocity is v (a vector value), the 
components of its gradient, a = dv/dr, are calculated as

[1.3.1]

The space coordinates are described by radius-vector, r. Thus a is a tensor with com-
ponents aij determined by two vectors (v and r). The velocity is the rate of displacement, 
i.e., v = du/dt. The relationship between the gradient of velocity, aij = dv/dr, and gradient 
of displacement, gij = du/dr, can be established from the following rearrangements:

[1.3.2]

In section 1.2.1, it was established that the whole gradient of displacement is not 
controlling deformation, only its symmetric part. The same is true for the deformation 
rate. The reasoning is the same as above. Differentiation with respect to a scalar − time, 

, adds nothing new to the result. By decomposing tensor aij into symmetrical and 
antisymmetrical components,

[1.3.3]

one obtains

[1.3.4]

where Dij is the rate of deformation tensor, and ωij is the so-called vorticity tensor. 
As in the previous case, the rate of deformation tensor characterizes local changes of 

shape. The deformation is related to the first term of Eq. 1.3.4, while the vorticity tensor 
describes the rate of rotation of local elements of a body without their deformation.

The difference between the tensors aij and Dij (which is quite similar to the difference 
between the tensors gij and dij) can be illustrated by a simple example. Let us analyze the 
rotation of a solid (non-deformable) body around some axes. The velocity, v, at a point 
located at the distance, r, from the axis of rotation equals ωr, where ω is the constant angu-
lar velocity. Thus, v = ωr, and the gradient of velocity, grad v = dv/dr, is evidently equal ω. 
It means that, during rotation of a solid body, the gradient of velocity does exist and there 
is no deformation because (as initially assumed) the body is non-deformable.

This example is also valid for any rotational movement, for example, for a circular 
movement of liquid placed between the stationary inner and the rotating outer cylinders 
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(for any liquid point the difference between the gradient of velocity and rate of deforma-
tion exists). In the latter case:

[1.3.5]

Rate of deformation equals the second member of the sum, r(dω/dr), whereas the 
first member, ω, represents superimposed rotation which does not influence the deforma-
tion of matter placed between the cylinders. Indeed, it is possible to add a constant angular 
velocity of rotation, Ω, to both cylinders (to force both to rotate with the same constant 
angular velocity added to the rotation of the outer cylinder with the angular velocity, ω). It 
will increase the velocity gradient by this value but will not change the deformation rate.
1.3.2 DEFORMATION RATES WHEN DEFORMATIONS ARE LARGE
Some difficulties in the calculation are encountered in the case of large deformations. At 
the end of section 1.2.3 it was pointed out that the description of large (finite) deforma-
tions requires special attention and monitoring of a continuously moving medium because 
positions of deformed elements are changing with time.

Substantial derivative
Similar solutions are required in classical hydrodynamics, when, for example, tem-

perature effect due to heat exchange is included or material is transformed by chemical 
reaction. Such processes happen in media in motion. The problem is solved by using the 
so-called material or substantial derivative, D/Dt, which can be written for an arbitrary 
variable, Y, which depends on time and a site position moving in space, as:

[1.3.6]

The first term represents local changes of the Y value, whereas the second term 
describes the movement of this local site in three-dimensional space.

In the theory of large deformations, it is important to know the rate of deformation in 
a fixed and moving coordinate system. Changes occur in a traveling element of material, 
which deforms along with its replacement. This is called the principle of material indiffer-
ence, which states that all physical phenomena must not depend on a coordinate system 
used for their mathematical formulation.15

As a result of large deformations, material elements can travel far away from their 
initial position, and that is why it is important to apply proper rules of transition from the 
reference state. Similar to the discussion of large uniaxial extension (see section 1.2.3), it 
is also important to choose different reference states in such a manner that they will not 
lead to an ambiguous estimation of deformation. An observer who measures the properties 
of a material is always positioned in a fixed (unmovable) coordinate system. Hence, the 
general approach consists of formulating ideas concerning the possible rheological behav-
ior of a material for a moving (and deforming) element of a medium, recalculating them 
into a fixed coordinate system, and then comparing the results with an experiment.

This is true for the rate of deformation. There are many mathematical avenues to 
transform the rate of deformation tensor into a fixed coordinate system and, depending on 
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selection, various forms of time derivatives were proposed, one of them is Eq. 1.3.6. In 
some theoretical studies, kinematic tensors of higher order were introduced, which are 
time derivatives of the Cauchy-Green or the Finger tensors. They are used when the rheo-
logical behavior of a material depends on higher derivatives of deformation. In Chapter 2, 
devoted to properties of viscoelastic materials, it will be demonstrated that their behavior 
can be modeled by equations containing a sum of n-th order time derivatives of deforma-
tion (the so-called rheological equations of a differential type). 

The physical meaning of substantial time derivative, D/Dt, requires that the deriva-
tive is calculated for a moving medium in which a material point follows time changes and 
leaves its initial position. The most popular are the Rivlin-Ericksen, An(t),16 and the White-
Metzner, Bn(t),17 tensors of the n-th order. They are determined as

[1.3.7]

and

[1.3.8]

where Cij and Cij
-1 are the Cauchy-Green and the Finger tensors, respectively.

 The use of various measures of large deformations and different types of their time 
derivatives permits us to make qualitative predictions concerning all possible effects in the 
mechanical behavior of different materials. It is the global task of an experiment to evalu-
ate possible models and to find the simplest of them which can adequately describe 
numerous physical phenomena observed in real materials in an unambiguous manner.

The practical application of the above-discussed approaches for formulating consti-
tutive equations for different materials and using them in solving dynamic (boundary) 
problems are considered in more detail in Chapters 2 and 6 of this book. 

1.4 HETEROGENEITY ON FLOW
The general concept formulated in the title of the Section “Continuum Mechanics 
as a Foundation of Rheology” is certainly valid. However, there are some cases in 
which it is necessary to treat this concept with caution or special comments. This 
applies to the heterogeneity of the materials having a large size of inherent struc-
ture elements.18 In this case, the term “continuum” cannot be applied.

Three different situations can exist. First, heterogeneity was present in the 
initial structure of a material. This includes multi-component materials, such as 
filled plastics and rubbers, reinforced structures, and colloidal systems.

Second, heterogeneity can appear as a result of the inner reaction in the ini-
tially homogeneous medium. This is the case, for instance, of polymerization 
leading to the formation of a new phase.

Third, heterogeneity appears as the result of deformation-inducing structure 
rearrangements of a material. The third case is of special interest to rheology. 

An t( )
DnCij t( )

Dtn
--------------------=

Bn t( )
DnCij

1– t( )

Dtn
----------------------–=
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1.4.1 PARTICLE DISTRIBUTION IN DISPERSE SYSTEMS
Let the initial spatial distribution of dispersed particles be uniform (Fig. 1.4.1, a). 
Will it remain the same during the flow? It is not obligatory. Two effects are 
known. First, particles move from a solid wall and a layer of the low viscosity 
fluid free of solid particles appears (Fig. 1.4.1, b). Second, particles form self-
arranged necklace structures (Fig. 1.4.2).19

The multi-component system in the process of shearing cannot be treated as 
homogeneous. If a low-viscous layer exists at the wall (Fig.1.4.1), dominating 
shear takes place in this layer and this radically changes the boundary conditions 
in dynamic problems. After the formation of the necklace structure (Fig. 1.4.2), the 
system becomes not only heterogeneous but also anisotropic (its properties along 
the particle chain and in the transversal direction become different). 

An interesting case of the formation of the layered structure is shown in Fig. 
1.4.3.20 Such a structure appears in multi-component systems in the range of the 
so-called lowest Newtonian viscosity. This part of the flow curve was usually 
treated as the flow of the uniform material with a completely destroyed structure. 

Figure 1.4.1 Formation of a thin fluid layer near a wall free of solid particles.

Figure 1.4.2. Self-organization in shearing a dispersion of solid particles − transition from a random 
distribution in the initial state (left) to the necklace structure in shearing (right). 
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Actually, this is flow through fluid 
interlayers between regularly organized 
layers of solid particles.
1.4.2 PHASE SEPARATION
Shearing can promote phase separation 
in a flow. This phenomenon is dis-
cussed in detail in Section 3.5. Here, it 
is worth mentioning that this effect 
leads to changes in the rheological 
properties of polymeric and colloidal 
systems, especially at high deformation 
rates. Then the system becomes hetero-
geneous and it is necessary to take into 
account the spatial-temporal distribu-

tion of the rheological properties of such materials in the flow. As the limiting sit-
uation, the breaks in the continuum can appear with different laws of flow on both 
sides of these lines.
1.4.3 FLOW OF THE LARGE-SCALE STRUCTURE ELEMENTS
In the general concept of continuum mechanics, it is assumed that the movement 
takes place on the molecular size scale and the super-molecular structure can be 
neglected. This approach is wrong, if a multi-component system initially consists 
of large-scale volume elements, as, e.g., in emulsions or non-colloidal suspen-
sions. In some cases, the procedure of averaging allows us to neglect this factor 
but not always. For example, it is impossible to do this if the size of the channel is 
comparable to the size of structural elements. This is a case of the flow of blood in 
vessels and many others. So, it appears necessary to understand “How does a con-
centrated emulsion flow?”21 The answer to this question is: such objects flow (or 
more correct, move) on the super-molecular size level.

Direct observations of a highly concentrated emulsion flow showed that there 
were two mechanisms of droplet displacement (assuming that just droplet move-
ment is the flow).22 At low stresses, droplets do not deform and large droplets roll 
on small droplets, like balls in ball bearings. At high stresses, droplets deform and 
all droplets move (Fig. 1.4.4). 

Moreover, it was shown that the movement of droplets in concentrated emul-
sions can be cooperative, i.e., elementary droplets can aggregate in cylindrical 
flocks which roll together.23 

Heterogeneous flow is rather typical for such complex fluids as concentrated 
disperse systems and though this effect was called “unexpected”.24 Such a type of 
movement can be accompanied by a breakup in the continuity and appearance of 
the sliding planes. This phenomenon characteristic for the concentrated suspen-
sions will be discussed below (see Subsection 3.3.4.3 and illustrated in Fig. 3.3.9). 

Figure 1.4.3. Layered structure instead of "com-
pletely destroyed" state at the lowest Newtonian 
viscosity domain of a flow curve.
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This type of displacement can hardly be called “flow”. It is closer to the move-
ment of granular media.

1.5 SUMMARY − CONTINUUM MECHANICS IN RHEOLOGY
1.5.1 GENERAL PRINCIPLES
Classical continuum mechanics is one of the milestones of rheology. Rheology, dealing 
with properties of matter, regards these properties as relationships between stresses and 
deformations, which are the fundamental concepts of continuum mechanics. 

The idea of a continuum, as well as mathematical operations used in mechanics, 
assumes that there are a continuous transition and movement from point to point. A 
“point” is understood as a mathematical object of infinitesimally small size. However, it is 
necessary to accept the following contradiction: a “physical” point is different than a 
mathematical point. 

Almost everybody is convinced that matter consists of molecules and intermolecular 
empty spaces, which means that in reality, any material body is heterogeneous. At the 
same time, an observer is sure that he “sees” a body of matter as a homogeneous continu-
ous mass without holes and empty spaces. The obvious way out of these contradictory evi-
dence lies in the idea of the geometrical scale of observation.

This scale must be large enough to distinguish individual molecules or their seg-
ments. The characteristic order of the size of a molecule (its cross-section or length of sev-
eral bonds) is 1 nm. Then, only when dealing with the sizes of the order of at least 10 nm, 
one may neglect molecular structure and treat a body as homogeneous. It means that a 
characteristic volume is of an order larger than 103 nm3. This is a real size of a physical 
“point”, which is quite different from a philosophical or geometrical point. The latter is an 
infinitely small object of zero size. The physical “point” contains 104 molecules or seg-
ments of the macromolecule, and throughout its volume, all molecular size fluctuations 
are averaged. The number of molecules in such a point is large enough for smoothing and 
averaging procedures.

In many cases, especially when discussing properties of a single-component mate-
rial, it is possible to neglect the inherent structure of the medium and the difference 
between ideas of the “physical” and “mathematical” concepts of a point as immaterial. 

Having in mind the real scale of a physical point, it is supposed that it is permissible 
to apply methods of mathematical analysis of infinitesimal quantities (which formally 

Figure 1.4.4. Mechanisms of movement of highly concentrated polydisperse emulsions at low (a) 
and high (b) shear stresses.
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relate to a geometrical point) to a physical medium. The formal extrapolation of physics-
based analysis to infinitely small sizes tacitly avoids the incorrectness of this operation, 
and the only justification for this is the fact that in almost all practical applications, 
nobody is interested in what really happens in a very small volume.

However, there are at least three important principal exceptions.
1. A central physical problem exists in the explanation of macro-observations of the 

molecular structure of matter. One would like to understand what happens to a mole-
cule or how intermolecular interactions occur; then going through micro-volumes 
containing numerous molecules and averaging molecular phenomena, one would 
come to the macro properties of a body.

2. In some applications, we use “zero” size. If geometrical shapes under consideration 
have sharp angles and the size at the corner of any angle (formally) equals zero, 
extrapolation of calculations results in such “zero” volume and sometimes leads to 
infinite values, and this is out of the realm of physical meaning. The analysis of 
problems of this kind requires special methods.

3. There are many materials that cannot be considered homogeneous in principle. It is, 
therefore, necessary to consider their structure, i.e., such materials are heterogeneous
by definition. For example, a medium can be a statistical or a regular mixture of 
some components with step-like transitions between them. Typical examples of such 
heterogeneity are suspensions and filled polymers, sometimes with well-arranged (in 
reinforced plastics) structures. In some applications, the structure of heterogeneous 
materials may be out of interest and it is possible to continue to treat the medium as 
homogeneous, averaging inner differences in relation to a much higher geometrical 
scale. For example, for many astronomic observations, the Sun and the Earth are 
regarded as quite homogeneous and moreover can be treated as “points”. In other 
cases, the role of heterogeneity can be important and it may become a determining 
factor (for example, for reinforced plastics), but, in any case, the scale of such het-
erogeneity has to be much larger than the characteristic molecular sizes.

1.5.2 OBJECTS OF THE CONTINUUM AS TENSORS 
Continuum mechanics of any material operates with some fundamental concepts charac-
terizing dynamic (stresses), geometrical (deformations), and kinematic (deformation 
rates) situation at a point (site). In this approach, a “point” is always understood in a math-
ematical sense as infinitesimal small objects. All these concepts are physical objects exist-
ing regardless of the choice of the coordinate system.

Stress is a measure of forces acting on a point and it is defined as a relative force or a 
force related to the unit area. Stress values depend on the direction of the applied force and 
the orientation of a surface on which acting forces are considered. Stress is an object of the 
tensor nature. 

Stresses determine the deformation of matter, and, in limiting cases, when they over-
come some threshold, they lead to transitions and eventually to rupture of the material.

Stresses can be normal (perpendicular) and shear (tangential) to the surface where 
they act. 

The stress tensor is written via its components − projections of the force on the coor-
dinate axes. 

It is always possible to calculate components of the stress tensor for any direction 
and to find such principal directions and principal normal stresses, which are extreme with 
shear stresses absent in those directions.

There are three particular combinations of any arbitrary stress tensor which do not 
depend on the choice of axes or their orientation in space. These combinations are called 
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invariants. The independence of these combinations of the stress components on the 
choice of the coordinate system is evidence of the existence of stress as a physical quantity 
regardless of the coordinate system.

The stress tensor can be divided into two parts, one of which (known as spherical), 
being hydrostatic pressure, is responsible for the volume changes, and the other part 
(called deviatoric) is responsible for shape (or form) changes of a body (at a point). The 
spherical part of the stress tensor (and the first invariant of this tensor) determines the 
hydrostatic pressure (all-directional, tri-axial, compression acting on a body). 

Calculation of stresses throughout a body is realized by solving differential equations 
with appropriate boundary conditions. These equations represent the law of equilibrium 
(or balance) of all forces applied at a point.

Due to different reasons and, in particular, due to the action of external forces, the 
points in a body can move in space and this is known as displacement. If displacements 
are inhomogeneous throughout a body (i.e., different at different points) relative displace-
ments appear and they lead to deformations, which are determined as the changes of infin-
itesimal distances between points inside a body. 

Displacement is a vector, but relative displacements, as well as deformations, similar 
to stress, are the quantities of tensor nature because their presence is controlled by two 
vectors. The relative displacement is described by radius vectors of two points for which 
the displacement is considered, and the deformation is characterized by means of a vector 
of displacement and a radius vector at a point, where the displacement occurs.

Deformation is only a part of the relative displacement, the latter also includes rota-
tion of elements of a body as a whole.

Deformations can be small (or infinitesimally small) or large (or finite). The bound-
ary between them is determined by the value of relative displacement (or gradient of dis-
placement), which is a dimensionless value. If this value is small (<< 1), it is reasonable to 
neglect the square of this value in comparison with the value itself. One can thus neglect 
all quadratic terms included in the definition of deformation. In this case, deformations 
can be treated as infinitesimally small.

The deformation tensor can be divided into two parts: the spherical part, which rep-
resents volume changes, and the deviatoric part, which is a characteristic of the shape 
transformations.

If large deformations are considered, some new effects appear. First of all, deforma-
tions occur at a site that moves, as a result of displacement, and vacates its initial position. 
Description of all occurrences (including deformation itself) must be done in relation to a 
moving point. An observer, carrying out experiments, follows its behavior and treats the 
results of measurements in a fixed coordinate system. Hence, it is necessary to know the 
rules of transformations and the tensor values used for projecting deformations from mov-
ing to a fixed coordinate system.

Large deformations are characterized by special measures of deformation, such as 
the Hencky measure (a logarithmic measure subjective to additivity rule), and the Cauchy-
Green and the Finger tensors of large deformations.

The tensors of deformations, similar to any other tensors, have principal axes along 
which the principal values of this tensor are calculated. Besides, three invariants of the 
deformation tensors are calculated by the standard rules of operations with tensors. The 



42 Continuum Mechanics as a Foundation of Rheology

geometrical sense of the first invariant of the deformation tensor is volume change caused 
by deformation. 

The kinematic picture of the relative movement of points of a continuum is charac-
terized by the time derivative of displacement of a point (its velocity), the time derivative 
of relative displacement (gradient of velocity), and time derivative of deformation (rate of 
deformation). Time derivatives of tensors are also tensors. For calculation of the rate of 
deformation, special rules exist which take into consideration large deformations and 
movements of a deforming site in space. The gradient of velocity is the sum of the rate of 
deformation and vorticity tensors of elements of a body, which − due to displacements −
can rotate simultaneously with deformation. 

Two special cases of deformations are of interest: uniaxial longitudinal extension and 
simple shear. In the process of extension, a body undergoes lateral compression. The ratio 
of relative changes of lateral and longitudinal sizes is called Poisson’s ratio, which is an 
inherent property of a material. For the range of small deformations, the volume of a body 
remains unchanged if Poisson’s ratio equals 0.5. In simple shear, volume changes are not 
taking place at all. However, at large shear deformations, diagonal components of the 
deformation tensor appear, and they lead to some second-order effects.

 Simple shear is accompanied by rotation of elementary volumes in space. In order to 
exclude rotation, it is necessary to apply pure shear in which rotation does not exist. This 
type of deformation is equivalent to a two-dimensional superposition of extension and 
compression in mutually perpendicular directions.
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QUESTIONS FOR CHAPTER 1
QUESTION 1-1
What is the equilibrium state of liquid and solid in the absence of stresses?
QUESTION 1-2
What are the possible limits of Poisson’s ratio, μ? Can its value exceed 0.5? Can it be neg-
ative?
QUESTION 1-3
What are the pressure and the shear stresses in the stress state created by the following 
normal stresses: σ11 = σ0; σ22 = -σ0 and σ33 = 0? What are shear stresses in this case?
QUESTION 1-4
Calculate stresses acting on a thread being suspended by its end and stretched by its own 
weight. 
QUESTION 1-5
Analyze a situation where a horizontal long flexible engineering element (fiber, bar, etc.) 
is loaded along its length by a distributed force, q (i.e., force, normal to the bar, per the 
unit of a length).
QUESTION 1-6
In section 1.3.1, the difference between the gradient of velocity and the rate of deforma-
tion is explained. What is the situation with these values for a uniaxial extension?
QUESTION 1-7
Calculate the stresses in a hemispherical cup loaded by its own weight. Such a case is part 
of many engineering designs, for example, in a spherical roof covering a large area of a 
stadium or a warehouse.
QUESTION 1-8
Let liquid be placed between two coaxial cylinders with radii Ro (outer) and Ri (inner). 
The gap between cylinders Δ = Ro − Ri is small in comparison with the cylinder radii. Let 
the outer cylinder rotate with an angular velocity, Ω. Then, the assembly of both cylinders 
begins to rotate with the same angular velocity, ω. What are the shear rates and gradients 
of velocity in these two cases?
QUESTION 1-9
A cylindrical thread of length l0 is fixed at one end and stretched at the other end. What 
must be the time dependence of velocity, v(t), of stretching that is sufficient to maintain a 
constant deformation rate,  = const?
QUESTION 1-10
Put-forth your arguments proving the possibility to neglect shear stresses in a thin-wall 
cylinder as in the Example in section 1.1.4.

Answers can be found in a special section entitled Solutions.

ε·0
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VISCOELASTICITY

2.1 BASIC EXPERIMENTS
Two simple and easy to grasp concepts (or models) describing mechanical properties of 
materials originated in the XVII century. One is the Newton law of liquids:1 

[2.1.1]

and another is Hooke’s law of solids:2 

[2.1.2]

where ε − deformation,  − the rate of shear deformation, σ − shear stress, σE − tensile 
stress, E − elastic (or Young’s) modulus, and η − viscosity.

Both equations are the simplest rheological equations of state or constitutive equa-
tions of material. These two concepts and their further developments are discussed in 
detail in the subsequent chapters of this book (liquids in Chapter 3 and solids in Chapter 
4). Here, we would like to present the main features of these fundamental laws, which are:

• linearity of ε(σE) dependence for solids and (σ) dependence for liquids
• absence of time effects in ε(σE) dependence for solids; deformation strictly corre-

sponds to stress and changes immediately following stress evolution
• absence of any fixed deformation of liquids because at any stress deformations 

develop unlimitedly and they increase linearly with time at constant stress
• existence of a single constant characterizing properties of the material − viscos-

ity, η, for liquids and elastic modulus, E, for solids.
Many independent experimental pieces of evidence are well-known that cannot be 

explained within the framework of the classic theories of fluid dynamics and elasticity, 
based on Eqs. 2.1.1 and 2.1.2, respectively, and these are discussed in the subsequent sec-
tions. 
2.1.1 CREEP (RETARDED DEFORMATION)
Let a bar of a length, l, be stretched by the force, F, as shown in Fig. 1.1.1. What happens 
afterward? 

Time dependencies of deformation, ε(t), for the two above-mentioned classical mod-
els are shown in Fig. 2.1.1a. Deformation of liquid (Eq. 2.1.1) increases linearly with time 
(line N) and deformation of solid (Eq. 2.1.2) instantly increases until it reaches a definite 
level and then stays constant (line H) as long as an observer wishes to follow it. If the 
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force is taken away at the time t0, the defor-
mation of liquid remains at the level 
reached before t0, at the point εt, and the 
deformation of solid instantly disappears.

These relationships appear to be very 
simple, and, in fact, many real materials 
behave as predicted by these models. How-
ever, there are also many other materials 
which have different behavior. A typical 
illustration of such behavior is given in Fig. 
2.1.1b for both liquid and solid. The main 
peculiarity of these curves is the delay of 
deformation with instantaneous application 
and release of forces. It is related to the ini-
tial time where a constant force acts (until 
the point t0) and to retardation, which is the 
reverse of deformations (after the point t0 at 
which force is removed). The difference 
between the pairs of curves N−Liquid and 
H−Solid is remarkable. 

The difference between the two 
curves in Fig. 2.1.1a leaves no doubt about 

the difference in the behavior of liquid and solid. This difference is not so evident in Fig. 
2.1.1b because the initial parts of the curves are similar. In practice, this initial behavior 
continues for a long time. The difference also appears in the final parts of these curves. 
The comparison of the two curves in Fig 2.1.1b helps to point out differences between liq-
uids and solids. In liquids: the final part of the ε(t) dependence is a line inclined to the 
coordinate axes and the liquid viscosity is responsible for its slope; after the force is 
removed, some residual deformation, , can always be found. In solids: the final part of 
the ε(t) dependence is a horizontal straight line, which is then stopped. After force is 
removed, deformation disappears completely and no residual deformation remains. 

This difference between liquids and solids, which is very clear in the model picture, 
may be less definite in real practice because the processes of deformation and retardation 
might be very slow and an observer is never certain whether he waited long enough to 
reach an unambiguous conclusion.

The phenomenon of the slow development of deformations is called creep,3 and the 
effect of retardation is sometimes called elastic recoil.
2.1.2 RELAXATION 
Let the bar drawn in Fig. 1.1.1 be stretched rapidly by a force, F, to some length and then 
be fixed at this new length. What is the force necessary to maintain deformation? 

The answer for the two simplest models of liquid and solid is pertinent: if there is no 
continuation of deformation rate, the force cannot exist in liquid (Eq. 2.1.1), i.e., the force 
instantly drops to zero. If the deformation of a solid is fixed (ε = const), in accordance 
with Eq. 2.1.2 the force remains constant during any long time observation. Again, these 
conclusions can be very easily grasped and they are true for many real materials. 

ε∞

Figure 2.1.1. Development of deformation and retarda-
tion in materials of different types.
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However, many other materials have 
different behavior. It is possible to note a 
slow decay of forces (or stresses) resulting 
from stress relaxation.4,5 Two possible 
modes of relaxation are shown in Fig. 2.1.2. 
Stresses in liquids, after unloading, relax 
(sooner or later) from its initial value, σ0, 
until zero is reached because liquids cannot 
store stresses if they do not flow. Stresses in 
solids decrease after unloading from their 
initial value of σ0, but always some residual 
(equilibrium) stresses, σres, remain regard-
less of how long the relaxation continues.

This difference in the behavior of 
materials is characteristic of definitions of 

liquids and solids. The model presents some uncertainties in practice because very slow 
relaxation may not be noticed by some impatient observers. The rate of the relaxation pro-
cess is quantitatively characterized by the relaxation time.

Relaxation time - general concept in physics
The concept of relaxation has a general meaning for many physical phenomena. It is a reflection of an idea of the 
restoration of equilibrium state from a non-equilibrium condition, regardless of the reasons which caused the 
departure from equilibrium. For example, this can be concentration fluctuation caused by purely statistical rea-
sons as was considered by Maxwell. Let the equilibrium value of some physical parameter be X0, the current 
value of this parameter be X, and let it be supposed that the rate of approach of equilibrium is proportional to the 
distance from the equilibrium. This assumption immediately leads to the following first-order kinetic equation:

  [2.1.3]

where k is a kinetic rate constant with the dimension of reciprocal time.
The parameter X in the initial state equals to X0. Then, the solution of this equation is 

   [2.1.4]

Now, if  = 0, then the simplest form of this equation is

    [2.1.4a]

The last two equations describe the relaxation process and the value of 

  [2.1.5]

is called relaxation time. Its value characterizes the rate of approach of the equilibrium (but not the complete 
time necessary to reach this equilibrium because it is infinitely large according to Eq. 2.1.4).

The exponential equation is the simplest way of quantitative description of the relax-
ation process, directly related to the basic concept of relaxation. In reality, the relaxation 
process is more complex. For example, if one places a small hot ball into a cold liquid 
bath, the temperature of a ball will approach the temperature of a liquid bath but the tem-
perature evolution will be described by quite different (non-exponential) law. The general 
way of treating real relaxation processes using the superposition of several individual 
exponential modes is discussed in section 2.2. 

dX
dt
------- k X X∞–( )–=

X t( ) X∞–
X0 X∞–

------------------------- e kt–=

X∞

X t( ) X0e kt–=

θ k 1–=

Figure 2.1.2. Stress relaxation in solids (marked as Sol) 
and liquids (marked as Liq).
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A large number of empirical equations were proposed to describe σ(t) functions 
during relaxation. The Kohlrausch function6 is frequently used. It can be written as

[2.1.6]

where σ0 is the initial stress, θK is a characteristic time of the relaxation process which 
must not be confused with a relaxation time as defined by Eqs. 2.1.4 and 2.1.5, and n is an 
empirical constant. The equation of this structure is frequently used in different branches 
of physics for fitting experimental data.
2.1.3 FADING MEMORY

Fading memory is a more general concept 
than creep or relaxation because it unites 
them both. This concept consists of the fol-
lowing: Let a bar be stretched, as in the case 
of creep and elastic recoil, but the sample is 
not released instantly but held for some 
time before the elastic recoil. In reality, the 
term “instantly” always is realized with 
some delay, depending on the skills of the 
experimentalist and the capabilities of the 
experimental technique. 

What is the influence of this delay on 
the elastic recoil? In the case of liquid, 
according to Eq. 2.1.1, the material 
instantly “forgets” its previous deformation, 
any current state is equilibrium, elastic 
recoil is absent, and, as a result, liquids are 

considered to have no memory. In the case of elastic material, according to its model, Eq. 
2.1.2, the time of rest has no influence on its behavior after releasing stresses. Such mate-
rials do not forget the pre-history of their deformations at all. So, their memory does not 
fade. 

However, the behavior of many real materials is intermediate. It is possible to 
observe a phenomenon of retarding elastic recoil by increasing the delay time (Fig. 2.1.3), 
i.e., it is reasonable to treat this effect in terms of the “fading memory” of the pre-history 
of their deformations. The reasons are quite evident: in the period preceding the elastic 
recoil, a relaxation partly takes place and stresses responsible for the post-effect decrease. 
For an observer, it appears as if the material was forgetting the pre-history of its deforma-
tions, or in other words, this is the phenomenon of fading memory. 

The concept of viscoelasticity comes from the above-described experimental evi-
dence.7 They demonstrate that in the deformation of many real materials it is necessary to 
consider a combination of viscous and elastic behavior. This is very clear in a creep exper-
iment: deformation consists of flow and an elastic (retarded) part. The same is observed 
from a relaxation curve because this curve reflects features of viscous liquids and elastic 
solids. The concept of fading memory also assumes that the superposition of elastic 
behavior and viscous flow explains experimental facts. 

σ t( ) σ0 t θK⁄( )n–[ ]exp=

Figure 2.1.3. Fading memory − decrease of elastic recoil 
as a function of time delay.
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2.2 RELAXATION AND CREEP − SPECTRAL  
      REPRESENTATION. DYNAMIC FUNCTIONS
2.2.1 RETARDATION AND RELAXATION SPECTRA − DEFINITIONS
Experimental linear relaxation and creep functions are demonstrated here by their spectral 
representations. The description of the viscoelastic behavior of the material is the same for 
any geometrical mode of deformation, e.g., extension, shear, or volume changes. There-
fore, no special definition concerning the geometry of deformations and type of stress are 
considered below.8 The creep and the relaxation phenomena are compared side-by-side in 
the table below. 

Creep Relaxation
The typical creep functions are represented in 
Fig.2.1.1. The linear viscoelastic behavior in creep 
means that deformation, γ, at any time is proportional 
to the applied stress, σ0. Based on the typical form of 
experimental data, the following equation for the 
creep curve can be written as:

                         [2.2.1]

where σ0 is the constant stress-producing creep.

The typical relaxation curves are represented in Fig. 
2.1.2. The linear viscoelastic behavior in relaxation 
means that the stress, σ, at any time, is proportional to 
deformation created before relaxation. Then, based on 
the typical form of experimental data, the following 
equation for the relaxation curve can be written:

                                [2.2.2]

where γ0 is constant deformation, at which relaxation 
takes place.

The linearity of viscoelastic behavior is expressed by 
positioning the stress out of square brackets. So, the 
function called viscoelastic compliance

                     [2.2.3]

is independent of stress and can be considered as a 
rheological property of matter.

The linearity of viscoelastic behavior is expressed by 
positioning the deformation out of square brackets. 
So, the function called viscoelastic or relaxation mod-
ulus

                        [2.2.4]

is independent of deformation and can be considered 
as a rheological property of matter.

J0 is instantaneous compliance, η is viscosity, and ψ(t) 
is a creep function, which is a representation of the 
viscoelastic behavior of a sample in an experiment. 
These two constants, J0 and η, and the creep function, 
ψ(t), are characteristic parameters of the material. 
The creep function, ψ(t), is also called the creep com-
pliance, Jc. It is a ratio of (creep) deformation to stress.

 is an equilibrium modulus, and (t) is a relax-
ation function, which is a representation of the visco-
elastic behavior of a sample in an experiment. The 
constant  and the relaxation function, (t), are 
individual parameters of the material.
The relaxation function, (t) is also called the relax-
ation modulus, Gr. It is a ratio of (relaxing) stress to 
deformation.

The difference between solids and liquids is as fol-
lows. For a liquid η < , i.e., the material can flow. 
For solid: η = , i.e., irreversible deformations are 
absent. This difference is clearly seen in Fig. 2.1.1.
The creep function has a limit at ; 

. The equilibrium elastic deformations are 
expressed via the equilibrium shear compliance, Je 

                                           [2.2.5]

The difference between solids and liquids is as fol-
lows. For liquid  = 0 and  because, 
by definition, it is assumed that . For sol-
ids  > 0. This difference is clearly seen in Fig. 
2.1.1.
The initial value of relaxation modulus (at t = 0) is 
called an instantaneous modulus, G0, and its value is 
found as

                                             [2.2.6]

γ t( ) σ0 J0 ψ t( ) t
η
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ϕ
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The creep function, by its physical meaning, is an 
increasing function of time having a definite limit. 
The functions of such type can always be represented 
by the following integral

                    [2.2.7]

where λ is called a retardation time, and J(λ) is a func-
tion of distribution of retardation times, or a retarda-
tion time spectrum.

The relaxation function, by its physical meaning, is a 
decreasing function of time having zero limit at 

. The functions of such type can be always
presented by the following integral 

                             [2.2.8]

where θ is called a relaxation time, and G(θ) is a func-
tion of distribution of relaxation times, or relaxation 
time spectrum as measured in shear.

Retardation for many materials takes place in a wide 
time scale, and therefore it is important to know the 
retardation spectrum in a wide time scale. The loga-
rithmic retardation spectrum, k(lnλ), is commonly 
used and Eq. 2.2.7 is written as

           [2.2.7a]

and evidently

 

Relaxation for many materials takes place in a wide 
time scale, and therefore it is important to know the 
relaxation spectrum in a wide time scale. The loga-
rithmic relaxation spectrum, h(lnθ), is commonly used 
and Eq. 2.2.8 is written as

                     [2.2.8a]

and evidently

 

The integral expression can be approximated by the 
sum of the limited number of members:

                      [2.2.9]

In this formula, λi is a set of retardation times and Ji
are “weights” or partial compliances.

The integral expression can be approximated by the 
sum of the limited number of members:

                            [2.2.10]

In this formula, θi is a set of relaxation times and Gi
are “weights” or partial moduli.

If

 

Then

 

and the validity of Eq. 2.2.9 is evident.

If

 

Then

 

and the validity of Eq. 2. 2.10 is evident.

Creep Relaxation
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The transition from continuous spectrum to the set of discrete values, i.e., the transi-
tion for Eq. 2.2.7 to Eq. 2.2.9 or from Eq. 2.2.8 to Eq. 2.2.10, is based on the Dirac9 con-
cept or the delta function.

Comments − delta-function
The delta-function, δ(x), belongs to the class of special singular functions. This is a “line” with zero width 

and infinite length, defined by the following equality:

The main feature of this function used in many applications is its definition via the following functional:

here f(x) is any “regular” function. It means that δ(x − x0) is defined through the above written functional which 
puts into conformity δ(x − x0) to some number f(x0).

It is easily seen that presenting J(λ) or G(θ) as a sum of delta functions defined at a 
set of points λi or θi, respectively, one converts the integrals as in Eqs. 2.2.7 and 2.2.8, to 
sums as in Eqs. 2.2.9 and 2.2.10, respectively.

 It is not necessary for creep and relaxation functions, or, consequently, relaxation 
and retardation spectra to be the same or to be mirror reflections of each other. In fact, they 
are not, though there is a mathematical relation between them, which will be discussed in 
section 2.4.

The discrete approximation helps us to understand the 
meaning of spectral representation of the creep func-
tion. This function is a sum (or linear superposition) of 
several retardation modes, each of which is character-
ized by its own retardation time. The distribution of 
the retardation times can be continuous, as written in 
Eq. 2.2.7 or discrete, as in Eq. 2.2.9. In both cases, the 
limits of distribution are not known beforehand and 
need to be determined from an experiment or a theo-
retical model. 
The simplest case of creep function is described by the 
single retardation time:

                                  [2.2.11]

This equation for the creep function is known as the 
Kelvin-Voigt model.10 
The methods for finding a retardation spectrum will be 
discussed below, in section 2.5.3.

The discrete approximation helps us to understand the 
meaning of the spectral representation of the relax-
ation function. This function is a sum (or linear super-
position) of several relaxation modes, each of which is 
characterized by its own relaxation time. The distribu-
tion of the relaxation times can be continuous, as writ-
ten in Eq. 2.2.8, or discrete, as in Eq. 2.2.10. In both 
cases, the limits of distribution are not known before-
hand and need to be determined from an experiment or 
a theoretical model.
The simplest case of the relaxation function is 
described by the single relaxation time:

                                           [2.2.12]

This is the Maxwell model of relaxation. 
The methods for finding a relaxation spectrum will be 
discussed below, in section 2.5.3.

Creep Relaxation
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2.2.2 DYNAMIC FUNCTIONS
In order to find rheological characteristics of the material it is preferable to carry out an 
experiment using the simplest and the easiest to interpret conditions. In section 2.2.1, the 
regimes of constant stress or deformation were discussed.

It is possible to propose another simple experimental scheme such as periodic oscil-
lation.12 The form of an oscillation can be arbitrary, but it is preferable to use harmonic 
oscillation as the basic stress (or deformation) mode. The mathematical analysis of har-
monic functions is very well developed. Also, any periodic function can be represented by 
a sum of harmonic functions (by the Fourier integrals).

Harmonic oscillation may continue for the duration of the experiment design. The 
changes taking place in the material are measured as a function of time. It is also important 
for modern experimental techniques to use harmonic oscillation in a very wide frequency 
domain, exceeding many (at least 6-8) decimal orders.

The discussion in this section will be limited to small deformations within the range 
of linear mechanical behavior of the material. Such a regime of deformation is known as 
the dynamic mechanical studies of materials.

Similar to static experiments (e.g., measurement of creep and relaxation), dynamic 
experiments can be conducted in stress- or deformation-controlled modes of deformation. 
The interpretation of both experimental modes is similar and it will be compared in the 
table below. 

In operation with harmonic functions, it is convenient to use the mathematics of 
complex numbers, because it simplifies calculations.

Comments − the Euler equality
The central operation in this calculation uses the Euler theorem:

where ω = 2πf is frequency of oscillation in rad/s, f is the frequency expressed in Hz (s-1), and t is time. Writing 
periodic function as an exponent indicates that the real or imaginary part of the sum is involved in an experiment.

Stress-controlled experiment Deformation-controlled experiment
Let stress change according to the harmonic law as

                                           [2.2.13]

where σ0 is the amplitude of harmonic oscillation of 
stresses and ω is frequency.
It leads to deformation, which (in a general case) 
changes as

  [2.2.15]

Let deformation change according to the harmonic 
law as

                                             [2.2.14]

where γ0 is the amplitude of harmonic oscillation of 
deformations and ω is frequency.
It leads to stresses which (in a general case) change as

                   [2.2.16]

eiωt ωt( ) i ωt( )sin+cos=

σ t( ) σ0eiωt=

ε t( ) J0σ t( ) γ0ei ωt δ–( ) i 1
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--------σ t( )–+=

γ t( ) γ0eiωt=

σ t( ) G0ε t( ) σ0ei ωt δ+( )+=
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   In some applications, changes in the deformation rate are followed instead of 
deformation at a stress-controlled regime of deformations. 

Formal rearrangements give the following result:

 [2.2.25]

where η* is called complex dynamic viscosity and its components η' and η'' are real and 
imaginary parts of complex dynamic viscosity, respectively. These factors are expressed 
as 

 and [2.2.26]

The following relationships follow:

 and [2.2.27]

This equation is equivalent to Eq. 2.2.1 with the same 
meaning of members. The new factor here is the 
angle, δ, which reflects the possible delay of deforma-
tion changes that follows the oscillation of stresses. 
The value σ0 is the amplitude of periodically changing 
deformations.
Dividing γ(t) by σ(t) the equation is obtained which is 
equivalent to Eq. 2.2.3

  −

  −                                    [2.2.17]

This equation is equivalent to Eq. 2.2.2 with the same 
meaning of members. The new factor here is the 
angle, δ, which reflects the possible delay of stress 
changes which follow the oscillation of deformations. 
The value σ0 is the amplitude of periodically changing 
stresses.
Dividing σ(t) by γ(t) the equation is obtained which is 
equivalent to Eq. 2.2.4

  +

  +                                               [2.2.18]

The value J* is called complex shear compliance and 
J* can be written as a sum: 

                     [2.2.19]

The value G* is called complex shear modulus and G* 
can be written as a sum: 

                              [2.2.20]

The components of the complex compliance,  and 
, are called real and imaginary parts of the complex 

compliance, respectively, and are expressed as:

  and                [2.2.21]

The components of the complex modulus,  and 
, are called real and imaginary parts of the com-

plex modulus, respectively, and are expressed as:

  and             [2.2.22]

The  and  components of complex compliance 
represent deformations changing in-phase and out-
phase along with stress. 
The angle δ is calculated as

                                                   [2.2.23]

The  and  components of complex modulus 
represent stresses changing in-phase and out-phase 
along with deformation. 
The angle δ is calculated as

                                                 [2.2.24]

Stress-controlled experiment Deformation-controlled experiment
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The last central equation of the theory of periodic oscillation in studies of material 
properties is the consequence of expressions for J* and G*. If constants are neglected, the 
following simple relationship is valid:

J*G* = 1 [2.2.28]

Two parameters (in addition to constants) are measured in a dynamic regime of 
deformation at any frequency. They are components of the dynamic modulus, or compo-
nents of dynamic compliance, or any of the components and the angle δ. 

Dynamic measurements are carried out in the linear range of mechanical properties 
of material when and if the ratio of amplitudes of stress and deformations does not depend 
on amplitudes and therefore these two functions (J', J'' or G', G'') do not depend on σ0 and 
consequently on γ0. This happens when deformations are small. However, the last term 
(linear) must be understood not in the geometrical meaning only. The amplitude of defor-
mations may be small (γ0 << 1) but sufficient to influence the structure of the material. It 
may result in the observed changes of J* or G*. The latter is true, for example, in disperse 
systems. The deformation may exceed the characteristic size of dispersed particles or 
structural elements in material (which might be very small), and in this case deformations 
are not small in relation to the physical (structural) size, though the geometrical condition 

 is strictly fulfilled. 
Frequency dependence of the dynamic modulus, G'(ω), may span over a very wide 

frequency range, covering many decimal orders of magnitude. Values of G' also vary in a 
wide range. For many polymeric substances, there is a frequency range where G' = const. 
This is known as plateau modulus (in extension, , and in shear deformations, ), 
which plays an important role in the mechanical characterization of materials.

The above-formulated theory of 
dynamic measurements can be interpreted 
in a graphical form as in Fig. 2.2.1. Let 
stresses and deformations be presented by 
the vectors with the lengths γ0 and σ0, 
respectively. The vector  representing the 
rate of deformation is also shown in Figure 
2.2.1. The vectors rotate counter-clockwise 
with an angular velocity of ω. The angles 
between γ0 and σ0 and the axis of real num-
bers at any moment, t, equal to ωt and ωt − 
δ, respectively. 

Linearity of viscoelastic properties of 
materials means that stretching any vector 
results in stretching all other vectors by the 
same ratio. The angle between both vectors, 
σ0 and γ0, remains unchanged.

The projection of the stress vector on the γ0-vector is σ0cosδ and the projection in the 
perpendicular direction is σ0sinδ.  and  are the ratios of these projections on γ0, i.e., 
these ratios are the in- and out-of-phase components of G*. The same is true for η* with 
changes of terms.

γ0 1«

EN
0 GN

0

γ·

G' G''

Figure 2.2.1. Graphic interpretation of oscillations in 
dynamic measurements of properties of viscoelastic 
materials.
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Another useful graphical interpretation of dynamic experiment in the measurement 
of viscoelastic properties is based on a combination of equations for stresses and deforma-
tions by excluding time as a parameter. Then, the following relationship between stress 
and deformation is obtained: 

[2.2.29]

This equation is that of an ellipse with the principal axis inclined to the abscissa by 
angle, δ, as represented in Fig. 2.2.2.

The exclusion of argument, t, in both dependencies, σ(t) and γ(t), permits building 
the closed curves called the Lissajous figures (Fig.2.2.3). These curves are not necessarily 
ellipses, and their shapes differ depending on deformation. The non-elliptic shape of the 
Lissajous figures is a reflection of the non-linear behavior of the material in oscillation 
(see section 2.8).

The area, A, of an ellipse equals:

[2.2.30]

Two limiting cases are of special interest.
1. δ = π/2. In this case, the ellipse transforms into a circle with coordinates (σ/σ0) and 

(γ/γ0) and its area is A = πσ0γ0. This case corresponds to G' = 0 and it means that the 
material is a purely viscous liquid without elasticity.

2. δ = 0. In this case, the ellipse degenerates into a straight line. This means that G'' = 0 
and the material becomes a purely elastic body. The area of the ellipse equals zero, A 
= 0. 
The representation of experimental results of stress-deformation relationships by 

means of an elliptic figure permits use of a simple method for calculation of angle, δ. The 
area of a rectangle circumscribed around an ellipse equals 

σ
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  2 γ

γ0
---- 
  2

+ δsin( )2 2 σ
σ0
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  γ

γ0
---- 
  δcos+=

A πσ0γ0 δsin=

Figure 2.2.3. Several examples of Lissajous figures at 
different amplitudes of deformations obtained in study 
of concentrated emulsions. (deformation is designated, 
ε, as in the original publication). [Adapted, by permis-
sion, from T.G. Mason, P.K. Rai, J. Rheol., 47, 513 
(2003)].Figure 2.2.2. Graphical representation of the stress-

deformation relationship in dynamic measurements of 
viscoelastic properties.
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Then, sinδ is expressed by the ratio of the ellipse surface area to the surface area of a 
circumscribed rectangle as 

[2.2.31]

This approach is used in some standards and experimental devices because the value 
of angle δ has important applications by itself (for example, in estimating the damping 
characteristics of rubbers, rubber compounds, and porous materials). The angle δ can be 
found from a hysteresis loop (i.e., a surface area of an ellipse, as in Fig. 2.2.2) with no 
need to calibrate stress and deformation scales and to find σ0 and ε0.   

The graphic representation of oscillating deformation gives a physical interpretation 
of parameters introduced for quantitative description of results of dynamic experiment. 

The work of entire oscillation cycle (gained and lost) is calculated as 

[2.2.32]

where T = 2π/ω is the duration of a single cycle of oscillations.
Direct calculation shows that this work is as follows

[2.2.33]

Eqs. 2.2.30 and 2.2.33 are identical, which means that the surface area of an ellipse is 
directly interpreted as the work dissipated during the cycle of oscillation. The angle δ is a 
relative measure of work losses. For this reason, it is called the loss angle. For an elastic 
body δ = 0 (an ellipse degenerates into a straight line) and losses are absent. For a viscous 
liquid δ = π/2, and consequently the losses are at maximum. By decreasing δ, and conse-
quently decreasing viscous losses, material transits from pure viscous to pure elastic.

The introduction of values J'' and G'' into Eq. 2.2.33 leads to the following relation-
ship:

[2.2.34]

Values of J'' and G'' are also measures of losses (heat dissipation in periodic oscilla-
tion) and therefore they are called loss compliance and loss modulus, respectively. 

It is possible to show that real components of dynamic compliance and modulus, J' 
and G', are measures of elasticity because the energy stored (and then returned) during the 
cycle of oscillation is proportional to these values. Therefore J' and G' are called storage 
compliance and storage modulus, respectively. 

In real practice, viscoelastic materials can be used in many forms and applications. 
Engineering products (e.g., springs) must be highly elastic (losses must be low) and they 
should be made out of materials having low loss angle values. This is also true of church 
bells. A bell continues to sound as long as the mechanical losses of material, from which it 
is made, are low. Shock absorbers, sound insulators, and materials for many other similar 
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applications must possess a high dissipative function (energy), meaning that the loss angle 
of such materials must be as close to π/2 as possible. 

The above-formulated parameters are used to describe viscoelastic effects and char-
acterize properties of real materials. However, they are not constants but functions. Just as 
creep and relaxation functions depend on time, the dynamic properties depend on the fre-
quency of oscillation. In representing viscoelastic properties of the material, it is necessary 
to consider the functions J'(ω) and J''(ω), or G'(ω) and G''(ω) as permitted by equation 
2.2.28. Other parameters can also be included (loss angle or dynamic viscosity). The prin-
cipal conclusion is as follows: the viscoelastic properties of the material, measured in a 
dynamic experiment, are represented by two frequency-dependent functions. 

2.3 MODEL INTERPRETATIONS
2.3.1 BASIC MECHANICAL MODELS

It is instructive and useful for better understanding the ideas of theory 
of viscoelasticity to illustrate some typical behaviors of viscoelastic 
materials by simple mechanical models. 

The simplest model of viscous behavior of the material is a dash-
pot, a piston moving inside (Fig. 2.3.1) a cylinder filled with liquid. It is supposed that the 
speed of movement, V = dX/dt, of the piston is proportional to the applied force, F: 

[2.3.1]

where X is displacement, t is time, and η is the coefficient of proportionality.
This equation is formally analogous to the basic equation for Newtonian liquid and 

one assumes that the speed is an analogue of the rate of deformation, the force F is an ana-
logue of stress, σ, and the coefficient η is an analogue of viscosity.

The simplest mechanical model of an elastic body is a spring (Fig. 2.3.2). The dis-
placement X is proportional to the applied force, F:

 [2.3.2]

F ηV=

X F
G
----=

Figure 2.3.1. A dashpot as 
a mechanical model of a 
viscous (Newtonian) liq-
uid.

Figure 2.3.2. A spring 
as a mechanical model 
of an elastic 
(Hookean) solid.

Figure 2.3.3. A spring and 
dashpot elements joined in 
parallel − a model of the Kel-
vin-Voigt viscoelastic liquid. Figure 2.3.4. A spring 

and a dashpot element 
joined in series − a 
model of the Maxwel-
lian viscoelastic liq-
uid.
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In order to compare this equation with the standard formulation of Hooke’s law, X 
can be treated as a relative deformation, F as an analogue of stress, and G as an analogue 
of the elastic modulus.

Both equations are quite trivial and do not add anything new to the initial concepts of 
viscous (Newtonian) liquid and elastic (Hookean) material. However, it is instructive to 
analyze the following mechanical models: let spring and dashpot elements be connected in 
parallel (Fig. 2.3.3) or in series (Fig. 2.3.4). These two mechanical models are compared 
below.

Let the constant force, F = F0 = const, be suddenly 
applied to the end of the jointed two-component 
model shown in Fig. 2.3.3 and continue to be applied 
for an unlimited time. It is easy to anticipate that both 
components will resist the movement, with a spring 
stretching and the piston slowly pulling out of a cylin-
der. This process continues until the spring is stretched 
to the length corresponding to the applied force. The 
movement of the piston stops at this state because the 
force is balanced by a spring and the force is absent at 
the piston.
The mathematical representation of the above-men-
tioned statement is as follows.

Let the constant displacement, X = X0 = const, be sud-
denly created at the end of the jointed two-component 
model shown on Fig. 2.3.4 and then fixed for an 
unlimited time. It is easy to anticipate that this dis-
placement immediately stretches the spring. Then, the 
extended spring will pull a piston out of a cylinder and 
this process will continue for some time because the 
movement in a viscous liquid is not very fast. This 
process continues until the spring comes to the equi-
librium state (its initial length is restored).
The mathematical representation of the above-men-
tioned statement is as follows.

Total force, F, of the two-component model F is the 
sum of forces acting on both elements of a model:

 

where Fsp is the force acting on the spring branch and 
Fpist is the force acting on the piston.

Total displacement, X, of the two-component model is 
the sum of displacements of both components

 

where Xsp is the displacement of the spring and Xpist is 
the displacement of the piston.
The same equality is true for the derivatives of the 
components and their sum

 

Now, using Eqs. 2.3.1 and 2.3.2, the last sum can be 
rearranged as

                                           [2.3.3]

Now, using Eqs. 2.3.1 and 2.3.2, the last sum can be 
rearranged as
 
                                                   [2.3.4]

The solution of this equation gives the time depen-
dence of the displacement X Eq. [2.3.5] below:

 
 

The solution of this equation gives the time depen-
dence of the force F:

 
                  [2.3.6]
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The use of the mechanical analogue models illustrates the behavior of the material in 
different modes of deformations. As an example, dynamic functions of both models are 
calculated by changing the model parameters, such as the rheological characteristics, vis-
cosity, η, and modulus, E, of components of the Kelvin-Voigt and Maxwell models.

The comparison of the above-presented results in both columns shows that the Kel-
vin-Voigt and the Maxwell models predict different behavior of the material, in respect of 
retardation and relaxation times, frequency dependencies of loss tangent, etc. The Max-
well material is liquid and the Kelvin-Voigt material is solid. Using mechanical analogue 
models it is easy to transit from describing solid-like to liquids-like behavior and vice 
versa.

The last expression is the analogue of Eq. 2.2.11. The 
ratio (k/G) has the meaning of a retardation time. The 
combination of components as shown in Fig. 2.3.3 
behaves like Kelvin-Voigt viscoelastic material and 
this is why it is called the Kelvin-Voigt model. The 
Kelvin-Voigt material is solid because the application 
of a constant force leads to a limited displacement as 
for any solid body (though with delayed elasticity).
The relaxation time of the Kelvin-Voigt model is 
absent (or to be more exact is equal to infinity). The 
Kelvin-Voigt model stretched by a constant force sup-
ports this force unlimitedly long due to stretching a 
spring that does not relax.

The last expression is the analogue of Eq. 2.2.12, 
where the ratio (k/G) has the meaning of a relaxation 
time. The combination of components as shown in 
Fig. 2.3.4 behaves like the Maxwell viscoelastic mate-
rial and this is why it is called the Maxwell model. It is 
easy to see that Maxwellian material is liquid because 
the application of a constant force leads to unlimited 
movement of the piston, i.e., this is a model of flow. 
The retardation time of the Maxwell model equals 
zero. The Maxwell model immediately follows the 
applied force due to the reaction of a spring acting 
without any delay. 

Let us now join N the Kelvin-Voigt models in series to 
each other as shown in Fig. 2.3.5. Formal calculations 
show that this model’s behavior can be described by 
Eq. 2.2.9 with N retardation times.

Let us now join M the Maxwell models in parallel to 
each other as shown in Fig. 2.3.6. Formal calculations 
show that this model’s behavior can be described by 
Eq. 2.2.10 with M relaxation times.

The parameters of the model and the components of 
the dynamic functions of the Kelvin-Voigt model are 
expressed as:
retardation time λ = η/G
relaxation time  

The parameters of the model and the components of 
the dynamic functions of the Maxwell model are 
expressed as:
relaxation time θ = η/G;
retardation time λ = 0

Then

  & 

 & 

                                                  [2.3.7]

Then

  & 

 

  & 

                                           [2.3.8]
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G
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------------------------= J'' ω( ) 1
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1 λω( )2+
------------------------=
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G' ω( ) G ωθ( )2

1 ωθ( )2+
------------------------=
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For combinations of either the Kelvin-Voigt (Fig. 2.3.5) or the Maxwell (Fig. 2.3.6) 
models, the expressions for the components of the dynamic functions include sums of the 
same structure as the equations for the single elements.

Frequency dependencies of the components of the dynamic functions for multi-ele-
ment models are

The use of the model representation opens a good potential 
for analysis of material behavior in various deformation-stress 
modes.

Let us assume that in a multi-component Kelvin-Voigt 
model one partial modulus equals zero. Then, this 
component degenerates into a single viscous element, 
and finally, it means that such multi-component sys-
tem models do not have solid but liquid-like behavior, 
because unlimited deformations become possible.

Let us assume that in a multi-component Maxwell 
model one partial viscosity is infinite. Then, this com-
ponent degenerates into a single elastic element, and 
finally, it means that such a multi-component system 
model is not a liquid but it has solid-like behavior 
because the spring stores non-relaxing stress.

 

                        [2.3.9]

where N is the number of elements in the model in 
Fig. 2.3.5 (retardation times).

 

                     [2.3.10]

where M is the number of elements in the model in 
Fig. 2.3.6 (relaxation times).

J' ω( ) 1
Gi
----- 1
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--------------------------
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1 ωλi( )2+
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1 ωθi( )2+
-------------------------

i 1=
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=

G'' ω( ) Gi
ωθi( )

1 ωθi( )2+
-------------------------

i 1=

M
=

Figure 2.3.5. A combination 
of the Kelvin-Voigt models 
joined in series − a model of 
viscoelastic solid with a set 
of retardation times, λi.

Figure 2.3.6. A combination of the Maxwell models 
joined in parallel − a model of viscoelastic liquid with 
a set of relaxation times θi.
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2.3.2 COMPLICATED MECHANICAL MODELS - DIFFERENTIAL  
          RHEOLOGICAL EQUATIONS

The Maxwell and the Kelvin-Voigt models can be joined in 
parallel, in series, or combinations thereof. In many applica-
tions, these models are also joined in their combinations. The 
combination of the Maxwell model and the Kelvin-Voigt 
model joined in series (known as the Burgers model13) is 
shown in Fig. 2.3.7. This combination represents a popular 
quantitative model of the behavior of polymeric materials. 

The central peculiarity of this model is the possible 
combination of relaxation and retardation phenomena in one 
material. Let us suppose that at low temperatures the “Max-
well viscosity”, ηM, is very high − a material is “frozen” −
and it is possible to neglect deformations of this element. 
Then, the model under discussion presents a solid-like behav-
ior due to the spring GM. With temperatures increasing, vis-
cosity, ηM, decreases and relaxation become possible. Then it 
is typical relaxation-retardation behavior of a viscoelastic 
material. At even higher temperatures, the viscosity of both 
components, ηM and ηK, becomes very low and the model 

represents the behavior of primarily viscous liquid, such as polymer melt (with a slight 
retardation). 

The mathematical description of the behavior of a model represented in Fig. 2.3.7 is 
based on the summation of deformations of three components of the model

where γ is the total deformation, which is the sum of deformation of a Maxwellian spring, 
γM,sp, Maxwellian viscous element, γM,pist, and deformation of a Kelvin-Voigt element,  γK. 
The direct substitutions lead to two equations:

Then, after excluding K from both equations, the final rheological equation for γ(σ) 
dependence is obtained. The structure of this dependence is of special interest. This is an 
equation including higher derivatives of variables:

[2.3.11]

where the coefficients of members of sums, ki and li, are constructed from four rheological 
constants of the Burgers model. 

The relaxation behavior of the Burgers model can be determined. σ(t) is found as the 
solution of the second-order differential equation, as follows:

γM sp, γK γM pist,+ + γ=

σ·

GM
-------- σ

ηM
------- γ·K+ + γ·=

σ GKγK ηKγ·K+=





γ·

k2
d2σ
dt2
--------- k1

dσ
dt
------ k0σ+ + l1

dγ
dt
----- l0γ+=

Figure 2.3.7. The Burgers model 
− predicting superimposed relax-
ation and retardation.
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where C1 and C2 are constants expressed via ki (or four rheological parameters of the 
Burgers model) and θ1 and θ2 are two independent relaxation times also expressed via four 
parameters of the Burgers model. This means that the Burgers model is equivalent to two 
Maxwell models joined in series. However, it is evident that the Burgers model predicts a 
single retardation time only. 

The construction of rheological models by joining the simplest the Kelvin-Voigt and 
the Maxwell models in various (sometimes rather whimsical) combinations leads, in a 
general case, to the following operator equation:

[2.3.12]

where kn and lm are individual rheological parameters of the material. Relaxation and 
retardation times are expressed via these parameters.

If the material is liquid N > M. If it is solid N = M. The differential rheological 
model predicts the existence of a set of discrete relaxation times. Consequently, it is possi-
ble to prove that, for a model of liquid, the number of relaxation times, m, equals the num-
ber of retardation times, n, plus 1.

Differential equations are considered to be old-fashioned and they are used infre-
quently for presenting rheological properties of the material. More popular are the integral 
equations derived from the superposition principle (see section 2.4).
2.3.3 NON-MECHANICAL MODELS

Any combination of physical elements leading to the 
same mathematical predictions, primarily exponen-
tial decay and growth of some variables, can be 
treated as an analogue model of the viscoelastic rhe-
ological behavior of material.

Among them, the most interesting and useful 
are electrical analogue systems,14 because electrical 
analogue models can be easily built in a laboratory 
and their behavior can be followed in detail using 
simple experimental techniques.

In order to illustrate the electrical analogue, let 
us consider a circuit consisting of two elements: a 

resistor with resistance, R, and a capacitor with capacitance, C. Electrical charge, Q, is an 
analogue of mechanical deformation, current, J = dQ/dt, is an analogue of deformation 
rate and voltage, U, is an analogue of mechanical stress. Both elements can be joined in 
series and parallel as shown in Fig. 2.3.8.

The starting relationships for the simplest elements are:

for a resistor: 

σ t( ) C1e
t– θ1⁄

C2e
t– θ2⁄

+=

kn
dn

dtn
------- σ

n 0=

N
 lm

dm

dtm
-------- γ

m 0=

M
=

J Q· 1
R
----U= =

Figure 2.3.8. Combination of resistor and 
capacitor joined in series as an analogue of 
the Kelvin-Voigt solid (a) and in parallel as 
an analogue of the Maxwell liquid (b).
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for a capacitor: Q = CU

Then the analysis of Fig. 2.3.8 gives the following results.

Electrical analogue modeling permits the construction of even more complicated 
versions of relaxation and retardation behavior and examination of their behavior by vary-
ing the model parameters. 

2.4 SUPERPOSITION − THE BOLTZMANN-VOLTERRA  
      PRINCIPLE
2.4.1 INTEGRAL FORMULATION OF THE SUPERPOSITION PRINCIPLE
The phenomenon of fading memory can be formulated in the following way: the longer 
the time interval between events and their observed consequences, the weaker the influ-
ence of these events on the observed material behavior. 

Mathematical formalization of this assumption means that functions connecting 
deformations and stresses must be decreasing and written via an argument (t - ), where t 
is the actual (current) time, and  is the time at which some event took place. This formal-
ism leads to the general formulation of a relationship between stresses and deformations. 

Two principal ideas are the basis of this approach:
• the response to any event is linear
• all consequent events lead to independent responses.
This is the principle of linear superposition of stresses and/or deformations.15 It 

means that material reacts to the next action as if no former action took place. In other 
words, the structure and properties of the material are not changed, regardless of its defor-
mation, and the last statement is a real physical meaning of the principle of linear superpo-
sition.

Now, let us write the above-stated concept in the form of mathematical formalism. 
Let the initial stress, acting from the time t = 0, be equal σ0. Then, deformations immedi-

For a capacitor and a resistor joined in series, the total 
voltage, U0, is a sum of voltages at both components:

 

and it is easy to show that charge increases according 
to the following equation:

 

where  = CU0 is the equilibrium charge of the 
capacitor.

For a capacitor and a resistor joined in parallel, the 
total current, J, is a sum of currents in both compo-
nents:

 

and it is easy to show that at Q = const (J = 0), the 
voltage relaxes according to the following equation:

 

where U0 = Q0/C, and Q0 is the initial charge of the 
capacitor.

This is a direct analogue of the Kelvin-Voigt model 
and the product (RC) has the meaning of the retarda-
tion time.

This is the direct analogue of the Maxwell model and 
the product (RC) has meaning of the relaxation time.

The set of models shown in Fig. 2.3.8a joined in paral-
lel presents an analogue of the multi-retardation time 
of the Kelvin-Voigt model.

The set of models shown in Fig. 2.3.8b joined in series 
presents an analogue of the multi-relaxation time the 
Maxwell model.

RQ· 1
C
----Q+ U0=

Q Q∞ 1 e t– RC⁄–( )=

Q∞

U
R
---- CU+ J=

U U0e t– RC⁄=
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ately begin to change according to Eq 2.2.1. At some point in time, t', let stress change by 
Δσ. The principle of linear superposition assumes that in this case, deformation changes 
accordingly:

[2.4.1]

Stress can change at any given time. For any such moment of time and any corre-
sponding change of stress, one can add an independent term in the last equation for γ(t).

So, γ(t) is written as a sum:

[2.4.2]

where Δσi is the new change of stress added at the time ti.
This equation shows the following:
• all stress inputs are independent, they do not interact with each other and the 

deformation is proportional to stress (the principle of linear superposition)
• the influence of stress changes on deformation decreases with time. If stress was 

applied earlier, as determined by the argument (t - t') (fading memory) more 
changes were observed compared with the recently applied stresses.

Stress may change continuously, this leads to the final integral (instead of sum) for-
mulation of the principle of linear superposition:

[2.4.3]

or

[2.4.4]

The lower limit of integration ( ) reflects an idea that the whole history of defor-
mation influences deformation at any chosen moment, t. 

The analogous line of arguments can be used to describe changes in stresses, and in 
this case, Eq 2.2.2 is a starting point. The final result is quite similar to Eq 2.4.4 and can be 
written as

[2.4.5]

A pair of symmetrical Eqs 2.4.4 and 2.4.5 is called the Boltzmann-Volterra equa-
tions.16 They form a complete mathematical formulation of the principle of linear super-
position.

The integrals representing the Boltzmann-Volterra superposition principle contain 
the difference (t - t') as an argument. The integrals of such structure are called the heredi-
tary integrals, because they reflect the fading influence of pre-history of deformations on 
the current state of material.
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The hereditary part of Eq. 2.4.5 is

[2.4.5a]

This expression is conveniently used in the discussion of the viscoelastic behavior of 
liquids because it is characterized by the rate of deformation. For solids, deformation by 
itself is the determining factor. Therefore, the Boltzmann-Volterra superposition principle 
is more useful in the alternative form 

[2.4.6]

where m(t - t') is called a memory function. Its physical meaning is equivalent to the mean-
ing of the relaxation function in Eq. 2.4.5 because both characterize the fading influence 
of pre-history of deformations on the current stress state of the material.

The relationship between functions (t - t') and m(t - t') is established from compar-
ison of Eqs 2.4.5 and 2.4.6:

[2.4.7]

The behavior of viscoelastic material according to the principle of superposition can 
be illustrated by the following example for elastic recoil (retardation) after forced defor-
mation of a body.

Let the history of deformations be as 
shown in Fig. 2.4.1a: the external force cre-
ated deformation, γ0, and then (very rap-
idly) the same deformation but with the 
opposite sign, , is realized. When the 
force was acting during two short periods 
of time, one could neglect partial relaxation 
at deformations γ0 and . Now, we fol-
low what happens if at the moment A the 
external force is removed. An ideal elastic 
body immediately returns to its initial state, 
as shown by the vertical line from point A 
in Fig. 2.4.1a. The behavior of a viscoelas-
tic body is quite different, as illustrated by 
the line ABC in Fig. 2.4.1b. Seemingly, the 

shape of the curve looks rather strange. Indeed, why does the deformation cross the zero 
line and reach point B? The first part of this line, AB, is the retardation from the second 
deformation, , but the sample “remembers” that the first deformation was γ0 and 
strives to restore itself to a state determined by the first deformation, γ0. Only after that 
slow (delayed) action does a return to the zero state occurs.

Another very interesting (and important for technological applications) example of 
the influence of deformational prehistory on the behavior of the material is related to poly-
mer processing (thermoplastic and rubber compounds). During extrusion of the continu-
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ϕ

m t( ) dϕ t( )
dt

-------------=
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Figure 2.4.1. Deformation history created by external 
force (a) and the post-reaction (b) of viscoelastic mate-
rial after removal of the force at the point A.
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ous profile, a molten material moves between the screw and the barrel of an extruder, then 
it passes through transient channels. Finally, it is shaped in an outlet section of a die. It is 
desirable that the shape of the final profile is equivalent to the shape of the outlet section 
of the die. But the material continues to react to all deformations, which took place before 
the outlet section of the die. As a result, distortion of its shape occurs; therefore, the final 
section of the part can be different than expected. The related effects are discussed in 
Chapter 3.

Memory effects become complicated and sometimes rather unexpected when tem-
perature changes during the process of deformation. In these cases, if temperature 
decreases, the memory of former deformations can be frozen and the material looks stable 
(retardation times become too long for an observer). However, upon heating of an article, 
the frozen deformations release, and one observes effects that are unusual. Many examples 
of memory of the previous deformation states of such kind are characteristic of applica-
tions of viscoelastic materials. 

The following example can be considered to illustrate the critical case related to fro-
zen stresses. A polymer block stores large internal (frozen) stresses due to its previous 
temperature-deformation pre-history. This block appears stable. However, when addi-
tional stresses are imposed during its machining (drilling, cutting, or other operations) the 
block may disintegrate into small pieces, may even become powder. This is typical of 
some materials (polymers and inorganic glasses, large crystallized blocks) especially if 
they are cooled rapidly. 

Viscoelastic materials have a fading memory of the history of previous deformations. 
The integrals in Eqs. 2.4.4 and 2.4.5 are called hereditary integrals because they summa-
rize events that took place before the current moment of time and are responsible for the 
stress (or deformation) state of the material at the current moment.

The relaxation function, (t), is a decreasing function. Therefore, its values are 
higher when the argument is smaller. It means that the changes of deformation, which hap-
pened earlier, influence stress to a lesser degree than later changes. In the first case, the 
value of the argument (t - t') in Eq 2.4.5, for a fixed moment of time, t, is smaller than for 
events that happened later because values of t' are smaller. In other words, a material con-
tinuously “forgets” what happened before, and in this sense the integrals in Eqs. 2.4.4 and 
2.4.5 form a model of material with “fading memory”.

It is interesting to outline the limiting cases. They are:
• liquid which “forgets” everything immediately (energy of deformation com-

pletely dissipates); in this case, the integral Eq. 2.4.5 transforms to the Newton 
law

• solid which “remembers” everything (energy of deformation is completely 
stored), and in this case, the integral Eq. 2.4.3 transforms to Hooke’s law.

2.4.2 SUPERPOSITION PRINCIPLE EXPRESSED VIA SPECTRA
Relaxation or retardation spectra can be inserted into the general integral of Eqs. 2.4.4 and 
2.4.5 by substitution of Eqs. 2.2.7 and 2.2.8 into Eqs. 2.4.4 and 2.4.5, respectively.

Below, this procedure is illustrated by calculations of stresses, σ(t), developing in 
liquid (  = 0); the same will be done for deformations, γ(t). 

Substitution and the subsequent rearrangements lead to the following result:

ϕ

E∞
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 = 

          = [2.4.8]

The expression in the square brackets is a function of t only. It permits us to analyze 
some typical cases of stress development in various deformation modes. 
2.4.3 SIMPLE TRANSIENT MODES OF DEFORMATION
The superposition principle can be illustrated by several simple examples related to tran-
sient modes of deformation. The examples given below are based on Eqs. 2.4.5 or 2.4.6 
and they relate to shear deformation. 
2.4.3.1 Relaxation after sudden deformation
First of all, it is necessary to define the word “sudden” for the purposes of mathematical 
language. This deformation mode can be formulated as

[2.4.9]

Evidently, this is nothing else than the definition of the relaxation function expressed 
by Eq. 2.2.2.

From Eq. 2.4.6, the following equation for σ(t) can be derived

[2.4.10]

This equation is also already known: it is Eq. 2.2.8. The initial value of the σ(t) func-
tion divided by γ0 equals :

[2.4.11]

and this is a part of the instantaneous modulus (see Eq. 2.2.4).
2.4.3.2 Developing stresses at a constant shear rate
In this deformation mode , deformation is suddenly created at the time 

. Then it is easy to show that Eq. 2.4.5 leads to the following expression:

[2.4.12]

Calculations based on Eq. 2.4.8 result in the following expression for stress evolu-
tion in material with the known relaxation spectrum

[2.4.13]
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[2.4.14]

Viscosity at the steady-state regime of flow is a physical meaning of this value.
2.4.3.3 Relaxation after steady shear flow
Let the deformation rate be  at t < 0, and, at the time t' = 0, the deforma-
tion rate suddenly drops to zero. Here, the deformation rate is described by two members: 

 at t' < 0 and by means of the negative delta-function at the point t' = 0. 
After some formal rearrangements, Eq. 2.4.5 leads to the final expression for stress relax-
ation:

[2.4.15]

The first integral term in this equation represents the equilibrium value of stress at 
steady flow (see Eq. 2.4.14).

The difference between Eqs. 2.4.9 and 2.4.15 (both written for “relaxation”) demon-
strates that the relaxation process can be very different depending on the history of defor-
mation prior to relaxation.

Calculations using Eq. 2.4.8 give the following result:

[2.4.16]

The difference between Eqs. 2.4.10 and 2.4.16 is evident.
It is also worth mentioning that Eqs. 2.4.12 and 2.4.15 as well as Eqs. 2.4.13 and 

2.4.16 are mirror relations of each other.
Eqs. 2.4.4 and 2.4.5 can be used for quantitative analysis of any other arbitrary 

regimes of stress or deformation evolution.
2.4.3.4 Relationship between relaxation and creep functions
Eqs. 2.4.4 and 2.4.5 contain deformation and stress, and each of them can be treated as an 
equation for either stress or deformation. Eq. 2.4.4 determines the development of defor-
mation for the known evolution of stresses. It can be considered as an integral equation for 
σ(t) if the function γ(t) is known. The same is true for Eq. 2.4.5. Therefore, it is possible to 
exclude these functions by substituting, for example, the function γ(t) from Eq. 2.4.4 to the 
right side of Eq. 2.4.5. After some formal mathematical rearrangements, the relationship 
between rheological parameters is obtained which does not contain γ(t) or σ(t). The result-
ing equation includes only constants and creep and relaxation functions in the following 
form:

[2.4.17]

where  is the equilibrium modulus, J0 is the instantaneous compliance, (t) is the 
creep function, (t) is the relaxation function and η is viscosity.
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Eq. 2.4.17 shows that the relaxation and creep functions are not independent but 
related to each other by the integral equation. If one of these functions is known (mea-
sured, calculated, or assumed), the other can be found from Eq. 2.4.17. This equation for-
mally, and rigorously, confirms that the behavior of the material, in different modes of 
deformation, is governed by the same inherent properties.

Eqs. 2.4.4 and 2.4.5 give the mathematical ground for calculation of stress-deforma-
tion relationship at any arbitrary path of material loading. The only, but very essential, 
limitation in the application of these equations is the requirement of linearity of rheologi-
cal behavior of medium, i.e., independence of all material constants and functions entered 
into these equations (instantaneous compliance, equilibrium modulus, viscosity, relax-
ation, and creep functions) on stresses and deformations.

Eqs. 2.4.4 and 2.4.5 are general rheological equations of state, or constitutive equa-
tions, for viscoelastic materials. The differences in properties of various materials are hid-
den in the values of constants and types of viscoelastic (creep or relaxation) functions. 

It is essential to remember that the above properties are related to a “point” as 
adapted for Newtonian liquid and Hookean solid and in general for any rheological equa-
tion of state. In order to find stress deformation distribution throughout a body, it is neces-
sary to combine these equations with equilibrium conditions (equations of conservation, 
introduced in Chapter 1) and appropriate boundary conditions.
2.4.3.5 Relaxation function and large deformations
The concept of large deformation (as discussed in section 1.2) requires the treatment of 
any deformation as three-dimensional. In simple shear, it results in the appearance of nor-
mal stresses, N1 (see section 3.4.2 for more details concerning the normal stress effect in 
shear flow).

Shear stress evolution in simple shear, σ(t), proceeding with constant shear rate, 
, created at the time t = 0 is described by Eq. 2.4.13, which is a direct conse-

quence of Eq. 2.4.5 in which the large deformation measure is used.
The analysis of the three-dimensional problem gives the following result:17 the direct 

calculations lead to the following expression for the time evolution of the first difference 
of normal stresses:

[2.4.18]

where (t) is a relaxation function.
Another form of the equation for the transient increasing function (t) is obtained 

from a relaxation spectrum (instead of a relaxation function) as the characteristic of rheo-
logical properties of the material. In this case, the following result is obtained:

[2.4.19]

The difference in the development of shear and normal stresses (Eqs. 2.4.13 and 
2.4.18 and 2.4.19, respectively) is pertinent. It is also possible to prove that regardless of 
the relaxation spectrum, the development of normal stresses proceeds slower than shear 
stresses.
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The equilibrium value of the coefficient of the first difference of normal stresses18

corresponding to the regime of steady-state flow is expressed via relaxation spectrum as

[2.4.20]

Relaxation of normal stresses is described by an equation which is the mirror image 
of Eq. 2.4.19, i.e.:

[2.4.21]

It is possible to prove that the relaxation of normal stresses always proceeds slower 
than shear stresses.

The most important physical result of the above-mentioned derivations is that the 
transient behavior of normal stresses is determined by the same viscoelastic functions 
(relaxation function or relaxation spectrum) as the evolution of one-dimensional shear 
deformations (stresses). 

With regard to dynamic functions, oscillating normal stresses also appear in periodi-
cally changing shear deformations.19 But deformations are changing according to the har-
monic law:

In addition to shear stresses oscillating with the same frequency and described by dynamic 
functions (as discussed in Section 2.2.2), normal stresses appear and are oscillating with 
double frequency. The time dependence of the first difference of normal stresses in har-
monic oscillations of deformations is:

[2.4.22]

The last equation shows that normal stresses appearing in shear oscillations consist 
of three components: a constant steady-state component, N1,c, depending on a frequency 
only, in-phase and out-of-phase components of N1 having the amplitude, N1,osc, changing 
with double frequency and characterized by the retardation angle, δ. 

The same formalism as for dynamic moduli in shear deformation can be introduced 
for oscillating normal stresses. In-phase and out-of-phase components of dynamic normal 
stresses can be characterized by frequency-dependent “moduli of normal stresses”. In the 
general case, in a quasi-linear mode20 of shear deformations, normal stresses are 
described by means of the frequency-dependent coefficients 

[2.4.23]

The members of the sum in Eq. 2.4.21 reflect the components of the sum in Eq. 2.4.22.
It was theoretically proven and experimentally confirmed21 that these coefficients 

are not independent parameters of material but are directly related to a standard set of vis-
coelastic functions of materials. It means that the effect of oscillating normal stresses, as 
well as transient changes in normal stresses, are not separate properties of the material but 
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only the consequence of its general viscoelastic behavior, whereas normal stresses appear 
as a second-order effect due to large deformations.

More complicated modes of deformation can also be studied on the basis of the gen-
eral relationships discussed above. As an example of such complex deformation modes, 
where the viscoelastic behavior of the material is a dominating factor, sometimes the 
superposition of low-amplitude oscillations on steady shear flow is considered. It was 
demonstrated that the superposition of flow changes viscoelastic behavior.22 This and 
other complicated cases must be treated in the framework of more general non-linear the-
ories of viscoelastic behavior.

2.5 RELATIONSHIPS AMONG VISCOELASTIC FUNCTIONS
2.5.1 DYNAMIC FUNCTIONS − RELAXATION, CREEP, AND SPECTRA
The main goal of the theory of viscoelasticity is to establish a relationship among all func-
tions mentioned above and used it in the interpretation of experimental data obtained in 
different deformation-stress modes.23 

In the most general form, it is done by the principle of superposition. However, it is 
useful to obtain some simpler relationships that are more convenient in practice. 

The connection between dynamic functions, creep, and relaxation functions can be 
found on the basis of Eqs 2.4.4 and 2.4.5 by substituting the harmonic functions into these 
equations. Subsequent calculations lead to the following equations:

These types of equations are well known in mathematics: they are called Fourier 
transforms.24 The structure of the inverse transformation is the same as the direct one. It is 
possible to rearrange Eqs. 2.5.1 and 2.5.2, treating them as equations of functions (t) and 

(t). The solutions are  

The following conclusions can be drawn from Eqs. 2.5.1-2.5.4.
• there are direct relationships between time-dependent (relaxation and creep) 

functions and frequency-dependent dynamic functions, thus, any of them can be 
calculated if the others are known

For the components of dynamic compliance
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• the pair of dynamic functions (either J' and J" or G' and G'') are, in fact, not inde-
pendent but can be expressed by each other. The resulting relationships, known 
as the Kronig-Kramer equations,25 are:

The last pairs of relationships are the functional representations of dynamic functions 
via a retardation (or relaxation) spectrum. They are also based on the superposition princi-
ple, Eqs. 2.4.4. and 2.4.5, and the path of rearrangements is the same as for Eq. 2.4.8. The 
final results omit the constants:

It is interesting to show the 
evident analogy between these 
equations and Eqs. 2.3.9 and 
2.3.10 obtained for mechanical 
analogues, i.e., representing a dis-
crete retardation (relaxation) spec-
trum.

The main sense of all equa-
tions given in this chapter is, first 
of all, to demonstrate the existence 
of relationships for all viscoelastic 
characteristics under discussion 
(they can be used for mutual cal-
culations), and secondly, to 
emphasize the fact that all these 
relationships are represented by 
the integral equations with infinite 
limits. 

The first point can be repre-
sented as in Fig. 2.5.1. The second 
point will be discussed in more 
detail below. The scheme in Fig. 
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Figure 2.5.1. Interrelations between different functions used to 
characterize viscoelastic behavior of material in shear.
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2.5.1 represents the general structure of the theory of viscoelasticity. The solid lines are 
relationships and the numbers of suitable equations, which were discussed above are 
clearly marked. 

Double lines in the upper part of the scheme indicate the relationship between relax-
ation and retardation spectra. This relationship can be obtained by substituting the equa-
tions for the components of  and J'', on one hand, and G' and G'', on the other hand, and 
expressed via spectra based on Eq. 2.2.28. 

The final pair of relationships, known as the Cross equations, are as follows:

[2.5.9]

[2.5.10]

The functions describing one spectrum can be found from the other spectrum at 
.

The dashed lines, i.e., the methods of calculation of a retardation (relaxation) spec-
trum, are worth special discussion, and section 2.5.3 is specifically devoted to this subject.
2.5.2 CONSTANTS AND VISCOELASTIC FUNCTIONS 
An experiment gives characteristics of material behavior. The characteristics do not 
change with time nor depend on frequency. These parameters, as well as viscoelastic func-
tions, can be determined for different geometrical modes of deformations. Below, they 
will be related to shear.

The following constants26 were introduced in the theory of viscoelasticity:
Newtonian viscosity  

steady-state compliance 

instantaneous elastic modulus G0
where σ is steady shear stress,  is the shear rate in a steady flow, and  is equilibrium 
(stored in the state of steady flow) elastic (or recoverable) shear deformation, or elastic 
recoil.27 

The theoretical analysis made within the framework of the linear theory of viscoelas-
ticity leads to the following relationships between a relaxation spectrum and the above-
listed constants.

The zero moment of a relaxation spectrum is an instantaneous modulus

[2.5.11]

(compare with Eq. 2.4.11).
The first moment of a relaxation spectrum is viscosity:
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[2.5.12]

(compare with Eq. 2.4.14).
Steady-state shear compliance is calculated via the moments of a relaxation spectrum 

in the following way:

[2.5.13]

The last equation is directly related to the expression of the coefficient of normal 
stresses (see section 3.4.2) calculated as the second moment of the relaxation spectrum

[2.5.14]

(compare with Eq. 2.4.20].
Then, comparing the last two equations, one comes to the Lodge equation:28 

[2.5.15]

where η0 and  are initial values of viscosity and the coefficient of the first difference of 
normal stresses, respectively, i.e., these values are determined in the domain of linear vis-
coelastic behavior of the material. 

Eq. 2.5.15 can also be written in another form:

[2.5.16]

where  is ultimate recoil (complete elastic deformation stored during steady shear 
flow).

All three principal characteristics of steady rheological behavior of liquid are 
expressed via different moments of the relaxation spectrum, zero for instantaneous modu-
lus, the first for Newtonian viscosity, and the second for elastic properties (equilibrium 
compliance and normal stresses). 

The theory also gives some useful “limiting” expressions. If  and  have 
been measured in a wide frequency range, it could be proven that, at sufficiently low fre-
quencies,  is expected to be proportional to ω2, and  to ω. Then the following limits 
are valid:
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and 

η0 θG θ( ) θd
0

∞

=

Js
0

θ2G θ( ) θd
0

∞



θG θ( ) θd
0

∞


2

------------------------------------=

Ψ1 2 θ2G θ( ) θd
0

∞

=

Js
0 Ψ1

2η0
2

---------=

Ψ1

σ11 σ22– 2σγ∞=

γ∞

G' ω( ) G'' ω( )

G' G''

η0 limG'' ω( )
ω

---------------= ω 0→



2.5 Relationships among viscoelastic functions 75

 at            [2.5.18]

Sometimes another equation is used instead of Eq. 2.5.18:

 at            [2.5.18a]

Because at low frequencies G'' >> G', Eq. 2.5.18a degenerates to Eq. 2.5.18.
The last useful relationship is the consequence of the equation for . It is easily 

seen that 

at           [2.5.19]

The above formulated integral expressions, Eqs. 2.5.1-2.5.8, can also be written in 
adequate forms if integrals are replaced by sums. This is reasonable if a continuous spec-
trum, entering the integral equations, is replaced by a discrete spectrum (discrete distribu-
tion of relaxation modes), found by treating experimental data (see section 2.5.3). In this 
case, a function G(θ) is given by the set of pairs θi − gi. 

One more interesting relationship is from a relaxation curve measured after steady 
shear flow, σ(t), as expressed by Eq. 2.4.2 (with the consequent change in symbols). The 
area under a relaxation curve, S, is calculated as

          [2.5.20]

where  is the shear rate at a steady flow. 
The last integral is exactly the expression for the coefficient of the first normal stress 

difference, , (Eq. 2.4.20), and therefore the following equality is valid:

          [2.5.21]

The physical meaning of this equation is evident: the area under the relaxation curve, 
as well as the coefficient of normal stresses, are the measures of stored elastic energy.
2.5.3 CALCULATION OF A RELAXATION SPECTRUM
2.5.3.1 Introduction − general concept
A relaxation spectrum,29 by definition, is a function defined by Eq. 2.2.8, which is well 
known in mathematics as the Laplace transform.30 The theory says that any decreasing 
function (such as a relaxation function) can be represented by the Laplace integral. The 
theory also permits finding G(t) if a function (t) is known in an analytical form in the 
whole range of its argument, i.e., from zero to infinity. However, if one refers not to math-
ematics but to a practical determination of a relaxation spectrum based on experimental 
grounds, at least two principal difficulties appear and the roots of these difficulties are as 
follows:
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• first, no experiment can be performed “from zero to infinity”, neither in time 
scale nor in frequency scale; and therefore what the contribution of absent ranges 
of the experimental scale (outside of the “experimental window”) is to the results 
of calculations is unknown and cannot be estimated

• second, no experiment gives the absolutely correct measured value, but only 
within some experimental confidence, and the influence of the experimental error 
on the results of calculations, especially considering that the integral transforms 
are non-linear, is uncertain and can be large. 

Therefore, it is necessary to refuse attempts to find an unambiguous and rigorous 
answer to the question as to how to find the function G(t) if a function (t) has been mea-
sured. Then, it is necessary to state the meaning of the determined relaxation spectrum. 
The answer depends on a goal: why are we are interested in finding a relaxation spectrum?

First, a relaxation spectrum appears as a mathematical image and only this is the 
complete and full definition of a spectrum. In this case, a spectrum is treated as some fit-
ting function reflecting viscoelastic properties of the material. This function, found in one 
experiment, can be used in solving different problems related to any arbitrary deformation 
modes. 

According to this concept, a relaxation spectrum can be found from experimental 
data by some procedures, based on the integral equations discussed in the previous sec-
tions of this chapter. This is essentially the inverse problem. 

Problems of such kind are usually treated as ill-posed or incorrect because the deter-
mination of a function by solving an integral equation leads (in principle) to ambiguous 
results strongly and uncertainly depending on slight perturbation of the experimentally 
measured function. It is quite evident that any limited set of experimental data, known 
within some limits of error, can be fitted by many independent ways. 

There are several approximate methods useful in applications. These methods will be 
considered below. This attitude to a relaxation spectrum as some fitting function is the 
only one close to today's understanding of the problem. Indeed, the final result of numer-
ous attempts to find the “true” relaxation spectrum was summarized in the following way: 
the problem of line spectrum determination is essentially a curve fitting procedure, and 
“no line spectrum − produced by whatever method − is ever the true spectrum”.31 In this 
sense, the choice of an algorithm for determining a relaxation spectrum is a “personal 
preference rather than an objective definition”.32 Moreover, it was proven that different 
approximations, based on various fitting procedures and resulting in different forms of a 
relaxation spectrum, lead to very close predictions concerning the viscoelastic behavior of 
the material.33 

Second, another attitude to a relaxation spectrum determination is based on the mod-
eling molecular movements in material (consisting, for example, of individual macromol-
ecules, their aggregates, or supermolecular structures) and treating these movements in 
terms of a set of relaxation times (i.e., a relaxation spectrum). 

Obviously, a relaxation spectrum reflects molecular movements. However, this state-
ment is nothing more than the general idea in the first approach, but it leads to unique and 
unambiguous predictions in the second approach, and, within the framework of an 
accepted model, any relaxation mode has definite physical meaning. This concept will be 
discussed in more detail in section 2.7.

ϕ
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Then, if a form of relaxation mode is known beforehand (from a molecular model), it 
is easy to calculate any viscoelastic function which is then compared with independent 
experimental data. 

In this approach, a relaxation spectrum is not a pure mathematical image but any 
mode of a spectrum has a quite clear physical meaning, and the problem of relaxation 
spectrum determination transforms from an inverse mathematical problem to a semi-
inverse problem.
2.5.3.2 Kernel approximation − finding a continuous spectrum
It is noticeable from any of the integral transforms including a relaxation spectrum that a 
kernel of all equations is a quickly decreasing function of its argument. The exponential 
function, e-x, entering Eq. 2.2.18, decreases in comparison with its initial value (at x = 0) 
by 10 times already at x = 2.3. A function x2/(1 + x2) entering Eq. 2.5.8, increases from its 
initial value (at x = 0) by 10 times at x = 3. Analogous conclusions can be made for other 
kernels of integral transforms. The character of some kernel functions is shown in Fig. 
2.5.2. 

It is possible to make the following approximations of the kernel functions:

;  [2.5.22]

These approximations are also shown in Fig. 2.5.1 by dotted lines.
It can be anticipated that small values of kernels strongly diminish the input of the 

part of an integral with small values of a kernel and it is reasonable to neglect this part in 
calculating a viscoelastic function. Using these approximations, the integral transforms 
are easily solved in an analytical form and the final results are as follows.

The first level approximation of Eq. 2.2.8 is:
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Figure 2.5.2. Approximations of some kernels of integral transforms by step functions: for a relaxation function 
(a) and for dynamic modulus (b).



78 Viscoelasticity

An analogous approach to Eq. 2.5.8 gives the following final result: 

 at [2.5.24]

The higher level approximations can also be obtained by the same method. Similar 
ideas are used for calculations of a retardation spectrum.

The approach based on kernel approximations was very popular in the pre-computer 
era because they are quite simple to handle and do not require time-consuming calcula-
tions.34 However, today the latter argument is not important and the methods based on ker-
nel approximations are practically not used, being replaced by computer methods utilizing 
a spectrum represented by a set of discrete lines. 
2.5.3.3 Computer-aided methods for a discrete spectrum
2.5.3.3.1 The direct method35 
According to this method, it is assumed that a unique continuous spectrum describes the 
viscoelastic behavior of the material. However, this spectrum is discretized and it is pre-
sented as a set of independent relaxation modes, though both (continuous and discrete 
spectra) are considered equivalent.

This is the direct method for searching a relaxation spectrum, which is supposed to 
exist in the form of a set of discrete lines, Gi − θi. The values of Gi − θi are used for calcu-
lating the experimentally observed functions (let it be G'exp(ω) and G''exp(ω)). These val-
ues are varied and the calculated values of G'cal(ω) and G''cal(ω) are compared with 
experimental values. The deviation of the results of approximation (in varying Gi − θi) 
from experimental data is estimated by the functional of errors, E. It can be calculated in 
different manners but the simplest and the most evident form of this functional is

[2.5.25]

The subscript symbol, n, shows that this result relates to the n-th experimental point 
and the total number of these points is M.

The general computer-aided procedure consists of minimization of functional of 
errors, which, according to Eq. 2.5.25, is nothing else than a standard average deviation. 
This procedure results in a set of parameters Gi − θi for the best fit of experimental data. 

Two important points are taken into account in an algorithm of calculations:    
• initial independence of 2M parameters; the search for a minimum is a non-linear 

problem by its nature
• obtaining the best fit of experimental data with a minimum number of modes (the 

latter allows authors to call their approach a parsimonious model). 
Authors say that the discrete relaxation modes are not meaningful by themselves and 

can be replaced by other sets of pairs of Gi − θi. So, the method does not give a unique or 
unambiguous solution to the problem. However, a continuous spectrum obtained from this 
set of parameters “certainly is a meaningful representation of the macromolecular dynam-
ics”.
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2.5.3.3.2 Method of linearization36 
This method is based on the representation of experimental dependencies (either G'(ω) 
and G''(ω), or a relaxation curve determined inside an experimental window) by the 
expansion series using increasing powers of ω. The unknown values are the coefficients of 
the series. Contrary to the procedure described above, the search for these parameters by 
minimizing the functional of errors (such as Eq. 2.5.25 or any other) is a linear problem by 
itself, and therefore this problem has a unique solution.

The result of the computer-aided calculations is also a set of discrete modes. The set 
of relaxation modes obtained by this method is different than that obtained by the direct 
method discussed above. None of these modes has any definite physical meaning, but they 
adequately represent the viscoelastic properties of materials.

The advantage of this method is in unambiguity of results since there is only a single 
minimum of linear functional of errors. 
2.5.3.3.3 Semi-inverse method37 
The freedom of choice of relaxation modes permits presetting the distribution of relax-
ation times along the frequency (or time) scale. This distribution can be arbitrary. How-
ever, for simplicity, it is preferable to establish certain rules for the choice of relaxation 
times. As an example, the relaxation time distribution can be expressed as 

[2.5.26]

where n is an ordinary number of a relaxation mode and C is a step. The equidistant distri-
bution in log-scale is proposed. The other possible distribution of relaxation times is pro-
posed in the form of the power law:

[2.5.27]

where θmax is the initial value of the distribution, n is an ordinary number of relaxation 
modes, and α is an arbitrary factor.

Experimental data are always known for a limited “window” of the frequency range, 
from ωmin to ωmax. However, it does not mean that the distribution must also be limited to 
the same range. For computation purposes it is preferable to take the maximum value of 
the relaxation time beyond the upper limit of frequencies, i.e., it is reasonable to take 

 and θmin can be less than .
This does not mean that we may determine the relaxation spectrum beyond the 

boundaries of the experimental window: the choice of θmax is important for the method of 
fitting the experimental data. 

The preliminary choice of the relaxation time distribution makes the calculations 
much easier because the determination of the spectrum degenerates into a linear problem 
that is necessary to find the weights of relaxation modes (partial moduli) only, satisfying 
the condition of minimizing the standard deviation or other measures of fitting errors.
2.5.3.3.4 Regularization method38 
This is a particular case of a more general approach to solving the Fredholm integral equa-
tions of the first kind. All inverse problems of searching for a relaxation (retardation) 
spectrum belong to these equations. One of the most popular general methods is based on 
the Tikhonov regularization.39 The method is based on minimization of the following 

θnlog θmax Cn+log=

θn 3θmax n α–⁄=

θmax ωmin
1–> ωmax
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functional V(λ) (omitting the constants), which is somewhat more of a general expression 
than the standard average deviation as in Eq. 2.5.25:

[2.5.28]

Here  is a measured value of the experimental function (let it be a relaxation function or 
elastic modulus) determined with some error, or noise, σ; K(t − τ) is a kernel as in formu-
las for an experimental function; G(θ) is a relaxation spectrum (the argument is used in a 
logarithmic scale because an experimental window covers several decimal orders of time 
or frequency changes); N is the number of experimental points.

The second, new term in Eq. 2.5.28, , reflects the idea of smoothing the calcu-
lated function. Here, λ is a regularization parameter and L|E| is an arbitrary operator, usu-
ally, it is the second derivative of the function G(lnθ). Introducing this term leads to the 
minimization of undesirable oscillations of unknown function.

The regularization method is a rigorous way of searching for a relaxation spectrum. 
Appropriate software gives a powerful method of the computer-aided solution of the prob-
lem under discussion. 

However, the above-cited remark that “no line spectrum − produced by whatever 
method − is ever the true spectrum” is still valid. And again, it is necessary to stress that 
different approximations based on various fitting procedures can lead to very close predic-
tions concerning the viscoelastic behavior of the material as described in this chapter. 

2.6 VISCOELASTICITY AND MOLECULAR MODELS
2.6.1 MOLECULAR MOVEMENTS OF AN INDIVIDUAL CHAIN 
Viscoelastic (or relaxation) properties are very important characteristics of polymeric 
materials in the form of dilute solutions, melts, or solids. The origin of viscoelasticity is 
attributed to the molecular movement of polymeric chains. Some macro-models were con-
structed to explain the nature of the relaxation phenomenon in polymer substances and to 
predict the distribution of relaxation times in real materials.

The relaxation phenomenon is caused by the molecular movement of a polymer 
chain. These movements change the conformations of flexible macromolecular chains. 

The transition between different conforma-
tions proceeds in time and these transitions 
are of a relaxation nature.

The model of macromolecular move-
ment is visualized by simple viscoelastic 
elements described in section 2.3. Here, 
basic ideas and principal conclusions, use-

ful in rheological applications, are briefly discussed. Mathematical calculations are not 
included because they belong to the field of polymer physics rather than rheology.40 
2.6.1.1 A spring-and-bead model (“free-draining chain”)
Fig. 2.6.1 shows a model of a macromolecular chain called a spring-and-bead model.41

This model predicts viscoelastic or relaxation behavior due to the combination of viscous 
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Figure 2.6.1. A spring-and-bead model (free-draining 
coil).
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resistance and elastic recoil. The elements of the model are not directly related to atoms in 
a macromolecular chain: the model represents an image of some peculiarities of chain 
deformation. This model is also called a model of a free-draining chain because an effect 
of intramolecular interactions (between different elements of a model) is neglected.

A chain contains (N + 1) identical beads and N identical springs. Resistance to the 
displacement of the n-th bead is expressed as the product of viscosity of a surrounding 
medium and its velocity, η(dun/dt). In this case, “viscosity” is some measure of the inter-
molecular interaction between a macromolecule and a surrounding liquid. Force acting on 
every i-th string is the product of its modulus, G, by relative displacement of its ends: 

. Analogous equations are written for every chain element. Then, as a result 
of accurate calculations, the expression for displacement of the chain end under constant 
force, F0, is given by:

[2.6.1]

The first term expresses a continuous movement of a chain under constant force (“flow”), 
and the second term represents the retarded deformation as in any viscoelastic model ele-
ment discussed in section 2.3. The partial moduli, Gn, are calculated via constants of the 
model.

[2.6.2]

The constants λn in Eq. 2.6.1 are retardation times expressed by

[2.6.3]

The existence of a set of identical elements joined in a chain leads to the appearance 
of a retardation (and relaxation) spectrum by itself. The number of lines in a spectrum (the 
number of retardation times) is determined by the number of elements in the chain.

A long chain, consisting of many elements (N >> 1) can be analyzed. The range of 
retardation times is determined by the boundary values of minimum, λmin, and maximum, 
λmax, retardation times, respectively. Calculations show that

[2.6.4]

and

[2.6.5]

The minimum retardation time is practically independent of the full length of the 
chain because quick relaxation movements occur inside the chain segments. The maxi-
mum retardation time is proportional to N2, i.e., it increases with its molecular mass.
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There is only a single independent retardation time and all others can be expressed 
by it. The n-th retardation time (in the range of long retardation times, n < 5) is expressed 
as

[2.6.6]

A retardation spectrum represented by the pairs Gn-λn is discrete.42 If N is suffi-
ciently large, summation can be replaced by integration in order to obtain a continuous 
spectrum. Then, the following formula for a relaxation spectrum can be obtained:

[2.6.7]

This formula is valid within the limits from λmin to λmax. Sometimes a logarithmic form of 
a relaxation spectrum, h(lnθ), is used (see Eq. 2.2.8a). Then 

[2.6.8]

The constant K is found from any integral characteristic of the spectrum (see section 
2.5.2). 

Molecular theory helps to express the model constants by parameters that have phys-
ical meaning. The elasticity of macromolecules originates from their Brownian movement 
and therefore the elastic modulus, Ge, is written as

[2.6.9]

where k is the Boltzmann constant, T is the absolute temperature, N is a factor depending 
on concentration (number of chains in a unit volume) and a is some front-factor close to 
one. It is easy to show that 

and finally 

[2.6.10]

A value of “viscosity” entering the molecular model is expressed as

[2.6.11]

where η0 is the viscosity of the solution, ηS is the viscosity of the solvent, i.e., the value of 
η is decrement of viscosity (an increase of viscosity) caused by the presence of a macro-
molecule in a solution related to a unit volume.

After some evident rearrangements, the following formula for maximum retardation 
time is obtained:

[2.6.12]
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and all other times can be calculated from a spectrum using Eq. 2.6.6. Eq. 2.6.12 relates 
relaxation times of macromolecular movements to macroscopic parameters of a polymer 
system.

The following features of a spring-and-bead model need to be mentioned:
• this model relates to a very dilute solution without taking into account intermo-

lecular interaction but based on the analysis of behavior of an individual polymer 
chain

• this is a linear model, i.e., it predicts linear viscoelastic behavior of the solution
• relaxation properties of dilute polymer solutions can be predicted from macro-

scopic properties of liquid
• the whole relaxation spectrum is defined through a single relaxation time, i.e., all 

relaxation modes are not independent but are the consequence of the movement 
of identical “sub-molecules”. 

2.6.1.2 Model of a non-draining coil43 
This is the same model as the spring-and-bead model discussed above, but it is supple-
mented by intramolecular interactions inside the chain. It means that in contrast to the 
above-discussed models, this model takes into account perturbations of the flow field in 
liquid due to the presence of foreign particles in it. This concept leads to another method 
of calculation of a force acting on every bead in a chain. Without discussion of details of 
calculations, the following main theoretical results for a model of a non-draining coil are 
of interest:

• maximum relaxation time in this model, , is expressed in the same manner 
as in the spring-and-bead-model, though with a different front-factor

• all other relaxation times are not independent but can be found within the frame-
work of a model

• the distribution of relaxation times is different than in the spring-and-bead-model 
(more narrow), though the differences are not very large

• new relaxation time distribution results in slightly different predictions concern-
ing experimentally observed functions, primarily G'(ω) and G''(ω).

The difference in predictions of the G'(ω) and G''(ω) functions in both theories per-
mits us to compare them with experimental data in a wide frequency range. The following 
theoretical predictions are obtained from both models. In the low-frequency range, both 
models give practically identical predictions for G'(ω) and G''(ω) dependencies. However, 
in the high-frequency range, a spring-and-bead model predicts that G'(ω) must coincide 
with [G'' − ωηS] where ηS is the viscosity of solvent and the slope of both functions (in 
log-log scale) equals 1/2. The model of non-draining chains predicts that [G'' − ωηS] 
exceeds G' by  times and the slope of both functions is 2/3.

The intermediate case of partial draining was examined by many authors.44 This 
model, regardless of the details of the calculation, leads to predictions lying in between the 
results of calculations of the two above-mentioned theories. 

It is difficult to make accurate experimental measurements that permit us to evaluate 
different theoretical predictions. This is because measurements have to be made for very 
dilute solutions (formally for infinitely dilute solutions), the use of “monodisperse” poly-
mers, and the use of a correct and unique measure of molecular interaction in such solu-
tions. However, several very accurate experimental studies were carried out and they 
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confirmed the principal conclusions of the 
model predictions.45 If a “good” solvent is 
taken, the viscoelastic behavior of the solu-
tion is described by a model of a free-drain-
ing chain, and if a “theta-solvent” is taken, 
the results of the measurements are much 
closer to predictions of the model of a non-
drained chain.46 
2.6.1.3 Model of a rotating coil47 
A polymer molecule in a solution forms a 
statistical coil. If this coil is placed in a 
shear field, forces appear which tilt a posi-
tion of any element of a coil from its equi-
librium state (Fig. 2.6.2). As a result, a 
restoring force appears and this force tends 
to push an element back to its equilibrium 

state. This effect is modeled by a spring resistance and resistance of a bead to a medium. 
The behavior of a macromolecular coil is modeled by a set of Maxwellian elements, 
attached to the center of mass of a coil.

Rotation of a macromolecular coil with respect to the center of mass in a shear field 
results in some additional loss of energy (energy dissipation) and this is equivalent to an 
increase in apparent viscosity. 

Calculations based on this model lead to the following conclusions:
• the maximum retardation time calculated from this model equals 2λmax, which is 

found using Eq. 2.6.12
• the dependence of apparent viscosity on the shear rate is the same as the depen-

dence of dynamic viscosity on frequency, η'(ω), assuming that shear rate equals 
frequency,48 i.e., the theory predicts linear viscoelastic behavior with simultane-
ous shear-rate dependence of viscosity in shear flow

• as in any other molecular theory, all other relaxation times can be expressed by 
the maximum relaxation time, i.e., all relaxation modes are interrelated.

2.6.2 RELAXATION PROPERTIES OF CONCENTRATED POLYMER  
          SOLUTIONS AND MELTS
The intermolecular interaction, which is certainly present in concentrated polymer solu-
tions and melts, is simulated by the friction of beads moving through a viscous medium in 
all models concerning individual chains. This may be insufficient in modeling relaxation 
properties of concentrated solutions and melts where every chain interacts with other long 
chains. There are several more or less realistic models which represent these cases.
2.6.2.1 Concept of entanglements
The concept of entanglements assumes that every long-chain interacts with other chains, 
and it is necessary to account for restrictions to motion of an individual chain caused by 
molecular movements of other chains. This idea was first introduced in the model of 
entangled ropes:49 pulling one rope from a bundle inevitably leads to the movement of all 
other ropes and the force of pulling depends on the length of ropes and their number. 

Figure 2.6.2. A model of rotating macromolecular coil.
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Though the idea of this approach was rather clear, quantitative predictions of theory were 
not so adequate.

Later, the idea of entanglements was developed on the basis of a model of a single 
free-draining chain, and subsequent principal steps were related to the law of frictions of 
the beads of a chain. There were numerous versions of the friction law, and some of the 
most popular are discussed below.

One can assume that the space distribution of entanglements is random. However, 
deformation changes the situation and leads to the formation of concentrated zones (as 
shown by the model − Fig. 2.6.3). 

Figure 2.6.3. Model illustrating random entanglements (left) and the formation of knots created by concentrated 
entanglements (right). [Adapted, by permission, from A.Ya. Malkin, A.V. Semakov, V.G. Kulichihkin, Rheol. 
Acta, 50, 485 (2011); Appl. Rheol., 22, 32575 (2012).]

Then there are two possibilities. At low velocity (low deformation rate), chains can 
slip out of the entanglements (knots) and it is a case of flow. If the velocity exceeds some 
threshold, knots become tight and irreversible movement becomes impossible. This 
change in the behavior of the intermolecular entanglement network corresponds to the liq-
uid-to-rubbery state transition and appearance of instabilities (see Section 3.6.3).

The disentanglement and interchain slip are due to Brownian movement while the 
formation of stable knots can be attributed to the elasticity of macromolecules and storage 
of elastic energy. Then the following dimensionless criterion can be proposed to character-
ize the limit of the flow:50 

M* =  

where σs is the shear stress at the liquid-to-rubbery state transition, Gterm  is the elastic 
modulus at the terminal zone, Mc is the molecular weight of the chain segment between 
neighboring entanglements, ρ  is density.

The ratio ρRT/Mc is the value of the elastic modulus on the viscoelastic plateau. So, 
the criterion of the loss of fluidity is characterized by the threshold of the criterion
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Different theories based on the model of macromolecular entanglements are dis-
cussed below.
2.6.2.2 Two-part distribution of friction coefficient
The coefficient of friction, f, of beads moving in a viscous medium depends on the length 
of a chain. The law of friction was assumed to be as follows:51 

           [2.6.13a]

for short portions of a chain, where f0 is the same constant as in the model of a free-drain-
ing chain, i.e., short segments of chain between entanglements are treated as free-draining 
chains, and 

           [2.6.13b]

for long chains, where M is the molecular mass of an entire chain and Me is the average 
molecular mass of a chain segment between equivalent entanglements. 

The idea of increasing resistance to movement due to the presence of macromolecu-
lar entanglements is expressed in this model very clearly and leads to the appearance of a 
spectrum of long relaxation times. 

The power factor 2.4 is chosen arbitrarily because of the need to use a power law for 
the dependence of viscosity on molecular mass (it is well known that the universal rule 

 is applicable − see Chapter 3).
Further development of this model can be found in many publications, and in partic-

ular in a model of two chains sliding at the points of junctions.52 The restriction to move-
ment is due to interaction in some entanglement points, where the friction is determined 
by a new parameter of the model − coefficient of sliding, δ. For a chemically cured net-
work (with permanents crosslinks) δ = 0; for free-draining chains moving independently 
from each other δ = 1.

The concept of a two-part relaxation spectrum is very useful and was explored in 
many other molecular models.
2.6.2.3 Non-equivalent friction along a chain
It is possible that the coefficient of friction of beads is changing along a macromolecular 
chain. The coefficient of friction distribution can also be represented by the following 
rule:53 

[2.6.14]

where L is the chain length, N is the number of entanglement points, q and b are constants 
determining the character of friction coefficient distribution along the chain. The power 
factor b = 2.4 is assumed to fit the standard viscosity vs. molecular mass dependence 
( ).

Other versions of the same approach were also discussed based on a different distri-
bution of the friction law along a chain.54 
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2.6.2.4 Viscoelastic entanglements
The basic idea in this approach is the 
assumption that a surrounding medium 
exerts (via entanglements) not only a vis-
cous drag but an elastic resistance as 
well.55 Each entanglement is treated by 
means of a spring-bead interaction as 

shown in Fig. 2.6.4. The original model of such kind was proposed in some versions dif-
fering in magnitudes of elastic spring rigidity C1 and C2.56 

This model predicts some interesting relationships between viscoelastic parameters 
of materials. The following expression for steady-state (equilibrium) compliance, , 
gives a good correlation with experimental data:

[2.6.15]

where α1 and α2 are constants, and E is the number of entanglements per macromolecule, 
i.e., its value is proportional to the full length of a chain.

The model of viscoelastic junctions was developed in several publications.57 It gives 
realistic predictions of the viscoelastic behavior of polymer melts.
2.6.2.5 Rubber-like network 
It is reasonable to suppose that macromolecules form temporary junctions (entangle-
ments) with different characteristic lifetimes and/or propensities to slide at these junctions. 
A portion of the chain between two neighboring knots can be long enough to treat the 
molecular movement of each portion as a free-draining chain, as discussed above. The 
junctions of chains can also be permanent. This is the case of cured rubber because no 
sliding occurs in crosslinks. In the other limiting case, chains are moving without “notic-
ing” each other: this is a case of very dilute solutions. However, in numerous intermediate 
cases, it is necessary to take into account interactions between macromolecules, which 
form temporary junctions. It is a case of concentrated solutions and melts.

The central equation of the model of the rubber-like network is an expression for the 
concentration of junctions between two different chains a and b:58 

[2.6.16]

where La,b is the rate of formations of junctions between chains a and b; θa,b is the rate 
constant characterizing the breakdown of junctions; this constant can be treated as the 
characteristic relaxation time of the corresponding junctions. The argument of the function 
N(t - t') is typical for all hereditary processes discussed in the theory of viscoelasticity. 

The stresses acting on the network chains at each instance of time are proportional to 
the value of N changing with time. This is the reason why the memory function, entering 
the constitutive equation, can have very different forms depending on the kinetic parame-
ters of the model.

It is important that the values La,b and θa,b are not specified in the original theory 
because it gives freedom of selection of these factors for fitting experimental data.
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Figure 2.6.4. A model of viscoelastic interaction in an 
entanglement.
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The initial version of the rubber-like network can be modified in different directions. 
It is possible to assume that the distance between neighboring junctions is not constant but 
described by Gaussian or some other distribution. It is also possible to suppose that the 
kinetics of formation and breakdown of knots depend on stress; this is a natural way for 
introducing non-linear effects in viscoelasticity. 
2.6.2.6 “Tube” (reptation) model

A modern approach to the modeling of 
relaxation behavior of concentrated poly-
mer solutions (and melts) also utilizes the 
concept of restriction of molecular move-
ment of an individual chain due to intermo-
lecular entanglements. However, the model 
presents these restrictions in a different 
way without the localization of these 
entanglements. Fig. 2.6.5a shows a singled 
out macromolecule (solid line) and numer-
ous other macromolecules which prevent 
its movement in the direction perpendicular 
to the chain backbone, creating strong 
resistance to movements at distances lon-
ger than the characteristic cross-section of 

a macromolecule. This can be presented by a slightly modified scheme as shown in Fig. 
2.6.5b, and this is a “tube” model.59 The effect of topological constraints is similar to that 
of a macromolecule placed into a tube of the same configuration as the chain. According 
to this model, it is assumed that the long-range motions of a chain are allowed essentially 
along its own length only. This type of motion resembles a displacement of a snake and 
was called reptation, and the model is also called a reptation model.60 

As is seen from Fig. 2.6.5b, the reptation model does not include special points of 
interactions (e.g., “beads” as in some of the above-mentioned models) but operates with 
characteristic dimensions: length of a chain, L, and the diameter of a tube, d. 

The theory determines some characteristic relaxation times that determine the time 
scales of different kinds of molecular motion. The first of them is the Rouse relaxation 
time, θR,0, which is related to the movement of the segment of a chain of the minimal 
length which moves independently of the chain as a whole. In terms of the entanglement 
model, a segment is a distance between neighboring knots of a part of a chain with molec-
ular weight Me. This parameter describes local molecular motions at short times, t<<θR,0
corresponding to high-frequency motions. This molecular parameter does not depend on 
the full length of a macromolecule. The second time scale is related to the diffusion move-
ment of a chain as a whole and characterizing the wriggle motions along the contour of the 
chain. This relaxation time reflects the Rouse movements of an individual chain, and actu-
ally, there is a set of relaxation times between θR,0 and the longest Rouse relaxation time, 
θR,max. Finally, the third relaxation time scale is related to the interaction of a macromole-
cule with its surroundings, or "walls' of a tube. This relaxation time θtube describes the time 
required for a chain to leave its initial tube (its surrounding) and appear inside a new sur-
rounding (tube). This time is often referred to as the tube renewal time. Actually, this 

Figure 2.6.5. A “tube” (reptation) model.
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relaxation time is related to the flow of concentrated solutions and melts because it reflects 
the  long-distance displacement of a chain. This time scale strongly depends on the molec-
ular weight of a chain. Usually, the molecular weight of linear chains is much larger than 
Me and therefore θtube >> θR.

The characteristic relaxation times can be found from the frequency dependence of 
the storage modulus measured in a wide frequency range.61 The usual method for defining 
the longest Rouse relaxation time, θR,max is based on the Rouse model predicting that the 
storage modulus G'(ω), is proportional to ω1/2 over a range of angular frequency, ω. This 
takes place at rather high frequencies beyond the elasticity plateau. In the terminal zone, in 
the limit of low frequencies, the storage modulus is a quadratic function of frequency 
(G’=Aω2) and the loss modulus is a linear function of frequency (G’’=Bω) the maximal 
relaxation time θd describing the viscoelastic behavior of a liquid is found as (A/B). This 
value can be identified with θtube.

According to the initial version of the reptation model, the characteristic (terminal) 
relaxation time, θd, and viscosity are proportional to the cube of the molecular mass. This 
high value of the exponent reflects strong intermolecular interactions (entanglements), 
though even this exponent’s value is lower than the experimental value of the exponent 
close to 3.5. 

It was also shown62 that the theory permits calculation of characteristic relaxation 
time, θd, using measured rheological parameters:

[2.6.17]

where η0 is Newtonian viscosity and  is the steady-state (equilibrium) compliance.
The reptation model is the most widely used (in different modifications) for interpre-

tation of experimental results in studies of viscoelastic properties of concentrated polymer 
solutions and melts. However, the predictions of the theory, though they correctly reflect 
some principal features of relaxation properties of long-chain polymers, are more qualita-
tive than quantitative. Possibly, it is due to some oversimplifications of the real molecular 
movements. In particular, the theory predicts a very narrow relaxation spectrum, while 
real relaxation spectra are much wider.

The attempts to improve the reptation model were based on the concept of “double 
reptation”63 or including the entanglements (in addition to a contour tube) as superimpos-
ing restrictions to molecular movements.64 It is known that the presence of long branching 
in a macromolecule leads to significant problems in the framework of a tube model, 
because reptations, as they are described in the basic model, become impossible. This spe-
cial case of a tube model required further development and was discussed in the so-called 
“pom-pom” macromolecules.65 It was shown that branching leads to some special features 
of viscoelastic properties, and it is especially important for extension.66 
2.6.2.7 Some conclusions
Summarizing the above discussion of molecular models, it is possible to make the follow-
ing conclusions regarding numerous mechanical macromolecular models proposed for the 
description of viscoelastic properties of concentrated polymer solutions and melts.
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• all models are based on sets of mechanical elements, which can be joined in 
numerous arbitrary combinations; this allows one to vary theoretical predictions 
concerning experimentally observed functions; indeed, all models give a possi-
bility to calculate viscoelastic properties, in particular, G'(ω) and G''(ω) depen-
dencies, which can be compared with experimental data

• relaxation spectra of concentrated solutions or melts are assumed to consist of the 
sum of two parts − rapid relaxation time, obeying the same distribution as for a 
free-draining chain, and a slow relaxation time distribution; the latter reflects the 
existence of intermolecular interactions (“entanglements”); any model includes 
some arbitrary (“free”) scaling parameters.

A complete molecular model should describe the following principal and general 
experimental facts, such as:

• viscosity depends on the molecular mass (MM) as , where α is of the 
order of 3.5

• existence of the plateau value, , on the frequency dependence of dynamic 
storage modulus, the length of this plateau depends on MM

• independence of steady-state compliance on MM
• the empirical rule:  
• it is very desirable that the theory correctly predicts the frequency dependencies 

of G' and G'' in a wide frequency range.
2.6.3 VISCOELASTICITY OF POLYDISPERSE POLYMERS
Any molecular theory initially operates with molecules of equal length. But real polymers 
are polydisperse, i.e., all polymers are mixtures of molecules of different lengths and the 
latter is characterized by molecular-mass distribution (MMD). 

About MMD
MMD is characterized by the function w(M), where dw is the mass share of the fraction with molecular 

mass, MM, from M to (M + dM). MMD, by its physical sense, is discrete because the values of MM change dis-
cretely. However, it is convenient to neglect this and to treat MMD as continuous due to small steps in the argu-
ment of a distribution. In many cases, it is useful to operate with some average values of MMD:

number-average MM: 

weight-average MM:

z-average MM:

z+1-average MM:

and so on. The lower boundary in these integrals is rather formal because MM cannot equal zero.

According to the tube model, the θd for monodisperse polymers is determined by 
Brownian motion (or diffusion) of a macromolecule as a whole. However, if a contour 
tube is formed by shorter molecules (as in a polydisperse polymer) the tube renewal hap-
pens in a shorter time scale and it provides an additional relaxation mechanism with relax-
ation times being different in comparison with θd.676 It means that a relaxation spectrum of 
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a polydisperse polymer is not a simple mixture of relaxation times of the fractions forming 
MMD of a polydisperse polymer.

The central problem, when passing from a monodisperse polymer to polydisperse 
samples, is in the construction of a “mixing rule”, i.e., formulation of a law of summariz-
ing inputs of different fractions that will match observed viscoelastic properties. It relates 
to the integral constants, as well as to the relaxation spectrum itself. 

The principal and applied interests were concentrated on the most easily measured 
parameters, such as Newtonian viscosity, η0, steady-state compliance, , plateau modu-

lus, , coefficient of normal stresses, , 
the crossover frequency, ωc (the frequency 
at which ), the curvature of a flow 
curve (see Chapter 3), and so on.

Numerous publications have proven 
that in viscosity calculations the following 
mixing rule is valid in many cases:68 

[2.6.18]

where the scaling parameter, α, is com-
monly accepted as α = 3.4 − 3.5, though it 
is possible to meet other values, from 3.2 to 
3.9. The presence of low-MM fractions and 
branching affects the value of α. The pre-
factor K depends on the molecular structure 
and temperature, and it is not the subject of 
this discussion.

This equation is assumed to be valid 
for high-molecular-mass polymers, where 
the whole MMD lies above some critical 
value of MM, Mc. 

A very impressive illustration of the 
 dependency is shown in Fig. 2.6.6 

and some other examples are presented in 
Chapter 3 (Fig. 3.3.2) and in Chapter 6 (Figs. 6.2.1 and 6.2.2). Numerous experimental 
data show that, in many cases, Eq. 2.6.18 is valid in changing viscosity by 6-8 decimal 
orders. However, corrections to Eq. 2.6.18 are sometimes needed. The more general equa-
tion for (MM, MMD) looks as follows69 

[2.6.19]

where ; .
Steady-state compliance, , depends primarily on higher average MM. The follow-

ing equation is commonly used:70 
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Figure 2.6.6. Viscosity-MM dependence for polyeth-
ylenes. The unfilled circles refer to the data taken from 
literature. The filled circles are the original data of the 
author of the publication. [Adapted, by permission, from 
M.T. Shaw, Polym. Eng. Sci., 17, 266 (1977)]. 
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[2.6.20]

where k is an empirical constant.
Many publications support the existence of strong dependence of steady-state com-

pliance on higher average values of MMD. These two examples (for viscosity and steady-
state compliance) demonstrate that differ-
ent rheological parameters depend mainly 
on various average values of MM. It is 
rather difficult to expect that some very 
general laws of mixing can be easily writ-
ten, and formulation of the rule of mixing is 
still a serious challenge to molecular theo-
ries of the polydisperse polymers. 

It is also worth mentioning that the 
experimental curves of monodisperse poly-
mers are quite smooth. The same is true for 
the majority of industrial polydisperse 
polymers. However, from the experience 
with the mixtures of two monodisperse 
polymers as a model of polydisperse sam-
ple, it appears that both fractions behave −
to some extent − as independent, and some-
times it is possible to suspect that they are 
not completely miscible. Then, the relax-
ation properties of both fractions are sepa-

rated as in Fig. 2.6.7 and give clear separate peaks. The short relaxation side of the 
spectrum seems the same for both fractions. Then, it is reasonable to think that the smooth 
spectrum of polydisperse polymers is a consequence of the superposition of numerous 
peaks responsible for each fraction. 

The mixing rules for polydisperse polymers discussed in modern literature71 are 
based on some molecular model arguments. They are usually obtained empirically and 
confirmed in experiments made with a rather limited number of polymers. Though there is 
some degree of independence in the rheological behavior of fractions in a mixture, it is 
commonly assumed that the relaxation properties of fractions entering a mixture are mod-
ified as a result of intermolecular interaction. A rather general form of the mixing rule, 
which reflects this phenomenon, was formulated for a relaxation function, G(t), in the fol-
lowing form:72 

[2.6.21]

where m = M/M0 is reduced MM, M0 is MM of a monomer unit in a polymer chain, 
 and Me is average MM between two neighboring entanglements. This 

value is found as:
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Figure 2.6.7. A logarithmic relaxation spectrum (nor-
malized by the plateau modulus, ) of the mixture of 
two monodisperse polystyrene samples: 80% of poly-
mer with M=177*103 and 20% of a polymer with 
M=60*103. Bars show possible errors of calculations. 
[Adapted, by permission, from W. Thimm et al., J. 
Rheol., 44, 429 (2000)].
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[2.6.22]

and  is the plateau modulus value, ρ is the density, R is the universal gas constant, and 
T is the absolute temperature.

The function F(t,m) in Eq. 2.6.21 reflects the effect of mixing and the scaling factor 
originates from a molecular model of mixing: for the reptation model β = 1 (“linear mix-
ing rule”) and for a model of double reptation β = 2 (“quadratic mixing rule”). In some 
publications, a model combining linear and quadratic mixing rules was also discussed.73 

The central point of the formulation of the mixing rule is the form of the kernel 
F(t,m) reflecting the mutual influence of different fractions in a polydisperse polymer.74

Based on very accurate experimental data for polystyrene and statistical comparison of 
different kernels it was found71 that the best fit can be achieved with  and 
the kernel represented by:

[2.6.23]

where the maximum (terminal) relaxation time θ0 is related to MM by the standard scaling 
law:

[2.6.24]

and the scaling exponent  (more exactly, for polystyrene α = 3.67).
This mixing rule (with β close to the standard value of 3.5) is more realistic than the 

theoretical values of β (1 or 2) because it directly connects with a natural rule of mixing in 
calculating viscosity through  as in Eq. 2.6.18. Viscosity is calculated from

[2.6.25]

It is worth mentioning that the final results of calculations, at least in cases of some 
polymers with moderately wide MMD, show that viscosity is not very sensitive to the 
choice of the scaling factor (3.5 or another). It is also difficult to verify which coefficient 
is correct.75 

The high value of the scaling factor (~3.5) in comparison with the lower theoretical 
value (1 or 2) may be explained by difficulties in estimation of the relaxation spectrum 
responsible for slow relaxation processes.76 Eq. 2.6.21 includes relaxation modes for frac-
tions with m > me only. A measured relaxation spectrum includes all types of molecular 
movements and can be treated as consisting of two parts: for m < me and m > me. Then, 
the whole spectrum, F(θ), is a sum:

[2.6.26]

Only the first part (entanglement effect) is used in Eq. 2.6.21, but not the second term that 
reflects the rapid molecular movements occurring between neighboring links. It was 
shown74 that the scaling factor in Eq. 2.6.21 appears close to 2 if rapid molecular move-
ments are included, as predicted by the double reptation (entanglement) model. 
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The concept of the relationship between MMD and relaxation properties of the poly-
mer is viewed from two perspectives. First is a mixing rule, which permits the calculation 
of viscoelastic properties of polydisperse polymers. The solution is hidden in Eq. 2.6.21 
with an appropriate choice of exponent β and kernel F(t,m). The second is the determina-
tion of MMD based on the results of rheological measurements made in the range of linear 
viscoelastic behavior. It is not important whether the relaxation curve or frequency depen-
dence of dynamic moduli are used for this purpose. 

It is also necessary to find function w(m) included in Eq. 2.6.21, i.e., from a mathe-
matical point of view to solve the first kind of the Fredholm integral equation. 

Some necessary preliminary steps are required in this method. First of all, a mixing 
rule must be known, i.e., the kernel should be written in an analytical form and the scaling 
factor β selected. Different types of kernels are used. From a practical point of view, it 

may not be important which kernel is 
selected. Usually, the simpler it is, the more 
convenient it is to make calculations, but 
even complicated forms can be handled by 
modern computer techniques). Then, it is 
necessary to formulate how MMD will be 
determined. 

The first task involves the determina-
tion of the MMD parameters, assuming that 
its shape is known a priori. The function 
w(m), is substituted into Eq. 2.6.21 and the 
results of calculations are compared with 
experimental data. The MMD parameters 
are fitting factors found by standard proce-
dure. In industrial synthesis, the shape of 
MMD is determined by the process chemis-
try. Studies usually follow changes in 
MMD caused by variation of technological 

conditions. Finding MMD of an unknown sample is more complex. More reliable results 
are obtained from unimodal MMD, i.e., MMD has a single maximum. However, some 
multi-modal materials MMD are prepared and used for technological applications and lab-
oratory experiments, and these materials are difficult to study. 

Based on Eq. 2.6.21 the following analytical equation was obtained,71,75 which helps 
to determine MMD using measured relaxation spectrum:

[2.6.27]

where hentangl is a logarithmic relaxation spectrum related to the entanglement relaxation 
modes only, i.e., obtained as written in Eq. 2.6.25 after extraction of part related to rapid 
relaxation processes,  is a variable of integration, and M is the molecular weight. The 
spectrum hentangl, as a function of m, is determined in the following way 
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Figure 2.6.8. Results of calculation of MMD (bars show 
the limits of errors of calculation) in comparison with 
experimental data (solid line found by chromatographic 
method). The same sample as in Fig. 2.6.6. [Adapted, by 
permission, from W. Thimm et al., J. Rheol., 44, 429 
(2000)].
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[2.6.28]

in accordance with Eq. 2.6.24. All other constants entering this equation are the same as 
above. The relaxation spectrum used for calculations related to the molecular mass is in 
the range of m > me.

An example of the final results of MMD calculations is shown in Fig. 2.6.8. The rhe-
ological method gives realistic behavior of MMD including positions of peaks for bimodal 
samples. The correspondence between MMD and relaxation properties of a sample does 
exist.

2.7 TIME-TEMPERATURE SUPERPOSITION. REDUCED  
       (“MASTER”) VISCOELASTIC CURVES
2.7.1 SUPERPOSITION OF EXPERIMENTAL CURVES
In real experimental or technological practice, the frequency dependence of elastic modu-
lus can be measured for a limited frequency range because of limitations of experimental 
techniques. Let the frequency be from ω1 to ω2. This range is sometimes called an experi-
mental window. Measurements can be carried out at different temperatures. The experi-

mental data for a linear high-
molecular-mass polymer are pre-
sented by a set of curves, as 
shown in the vertical column on 
the left side of Fig. 2.7.1. The 
curves 1-2, 3-4,…, 15-16 relate to 
different temperatures decreasing 
from lower to upper curves. The 
curves in the column might have 
some practical interest, but they 
do not show a broader picture. 
They do not represent the general 
picture of frequency dependence 
on the modulus, because the fre-
quency range from  ω1 to ω2 is 
narrow. An interesting question 
arises as to what happens with a 
modulus beyond the experimen-
tal window.

It was noticed that the time 
(or frequency) dependencies of 

viscoelastic properties, measured at different temperatures, are similar in their shape 
though shifted along the time (frequency) axis.79 In practice, it is sufficient to see that the 
boundary parts of the curve are similar, and then it is assumed that the whole curve should 
be similar too. Then, it is reasonable to suspect that each curve can be extended beyond 
the range of its real measured values with the conservation of the shape which is general 
for all curves. In this approach, it is supposed that each curve is shifted along the fre-
quency scale and the distance between the curves, aT, depends on temperature.

hen gltan m( ) hen gltan θ m( )[ ]=

Figure 2.7.1 An example of experimental dependencies of G'(ω) 
measured at different temperatures (vertical column at the left part 
of the figure) and construction of the reduced (master) curve of 
dependence G'(ω) in the wide frequency range. Qualitative illustra-
tion.
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Based on this concept the initial 
(experimental) curves can be superimposed
by shifting all curves to one arbitrarily cho-
sen as the base curve. The resulting 
reduced (or master) curve80 is shown in 
Fig. 2.7.1 by a solid line and the position of 
initial curves are marked along the master 
curves by the same numbers as those used 
at the ends of the initial curves. For an 
illustration, the overlapping portions of 
neighboring curves are shown by doubled 
lines (they would not superimpose com-
pletely, but, in fact, the points of both 
curves lie on the same curve). 

An analogous curve for relaxation modulus is shown in Fig. 2.7.2. The characteristic 
zones (domains) of viscoelastic behavior are marked in these curves. Their explanation 
can be found below.

It is assumed that the reduced curve has the same shape in the whole temperature 
range, though changing the temperature of reduction, or reference temperature, leads to a 
shift of the curve along the logω scale. The temperature dependence of this shift is 
expressed by the function log aT(T).

This master curve is related to the reduction temperature (which is the largest of the 
examined intervals in the example under discussion). The method permits us to obtain the 
viscoelastic curves in the frequency range which is much wider than the experimental 
window of initial experimental curves. The reduced curve contains more information than 
any initial curve obtained at a single temperature. It is now a standard method of treating 
experimental data obtained at different temperatures but with narrow frequency (time) 
windows.

The method of reduced variables helps to exceed the direct experimental capabilities 
of any measuring device. The frequency (or time) dependence of any viscoelastic function 
can be obtained for a broader range. 

From the beginning of the application of the method of reduced variables, it was rec-
ognized that shifting viscoelastic curves is based on the concept of the same temperature 
dependence of all relaxation times of material. This can be illustrated by an example of the 
relaxation spectrum for an individual macromolecular chain. Let the frequency dependen-
cies of G'(ω) and G''(ω) be described by Eq. 2.3.10 and the distribution of relaxation times 
as per Eq. 2.6.6. Then, after the substitution, the following equations can be obtained:

[2.7.1a]

[2.7.1b]
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Figure 2.7.2. Relaxation modulus as a function of a 
reduced time. Qualitative illustration.
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(In these equations the dummy index, i, used in Eq. 2.3.10, is changed to n, in order not to 
confuse the index with the imaginary unit).

It is immediately seen that G' and G'' are the functions of the single dimensionless 
argument, ωθmax, and temperature dependence of modulus is completely described by the 
temperature dependence of the relaxation time θmax. Then, the frequency dependencies of 
G' and G'' measured in a wide temperature range as a function of the dimensionless argu-
ment (ωθmax) should form a single master curve.

Frequency can be replaced by time with the same argumentation and the single 
dimensionless argument, in this case, is (t/θmax). The same conclusion concerning the con-
struction of a general master curve from the experiments performed at different tempera-
tures is true for any viscoelastic curve − creep, relaxation, etc. It is also true of a relaxation 
spectrum itself, which can be treated as a function of the single reduced parameter (θ/
θmax).

Above, it was tacitly assumed that the coefficient Gn does not depend on tempera-
ture. This is not correct. This parameter is proportional to the factor ρT, where ρ is density 
and T is the absolute temperature. It is necessary to introduce a factor of vertical shift 
equal to ρT/ρ0T0. The values with zero-index are related to a reference temperature. The 
origin of this correction factor is explained in the theory of rubbery elasticity because the 
value Gn has a meaning of rubbery modulus of the material in extension (compare with 
Eq. 2.6.22 rearranged for ). However, this correction factor is small and becomes 
important only in the domain of rubbery behavior of polymeric material where the fre-
quency dependence of modulus is rather weak.

The construction of the master curve is based on the following general assumptions: 
all relaxation times are characterized by the same temperature dependence (possibly due 
to the common mechanism of material relaxation) and it is possible to neglect the tem-
perature correction factor for Gn. Then, it is reasonable to suppose that the opposite con-
clusion is also valid: temperature superposition becomes impossible if different 
temperature dependencies exist for various relaxation times, or there are different relax-
ation mechanisms characterized by various temperature dependencies. The latter conclu-
sion is the general principal limitation of the application of the method of frequency (time) 
superposition. 

Numerous experimental evidence confirm that the time superposition method is 
valid for linear polymers and their solutions but the method is not valid in the following 
cases:

• mixtures of different polymers characterized by their own relaxation spectra with 
their own temperature dependences of relaxation times

• branched polymers: relaxation processes in long branches can be different than in 
the backbone chain

• materials with inherent supermolecular structure, which can change with chang-
ing temperature

• block copolymers
• materials with properties changing with time (during an experiment), for exam-

ple, because of slow chemical reactions.
One must be careful in applying the superposition method to unknown materials 

because doubt is always there as to whether the master curve reflects the physical reality 

GN
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in the very wide frequency range. New relaxation mechanisms may appear at very low or 
very high frequencies.

The temperature shift factor, aT, is a function of current temperature, T, and the refer-
ence temperature, T0. Using the definition of viscosity as the integral measure of a relax-
ation spectrum, it is easy to show that aT can be calculated as the ratio of viscosities at 
temperatures T and T0:

[2.7.2]

Temperature dependence of viscosity can be expressed by any standard method, in 
particular by the Arrhenius equation:81 

[2.7.3]

where Ea is activation energy of the relaxation processes (and viscous flow), T0 is some 
arbitrarily chosen reference temperature, and R is the universal gas constant.

The Williams-Landel-Ferry (WLF) equation is another popular expression of the 
temperature dependence of relaxation times:82 

[2.7.4]

It is interesting to notice that  (Tg is the glass transition temperature), 
then, for many polymers,  and  are universal constants having the following values: 

 and .
The classical illustration of the log aT dependence on temperature decrement repro-

duced in many editions, is presented in Fig. 2.7.3. The average line that is drawn through 
these points is described by the WLF equation with the universal values of the constant. 
The relationship is true for an enormous range of 16 decimal orders of aT values. 

Using any of these equations, it is easy to see that by changing the temperature it is 
possible to vary aT, and consequently the reduced time (frequency) by many decimal 
orders. It allows one to broaden the range of the argument up to 10-15 decimal orders. 
Such results cannot be obtained by direct measurements but only by the method of 
reduced variables. Direct experiments in a narrower frequency range, carried out for dif-
ferent polymer materials by many authors, confirmed that the superposition gives realistic 
data coinciding with those obtained by direct measurements.

The dependence of relaxation modulus in reduced variables (in this case, it is 
reduced time scale) is similar to the frequency dependence of a dynamic modulus, but it is 
a mirror reflection of the latter (compare the curves in Figs 2.7.1 and 2.7.2). Curves of 
both types contain the same physical information on the viscoelastic properties of materi-
als under investigation.

Experimental data for “almost” monodisperse (polymers with very narrow MMD) 
polybutadiene sample, presented in form of master curves, are given in Fig. 2.7.4 for 
G'(ω) and G''(ω). This figure shows the relative position of the components of dynamic 
modulus as well as the existence of a “cross-over” point − the frequency at which 
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Fig. 2.7.5 for the dependencies G'(ω) and 
G''(ω) related to the homologous series of 

polymers − materials having identical structure but with different chain lengths. These 
curves demonstrate the influence of MM on the range of frequencies where relaxation 
phenomena are observed.

Analogous experimental data were observed and published for various polymers and 
they form the basis for general conclusions concerning the physical properties of poly-
meric materials. These conclusions are summarized in the following section.
2.7.2 MASTER CURVES AND RELAXATION STATES 
Qualitative curves, as well as the results of experimental observations, show that there are 
several typical and very general features of the viscoelastic curves. 

First of all, there are four characteristic domains (or zones) on the viscoelastic 
curves, designated by the letters F, R, T, and G on the curves of Figs. 2.7.1 and 2.7.2. Real 
experimental data presented in Figs 2.7.4 and 2.7.5 show that only F and R zones and the 
transition to the T zone can be observed, even in the frequency range covering 9 decimal 
orders. However, other experimental data for different polymeric samples are shown in 
Fig. 2.7.6. These data can be treated as supplementary to Figs 2.7.4 and 2.7.5 because they 
start from the same level of modulus as in Figs 2.7.4 and 2.7.5. The curve in Fig. 2.7.6 
covers the R, T, and initial portion of G zones. These domains spread over 12 decimal 
orders of frequency. 

Combining experimental data of these figures, one can see the full range of relax-
ation covering about 20 decimal orders of frequency and a range of modulus from 102 to 
1010 Pa. Based on real numerical values of the storage modulus, the physical sense of dif-
ferent domains, marked in Figs 2.7.1 and 2.7.2 as F, R, T, and G is given below.

Figure 2.7.4. Frequency dependencies of the dynamic 
storage and loss moduli reduced to 28oC. Initial exper-
imental data were obtained in the temperature range 
from -70 to 28oC. Sample is a monodisperse polybuta-
diene, M = 9.7*104. [Adapted, by permission, from  
M. Baumgaertel et al., Rheol. Acta, 31, 75 (1992)]. Figure 2.7.3. Temperature dependence of relaxation 

times, expressed as the ratio of relaxation times as a 
function of temperature difference according to the Wil-
liams-Landel-Ferry. Points present experimental data for 
17 different polymeric systems.
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F − is a flow zone. In the frequency 
range corresponding to this domain, mate-
rial is treated as liquid. Storage modulus is 
considerably small (G' << G''). In the limit-
ing case (at )  and , 
and it corresponds to the relaxation process 
determined by the maximum relaxation 
time, θmax. The relaxation processes in this 

zone are governed by the chain movement as a whole as described by the reptation model 
and the model of entanglements, as discussed in section 2.6.

R − is a rubbery zone. In the frequency range corresponding to this domain, the 
material behaves like rubber. For rubbers and rubber-like materials, storage modulus is 
constant and its plateau value lies between 105−107 Pa, depending on the chain rigidity. 
The transition from F to R zone is arbitrary and can be attributed to the maximum of G'' or 
the crossover frequency. For real rubbers (cured polymers with the permanent network of 
chemical bonds) the F zone disappears and the R zone, corresponding to equilibrium stor-
age (rubbery) modulus, continues to unlimited low frequencies, formally to steady (or 
equilibrium) state of deformations. Adding solvent to a rubbery material (plasticization) 
decreases the plateau values of the modulus, and adding a solid filler increases its value. 

The relaxation process in the R zone cannot be observed, even in the wide time inter-
val (as seen from the plateau of relaxation modulus in Fig. 2.7.2). It is interesting to men-
tion that the influence of the length of the molecular chain is important in the F zone only. 
The transition from F to R zone also depends on MM. The position of the G''(ω) depen-
dence in the F zone is determined by viscosity and therefore it is proportional to M3.5. It is 

ω 0→ G' ω2∝ G'' ω∝

Figure 2.7.6. Frequency dependence of dynamic stor-
age modulus in the transition zone (from rubbery to 
glassy state) for NBS polyisobutylene at a reference 
temperature of 25oC. [Adapted, by permission, from 
E. Catsiff, A.V. Tobolsky, J. Colloid Sci., 10, 375 
(1955)]. 

Figure 2.7.5. Frequency dependencies of the dynamic 
storage and loss moduli reduced to 28oC for mono-
disperse polybutadienes of different MM: 2.07*105 (1); 
4.41*105 (2); 9.7*105 (3); 20.1*105 (4). Initial experi-
mental data were obtained in the temperature range 
from -70 to 28oC. [Adapted, by permission, from  
M. Baumgaertel et al., Rheol. Acta, 31, 75 (1992)].
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seen (Fig. 2.7.5) that the plateau end in the high-frequency region does not depend on 
MM. It is easily proven that the plateau width is proportional to M3.5.

T − is a transition zone. In the frequency range corresponding to this domain, proper-
ties of the material, determined by its modulus, resemble leather materials and therefore 
this zone is sometimes called the leather-like zone. It is a wide domain (Fig. 2.7.6) and 
relaxation properties here are determined by small-scale molecular motions of the portion 
of chains between entanglements. It is a different relaxation mechanism than in the F and 
R zones and, possibly, their temperature dependencies may be different. Therefore, it is 
necessary to be careful in applying the superposition method over all relaxation states of a 
material.

G − is a glassy zone, and the behavior of the material at very high frequencies resem-
bles the deformation of glass. It is reflected by the high values of the modulus (about 109 −
1010 Pa) characteristic for inorganic and organic glasses and independent of the modulus 
values on frequency, i.e., it is possible to think that frequencies in this domain are so high 
that all relaxation processes are absent.83 

The main and principal conclusion obtained from the application of the time (fre-
quency)-temperature superposition method consists of a statement that the same values of 
modulus can be reached by changing either temperature or frequency. It means that the 
question: what is the state of this material? must be substituted by another, more accurate 
question: how does material behave under these conditions (frequency)?, i.e., at the fixed 
temperature the same material can behave in a very different manner either like liquid (at 
very prolonged intervals of observation or at very low frequencies), like a rubber (if the 
duration of observation or frequency corresponds to the rubbery plateau), like a leather (if 
the frequency is positioned in the glass transition zone), or like a glass (if frequencies are 
very high).

This conclusion is very important for numerous applications of viscoelastic poly-
meric materials because their properties can be estimated in one frequency domain and the 
application can be related to quite different conditions. Then, one may encounter such 
effects as glassy behavior of rubber articles − they break as fragile material at high fre-
quencies, a behavior not expected from rubbers (for example, aircraft tires at high speed of 
landing in winter may break due to high frequencies of glassy state deformation, though 
they are safe at the same temperature based on the result of a static or low-frequency 
experiment). Polymer melts at high shear rates cannot flow, due to forced transition into 
the rubbery state (see section 3.6).

The success of the application of the time-temperature superposition method in 
numerous examples urged investigators to propose an analogous method for various phe-
nomena. For example, the time of aging depends on temperature. Then, it was proposed to 
accelerate the experiments of aging by temperature increase and extrapolating results of 
such experiments to lower temperatures as a basis for predicting material behavior for 
long periods of time at lower temperatures. The acceleration of relaxation processes can 
be reached by adding a solvent; then the results of experiments with polymer-solvent sys-
tems are used for predicting the behavior of materials at other concentrations of a solvent 
or without it (this is a method of time-concentration superposition), and so on. Sometimes, 
this approach gives quite positive and useful results. However, this is not a universal 
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method and one ought to be sure that the method of superposition used reflects the physi-
cal effects caused by relaxation phenomena. 

Generally speaking, it is a dangerous practice to extend any of these methods for pre-
dicting beyond more than, say, one decade of time. 
2.7.3 “UNIVERSAL” RELAXATION SPECTRA
There were a number of attempts to propose some “universal’ functions for describing vis-
coelastic properties (primarily, a relaxation spectrum). The main difficulty in an approxi-
mation of real experimental data is caused by the polydisperse nature of real polymers. In 
reality, then, the relaxation spectrum of polydisperse material is achieved by superposition 
of relaxation properties of different fractions. This means that no “universal” spectrum 
exists for a polymer with arbitrary MMD because polymers with different MMD are dif-
ferent materials.

Indeed, one meets with two separate problems: describing relaxation properties of 
individual fractions and combining these properties in their mixing. This problem is dis-
cussed in section 2.6 based on molecular models of relaxation properties of a polymer 
chain. 

It is necessary to divide the general problem of searching a relaxation spectrum into 
two parts. First, these are relaxation properties in the F and R zones and second in the T 
zone.

All these problems are actively discussed in modern rheological literature, because 
their solution gives a chance to find general methods for calculating viscoelastic proper-
ties of real polymeric materials. Existing molecular models do not give a realistic (close to 
an experiment) representation of the relaxation spectrum, even for a monodisperse poly-
mer. That is why it is important to propose at least an empirical approximation to experi-
mental data.

Concerning monodisperse polymers, the general solution was proposed for relax-
ation behavior in the F and R zones.84 This “universal” relaxation spectrum is described 
by the function: 

[2.7.5]

where G0 is constant, m and n are empirical parameters of a spectrum, and θ0 and θmax are 
minimum and maximum boundary values of relaxation spectrum for F and R zones.

The relaxation spectrum in the T zone is regarded as caused by movements of short 
portions of a macromolecular chain. In the first approximation, these movements can be 
described by the spring-and-bead model (see section 2.6).

The problem of summation of inputs of relaxation properties of different fractions 
into a relaxation spectrum of polydisperse polymers is also discussed in section 2.6. How-
ever, it is worth mentioning that at the moment this problem is far from a clear understand-
ing and quantitative description. 

In conclusion to this section, it is worth mentioning that many relaxation properties 
of polymers are successfully treated in the framework of some “universal” equations. For 
example, it is true for the temperature dependence of relaxation times (Eq. 2.7.4), “univer-
sal” form of a relaxation spectrum (Eq. 2.7.5), regardless of the chemical nature of a poly-
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mer chain. It is reasonable to suspect that it is not coincidental but it reflects the basic 
peculiarity of relaxation properties of polymers: movement of long flexible chains inter-
acting with their surrounding; in this concept, the primary role is played by geometrical 
restrictions to the Brownian movement, and in the first approximation, these restrictions 
do not depend on details of the chemical structure of a chain.

2.8 NON-LINEAR EFFECTS IN VISCOELASTICITY
2.8.1 EXPERIMENTAL EVIDENCE
There is ample experimental evidence, which clearly demonstrates that all concepts dis-
cussed in the previous section are related to the limiting cases of low deformations (or low 
deformation rates). The increase of deformation or deformation rate immediately leads to 
non-linear effects which are characteristics of all real technological materials. Thus, the 
linear viscoelastic behavior should be considered as the limit of the generalization of vis-
coelastic properties. 

The principle difference between the linear and non-linear behavior of a matter is 
that the linear deformation (either oscillation or any other mode of deformation) deals 
with the initial (undisturbed) structure of a sample under study, while the transition to the 
non-linear domain of the deformation causes changes in the structure at the super-molecu-
lar level. Then, the results of measurement under the linear deformations characterize the 
static state of a material, while the results of the non-linear studies allow us to follow the 
transformations taking place under the action of external forces.

Below, the principal experimental evidence of the non-linear behavior of viscoelastic 
materials are discussed.
2.8.1.1 Non-Newtonian viscosity
Viscosity appears in the linear theory of viscoelasticity as the first moment of a relaxation 
spectrum, according to Eq. 2.5.12. By this definition, it is expected that viscosity is con-
stant, i.e., does not depend on shear rate or stress. This regards Newtonian viscosity 
according to the definition of Eq. 2.1.1. However, it is well known (and this is one of the 
basic effects of rheology) that the viscosity of numerous liquids is not constant but 
depends on conditions of flow such as shear rates, , or shear stresses, . This 
effect is known as the non-Newtonian behavior of liquids. Non-Newtonian flow is a non-
linear effect not described within the framework of the linear theory of viscoelasticity.

The theoretical and applied meaning of the non-Newtonian behavior of liquids is 
complex. Therefore, a separate chapter of this book is devoted to non-Newtonian flow, 
and these effects are further discussed in Chapter 3.

The same is valid for the coefficient of normal stresses, determined in the theory of 
viscoelasticity as the second moment of a relaxation spectrum. According to Eq. 2.5.14, 
the coefficient of normal stresses is also a material constant. However, this is not true for 
all real viscoelastic liquids. In fact, the coefficient of normal stresses depends on shear 
rate, . This non-linear phenomenon will be discussed in more detail in Chapter 3, 
along with viscosity.
2.8.1.2 Non-Hookean behavior of solids
According to the linear theory of viscoelasticity, the elastic modulus depends on time (or 
frequency), but not on stress or deformation. In fact, the elastic modulus of many real 
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materials depends on deformation in static conditions (regardless of time effects). This 
non-Hookean behavior is a main non-linear phenomenon characteristic of solids. This is 
of fundamental significance for rheology and the non-linear elastic behavior of solids is 
discussed in Chapter 4.
2.8.1.3 Non-linear creep
The creep function in the linear viscoelasticity limit is, by definition, independent of 
stress. But the real behavior of mechanical properties of the material is more complex. A 
typical and general example of mechanical behavior of viscoelastic behavior of the mate-
rial at different constant stresses is shown in Fig. 2.8.1 by creep functions (ratios of defor-
mation to stress applied), (t). At low stresses, σ1 in this example, the limit of (t) at 

 exists. The same creep function (in 
the limits of experimental errors) is 
observed for the range of low stresses, at 
least at σ < σ1. This is the linear limit of 
the viscoelastic behavior of the material. 

The increase of stress results in a 
deviation from the linear limit, and at 
stress σ2 the creep function grows approxi-
mately linearly in time, i.e. the stationary
regime is observed. At higher stresses, σ3, 
deformation increases with acceleration; 
this is an unsteady regime of creep, which 
ends with rupture of the sample.

It is interesting to mention that in the 
initial part of deformations all curves coin-
cide, i.e., at low deformations (or at times 
shorter than some “critical” value t*) the 
behavior of the material at any stress is lin-
ear.

It is seen from the scheme in Fig. 
2.8.1, that this critical time t* depends on the applied stress. Real experimental data illus-
trating this dependence are shown in Fig. 2.8.2 for the extension of solid plastic. It is seen 
that, in the range of stresses increasing by about 2.5 times, the limit of linearity, t*, 
decreases by 2 decimal orders, i.e., by 100 times. It demonstrates that the non-linearity 
limit is a very strong function of stresses. In Fig. 2.8.2, t* is exponentially dependent on 
stress. Such strong dependence of the limit of linearity on stress is valid for the whole 
domain of non-linear behavior of viscoelastic materials.

Experimental data of the type shown in Fig. 2.8.1 can be treated in the following 
manner: up to , the behavior of material obeys the laws of linear viscoelasticity 
and at t > t* a correction ought to be introduced, which is a function of stress and the ratio 
t/t*(σ). Even this simple example demonstrates that the description of non-linearity of 
mechanical properties of the material is complex because the stress factor enters in two 
different manners − limiting the boundary of linearity and determining the form of the 
deformation vs. the stress curve. This becomes even more complex in the transition to 

ψ ψ
t ∞→

t t*⁄ 1≈

Figure 2.8.1. Creep function at different stresses  
(σ1 < σ2 < σ3). Qualitative picture.
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three-dimensional deformations because invariants must be used instead of unidimen-
sional deformations and stresses. 

However, this problem can be solved on the basis of fitting experimental data with a 
suitable analytical expression giving the formal (phenomenological) representation of 
non-linearity. This is true for homogeneous deformations of material. In reality, creep (for 
example in the extension of solid viscoelastic materials) is even more complex, due to the 
effects of instability of deformations. 

The most well-known example of instability is the formation of a neck (the effect of 
necking). This effect is illustrated in Fig. 2.8.3 and it consists of a sudden transition from 
homogeneous extension to a jump-like transit from the wide to the narrow section of a 
sample. This figure shows a graphical representation of stress vs. deformation, necking 
development (the middle part of a sample with a bright stripe is a neck), and a microscopic 
picture of changes (lower part of the picture clearly shows that necking is the transition 
from an isotropic structure to an oriented state of material). 

 The extension appears here not as the homogeneous decrease of the cross-section of 
the sample but as the co-existence of two different parts of the sample and the continuous 
decrease of the length of the wide part and increase of sample length because of increase 
in the length of the narrow part. This transition is typical of any polymer, either crystalline 
or amorphous. In fact, this is a kind of phase transition, from homogeneous to oriented. It 
is also possible that macromolecules and their assemblies exist in two distinct states.

Figure 2.8.3. Neck formation at the transition from 
isotropic to oriented state of a polymeric material 
(lower photograph was made by G.P. Andrianova).

Figure 2.8.2. Dependence of the “critical” time corre-
sponding to the limit of linear viscoelastic behavior on 
stress in extension of polycarbonate at different tem-
peratures. [Adapted, by permission, from A.Ya. 
Malkin, A.E. Teishev, M.A. Kutsenko, J. Appl. Polym. 
Sci., 45, 237 (1992)].
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In the formulation of laws of the non-linear behavior of viscoelastic materials, it is 
necessary to include some critical states and effects of instability at some specific condi-
tions. These effects may be treated as phase non-linearity, and these phenomena are not 
restricted to solid materials only.
2.8.1.4 Non-linear relaxation
According to the principles of the linear theory of viscoelasticity, a relaxation function (or 
relaxation modulus) does not depend on deformation and time at which dependence of 

stresses is measured. The same is true for 
relaxation after sudden cessation of steady 
flow at different shear rates. Eq. 2.4.15 
shows that the ratio of relaxing stress, σ(t), 
to deformation rate, , or to its initial 
value, σ0, which equals , does not 
depend on shear rate but on time only. 
Then, one would expect that the experi-
mental points obtained for relaxation after 
flow at different shear rates, presented in 
coordinates σ/σ0−t, lie on the same curve. 

The reality appears much more com-
plex, as shown in Fig. 2.8.4 for the sudden 
cessation of steady shear flow. The linear 
domain is only a limiting case of a very low 
shear rate, and the higher the shear rate 
before relaxation, the faster the relaxation. 
The viscoelastic behavior of material in the 
wide range of deformation conditions is 
strongly non-linear. It is more a characteris-
tic of viscoelastic properties of material 
than the limiting linear case. The increase 
in stress (that is equivalent to an increase in 

shear rate) leads to acceleration of relaxation as a general rule for non-linear behavior.
The analogous situation is observed with normal stresses (Fig. 2.8.5): relaxation of 

shear stresses is much faster than relaxation of normal stresses. An increase in shear rate, 
which precedes relaxation, accelerates the relaxation of shear and normal stresses.

Based on these (and many other analogous) experimental data it is reasonable to sup-
pose that the increase of deformation rate results in suppressing slow relaxation pro-
cesses.85 In other words, at high deformation rates slow relaxation modes do not have 
enough time to be realized. Formally, this phenomenon can be discussed in terms of the 
dimensionless parameter, : viscoelastic effects can be observed when values of this 
parameter are of the order of 1. The increase of deformation rates results in a shift of the 
boundary of relaxation times, which are still active in a relaxation spectrum of material, to 
lower relaxation times (i.e., faster relaxation processes). 

Fig. 2.8.6 shows that the increase in deformation rate leads to a shift of high relax-
ation times of a relaxation spectrum. This effect should be taken into account in the formu-

γ·

ηγ·0

γ·θ

Figure 2.8.4. Shear stress relaxation after sudden cessa-
tion of steady flow at different shear rates for polyisobu-
tylene with MM = 1*105 at 20oC.
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lation of the rheological equation of state, describing a non-linear behavior of real 
viscoelastic materials.

The relaxation spectrum shortening can be expressed by simple equations relating to 
its integral characteristics, such as viscosity and coefficient of normal stresses. The influ-
ence of deformation rate on shear flow depends on the relationship between shear rate and 
relaxation time. Then, it is possible to assume that the following equations are the general-
ization of Eqs. 2.5.12 and 2.5.14, respectively:

[2.8.1]

[2.8.2]

These equations are valid for the steady-state flow, demonstrating that non-Newto-
nian behavior is due to a change in the relaxation spectrum of a flowing liquid induced by 
intensive shearing.

In light of this experimentally established fact, the question arises how the initial 
relaxation spectrum H(θ) at low shear rates corresponding to the Newtonian behavior 
shifts with an increase of the shear rate corresponding to the non-Newtonian behavior. 
This question is closely related to the generalized (invariant) representation methodology 
of non-Newtonian viscosity that was developed in many papers.87-90 In particular, it was 
proposed87,88 that the shear rate dependence of the apparent viscosity of concentrated 
polymer solutions can be represented in an invariant form by plotting the ratio of η/ηin, 
where η is the apparent viscosity and ηin is the initial Newtonian viscosity, as a function of 
the product , where θin is the initial (characteristic) relaxation time at low shear rates. 
The following invariant representation was obtained:
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Figure 2.8.5. Relaxation of stresses after cessation of 
steady shear flow for butyl rubber at 25oC.

Figure 2.8.6. Changes in a relaxation spectrum 
induced by increase in shear rate. Qualitative picture.
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 [2.8.3]

Later,89 it was found that the shear rate dependence of the apparent viscosity for a 
wide range of bulk industrial polymer melts can be represented by plots of η/ηin as a func-
tion of . This function was found to be independent of a temperature. It was fitted to 
the following equation:

    [2.8.4]

Plots of η/ηin versus  or  were found to strongly depend on the polydisper-
sity of polymers.

Subsequently, it was established90 that the generalized invariant form can only be 
established for the shear rate dependence of the apparent relaxation time,  

η
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Figure 2.8.7. Master curve for apparent relaxation time for polymer melts of different molecular weights and 
molecular weight distributions and their solutions (symbols and numbers next to them indicate various poly-
mers). Initial relaxation time and materials: (1) 400 s, polyisobutylene (PIB), 22oC; (2) 100 s, PIB, 40oC; (3) 20 s, 
PIB, 60oC; (4) 5.7 s, PIB, 80oC; (5) 2.2 s, PIB, 100oC; (6) 0.04 s, polystyrene in decalin (PS-D), 25oC, 18.4 vol%; 
(7) 0.58 s, PS-D, 29 vol%; (8) 3.4 s, PS-D, 38 vol%; (9) 41.7 s, PS-D, 46.6 vol%; (10) 400 s, PS-D, 57.3 vol%; 
(11) 52.5 s, polybutadiene, Mw=1.52x105, Mw/Mn=1.1, 22oC; (12) 0.026 s, polybutadiene (Mw=2.4x105, Mw/
Mn=1.1) in α-methylnaphthalene (PBD-N), 22oC, 10 vol%; (13) 1.32 s, PBD-N, 30 vol%; (14) 81.2 s, PBD-N, 50 
vol%; (15) 2.75 s, poly(methylmethacrylate) in diethyl phthalate, 30oC, 5 wt%; (16) 2.14 s, PIB in tetralin, 25oC, 
12 wt%; (17) 0.155 s, PS in toluene (PS-T), 9 wt%; (18) 0.048 s, PS-T, 15 wt%; (19) 4.8 s, PS-T, 20.1 wt%; (20) 
0.076 s, PS in chlorinated diphenyl (PS-CD), 27oC, 13 wt%; (21) 0.224 s, PS-CD, 16 wt%; (22) 0.32 s, 
polydimethylsiloxane (PDMS), Mw=4.68x105, Mw/Mn=1.29, 20oC; (23) 0.045 s, PDMS, Mw=9.71x104, Mw/
Mn=1.18; (24) 1.82 s, polyethylene (PE), 150oC, 1.4x103 Pas; (25) 9.55 s, PE, 8x103 Pas; (26) 226 s, PE, 2.5x105

Pas. [Adapted, by permission, from A. I. Isayev, J. Polym. Sci., Polym. Phys., 11, 2123 (1973)].
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when plotted in coordinates of  versus . This generalized plot for various poly-
mer melts and their concentrated solution is shown in Fig. 2.8.7. These data were fitted to

  [2.8.5]

as indicated in Fig. 2.8.7 by the solid line. Clearly, this quantitative representation collabo-
rates with schematics shown in Fig. 2.8.6 indicating that an increase of the shear rate leads 
to a shift of the relaxation spectrum to lower relaxation times with this process being uni-
versal for polymer melts and their concentrated solutions. However, it should be noted that 
a deviation from this universal behavior was found to occur in the case of low molecular 
weight polymer melts and dilute polymer solutions.88 
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Figure 2.8.8. Master curve for apparent relaxation time of polymer melts of different molecular weights and 
molecular weight distributions and their concentrated solutions (symbols and numbers next to them indicates var-
ious polymers). Initial relaxation time and materials: (1) 107 s, PIB NBS in decalin, 25oC, 20 wt%; (2) 0.55 s, PS 
S-111, 190oC; (3) 27.6 s, PIB in cetane, 2 wt%; (4) 27 s, PMMA, Mw=1.91x105, Mw/Mn=1.26; (5) 0.04 s, PMMA, 
Mw=5.21x104, Mw/Mn=1.39; (6) 3.24 s, PMMA mixture, Mw=1.43x105, Mw/Mn=1.23 and Mw=8.01x104, Mw/
Mn=1.59, 220oC; (7) 0.0178 s, PIB (Mw=8.4x105) in mineral oil, 25oC, 2 wt%; (8) 0.0025 s, PS in Arochlor (PS-
A), Mv=2.67x105, 25oC, 10 wt%; (9) 0.02 s, PS-A, 20 wt%; (10) 24 s, PS, Mv=5.18x106, 200oC; (11) 400 s, PIB, 
22oC; (12) 0.316 s, PIB in cetane (PIB-C), Mw=106, 25oC, 8.7 wt%; (13) 0.069 s, PIB-C, 5.4 wt%; (14) 6170 s, 
PS, Mw=5.81x105, Mw/Mn=1.06, 160oC; (15) 3720 s, mixture of PS, Mw=5.81x105, Mw/Mn=1.06, Mw=5.87x104, 
Mw/Mn=0.94 and Mw=8.9x103, Mw/Mn=1.01; (16) 0.276 s, PIB in mineral oil, 25oC, 4 wt%. [Adapted, by permis-
sion, from A. I. Isayev, J. Polym. Sci., Polym. Phys., 11, 2123 (1973)].
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Such an invariant representation can also be obtained for the frequency dependence 
of dynamic properties of polymer melts and solutions in the linear range of their behavior. 
In particular, Fig. 2.8.8 shows a master curve of the ratio of relaxation times determined 
by a value of  as a function of the product of a frequency and initial relax-
ation time, . The solid line in this figure corresponds to the following equation:

                 [2.8.6]

It is seen that the right-hand side of this equation coincides with that of Eq. 2.8.5 at 
. Therefore, the dependence of relaxation time in the steady-state flow at various 

shear rates corresponding to the nonlinear region of behavior is similar to that of the oscil-
latory flow at small amplitudes corresponding to the linear region of behavior. 
2.8.1.5 Non-linear periodic measurements
Within the framework of the linear theory of viscoelasticity, dynamic modulus (its both 
components G' and G'') does not depend on the amplitude of deformations. However, if 
the amplitude of deformation is increased, two possible situations occur:

• the response is still harmonic but the stress/deformation ratio becomes ampli-
tude-dependent 

• harmonic deformation leads to a periodic but inharmonic response in stress and 
vice versa.

These two cases are characteristic of non-linear behavior of the material at large 
deformations. First of all, it is necessary to make some comments concerning the term 
“large” deformations. In continuum mechanics, deformations become large when they 
approach 1 (100%). This leads to the effects of geometrical non-linearity. However, the 
structure of the material can be destroyed at much lower deformation. This is characteris-
tic of materials containing particles of filler. Displacement comparable with the size of 
solid particles may lead to the destruction of the initial structure and change the mechani-
cal properties of the material. This is the case of physical non-linearity, and in this case, 
deformations can be very small, for example, a few percent.

If the response to harmonic deformations is also a harmonic stress evolution, then the 
definitions of the components of dynamic modulus are the same as in the linear theory of 
viscoelasticity. 

However, if the response is non-harmonic, it appears that it is necessary to introduce 
some different definitions for the components of (complex) elastic modulus. These “new” 
generalized definitions are based on the physical meaning of both G' and G'' from Eq. 
2.2.34. According to this equation, G'' is the measure of energy dissipation during the 
cycle of oscillations. 

Let us come back to Fig. 2.2.2. The area of the hysteresis loop corresponds to the dis-
sipation energy. In the non-linear domain, the hysteresis loop can also be measured, 
though it can be non-elliptic in shape (Fig. 2.8.9 is an example of real experimental data 
analogous to Fig. 2.2.3). Its surface area corresponds to energy losses and it gives the 
ground for calculating loss modulus, G''. So, “conventional” or apparent loss modulus is 
calculated from Eq. 2.2.34. The next step is a calculation of loss angle, δ, based on the 
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hysteresis loop using Eq. 2.2.30 or Eq. 
2.2.31. Apparent storage modulus, G', is 
calculated by means of Eq. 2.2.24.

The above-mentioned calculations of 
the apparent G' and G'' values in the non-
linear domain are not the only method. 
Other ways can also be proposed. It is pos-
sible to decompose the non-harmonic wave 
to a series of harmonics and to take the 
main harmonic. Then, G' and G'' are calcu-
lated in a similar way as in linear theory, 
but based on the main harmonic only.

It is also possible to decompose the 
response non-linear signal into several har-
monics at different frequencies and to cal-
culate modulus for these higher harmonics. 
The Fourier analysis of non-harmonic sig-
nals is well known and can also be 
applied.90 In these different ways, it is pos-
sible to find G' in the range of non-linear 
viscoelastic behavior of material and eval-
uate its amplitude dependence of G' (see 
Fig. 2.8.10). Data are given for two poly-
mer samples having different MM but with 
the same content of solid filler. Analogous 
curves can be easily drawn for G'' as a 
function of the amplitude of deformations, 
though in the latter case the influence of 
the amplitude on modulus is not so exten-
sive.

The method of large amplitude (non-
linear) oscillation (so-called LAOS 

method) became very popular because this allows one to determine constants of non-lin-
ear rheological models in a rather simple experiment.92-94

The meaning of the term “large” deformations varies with polymer properties. The 
elasticity of the matrix in the dispersion of high-MM polymer makes the decrease of mod-
ulus a slower process, while in the case of the inelastic binder the transition to a non-linear 
region is rapid. In the latter case, it is difficult to establish the boundaries of linearity 
because even small deformations lead to non-linear effects (the decrease of apparent mod-
ulus). This is due to changes in the filler-matrix interphase even at very small deforma-
tions. This is typical behavior of a low viscosity matrix. It is difficult to measure their real 
linear viscoelastic properties because they easily manifest physical non-linear effects at 
small deformations.

The effect of non-linearity at large periodic deformations was often observed for 
multi-component systems such as emulsions or suspensions. It was repeatedly demon-

Figure 2.8.10. Amplitude dependence of the storage 
modulus (measured in oscillatory shear deformations) 
for carbon black filled polyisobutylene at frequency of 
63 s-1; ε0 − amplitude of deformation.

Figure 2.8.9. Hysteresis loops for a linear viscoelastic 
material (dots) and non-linear viscoelastic behavior 
(solid curve).
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strated that the increase of deformation (or 
stress) amplitude results in several decades 
of modulus drop (see Fig. 2.8.11). In the 
low-amplitude range, suspensions behave 
as Hookean solids, whereas at high shear 
stress amplitude they show a Newtonian 
fluid behavior.95 This effect is explained by 
the degradation of their structure induced 
by high stresses.

For highly concentrated emulsions 
the linear-to-non-linear transition at large 
deformations looks rather expressive.96 At 
low deformations these emulsions behave 
like a quasi-solid substance. The reflection 
of this behavior is independence of elastic 
modulus on frequency in a wide frequency 
range. An example presented in Fig. 2.8.12 
demonstrates that this is true in the fre-
quency range exceeding 4 decimal orders. 

However, an increase in the deformation amplitude leads to a decrease of the storage 
modulus and the growth of the loss modulus (Fig.2.8.13). Point A in this Figure is the 
limit of linearity defined by the elastic modulus, and point B is the deformation amplitude 
at which . At higher deformation amplitudes emulsion behaves in a liquid-like 
manner that is opposite to the domain of low amplitudes.

The transition from the solid-like to liquid-like behavior is explained by the transfor-
mation of the initial (related to the static state) emulsion structure. Then it is possible to 
see the analogy between the behavior of a solid-like medium at low deformations and 
properties measured at low shear rates with the similar transition observed at large defor-
mations and large shear rates. In both cases, the linear-to-non-linear transition was 

G' G''=

Fig. 2.8.13 Amplitude dependencies of storage and loss 
moduli for highly concentrated emulsion. Concentration 
of an internal phase 92%. Frequency 1 Hz.

Figure 2.8.11. Amplitude dependence of the elastic 
modulus in oscillatory amplitude sweep test of a sus-
pension of PMMA spheres in low-molecular-mass 
PDMS at a frequency of 6.28 s-1. Average diameter of 
the particles is 5 μm and concentration is 0.45. 
[Adapted, by permission, from L. Heymann, S. Peukert, 
N. Aksel, J. Rheol., 46, 93 (2002)].

Figure 2.8.12. Frequency dependencies of the storage 
modulus for highly concentrated emulsions with vary-
ing droplet size at constant concentration.
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observed. However, the quantitative criterion of the transition in both cases can be differ-
ent due to the difference in the mechanics of shearing.97 
2.8.2 LINEAR − NON-LINEAR CORRELATIONS
An interesting phenomenon was elucidated from a comparison of linear and non-linear 
viscoelastic properties of polymeric materials. It was found that functions  and 

 practically coincide, i.e.,  if . Here  is the absolute value of the 
complex dynamic viscosity. The first of these functions is characteristic of linear visco-
elastic properties of the material, whereas the second one is a non-linear function (appar-
ent viscosity dependence on shear rate). This correlation is called the Cox-Merz rule98 and 
an example of such correlation is presented in Fig. 2.8.14. The physical meaning and dif-
ferent aspects of the Cox-Merz rule have been discussed elsewhere.99 

It should be noted that Cox-Merz rule applies only to pure polymer solutions and 
polymer melts. This rule fails for melts of particle-filled polymers, thermoplastic elasto-
mers, thermoplastic vulcanizates, polymer blends, and concentrated suspensions.100-103

This is indicated in Figure 2.8.15 showing the apparent viscosity vs. shear rate obtained 
using a capillary rheometer and the complex viscosity vs. frequency obtained using the 
rubber process analyzer (RPA) for EPDM rubber compounds filled with carbon black at 
concentrations of 20 and 35 vol%. For both compounds, the complex viscosity is signifi-
cantly higher than the apparent viscosity, which is a typical trend observed for filled poly-
mer melts. In fact, this difference increases with an increase in the concentration of carbon 
black. Note, deformations in the dynamic rheology tests were in the linear region, whereas 
deformations in the steady shear tests were in the nonlinear region. The failure of the Cox-
Merz rule for the filled compounds was due to a significantly greater loss of structure 
compared to the unfilled rubber in the nonlinear region.103 In the transition from linear to 
nonlinear deformations, the EPDM gum experienced a loss of entanglements. The filled 
compounds, on the other hand, experienced a loss of entanglements as well as a loss of 
filler-filler and rubber-filler interactions, causing a much greater loss of structure. It 

η* ω( )
η γ·( ) η* η= ω γ·= η*

Figure 2.8.15. Apparent viscosity and complex 
dynamic viscosity versus shear rate and frequency, 
respectively, for EPDM compounds at carbon black 
concentrations of 20 and 35 vol%. EPDM is Vistalon 
8731 (ExxonMobil), carbon black is N660.

Figure 2.8.14. Correlation between dynamic viscosity 
and apparent viscosity for polyisobutylene (experi-
mental data were obtained at different temperatures 
and reduced to 22oC). [Adapted, by permission, from  
G.V. Vinogradov, A.Ya. Malkin, Yu.G. Yanovsky,  
E.A. Dzyura, V.F. Shumsky, V.G. Kulichikhin, Rheol. 
Acta, 8, 490 (1969)]



114 Viscoelasticity

should be noted that recent theoretical cal-
culations107 supports this experimental 
observation.

An alternative approach for correla-
tion of the apparent viscosity and complex 
dynamic viscosity was proposed for dilute 
polymer solutions a while ago by Philip-
poff.104 Specifically, his study showed that 
the dependence of the out-of-phase compo-
nent of shear stress amplitude as a function 
of the shear rate amplitude at different fre-
quencies in large amplitude oscillatory 
shear (LAOS) flow coincides with the 
shear stress as a function of the shear rate 
in steady shear flow. Since then, a similar 
approach has been applied to concentrated 
suspensions.105 It was shown that the com-
plex dynamic viscosity as a function of the 

shear rate amplitude at different frequencies obtained in LAOS coincides with the appar-
ent viscosity as a function of shear rate in a steady shear flow. Other researches have had 
success in correlating the steady rotational shear viscosity to the complex dynamic viscos-
ity obtained for rubber compounds by applying LAOS.106 Extensive experimental and the-
oretical studies of correlations in rheological behavior between LAOS flow and steady 
shear flow of filled polymer melts and rubber compounds were carried out recently.107,108

Figure 2.8.16 shows the apparent viscosity vs. shear rate, obtained using the capillary rhe-
ometer, and the complex dynamic viscosity vs. shear rate amplitude at various frequen-
cies, obtained using the rubber process analyzer (RPA) for EPDM compound containing 
20 vol% of carbon black. The complex viscosity data was obtained in a shear rate ampli-
tude range of 3x10-4 to 102 s-1, and the steady shear viscosity data was obtained in a shear 
rate range of 6 to 3x103 s-1. The complex viscosity and the steady shear viscosity coincide 
at all frequencies in the high shear rate amplitude region, forming an "envelope." The 
presence of such an envelope was also predicted by theoretical calculations reported 
recently for silica-filled SBR compounds,107 and carbon nanotube-filled PP melts.108 This 
established correlation is very important for rapid characterization of processibility of 
filled polymer melts since LAOS data can be obtained much faster than steady shear data 
using a capillary rheometer.  

 An analogous correlation exists between the dependencies 2G'(ω)/sinδ and N1( ) at 
the same condition of comparison (ω = ).109 

The existence of a very close correlation between linear viscoelastic and non-linear 
viscous (apparent viscosity) and elastic (normal stresses) properties is clearly seen if one 
presents experimental data using dimensionless variables − tanδ and the ratio 2σ/N1 as 
functions of the same arguments ω =  (Fig. 2.8.17).

Another correlation was established between transient shear and normal stresses (see 
section 3.5.1) and shear rate dependence of apparent viscosity and coefficient of normal 
stresses (known as the Gleissle mirror relations).110 

γ·

γ·

γ·

Figure 2.8.16. Apparent viscosity and complex dynamic 
viscosity versus the shear rate at the wall and amplitude 
of shear rate for EPDM compound filled with 20 vol% 
of carbon black. EPDM is Vistalon 8731 (ExxonMobil), 
carbon black is N660. [Taken from Edward Norton, 
MSc Thesis, University of Akron, 2019].
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Based on these correlations, it appears possible to widen the experimental window 
beyond the limits of direct measurements.
2.8.3 RHEOLOGICAL EQUATIONS OF STATE FOR NON-LINEAR  
          VISCOELASTIC BEHAVIOR
Non-linear viscoelastic behavior means the absence of linear proportionality between 
input and response, for example, between stresses and deformations. From the physical 
point of view, the non-linearity means:

• absence of superposition of consequent actions 
• energetic exchange among different relaxation modes. 
This is directly opposite to linear behavior, for which all relaxation modes are inde-

pendent and the superposition of different actions is true.
One can distinguish three basic reasons for non-linearity:111 
• geometrical (or weak) non-linearity is caused by large deformations; in this case, 

a relaxation spectrum is not changed 
• physical (or strong) non-linearity is caused by forced-induced structure rear-

rangements; in this case, a relaxation spectrum is continuously changed because 
of an increase in deformation (deformation rates or stresses)

• thermodynamic (or rupture) non-linearity is caused by deformation-induced 
phase or relaxation transitions; in this case, a relaxation spectrum is changed rap-
idly at the point of transition. 

It is noteworthy that, due to very different reasons for the non-linear behavior of real 
materials, it is a priori impossible to expect 
to build a universal rheological equation of 
state for various materials. That is why it is 
reasonable to emphasize here an introduc-
tion to the non-linear theory as opposed to 
the theory of non-linear viscoelasticity. A 
quantitative description of non-linear 
effects, i.e., the building block of the rheo-
logical equation of state (or constitutive 
equation), is expected to be different due to 
a variety of mechanisms of non-linearity, 
which depend on the material under defor-
mation, its structure, and a method of sam-
ple loading. It is unlikely that a constitutive 
equation will be derived based on some 
general concepts, but the description of 

non-linear behavior must be based on experimental (empirical) arguments.
However, several very general principles can be formulated:112 
• stress state at time, t, is completely determined by the pre-history of deformation, 

i.e., it is a function of current time, t, and previous times, t' 
• stress state at a point is determined by deformations in the infinitesimal surround-

ings of this point, but not in an entire body 
• a rheological equation of state must not depend on the choice of the coordinate 

system

Figure 2.8.17. Correlation between dimensionless linear 
and non-linear characteristics of a polymer melt (poly-
isobutylene at 22 and 60oC reduced to 22oC). 
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• there is no preferable configuration of the body structure, i.e., a rheological equa-
tion of state is equivalent for all points inside the material

• memory of previous deformations is fading.
A great number of liquids, for which these rules are satisfied are called simple liquids. 

These principles must be taken into account to formulate the rheological equations of 
state, i.e., relationships between stresses and deformations. Different modes of deforma-
tion should give a consistent solution of rheological equations of state.113 This establishes 
the limitations in the formulation of rheological equations of state but does not show a 
way of constructing suitable constitutive equations within the framework of these limita-
tions. Every general invariant formulation is possible. But such an approach is too broad, 
and it is difficult to construct an equation that satisfies several practical rules:

• material constants and/or functions entering an equation of state should be deter-
mined using a set of simple experiments and it should be unambiguous within the 
framework of these experiments

• these constants (and/or functions) should be sufficient for the prediction of the 
behavior of the material in any arbitrary mode of deformation

• it is desirable that the structure of a constitutive equation be convenient for 
applied calculations (this is not a severe limitation with the availability of mod-
ern computer techniques)

• it is desirable that constants (or functions) entering a rheological equation of state 
are related to the molecular (structure) parameter of material; it is not necessary 
to limit the task by a phenomenological approach and apply a constitutive equa-
tion to a particular dynamic problem only. 

In constructing rheological equations of state for viscoelastic materials, it is reason-
able to pay attention to the inherent analogy between mechanical properties of rubbery 
solids (which cannot flow due to the existence of a network of chemical bonds) and elastic 
liquids (which can flow because of the limited lifetime of fluctuating entanglements −
physical bonds). The nature of elasticity is the same in both cases and it is primarily the 
conformational rearrangement of segments of long flexible chains. It means that the same 
measures of large (finite) deformations should be used for a flowing liquid in formulating 
the phenomenological constitutive equation, as for rubbers. This is the Cauchy-Green ten-
sor, Cij, and the Finger tensor, , which is inverse to the previous one, as was discussed 
in section 1.2.

Elastic effects in the range of large deformations are expressed via an elastic poten-
tial function, W, depending on the invariants of deformations: W(I1,I2). For an incom-
pressible material, the third invariant of the deformation tensor equals 1 (compare with 
Eq. 1.2.16) and it is not included as an argument for the elastic potential. The physical 
meaning of the function W is “energy stored in a material as a result of deformations”. 
Chapter 4 of this book is devoted to a much more detailed discussion of this function 
because it determines the behavior of solid materials. In this place, only one remark is 
important: it is very likely that this function is the same for rubbery solids and elastic liq-
uids. This idea is widely used in the formulation of constitutive equations for elastic mate-
rials of any type. Among many others, the following phenomenological rheological 
equation of state (or models) became popular in modern rheological literature. 

Cij
1–
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2.8.3.1 The K-BKZ model
The following constitutive equation can be written in a general form:114 

[2.8.7]

where  is a function of invariants I1 and I2 of the tensors Cij and . 
The elastic potential is assumed to be time-dependent not only via time dependency 

of deformations but additionally through the memory function:

[2.8.8]

where the memory function m(t − t') reflects the concept of fading (decreasing) influence 
of the previous deformation; W(I1, I2) is an elastic potential function which is supposed to 
be the same for elastic deformations of a material of any kind (i.e., liquids and rubbers).

Combining Eqs. 2.8.7 and 2.8.8 leads to a factorable K-BKZ model, where memory 
and finite deformation effects are separated. The structure of this equation supposes that 
the relaxation spectrum (represented by the memory function) is determined in the linear 
viscoelastic domain and it is unaffected by deformations. The non-linearity appears as a 
result of large deformations. 

It was shown that the K-BKZ model correctly describes many special rheological 
effects in various modes of deformation.115 It was noticed that “in the choice of W(I1, I2) 
lies the art of fitting rheological data”.116 For adequate fitting of real experimental results 
complicated forms of the function W(I1, I2) are needed. Simple potential functions, for 
example, the Mooney-Rivlin function (cf. Chapter 4), are not satisfactory in this case. 

For fitting results of experiments carried out not only in shear but also in elongation 
deformation, the following form of the potential function was used:117 

[2.8.9]

where: 

and C0, C1, C2, and α are empirical numerical parameters. 
Complicated equations are unlikely to be used in practical applications, though they 

present a rather general view of constitutive equations for elastic liquids. 
2.8.3.2 The Wagner models
The direct analogy between elasticity of rubbers and flow of polymeric systems is the 
ground for several versions of the W-models.118 In its initial form of a W-I model,119 it was 
suggested that large deformations influence a relaxation spectrum and a constitutive equa-
tion of state has the following general form:
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[2.8.10]

where M is a non-linear memory function dependent on invariants of the deformation ten-
sor. The comparison of Eq. 2.8.10 with the K-BKZ model shows that the W-I model does 
not contain the Cauchy-Green tensor of deformations. The next simplification of dividing 
the memory function into the product of a linear member and the “function of influence”:

[2.8.11]

where the memory function m(t - t') is determined in the range of linear viscoelasticity, 
and the function h(I1, I2) is called the damping function, and the latter can be treated as the 
consequence of the influence of deformations on the viscoelastic behavior of the material. 

The final equation of the W-I model 

[2.8.12]

can be considered as a very special case of a factorable K-BKZ model, where 

 and 

Another more general the W-model (called the W-II model) contains two measures 
of finite deformations:120 

[2.8.13]

This equation can also be treated as a simplified version of the K-BKZ equation, and 
again the damping function, h(I1, I2), plays a central role in the W-model.

Several experimental investigations were carried out in order to find the analytical 
expression for a damping function. It is an empirical function and it is preferable to choose 
the simplest possible form of it. Based on some experimental data, the following expres-
sion for h(I1, I2) was found:121 

, where I =  βI1 + (1 − β)I2 

The values α and β in these equations are empirical numerical parameters.
The W-models can be explained (at least on a semi-quantitative level) by some 

molecular model arguments.122 This leads to a “universal” form of the calculated damping 
function, which is shown in Fig. 2.8.18 in comparison with the most reliable experimental 
data of several authors. It is seen that the “theoretical” damping function correctly rep-
resents the main peculiarities of experimental data.

This search for “universality” of viscoelastic properties of polymers reflects the fun-
damental idea of the analogy of behavior of any long-chain flexible polymer macromole-
cules. It is supposed that the presence of such a molecular structure by itself explains the 
main features of viscoelastic behavior, whereas details of the molecular (chemical) struc-
ture are of secondary value only. This concept can be satisfactory for qualitative explana-
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tions, but it is rather difficult to use 
“universal” viscoelastic functions to com-
pare different polymers, having differences 
in chemical structure important for techno-
logical applications.
2.8.3.2 The Leonov model123 
The Leonov model belongs to the state 
variable theories that use irreversible ther-
modynamics as the basis for its develop-
ment.124 Presently, it plays an important 
role in rheological literature. It has been 
used for some realistic modeling of poly-
mer processing. The Leonov model is 
based on a hypothesis that the rubbery state 
(where equilibrium elastic deformations 
have been stored) is the internal thermody-
namic equilibrium state in the flow of vis-
coelastic fluids. Any deviation from this 
state causes non-equilibrium. In contrast to 
the KBZ and Wagner models, this model is 

of differential type. Its original derivation was based on irreversible thermodynamics and 
the classical potential function of the network theory of elasticity (see section 4.4). In 
recent years, other potential functions were also proposed. Irreversible thermodynamics 
supplies the necessary relationship between the dissipative part of the strain rate and the 
dissipative part of the stress. This constitutive model is derived from the thermodynamic 
idea that the stress in flowing polymers is related to the stored elastic energy. The theory 
operates with multi-relaxation modes for Maxwell fluid, each having relaxation time, θk, 
modulus, Gk, and the elastic strain tensor (the Finger measure) in each mode, Ck, that is 
dependent on the strain rate tensor, D, according to the following equation:

[2.8.14]

with 

being a Jaumann tensor derivative with respect to time, where ω is the vorticity tensor (see 
section 1.3). In Eq. 2.8.14, the quantity  is the irreversible strain rate tensor that is 
determined from the following equation:

[2.8.15]
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Figure 2.8.18. Experimental (various symbols corre-
spond to data of three groups of authors obtained for dif-
ferent rubbers) and theoretical (line) damping factor, h.  
I − domain of elongation; II − domain of compressions. 
[Adapted, by permission, from M.H. Wagner, J. Schaef-
fer, J. Rheol., 37, 643 (1993)] 
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[2.8.16]

In Eqs. 2.8.15 and 2.8.16, Ik,1, Ik,2 are the first and second invariants of Ck, and Wk is the 
elastic potential. In the simplest case, Wk is taken according to the classical potential func-
tion of the network theory of elasticity (Eq. 4.4.10). In the model under discussion

The stress tensor, σ, is determined from the following equation:

[2.8.17]

where η0 is Newtonian viscosity of the fluid, s is a rheological parameter lying between 0 
and 1. Models such as Eq. 2.8.17 were developed by Mooney and later used by Philip-
poff.113 The elastic strain tensor is determined from the kinematics of the flow that can be 
shear, elongation, biaxial stretching, or other viscometric or non-viscometric flows. By 
solving the governing equation, Eq. 2.8.14, one can find values of the elastic strain tensor 
components and then various components of the stress tensor. In a simple shear flow, the 
stress tensor for an N-mode of the Leonov model is given by

[2.8.18]

The tensor components of the elastic strain tensor are governed by the following sys-
tem of equations:

[2.8.19]

In this system of equations, the last equation is obtained based on the incompressibil-
ity condition that detCk = 1. This system of equations can be solved for a given value of 
the shear rate, , and then the shear stress, σ12, the first, N1, and second, N2, differences of 
normal stresses can be found from Eq. 2.8.18.

The model parameters required for fluid under consideration can be obtained from 
the measurements of  and  for oscillatory shear deformations in the linear range of 
behavior in the wide frequency range or by measuring flow curve (shear stress vs. shear 
rate) in a wide range of shear rates.125 These data can then be fitted to equations for the 
discrete relaxation spectra using known methods of nonlinear regression (see section 
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2.5.3). Then, these parameters can be utilized to describe various time-dependent rheolog-
ical experiments for viscometric and non-viscometric flow126 or applied to polymer pro-
cessing operation to calculate dynamics and kinematics of the process.127 The available 
scientific literature contains various examples of successful utilization of this model. The 
advantage of the Leonov model is that to determine model parameters it requires measure-
ments on the viscoelastic fluid in the linear range of its behavior only. Then these parame-
ters are used to describe the fluid nonlinear behavior.
2.8.3.4 The Marrucci models
Marrucci proposed a number of molecular models for the description of the rheological 
behavior of polymer melts and solutions of flexible chain and liquid crystalline polymers. 
For the flexible chain polymers and solutions, Marrucci used a multi-mode Maxwell 
model with the convected derivative for the evolution of stress tensor dependent on the 
first Rivlin-Erickson strain rate tensor.128 The moduli and relaxation times of each mode 
of the model were assumed to be related to structural evolution parameters governed by 
the first-order differential equation containing an adjustable parameter. The model pro-
vides a realistic prediction of many fundamental rheological experiments in many flow 
situations. Predictions in step shear are not in agreement with experimental observations 
since the structure does not evolve from equilibrium before beginning stress relaxation. 
Marrucci has also made important contributions to the rheology of polymer melts by 
incorporating chain stretch and convective constraint release (CCR) in constitutive mod-
els.129 In the field of liquid crystals and liquid crystalline polymers, Marrucci explained 
the source of the negative first normal stress difference that appears in shearing flows of 
nematic polymers as being due to director tumbling.130 Also, the viscosity of liquid crys-
talline polymers in the nematic phase at low shear rates is known to depend on shear rates 
and does not approach a Newtonian plateau. In this regard, Marrucci has proposed a the-
ory for the structure of defects in liquid crystals that can be applied to their flow.131 His 
theory explains this non-linear effect as the result of large distortions of the LCP polydo-
main (the defect structure). The defects play a leading role in LCP behavior at low shear 
rates by acting as pseudo-walls for director anchoring.
2.8.4 COMMENTS − CONSTRUCTING NON-LINEAR CONSTITUTIVE  
        EQUATIONS AND EXPERIMENT
Initial information necessary for constructing a non-linear constitutive equation is the cor-
rect description of the linear viscoelastic behavior of the material, which is the evident 
limit of the non-linear range. After that, it is necessary to move beyond this limit and 
know something about the non-linear properties of the material. 

The non-linearity might be introduced in two different ways.
First, it is possible to measure the elastic properties of a sample and then to propose 

an elastic potential function. This determines the limit of the non-linear domain corre-
sponding to stationary states of stored elastic deformations at different stresses.

Second, it is possible to measure the flow curve, i.e., the dependence between shear 
stresses and shear rates at different stationary states of flow.

Both characteristics of material correspond to the non-linear domain additive to a 
linear relaxation spectrum.
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However, a great field of possibilities lies between these experimental borders, and 
different versions of constitutive equations can be written which degenerate to these 
boundary conditions − linear relaxation spectrum in the small deformations limit and 
steady states at different stresses at .

In search of the equation for this field, two general problems need to be solved:
• time-dependent (transient) behavior of the material
• three-dimensional generalization of experimental data.
The simplest way to take into account time effects is to use the factorable non-linear 

equations, as was discussed above. In this approach, a linear memory function is assumed 
to apply (without any changes) to the domain of the non-linear viscoelastic behavior. If it 
appears to be insufficient for fitting experimental data, a more complicated concept must 
be used. One of them is introducing some arbitrary dependence of a relaxation spectrum 
on stress or deformation rate. For example, it can be the mathematical description of the 
picture illustrated in Fig. 2.8.6. If one supposes that non-linearity is the consequence of 
some structural process, it is reasonable to introduce a kinetic equation describing this pro-
cess. In this approach, the structure is characterized by a generalized parameter, X. The 
kinetic equation for X is written as

[2.8.20]

where k- and k+ are kinetic constants, m, n, and ε are empirical parameters, and σ is stress. 
It is also assumed that various rheological properties (for example, apparent viscos-

ity) depend on the structure parameter, X. Many experimental data can be fitted on the 
basis of this equation by choice of the appropriate values of constants.

Three-dimensional generalization of experimental data obtained in a unidimensional 
experiment is achieved by introducing invariants of stress and deformation tensors instead 
of the components of these tensors.

The value of any approach to the generalization of initial experimental data is to be 
checked against independent experiments because no universal recipe exists on how to do 
it. 

The experimental possibilities are usually restricted by limitations of use of standard 
or slightly modified experimental devices (see Chapter 5). According to modern practice 
and traditions, the following schemes of experiments are regularly used for the construc-
tion and verification of non-linear constitutive equations.

Shear 
• Flow in simple shear. Shear stresses in steady-state characterize apparent viscos-

ity; however, pre-stationary stress evolution gives additional information about 
the transient behavior of the material

• Shear stress relaxation; different versions of the relaxation process are possible to 
observe: relaxation after steady shear flow, relaxation after different moments at 
the pre-stationary stage of deformation
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• Superposition of small-amplitude harmonic deformations on steady flow; the 
results of measurements characterize the changes in a relaxation spectrum 
induced by shearing. The direction of oscillations can be parallel or normal to the 
direction of flow

• Two-step deformations. In the time interval 0 − t1, deformation is γ1, and then 
deformation increases in a jump-like manner to γ2 > γ1; multi-step changes of 
deformation can be also used

• Large-amplitude periodic deformations
• Up-and-down sweeping of shear rate with measurement of a hysteresis loop
• Normal stress measurements including the pre-stationary part of the transient 

curve, determination of the steady-state values of the coefficient of normal 
stresses and normal stress relaxation 

• Non-linear creep and elastic recoil measurements; elastic recovery can be free or 
constrained by hard walls of an apparatus

• Flow through different channels, primarily with a simple cross-section (capillary 
flow)

Extension
• Uniaxial extension; the evolution of stresses using different modes of deforma-

tion characterizes the combination of flow and elastic properties in this geometry 
of deformation, which is quite different than the shear

• Two-dimensional (biaxial) extension. The rates of deformation in two normal 
directions can be the same (equibiaxial extension) or different

A more complicated experimental technique can also be used and sometimes is used 
for constructing constitutive equations and search of material functions and constants of 
an experimental material (sample). 

In performing the experimental study of material and use of experimental data for 
constructing a constitutive equation of this material, it is useful to have in mind the answer 
to the following question: What is the final goal of this study? 

When considering the simplest linear materials (Newtonian liquid and Hookean 
solid), two answers to these questions exist. First, the constants (viscosity and Young’s 
modulus) are the material parameters and different materials can be compared by values of 
these parameters. Second, these constants are used in solving different boundary static 
and/or dynamic problems. 

The first answer is invalid for non-linear materials, because constitutive equations of 
state are different for different materials, even if their structures are very similar. There-
fore, it is uncertain which constants or material functions must be used for comparison. 
Besides, it is not necessary to know the complete complicated form of a constitutive equa-
tion: in order to compare two materials, it is enough to compare some constants measured 
under well-defined conditions.

However, the second answer is valid − a constitutive equation is necessary for solv-
ing different boundary problems. The former discussion shows (though the conclusion is 
disappointing) that no universal rheological equation of state for non-linear viscoelastic 
materials exists. It is possible to make a vast set of experiments and as a result to build a 
possible constitutive equation for this material. It takes a lot of time and effort. If it is an 
important material, widely used in different applications. However, in many cases (judg-
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ing from numerous publications) it is not so, and constructing a constitutive equation 
appears to be the final goal of research. 

In constructing rheological equations of state, it is reasonable to have in mind the 
goal of this operation. Actually, two approaches can be pursued. First, based on some very 
general principles, one may try to formulate a global concept, which describes numerous 
experimental facts. Such an “absolute” theory might appear to be too complicated and 
require a lot of independent experiments for the determination of material constants and 
functions entering the equation of state. As a result, such a theory appears inconvenient 
and in many cases, a lot of effort is spent to investigate the validity of a theory itself. 

Second, it is possible to propose a rather simple model which is convenient in appli-
cation. But one has to remember that such a model is limited by its origin only and can be 
applied within the framework of the basic assumptions used for its construction. So, in 
many applications, it is possible to neglect elastic effects and to solve different technolog-
ical problems, e.g., in predicting transportation characteristics of the material, through 
tubes using the model of non-Newtonian inelastic liquid. Even the simplest power-law 
model of viscous properties is not the worst in this case.
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QUESTIONS FOR CHAPTER 2
QUESTION 2-1
For Maxwellian liquid with a relaxation time θ, what is the residual stress (in comparison 
with the initial stress σ0), if the process of stress relaxation continues for the duration of 
time ?t 2θ=
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QUESTION 2-2
For a solid material with rheological properties described by the Kelvin-Voigt model, with 
a retardation time λ, what is the time necessary to reach 95% of its equilibrium (limiting) 
value?
QUESTION 2-3
Viscoelastic properties of the liquid are described by two relaxation modes: the first with 
modulus G1 and a relaxation time θ1 = 1 s and the second with modulus G2 and a relax-
ation time θ2 = 100 s. Describe the evolution of stress in time. How do relaxation curves 
look if a linear time-scale and a logarithmic stress scale are used?

Additional question
What is the value of equilibrium stress in this case?
QUESTION 2-4
Explain why the value θK, entering the Kohlrausch function, Eq. 2.1.6 is not a relaxation 
time. How do you find relaxation times for this relaxation function?
QUESTION 2-5
Analyze the evolution of deformations in the following loading history: stress σ0 was 
applied at the time t = 0; then additional stress σ1 was added at the time t1 and finally at the 
time t* both stresses were taken away. The material is a linear viscoelastic solid.

Additional question
What will be the final deformation at ?
QUESTION 2-6
What is the shape of the frequency dependencies of the components of dynamic modulus 
for Maxwellian liquid?
QUESTION 2-7
An experimental relaxation curve was approximated with the sum of three exponential 
functions with the following parameters:

G1 = 2*103 Pa, θ1 = 100 s; G2 = 104 Pa, θ2 = 20 s; G3 = 105 Pa, θ3 = 6 s. 
What is the viscosity of this liquid?

QUESTION 2-8
Eq. 2.3.11 and its solution show that the Burgers model describes the behavior of a mate-
rial with two relaxation times. The same behavior is represented by two parallel Maxwell 
elements with their relaxation times θ1 = η1/G1 and θ2 = η2/G2 where η1 and G1 are the 
viscosity and elastic modulus of the first and η2 and G2 of the second Maxwell elements 
joined in parallel. Calculate the values of the constants of the Burgers model expressed via 
constants of the two Maxwell elements.
QUESTION 2-9
Is it possible to measure dynamic modulus using non-harmonic periodic oscillations? 
How this is done?

t ∞→
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QUESTION 2-10
In measuring a relaxation curve, it is assumed that the initial deformation is set instanta-
neously. In fact, it is impossible, and a transient period always exists. Estimate the role of 
this period for a single-relaxation mode (“Maxwellian”) liquid. 
QUESTION 2-11
Application of the theory of large deformations to a linear viscoelastic body leads to the 
following equation for the time evolution of the first normal stress difference, (t), at a 
constant shear rate,  = const:

  (Can you prove this equation?)

Calculate the function (t) for an arbitrary relaxation spectrum, G(θ). 
Additional question 1

Find the N1(t) dependence for stress relaxation after a sudden cessation of steady flow. 
Compare the rates of relaxation of shear and normal stresses.

Additional question 2
For a single-mode viscoelastic liquid with relaxation time, θ, calculate the relative residual 
shear and normal stresses after relaxation continuing for time 4θ.
QUESTION 2-12
Explain the procedure of transition from a discrete to a continuous relaxation spectrum 
(from Eq. 2.6.6 to Eqs. 2.6.7 and 2.2.8).
QUESTION 2-13
Let a small solid dead-weight of mass m be attached to a rod at its end and the rod is fixed 
at the other end. Some initial displacement from the equilibrium position of the weight 
(deforming the rod) was created by an applied force, and then the force was ceased. 

Analyze the movement of the weight after the force is ceased. Is it possible to find 
the components of the dynamic modulus of a rod material following the movement of a 
weight?

Comment 
A rod can be of different lengths and cross-sections. Not specifying the sizes and the geo-
metrical form of a rod, the latter is characterized by the value of a “form-factor” k.

Answers can be found in a special section entitled Solutions.
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LIQUIDS

3.1 NEWTONIAN AND NON-NEWTONIAN LIQUIDS. 
      DEFINITIONS
Rheology deals with materials in liquid and solid states. However, as can be derived from 
its name, liquids (or flowing media) attract the main attention of rheologists. This is why 
the information in this chapter is the backbone of rheology.

The quantitative approach to the flow properties of liquids began with “Theorem 
XXXIX” of the classical monograph of Newton, where he introduced such terms as “defec-
tus lubricitatus” and “attritus”, which are equivalent to the modern terms “internal fric-
tion” and “viscosity”. He proposed that resistance appearing due to internal friction is 
proportional to the relative velocity of fluid particles. This is the fundamental hypothesis. 
However, he argued about the circular movement. Later, the analogous supposition was 
formulated by Navier1 and then by Stokes,2 who gave the modern form to the Newton 
hypothesis. 

Liquid with flow properties obeying the Newton hypothesis is called Newton-Stokes 
liquid, or Newtonian liquid. These properties can be formulated in a standard form as:

[3.1.1]

where σ is the shear stress,  is the shear rate, and the constant coefficient of proportional-
ity, η, is called viscosity (or shear viscosity).3 

This equation suggests that the shear stress is proportional to the deformation rate 
(the shear rate, in this case), and such liquid is a linear rheological medium.

If the shear stress is not proportional to the shear rate, such liquid is called non-New-
tonian and the ratio σ/  is called apparent viscosity, which is not necessarily constant.

The three-dimensional formulation of the basic rheological law for Newtonian liquid 
is

[3.1.2]

where σij is the stress tensor and Dij is the deformation rate tensor.
As a rule, it is assumed that Newtonian liquid is incompressible. Therefore, the 

spherical component of the rate of the deformation tensor is absent. The spherical compo-
nent of the stress tensor (which represents the hydrostatic pressure) can exist but it is 
immaterial for the rheological behavior of liquid.

σ ηγ·=

γ·

γ·

σi j 2ηDij=
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In a simple shear 

and therefore Eq. 3.1.2 refers to the standard definition of Eq. 3.1.1.
The basic Eq. 3.1.2 is the rheological equation of state (or a constitutive equation) of 

Newtonian, incompressible liquid. It is used for formulating the dynamic equilibrium 
equations, known as the Navier-Stokes equations, describing the mechanics of such liq-
uids in any situation. These equations are the basis for formulating and solving any 
applied boundary problems.

The definition of Newtonian liquid can be easily extended to the uniaxial extension. 
It is evident that in this case there is only one component of the stress tensor − normal 
stress, σE. This stress tensor can be decomposed into spherical and deviatoric parts in the 
following manner:

[3.1.3]

where the first term is a spherical part (i.e., negative hydrostatic pressure) and the second 
term is a deviator of the stress tensor.

The rate of deformation tensor for a uniaxial extension of an incompressible medium 
is given by:

[3.1.4]

If a general definition of a Newtonian liquid is applied and compared with the devia-
toric parts of both tensors, the following equation is obtained:

[3.1.5]

The coefficient in this equation, ηE, 

[3.1.6]

is known as the coefficient of extensional viscosity or the Trouton viscosity, and Eq. 3.1.6 
is the Trouton law.4 

The same calculations can be done for a two-dimensional or biaxial extension. In this 
case, the coefficient of biaxial extensional viscosity, ηB, equals 6:

[3.1.7]

These two examples (uniaxial and biaxial extension) demonstrate that the results of 
different experiments can be treated as the consequences of the same basic rheological 
equation of state establishing the general, tensor relationship between components of the 
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stress and deformation rate tensors. Therefore the elongational viscosity appears not to be 
an independent constant (property) of material but only another image of the same Newto-
nian viscosity.

It is also useful to formulate the rheological equation of the state of Newtonian liquid 
in an invariant form. The liquid is defined here as a medium for which all work done by 
deformation dissipates. The intensity of dissipation, A, is expressed as

[3.1.8]

 Then it is easy to show that the rheological equation of state Eq. 3.1.2 is equivalent 
to the following relationship:

[3.1.9]

where D2 is the second invariant of the deformation rate tensor.
Eq. 3.1.9 can be considered as the invariant definition of the Newton-Stokes liquid. 

Simple relationships between the stresses and the deformation rates for different deforma-
tion modes, such as Eq. 3.1.1 or Eq. 3.1.5, are obtained as consequences of this definition. 

The coefficient of Newtonian viscosity, η, is a single characteristic of flow properties 
of liquid if its rheological behavior is determined by Eq. 3.1.2 or Eq. 3.1.9. Here are exam-
ples of ranges of viscosities of some liquids:

viscosity range in Pa*s
Gases 0.00001
Water (at 20oC) 0.001
Sulfuric acid 0.03
Lubricating oils 0.1-3
Glycerin 2
Oligomers 0.010-10
Glues, paints 1-200
Melts of thermoplastics  100-100,000
Rubber compounds 10,000-10,000,000
Bitumens  100,000-100,000,000
Melted inorganic glasses 1,000,000-100,000,000,000
Glassy liquids > 100,000,000,000
It is apparent that the viscosity of liquids varies in a wide range of values exceeding 

15 decimal orders.
If an experiment shows that apparent viscosity is not constant, then Eq. 3.1.2 

becomes invalid and it is necessary to formulate some rheological equation of state for 
non-Newtonian liquid. In this case, it is necessary to distinguish between two cases of 
non-Newtonian purely viscous liquid and viscoelastic liquid. In the first case, the work of 
deformation dissipates completely. In the second case, a part of deformation work is 
stored in the form of elastic energy and returned as elastic deformation. 

The rheological equation of state for a purely viscous liquid can be written in the fol-
lowing general tensor form:

A σijγ
·

ij
i j,
=

A 4ηD2– 4η γij
· γ·ij
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 [3.1.10]

or in the invariant form:

[3.1.11]

The apparent viscosity is some function of the second invariant of the deformation rate 
tensor. The function η(D2) can be found experimentally in simple flow experiments, for 
example in simple shear or uniaxial extension, when only one non-zero component of the 
deformation rate tensor exists. However, it is necessary to confirm that the experiments 
performed in different geometries give the same function η(D2). If this principal condition 
is not fulfilled, it means that the rheological equation of state, taken for fitting one set of 
experimental data, is chosen incorrectly. Thus, it should not be used for any arbitrary flow 
geometry.

Example
For any purely viscous liquid it is possible to prove that the Trouton law is always valid if one compares the 

shear viscosity, η, and the elongational viscosity, ηE, at the following condition:

      

In this case, D2 from Eq. 3.1.10 is the same for both simple shear flow and elongational flow. It is thus expected 
that if η is a decreasing function of the shear rate, then the elongational viscosity, ηE, should also be a decreasing 
function of the deformation rate. The first is frequently observed for various materials, but experiments demon-
strate that the second statement is not true for many such liquids. It means that a model of a purely viscous liquid 
is not applicable to experiments in extension, and then it follows that such a model is of no general meaning for 
formulating an invariant rheological equation of state.

In the discussion of non-Newtonian behavior in shear flow and, in fact, any rheolog-
ical problem, there is no unique interrelation between stresses and deformation rates, but 
stresses are functions of both deformation rates and time (or deformations) simultane-
ously. Hence it is reasonable to distinguish between two cases: 
1. If deformations continue for a sufficiently long time such that the stationary (or 

steady) regimes of flow have been reached, there is an unambiguous relationship 
between the shear stresses and shear rates. This relationship is called a flow curve.

2. If this stationary deformation regime has not yet been reached, the state of the mate-
rial continuously changes with time, and it is the function of deformation pre-history. 
In such a transient deformation regime, stresses are functions of deformation rate 
and deformation experienced by the material occurs from the beginning of the flow.
It is usually assumed in the non-Newtonian shear flow that the set of stationary 

deformation states is reached after the material is subjected to deformations for a suffi-
ciently long time to pass through all transient states. 

Experimental results of viscosity measurement in stationary deformation regimes 
may be presented as the relationship between shear stress, σ, and shear rate, , or the 
opposite, as the relationship between shear rate and shear stress. For Newtonian liquid, 
this dependence is always linear. The apparent viscosity of non-Newtonian liquid, defined 
as the ratio, σ/ , can be evaluated as a function of either σ or . This ratio is constant for 
Newtonian liquid but not for non-Newtonian liquid. 

Non-Newtonian behavior may appear at different ranges of stresses. Therefore, it is 
useful to measure the σ( ) dependence in a wide range of variables. This dependence, 

σi j 2η D2( )γ·ij=
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graphically presented in log-log coordinates, reveals peculiarities of a flow curve in differ-
ent ranges of the shear stress. 

If the shear stress is proportional to the shear rate (Newtonian liquid), its graphic rep-
resentation on the log-log scale is a straight line equally inclined to both coordinate axes. 
If the angle of a line is not 45o or experimental points do not lie on a straight line, it means 
that the material under study is non-Newtonian liquid.

3.2 NON-NEWTONIAN SHEAR FLOW
3.2.1 NON-NEWTONIAN BEHAVIOR OF VISCOELASTIC POLYMERIC  
          MATERIALS
Fig. 3.2.1 gives the results of viscosity measurements of solutions of monodisperse poly-
mer in a wide concentration range. The left upper line is the representation of the flow 

behavior of a low-molecular-
weight solvent. This behavior is 
expressed by a straight line 
inclined at 45o in log-log coordi-
nates. It means that the solvent is a 
Newtonian liquid. 

Adding any amount of high-
molecular-weight, long-chain, 
flexible polymer radically changes 
the rheological behavior of the 
resultant liquid. Even 1% solution 
of the polymer causes shear rate 
dependence of the apparent vis-
cosity, η, ( ). However, 
the apparent viscosity is constant 
at very low shear rates. This is the 
so-called initial, or zero-shear-
rate Newtonian viscosity (or limit-
ing viscosity at zero shear rate), 
η0. Then the apparent viscosity 
decreases with an increase of 
shear rate, and at higher shear 
rates the viscosity reaches its min-
imum value, which is called the 
upper Newtonian viscosity (or 
limiting viscosity at the infinite 
shear rate), . 

It is supposed that macro-
molecules in dilute solution are 
independent in their molecular 

movements and do not have permanent contact with each other. Hence, the non-Newto-
nian behavior of the dilute polymer solution is explained by the deformation of the indi-

η σ γ·⁄=

η∞

Figure 3.2.1. Flow curves of polybutadiene solutions in the full 
concentration range. MM = 2.4*105;  = 1.1. Solvent: 
methyl naphthalene. T = 25oC. [Adapted, with permission, from 
G.V. Vinogradov, A.Ya. Malkin, N.K. Blinova, S.I. Sergeyenkov, 
M.P. Zabugina, L.V. Titkova, Yu.G. Yanovsky, V.G. Shalganova, 
Europ. Polymer J., 9, 1231 (1973)].
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vidual molecules in the stream. Macromolecules change their shape, resulting in a 
decrease in their resistance to flow due to streamlining at higher shear rates. 

The increase of polymer concentration in solution (shift from the upper left corner of 
Fig. 3.2.1 downwards) results in more frequent contacts of macromolecules and the for-
mation of a network of entanglements. Chains at the sites of contact may slide over each 
other and that is why the network is quasi-permanent. The contacts may have some “life-
time”. The intermolecular contacts causing the formation of the entanglement network are 
believed to occur at some critical concentration, c*, depending on the length of the chain. 
According to Debye,5 a criterion for “dilute” solution can be written as follows:

where [η] is the intrinsic viscosity which can be treated as a measure of the size of a mac-
romolecule.6 

Non-Newtonian behavior becomes more and more pronounced with the increase of 
polymer concentration in solution. If one analyzes these graphs beginning from the lower 
right corner of the graph, the viscosity of the polymer is constant until some critical shear 
stress, σs, is reached. At higher stresses flow becomes impossible: attempts to increase 
shear stresses result in loss of material fluidity and material begins to slide along the walls 
of the measuring device. This effect is called spurt.7 At high shear rates, the limit of flow 
is reached. This phenomenon is of principal importance for the flow of viscoelastic liq-
uids, though the outward appearance of this limiting state can be very different (see Sec-
tion 3.6 specially devoted to this topic). The addition of solvent to melt does not change 
general behavior because material can only flow until some critical shear stress is reached 
and then it begins to slide when shear is further increased. The critical shear stress, σs, 
decreases with an increase in the content of the solvent in the solution. This is shown by a 
straight line in Fig. 3.2.1, which presents the limiting region of flow and corresponds to 
the transition from flow to spurt behavior of the fluid. It is also worth mentioning that for 
a dilute solution the region of decreasing apparent viscosity appears between the lower 
Newtonian branch of a flow curve and the spurt depicted by the vertical line on the graph. 
Such a region is absent in monodisperse polymer melts.

Experimental data in Fig. 3.2.1 are for a monodisperse polymer and its solutions. 
However, practically all real polymers are polydisperse, i.e., contain fractions of chains of 
different lengths. Hence they can be treated as mixtures of different substances. A typical 
flow curve of a polydisperse polymer is shown in Fig. 3.2.2 for polyethylene melt. The 
data points were obtained using various experimental techniques (geometric flow setups). 
This data shows that the apparent viscosity “at a point” is a real physical effect acting 
regardless of the geometry of flow or other peculiarities of the experimental methods used.

Fig. 3.2.2 shows exemplary non-Newtonian behavior of melt, the apparent viscosity 
of which decreases more than 1000 times. At low shear rates, the apparent viscosity 
reaches its initial Newtonian limit, η0. The upper Newtonian viscosity limit for concen-
trated solutions and melts is not reached due to the instability of the stream at high flow 
rates (see Section 3.6). 

The non-Newtonian flow of melts of polydisperse polymers and their concentrated 
solutions depends on the superposition of deformation of long flexible chains and mutual 
sliding of macromolecules in network entanglements. In dilute solutions (interchain inter-

c η[ ] 1<
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actions are practically absent), the 
mechanism of flow is controlled 
by the deformation of individual 
macromolecular chains. The inter-
molecular contacts may be consid-
ered as the dominating cause of 
non-Newtonian behavior. 

A qualitative explanation of 
non-Newtonian flow is based on 
analysis of the interrelation 
between the lifetime of entangle-
ments, Tent, and characteristic time 
of deformation, Tdef, (the latter 
can be defined as the reciprocal 
shear rate, Tdef = ). If Tdef << 
Tent, the entanglements behave as 
stable joining points. The polymer 
melt behavior is analogous to the 
deformation of the three-dimen-
sional network in cured rubbers 
(which cannot flow). Then it is 

possible to think that there is a distribution of the lifetimes of entanglements and at some 
shear rate, some junctions behave as a stable (permanent) network, but some polymer 
chains may slide in the case of some entanglements. The shares of quasi-stable and disin-
tegrating junction points depend on Tdef. It means that resistance to flow and, conse-
quently, apparent viscosity depends on shear rate. The range of deformation rates at initial 
Newtonian viscosity corresponds to a very slow flow when for all Tent the condition Tdef
<< Tent is fulfilled. Therefore, the value of η0 is a parameter of material directly related to 
its molecular structure, which is not affected by deformation. Indeed, η0 is a measure of 
the molecular mass of polymer, which can be used for comparative purposes with different 
samples.

The concept based on the influence of shear rates (or stress) on the stability of mac-
romolecular entanglements explains the non-Newtonian behavior of polymer systems. 
However, a quantitative description of non-Newtonian flow can be constructed only 
within the framework of viscoelastic behavior because the above-mentioned physical 
events are related to different time effects.
3.2.2 NON-NEWTONIAN BEHAVIOR OF STRUCTURED SYSTEMS −  
          PLASTICITY OF LIQUIDS8 
Fig. 3.2.3 shows non-Newtonian behavior of water suspension of bentonite. The relation-
ship is composed of three parts: 
1. a flow with very high viscosity at low shear stresses 
2. an abrupt drop in the viscosity at some critical shear stress, σY, (or at least in a very 

narrow stress range)
3. non-Newtonian flow at stresses exceeding σY. 

γ· 1–

Figure 3.2.2. Flow curve obtained using different experimental 
techniques. LDPE with MI = 2 (ICI). 150oC. [Adapted, with per-
mission, from G.V. Vinogradov, M.P Zabugina, A.A. Konstantinov, 
I.V. Konyukh, A.Ya. Malkin, N.V. Prozorovskaya, Vysokomol. Soe-
din. (Polymers - in Russian), 6, 1646 (1964)].
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Here, there is no gradual decrease in viscos-
ity but a rapid drop in viscosity by several 
decimal orders. This is a case of a solid dis-
persed phase organized in a continuous three-dimensional structure (coagulated structure) 
having some strength. At low shear stresses, flow takes place because of the sliding of thin 
(possibly molecular size) layers between elements of a solid phase. The resistance to slid-
ing is high and therefore the viscosity at low stresses is also high. 

The strength of the coagulated structure is characterized by stress σY called the yield 
stress. After destroying the coagulated structure of a solid phase (at stresses exceeding σY) 
the dispersion flows like a low viscosity liquid, which does not contain residues of a solid 
phase. The viscosity of such a system is close (within the order of values) to the viscosity 
of a dispersion medium. This viscosity is several decimal orders lower than the viscosity 
of a system with the undestroyed coagulated structure.

This type of rheological behavior is called plasticity, and the behavior is called visco-
plastic flow. Plasticity is typical of many liquid-like media, such as greases, coal suspen-
sions, concrete mixes, crude oil, mud, different pastes (toothpaste, cosmetic pastes, shoe 
polish, ice cream, and many other products), biological liquids, and so on.9 

Superposition of viscoelastic and viscoplastic effects in non-Newtonian flow is often 
observed if a dispersion medium is a viscoelastic liquid. This is observed in filled poly-
mers with an active (structure forming) filler. Fig. 3.2.4 shows flow curves of polyisobuty-
lene filled with varying amounts of carbon black. The similarity of shapes of curves in 
Figs. 3.2.3 and 3.2.4 is pertinent. 

Fig. 3.2.5 shows rheological behaviors of two polyisobutylenes having different 
molecular masses (viscosities differ with molecular mass) and the concentration of carbon 
black. The viscosity of materials with non-destroyed structure (very low shear stresses) is 

Figure 3.2.3. Complete flow curve, including the yield 
stress, of 5% bentonite dispersion in water. [Recon-
structed from experimental data of L.A. Abduraghi-
mova, P.A. Rehbinder, and N.N. Serb-Serbina (1955).]

Figure 3.2.4. Flow curves of a filled low-MM poly-
isobutylene. Filler: active carbon black. Concentration 
of a filler in vol% is given on the curves. Arrows show 
σY values.
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the same for both systems because the flow 
in this stress range does not depend on the 
viscosity of the binder but is determined by 
molecular forces and interaction between 
solid particles. The yield stress in both 
cases is the same because the strength of 
the structure formed by carbon black does 
not depend on the nature of the liquid 
binder. 

The upper Newtonian viscosity (at 
stresses below the yield stress), as in Fig. 
3.2.3, was “found” and presented in numer-
ous publications. But, most likely, this is an 
artifact and no flow is possible at  σ < σY, 
and the apparent existence of this viscosity 
is related to the incorrect treatment of the 
transient regime of deformation.10 

Indeed, let us consider the results of measurements of the apparent viscosity (deter-
mined as ) as a function of time (Fig. 3.2.6) at different shear rates for the super-
concentrated emulsion of a visco-plastic material.11 

Then, if to take, e.g., 10 s as the base (time) for measurement of the values of the 
apparent viscosity for all shear rates lower than 0.01 s-1, the apparent viscosity seems to be 
constant and one can erroneously think that it is the upper Newtonian viscosity because all 
experimental data will fall at the same point on the left branch as shown by the dashed 
line. However, the increase of the time of deformation for the lower shear rates clearly 
demonstrates the growth of the apparent viscosity. So, there is a typical transient regime of 
deformation without any steady value of the viscosity and with a sufficiently long tran-
sient period of shearing. The apparent viscosity increases without limit, approaching the 

σ t( ) γ·⁄

Figure 3.2.5. Complete flow curves of two filled poly-
mers of different MM but with the same active filler 
concentration. Polymer: polyisobutylene. Filler: car-
bon black. The viscosity at σ < σY is 109-1010 Pa*s.

Figure 3.2.6. Observed values of apparent "viscosity" 
at different given shear rates for the highly concen-
trated emulsion. 

Figure 3.2.7. Time dependencies of apparent viscosity 
gel-forming supramolecular polyacrylonitrile solutions 
in dimethylsulfoxide. 
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yield stress.12 This statement is supported 
by the direct experimental data, presented 
in Fig. 3.2.7.13

The state of the material below the 
yield stress is solid-like. This is confirmed 
by measuring viscoelastic properties of a 
visco-plastic material at low-stress ampli-
tude (in the domain of linear viscoelastic-
ity) where deformation does not change the 
structure of a material. In this case, the 
storage modulus appears independent of 
frequency and the loss modulus is much 
lower than the storage modulus. Typical 
experimental data for the storage modulus 
measured in a wide frequency range are 
shown in Fig. 3.2.8. These viscoelastic 
properties are the characteristic behavior of 
solid materials and in particular of gels.

For an observer, the transition from 
the low shear stress (σ < σY) to the higher 

stress (σ > σY) looks like a transition from solid-like to liquid-like state or from gel to sol. 
At low stresses, such material is a non-flowing solid and at higher stresses, it is an “ordi-
nary” liquid that can flow as any other liquid.

 The value of the yield stress mainly depends on the strength of the structure formed 
by solid filler. In particular, σY depends on the concentration of filler but not on the nature 
of a liquid binder. Fig. 3.2.9 shows the concentration dependence of σY for different liquid 
binders containing the same filler. The concentration dependence of σY( ) is close to 
exponential (  is concentration of filler in vol%). However, it is not always true, because 

ϕ
ϕ

Figure 3.2.8. The storage modulus in a wide frequency range for cysteine/Ag gels with different composition of 
electrolyte (see details elsewhere13) and suspensions of Geothite with different content of a solid phase, shown at 
the curves. [Adapted, by permission, from Ilyin S.O., Malkin A.Ya., Kulichikhin V.G., Colloid J., 74, 492-502, 
(2012)].

Figure 3.2.9. Concentration dependence of the yield 
stress for the same filler and different binders: Polybuta-
diene MM = 1.35*105 (1); Polybutadiene MM = 1*104

(2); Silicone oil - low viscosity liquid (3). 
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plasticity occurs only when the concentration of filler is sufficiently high to form a contin-
uous structure. This is demonstrated in Fig. 3.2.10, where a linear scale instead of a loga-
rithmic scale is used for filler concentration. Plasticity of filled systems occurs when  > 

*. 
The yield stress values depend on the nature of the bond-forming the structure of a 

material and consequently, its strength. These values can be very low for supramolecular 
networks as shown in Fig. 3.2.11.15 It appears to be possible to measure the yield stress on 
the level of 3x10-3 Pa. The experimental data are presented in Fig. 3.2.9 show the yield 
stress of the order 106 Pa. So, Y can change in the range exceeding 8 orders of magnitude.

The transition from the solid-like to liquid-like behavior with increasing stress may 
not be necessarily catastrophic but may 
proceed in a wide stress range. This hap-
pens when the structure of the material is 
not “rigid” and there is a distribution of 
bond strength. In this sense, it is not always 
correct to consider “the yield stress” or 
“yield point” as a “point” on the flow 
curve, but this term is only used as an 
approximate description of the real rheo-
logical behavior of the material. 

In this case, start of the flow begins 
not at the threshold stress but after some 
duration of stressing, as shown in Fig. 
3.2.12. 

ϕ
ϕ

Figure 3.2.10. Concentration dependence of the yield 
stress showing the existence of a “critical’ concentration 
of structure formation, *. Filler: active carbon black. 
[Adapted, by permission, from G.V. Vinogradov, A.Ya. 
Malkin, E.P. Plotnikova, O.Yu. Sabsai, N.E. Nikolaeva, 
Intern. J. Polym. Mater., 2, 1 (1972)].

ϕ

Figure 3.2.11. Concentration dependence of the yield 
stress for gels of cysteine/Ag-based dilute colloid sys-
tems.

Figure 3.2.12. Time-dependent start of the flow.
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The time dependence of the start of the flow characterized the durability of the struc-
ture depending of the applied stress, t*(σ). The increasing slope of the deformation vs. 
time lines shows at the increasing shear rate that corresponds to the increasing stress in the 
domain of the flow. So, the t*(σ) dependence is generalization of the concept of visco-
plasticity or yielding for so-called "soft" matters.16 

The phenomenon of durability is typical for numerous engineering applications and 
determines the guaranteed service life of various products, e.g. transportation tubes in gas 
and oil industry.

Structured systems are non-Newtonian viscoplastic liquids. Their viscosity below the 
yield stress and yielding are affected by the same factors − structure and concentration of 
filler. At stresses exceeding σY, the viscosity of systems depends on the viscosity of the 
liquid medium.

Some authors consider the “structure” (though this term is being treated as a general-
ized but not rigorously defined phenomenon) as a unique cause of non-Newtonian behav-
ior. The apparent viscosity, depending on the shear rate, is then called the “structural 
viscosity” (e.g., strukturviscosität in German),17 and a relative decrease of the apparent 
viscosity in comparison with the initial Newtonian viscosity is treated as a measure of 
structure breakdown. 

In reality, there is no strict separation of flow of materials into two different regimes 
exhibiting a low shear stress limit of Newtonian flow and viscoplastic flow with yield 
stress. However, it may be useful to define some limiting cases: 

• yielding may develop in a wide stress range but not as an abrupt change in a flow 
curve. A continuous decrease in the apparent viscosity, as in Fig. 3.2.2, is some-
times called pseudo-plasticity 

• one can always suspect that the observed low shear stress of a Newtonian branch 
is a pseudo-Newtonian region and it consists of part of a complete flow curve. It 
could be envisioned that at much lower stresses a yield point is reached and flow 
becomes impossible. It is possible to find real materials which are close in behav-

ior to the described extreme cases 
of non-Newtonian flow, as well as 
materials whose behavior is inter-
mediate and approaching the 
extreme cases. 

The method of presentation of experi-
mental data (“points”) can be illusive and 
lead to false conclusions. For example, Fig. 
3.2.2 clearly demonstrates that there is a 
low-shear-rate Newtonian limit on the flow 
curve of polyethylene melt. However, if 
one presents the same experimental data in 
a semi-log scale (as is done in Fig. 3.2.13, 
where several points at low shear rates are 

taken from Fig. 3.2.2), then the relationship 
Figure 3.2.13. Flow curve of polyethylene as in Fig. 
3.2.2, but presented in semi-log scale. Several points at 
low shear rates are arbitrarily taken from Fig. 3.2.2.
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looks different, showing unlimited growth 
of the apparent viscosity on approaching 
the yield point. 

The answer to the question concern-
ing such physical reality as the yield stress 
is the following: for some materials, there 
is a more or less wide stress range in which 
their apparent viscosity decreases in a sud-
den manner; this stress range is treated as 
the yield stress. This is similar to the 
strength of solid materials. The majority of 
engineers believe that the values of 
strength given in handbooks are real physi-
cal characteristics of materials. At the 
same time, these reference values come 
from measurements made under some 
standardized conditions. The same mate-
rial may break at different stress, depending on numerous factors, including duration of 
stress application.

The difference between two extreme cases of rheological behavior is reflected in the 
difference of definitions between “solution” and “gel”. The term “solution” is related to 
systems exhibiting the Newtonian branch of a flow curve at low shear stress, i.e., formally, 
by definition, it is a material that flows at any stress regardless of how low this stress is. At 
the same time, the viscosity of the Newtonian region may be very high. Gels, on the con-
trary, are materials which, by definition, do not flow at low stresses because of the exis-
tence of a yield point, though their viscosity at higher stresses may be low. Moreover, the 
term gel is often used to characterize low-modulus (very soft) rubbery materials (stable 
gels) with a permanent molecular or supermolecular (crystalline) network. Such materials 
cannot flow at all because the lifetime of bonds in these materials is infinite, whereas the 
lifetime of network entanglements in flowing gels is limited. Then, the yield stress in sta-
ble gels equals their macroscopic strength.

The transition between solutions and gels can be continuous and sometimes it is 
impossible to give a self-evident definition of a matter. An example illustrating the last 
statement is presented in Fig. 3.2.14 where flow curves of emulsions with different con-
centration of an inner phase are presented.17 

It is seen that the flow curves of emulsions at a concentration range of 0.6-0.675 
exhibits typical non-Newtonian behavior. However, the change in apparent viscosity as a 
function of shear stress is strongly affected by a slight increase of concentration from 0.65 
to 0.675. A further increase of concentration till 0.70 creates a medium with clearly 
expressed yielding behavior. At concentrations of 0.75-0.85 a medium becomes gel-like 
which does not flow after the transition through the yield stress. So, even small changes in 
the concentration of an emulsion lead to radical changes in rheological behavior. The latter 
is explained as a result of the approach to the state of the closest packing of spherical liq-
uid droplets and their compression after the transition through this threshold. 

Figure 3.2.14. Flow curves of emulsions at different 
concentration of an inner phase (shown at the curves) 
[After R. Lapasin, A. Trevisan, A. Semenzato, G. 
Baratto, Presented at AERC, Portugal, Sept. 2003).
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The term “plasticity” (and the concept of plastic behavior) is also widely used in the 
mechanics of solids: there are materials that can be treated as purely elastic up to the yield 
point and they can be deformed unlimitedly at stresses exceeding the yield stress.18 In 
other words, such solids flow at high stresses. The term “flow” has a rather peculiar mean-
ing for materials such as metals, but in reality, these materials also flow, i.e., deform irre-
versibly at high stresses. Plastic flow of many “solid” materials is essential in different 
technological operations, such as punching of silver or golden articles (coins, jewelry), 
rolling of steel, pulling wire through dies, and so on. 

The difference between viscoplastic and solid plastic materials is hidden in their 
behavior at σ < σY. In a formal approach, describing the mechanical behavior of the mate-
rial, this difference is not principal. In real technological practice, the yield stress value for 
viscoplastic liquid is much lower than the yield stress of solid plastic materials. It should 
be remembered that both concepts, viscoplastic liquid and plastic solid, are no more than a 
model presentation of rheological properties of real technological materials.
3.2.3 VISCOSITY OF ANISOTROPIC LIQUIDS
In many cases, viscosity is treated as a scalar value and it means that the viscosity does not 
depend on the flow direction (or the direction of its measurement). Meanwhile, there are 
liquid substances that have their inherent or stress-induced structure, and not all directions 
in such liquids are equivalent They are known as anisotropic liquids, which are analogous 
to anisotropic solids (see Eq. 4.3.1 with the change of deformation for the rate of deforma-
tion and tensor of elastic modulus for the tensor of viscosity). It means that the simplest 
Newtonian approximation does not have a general meaning. In a general case, viscosity 
must be considered as a parameter of a tensor nature. 

The quantitative approach to the description of anisotropic viscosities was first for-
mulated by Miesowicz.19 He proposed to distinguish three coefficients of viscosity 
related, correspondingly, to the direction of flow, the direction of the velocity gradient, and 
direction perpendicular to both these directions. Actually, his three coefficients are com-
ponents of the complete viscosity tensor.

There are two main causes of anisotropy. First, there are liquid crystals,20 which ini-
tially have a structure. Their viscosity depends on the direction of measurement in relation 
to the orientation of crystallographic axes. Indeed there are a lot of investigations of this 
phenomenon frequently treated in terms of the three Miesowicz coefficients.21 The main 
body of investigations in this field is devoted to viscosity anisotropy in nematic liquid 
crystals.22 

Further development of the rheology of anisotropic nematic crystals was proposed 
by Leslie,23 Ericksen,24 and Parodi.25 They introduced a conception of the director, which 
is a vector characterizing the average molecular orientation. The degree of order in struc-
ture orientation is described by the average deviation of long molecular axes from the 
director. The existence of a specified direction results in the anisotropy of all physical 
properties of a liquid including its viscosity and viscoelastic properties.

Leslie considers five independent viscosity values, which characterize the behavior 
of the director (see also reviews).26 There are connections between three Miesowicz coef-
ficients and Leslie coefficients of viscosity.

The second case is that of induced anisotropy. Deformations may lead to the domi-
nating effect of orientation of structural elements in the matter. This is typical of poly-
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meric substances having macromolecules oriented in flow. Orientation also influences the 
results of measurement of elongation viscosity (see Section 3.7).

Methods of measuring different coefficients of anisotropic viscosity are described in 
the review.27 The fluid dynamics of nematic crystals includes the equation for orientation 
movement of the director in addition to all other equations of equilibrium.

First measurements of anisotropic viscosity of low molecular weight liquids were 
performed by Miesowicz and Tsvetkov and Mikhailov.28 

The viscosity of anisotropic liquids depends on the direction of flow. Moreover, the 
effect of anisotropy depends on flow conditions. Therefore components of anisotropic vis-
cosity are also shear rate dependent and contribute to the non-Newtonian behavior of such 
systems. Anisotropic viscosity of polymer liquid crystal is given in Fig. 3.2.15. For one-
dimensional shear flow, the apparent viscosity was measured along with two directions: 
parallel to flow lines and in perpendicular direction. Non-Newtonian behavior of the liq-
uid crystal solution manifests itself in two ways:

• the initial viscosity values (at very low shear rates) are different, due to the aniso-
tropic structure of liquid

• a shear rate dependence is observed for both components of the viscosity and it is 
due to the structure rearrangement induced by shear deformation: the viscosity 
decreases in the parallel direction due to sliding of aligned crystal layers, and it 
increases in the perpendicular direction, reflecting an increase in the resistance to 
penetration through regular layers of macromolecules.

The non-Newtonian behavior of liquid crystals combines different mechanisms of 
the phenomenon (Fig. 3.2.16). A flow curve of solution at low polymer concentration 
(3%), below the concentration threshold of phase transition, is typical of ordinary (isotro-

Figure 3.2.15. Anisotropic viscosity of liquid crystal 
solution of poly-p-benzamide in dimethyl acet-
amide:  η|| − viscosity measured in the direction par-
allel to shear;  − viscosity measured in the 
direction perpendicular to shear. [Adapted, by per-
mission from A.Ya. Malkin, N.V. Vasil'eva, T.A. 
Belousova, V.G. Kulichikhin, Kolloid. Zh. (Colloid. 
J. − in Russian), 41, 200 (1979)].

η⊥
Figure 3.2.16. Flow curves of poly-p-benzamide solu-
tions in dimethyl formamide. (1) − 3%; (2-4) − 5-9.5%. 
[Adapted, with permission, from S.P. Papkov, V.G. 
Kulichikhin, V.D. Kalmykova, A.Ya. Malkin, J. Polym. 
Sci., Polym. Phys. Ed., 12, 1753 (1974)]. 
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pic) polymer solutions. The solutions con-
taining sufficiently high polymer fractions 
have an inherent structure. So, it is reason-
able to expect that they might have yield 
stress. It is proven by an increase of apparent 
viscosity at very low shear stresses for solu-
tions with a high concentration of the poly-

mer (curves at 5 to 9.5%). In the domain of 
higher shear stresses, the part of the flow 

curves is similar to that observed in isotropic polymeric materials. In this region, the regu-
lar shear rate dependence of the apparent viscosity is observed.

The concentration dependence of viscosity of LC polymers will be discussed in more 
detail in Section 3.3 (see Fig. 3.3.7). This dependence convincingly demonstrates the tran-
sition from isotropic to LC state. 

The shear-induced anisotropy of viscosity in initially isotropic polymer solutions 
was observed in Ref.29 It was found that the velocity of falling ball in a gap between two 
coaxial cylinders depends on the rate of rotation of one cylinder i.e., on the shear rate in 
flow of 10% solution of polyisobutylene in tetralin. The transverse apparent viscosity 
decreased in the increase of the primary shear rate. It is reasonable to think that this is 
caused by the orientation of macromolecules in flow resulting in induced anisotropy of the 
solution.

The important case of deformation-induced anisotropy is changing shape of spheri-
cal deformable particles in the flow. This is the case of the flow of emulsions. What hap-
pens with liquid droplets in the flow of emulsions is shown in Fig. 3.2.17, Here, the 
emulsion becomes anisotropic.

The degree of asymmetry is characterized by a dimensionless factor D expressed as 

The meanings of the values Rmax and Rmin are given in Fig. 3.2.17.
According to the classical calculations by Taylor,30 the degree of anisotropy is 

expressed by

After cessation of deformation and return to the stationary state, the shape of the 
droplet comes back to the initial state. The rate of this process is described by the Maxwel-
lian exponential law:

where D0 is the degree of asymmetry in the deformed state and θ is the characteristic 
relaxation time expressed as31 

D
Rmax Rmin–
Rmax Rmin+
-----------------------------=

D 16 19λ+
16 λ 1+( )
-----------------------Ca=

D t( ) D0e t θ⁄–=

Figure 3.2.17. Transformation of a spherical particle 
to ellipsoid.
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where R is the radius of a spherical droplet, η0 is the viscosity of a continuous medium, Γ 
is the surface tension, and λ is the ratio of the droplet viscosity to that of the medium.

This equation clearly demonstrates that the cause of elastic recovery is surface ten-
sion.

It is necessary to add that a droplet orients in shear flow and this effect is character-
ized by the angle of inclination, ϕ, of the principle axis in relation to the direction of flow. 
This phenomenon is determined by the dimensional ratio of the driving force (shear stress 
σ) to the resistance force (surface tension, Γ). This ratio is called the Capillary Number, 
Ca, and is expressed as

The dependencies of D and ϕ on the capillary number are shown in Fig. 3.2.18.
Polymer molecules change their conformation in a flow and, generally speaking, 

they pass from coiled to the extended shape. This also leads to the formation of the struc-
ture with different properties in elongation and transverse directions.

Melts of polymer blends can be considered as the particular case of emulsions (the 
deformation of a dispersed droplet of one polymer in the matrix of the other). Deformation 
of the blend (in extension) leads to the strong anisotropy of dispersed polymer as shown in 
Fig. 3.2.19 and consequently, to the blend in whole.

 The strong orientation of macromolecules of the dispersed phase in a polymeric 
matrix may result in effects of self-reinforcing.33 

θ
η0R

Γ
---------- 3 2λ+( ) 16 19λ+( )

40 λ 1+( )
------------------------------------------------=

Ca
η0γ·

Γ R⁄
-----------=

Figure 3.2.18 Comparison of the theoretical predic-
tions for the liquid droplet deformation (D) and orien-
tation (ϕ) in a viscous liquid flow (λ=3.6) with 
experimental data (points). [Adapted, by permission, 
from N.E. Jackson, C.L. Tucker III, J. Rheol., 47, 659 
(2003)].

Figure 3.2.19. Deformation of PMMA droplets in PS 
matrix PMMA/PS ratio = 15/85. a − Initial state of 
non-deformed particle, b − rate of extension 0.2 s-1, 
deformation H = 0.5; c − rate of extension 0.02 s-1, 
deformation H = 1.5; d − rate of extension 0.02 s-1, 
deformation H = 2.9. [Adapted, by permission, from 
Oosterlinck, M. Mours, H.M. Laun, P. Moldenaers, J. 
Rheol., 49, 897 (2005)].
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Mechanical field-induced structure anisotropy can appear even in a dispersion of 
spherical particles. As was first observed,34 initially random distribution of rigid spherical 
particles in a viscoelastic liquid tends to rearrange into the regular necklace structure. 

The tendency to the alignment of disperse particles in flow has been confirmed by 
computer simulation.35 The same effect was observed experimentally by the small-angle 
light scattering method.36

It is quite possible that this effect is related not to the inherent rheological properties 
of a continuous medium but to the influence of solid walls and the migration of particles 
because the structure formation definitely depends on the gap in flow between two parallel 
plates.37 

One can soundly expect that this effect might be expressed much stronger in disper-
sions of anisotropic particles. Indeed, it was found that viscosity anisotropy in discontinu-
ous fibers suspended in a viscous fluid expressed as the ratio of the axial elongational 
viscosity to the transverse elongational viscosity and both axial and transverse shear vis-
cosities appears to be as high as 104-106.38 

Anisotropy of structure leading to the viscosity anisotropy can be easily created in 
magnetic liquids by application of a magnetic field.39 

The wide interest in viscosity anisotropy is also related to the problem of geodynam-
ics because it is thought that strong anisotropy of the rheology exists in rocks and other 
earth substances.40 

The combination of various possible mechanisms of non-Newtonian behavior is typ-
ical of many real materials. Specific mechanisms are developed for model systems to 
describe particular functions of the model.

3.3 EQUATIONS FOR VISCOSITY AND FLOW CURVES
3.3.1 INTRODUCTION − THE MEANING OF VISCOSITY MEASUREMENT
Viscosity, or in a more general case, a flow curve, is a fundamental characteristic of the 
mechanical properties of the liquid. Hence, it is widely used in different applications. 
There are two principal ways of using viscometric (as well as other rheological) data in 
practice:

• As a physical method to characterize material; in this case, it is necessary to 
choose one or several well-defined points on a flow curve or some constants in 
an equation used for fitting experimental data. The numerical values for these 
points or constants are compared with objective parameters of material (its chem-
ical structure, contents of components in the multi-component system, concentra-
tion, molecular mass, and so on). It is a physical method of material control and a 
method of control of its standardized parameters relevant in technological pro-
cesses. In this case, the discussion of viscometric data includes a correlation of 
the experimental constants with product specifications. 

• As objective characteristics of mechanical properties of the material; a stress-
deformation rate relationship is used as the basis for solving various dynamic 
problems, such as transportation of liquid through pipelines, movement of solid 
bodies through liquid media, and so on. Experimental points can be approxi-
mated by different fitting equations, and the choice among them is a matter of 
personal preference or convenience in practical calculations.
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In any case, it is useful to describe a set of experimental points with an appropriate 
equation that best fits a flow curve. If a flow curve is utilized as a method of material char-
acterization, the most important point is to standardize the methods of finding typical data 
suitable for this purpose. It could be a “zero-shear-rate” (Newtonian) viscosity, yield 
stress, degree of non-Newtonian behavior, apparent viscosity at the specified (strictly 
defined) stress, and so on. In this case, the standardized procedure for measuring and 
treatment of experimental data is developed. The flow curve does not need to be measured 
in a wide shear rate range. 

If the main interest concentrates on solving dynamic problems, it is necessary to 
measure and describe the flow (viscous) properties in the shear rate range covering the 
range of shear rates (or stresses) used in a specific application. It is frequently dangerous 
to use a fitting equation beyond the limits of direct viscometric measurements. Moreover, 
it is necessary to confirm that the material, for which a dynamic problem is analyzed, is 
purely viscous, i.e., a flow curve is an adequate presentation of its rheological properties. 
The equation describing a flow curve is the necessary part of the formulation of any 
dynamic problem related to non-Newtonian liquids. 

There are several general and commonly used approaches for fitting experimental 
data obtained in viscometric measurements. They are based on some typical models repre-
senting flow curves. As shown in Section 3.2, there are two characteristic types of flow 
curves dependent on the behavior of the material at low shear stresses − curves with the 
initial (“zero-shear-rate”) Newtonian viscosity limit and curves with the yield stress limit. 
Neglecting intermediate situations, both types of flow curves require different approaches 
for their quantitative characterization. 

It is possible to find dozens of analytical formulas proposed in the literature for fit-
ting flow curves. It is reasonable to distinguish a molecular approach intended to explain
real flow curves of materials having non-Newtonian behavior and various fitting methods 
useful to describe flow curves only. The first approach usually leads to complicated ana-
lytical expressions, which are not convenient in applications to fluid mechanics, though 
they could be useful in the physics of matter. An example of this approach is discussed in 
Section 3.3.5. In the next section, the usefulness of fitting equations is discussed for solv-
ing applied problems.
3.3.2 POWER-LAW EQUATIONS
Fitting experimental data to construct an equation for a flow curve requires that two condi-
tions are satisfied:

• a wide range of stresses and shear rates data gives linear σ( ) dependence in log-
log coordinates 

• a low-stress range exists in which the apparent viscosity is constant (range of 
zero-shear-rate or initial Newtonian viscosity).

The four-constant Carreau-Yasuda41,42 and the Cross43 equations, respectively, are 
used to fit experimental data:

[3.3.1a]

γ·

η η0 1 λγ·( )
m+[ ]

n 1–( ) m⁄
=
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[3.3.1b]

where η0 is the initial Newtonian viscosity, λ is a characteristic constant with the dimen-
sion of time, σ* is the characteristic shear stress, m and n are empirical factors.

The mathematical peculiarities of these equations include: the dependence η( ) has 
the limit at low shear rates equal to η0 and at high shear rates this equation transforms to:

 [3.3.2a]

 [3.3.2b]

Eqs. 3.3.1 satisfy the main conditions, which are necessary for fitting experimental 
data of non-Newtonian liquids. They can be generalized if there is a need to include the 
upper Newtonian viscosity, . This generalization is:

[3.3.3]

Simple analysis shows that at  and at . In the interme-
diate shear rate range, the power-law dependence of σ( ) is predicted.

The intermediate-range of stresses and shear rates is the most important range for 
practical applications, where Eq. (3.3.2) is valid. This equation is usually used in a form 
known as the “power law” model or the Ostwald-De Waele equation:44 

[3.3.4]

where k and n are empirical constants and n < 1.
In this case, the apparent viscosity is a decreasing function of shear rate expressed as

 [3.3.5]

The value of the exponent, n, in Eqs 3.3.4 and 3.3.5 lies between 0 and 1. This pro-
vides a decrease in the apparent viscosity with an increase in the shear rate or stress.

The power law, like all other above-discussed equations, is obtained in the experi-
ments carried out in simple shear flows. However, for fluid mechanics applications it is 
necessary to formulate a three-dimensional generalization of the fitting one-dimensional 
equation because the majority of real dynamic problems deal with two- or three-dimen-
sional flows. This task does not appear important for Newtonian liquid because the viscos-
ity of such liquid is its unique material constant, and from a mathematical point of view 
the viscosity is a scalar value. 

A rheological equation for the viscosity of a non-Newtonian liquid is formulated in 
invariant terms. The power law for three-dimensional flows is written as:
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 [3.3.6]

where D2 is the second invariant of the deformation rate tensor.
Such generalization is no more than an assumption. It is correct for various shear 

flows, but it is not proper for extensional flow: Eq. 3.3.6 predicts that the apparent viscos-
ity decreases with an increase of D2, but it is not so in extension (see Section 3.7).
3.3.3 EQUATIONS WITH YIELD STRESS
Section 3.2 shows real materials which do not flow at low shear stresses, or their flow is 
negligible because their viscosity is so high at low shear stress. However, at higher shear 
stresses, these materials flow and can be transported like any other liquid. Commercial 
materials of this kind include concrete and other construction products, greases, food 
products (yogurt, ketchup, tomato puree, ice cream, chocolate), pharmaceutical pastes, 
etc. 

The yield stress, σY, is one of their fundamental parameters. The most popular and 
simple equations reflecting viscoplastic behavior are as follows:

the Bingham equation45 

[3.3.7]

the Casson equation46 

[3.3.8]

the Hershel-Bulkley equation47 

[3.3.9]

In these equations, σY is the yield stress, ηp, is the “plastic” viscosity, and K and n 
are the experimental parameters. 

A more general rheological equation with the yield stress was proposed to describe 
shear rate dependence of viscosity of filled elastomers:48 

[3.3.10]

where A and B are parameters. This equation is capable to describe rheological data for 
the carbon black filled NR, SBR, CR, and EPDM compounds.48 Also, this equation was 
further developed to incorporate the temperature and state of cure dependence of the 
apparent viscosity of rubber compounds during the vulcanization process.49 

The “plastic” viscosity ηp is not equivalent to the apparent viscosity, η. By using a 
standard definition: , the apparent viscosity for the Bingham viscoplastic 
medium is:

[3.3.11]
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The apparent viscosity of the Bingham medium is a decreasing function of the shear 
rate ( ) at very low shear rates and it approaches the constant limit ηp at high shear 
rates. All such equations are valid, by definition, at stresses σ > σY only. 

These equations predict that just above σY, the apparent viscosity is high. But this 
does not exactly correspond to experimental data (see, e.g., Fig. 3.1.3). Hence, it is prefer-
able to modify the Hershel-Bulkley equation in the following manner. Viscosity is 
assumed to be unlimitedly high at σ < σY, and in the stress range σ > σY, the flow curve is 
described by the power law, Eq. 3.3.5, without σY value in formula for the apparent vis-
cosity, but the power law equation is correct only when σ > σY. This model can be written 
as:

[3.3.12]

A three-dimensional generalization of any of the equations proposed for viscoplastic 
liquids is based on mechanical arguments representing a “critical” point σY in the invari-
ant form. The Von Mises criterion of plasticity51 is the most popular and widely used for 
real materials. The state of plasticity is reached at the certain “critical” value of the second 
invariant of the stress tensor. This criterion can be written through the principal stresses as

[3.3.13]

where σ1, σ2, and σ3 are the principal 
stresses, and Kcr is some critical value of 
the second invariant of the stress tensor, 
corresponding to the yield point. In a sim-
ple shear flow, the value Kcr can be easily 
expressed through σY measures. In a sim-
ple shear flow, , and then   

           [3.3.14]

The equations proposed may be 
applied for the approximation of the rheo-
logical properties of viscoplastic bodies in 
discussing three-dimensional deformation 
(flow) problems. 

The determination of the yield stress 
in two (or three-) dimensional deforma-

tions is not trivial, especially for Hershel-Bulkley liquid, due to a non-linearity of viscous 
properties of viscoplastic liquids at σ > σY.52 In order to solve three-dimensional dynamic 
problems it is necessary to formulate an invariant critical condition of yielding and use the 
generalized form of this equation.53 
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Figure 3.3.1. Illustration of the ambiguity in determina-
tion of yield stress.
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As noted above, the equations for viscoplastic bodies (Eq. 3.3.7 to Eq. 3.3.11, as well 
as many others proposed by different authors) are based on the following assumptions:

• there are no deformations at stresses below σY 
• the transition from solid to liquid occurs just at one point, namely yield stress.
Both assumptions are no more than model approximations of the observed rheologi-

cal behavior of real materials made by the “best” fitting of experimental points. The yield 
stress is found by the procedure of extrapolation of experimental points based on the spec-
ified fitting equation.

It is necessary to stress again that all equations discussed in Sections 3.3.2 and 3.3.3 
are no more than approximations applicable to a part of full flow curves of real materials. 
As was illustrated in Section 3.2, the general picture of non-Newtonian behavior can be 
richer. Indeed, measuring the rheology of different media demonstrated that their non-
Newtonian properties are caused by the existence of two limiting values of Newtonian vis-
cosity and the existence of an intermediate region of quasi-power law viscosity with a 
more or less abrupt transition from the upper Newtonian viscosity to decreasing apparent 
viscosity. What an experimentalist see and how one approximates experimental data 
depends on the range of explored shear rates or stresses and the analytical fitting of exper-
imental points measured with some limited accuracy.
Example

Is it reasonable to say that it is possible to measure the real yield point?
The following numerical example analyzes the situation. Fig. 3.3.1 gives an example of experimental data: 

nine marked points are measured values of the apparent viscosity at different shear rates. The flow curve indi-
cates that the material under investigation has yield stress. Let us try to find the σY value by approximation of the 
experimental data at the low shear rate region using linear equation (3.3.7). The set of three points will be used 
for linearization. First, these are points 1, 2, and 3. Then, it is supposed that only 8 points, starting from point 2 
are measured, and so on. The results are as follows:
Points used for approximation 1, 2, 3 2,3, 4 3, 4, 5 4, 5, 6
Found σY value, Pa 3.5 3.8 6.2 7.12

It is seen that the σY value is no more than the result of approximation strongly dependent on the range of 
shear rates used for measuring and fitting. Then, if σY values are used as a measure of material quality and to 
compare different media it is necessary to use a reproducible standardized method of searching for σY value. 

3.3.4 BASIC DEPENDENCIES OF VISCOSITY
In general, the viscosity of materials depends on their properties. This section is limited to 
dependencies of viscosity on the molecular mass in a homologous series and concentra-
tions of fillers in dispersions. 
3.3.4.1 Viscosity of polymer melts
It is commonly assumed54 that the dependence of Newtonian viscosity on the molecular 
mass, η0(M), consists of two parts: close to linear in the low molecular weight domain, 
expressed by a power law with the universal exponent, close to 3.4 in the high molecular 
weight domain. It is expressed as follows:

[3.3.15]

where K1, K2 are empirical constants, the exponent a is close to 1 and .
The boundary-value of molecular mass, Mc, separating low and high molecular mass 

domains is called “critical molecular mass”. In the physics of polymers, it is a boundary 

η0
K1Ma   at   M Mc<

K2Mb   at   M Mc>
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between low molecular weight products 
and polymers. For example, non-Newto-
nian flow begins at M > Mc. The activation 
energy of viscous flow becomes indepen-
dent of the length of a polymeric chain at 
M > Mc, and so on. The Mc value can be 
related to sufficiently long chains such that 
their parts behave independently and the 
spatial entanglement network is present. 
The “independent” part of the chain is 
called a chain segment. The idea of a chain 
consisting of many independently moving 
segments is one of the fundamental sugges-
tions in polymer physics. The characteris-
tic length of a chain is a statistical value, 
and it is meaningless to consider that indi-
vidual segments may have some well-
defined “boundaries”. It is reasonable to 
treat Mc as a measure and reflection of the 
chain rigidity.

Examples
    Mc

Polyethylene   4,000
Polybutadiene   5,600
Polyisobutylene               17,000
Polymethylmethacrylate   27,500
Polystyrene               35,000

The origin of a segment can be attributed to the existence of the flexibility of a long 
macromolecule. This allows one part of the molecule to move independently from the 
other part(s) of a chain. Macromolecules in molten state or in a concentrated solution con-
tact each other and form a network of entanglements. Then it is reasonable to introduce the 
average length of chain between two neighboring physical junctions (nodes). The part of a 
chain between two neighboring junctions consists of several segments (if the chain is flex-
ible enough). The entanglements (junctions) can be characterized by some lifetime and the 
measure of this lifetime is a characteristic relaxation time. If deformation proceeds slower 
than this relaxation time, the chains move without “noticing” these junctions, they can 
slide over each other, which means that the polymer can flow. If the deformation is suffi-
ciently rapid, these junctions do not have sufficient time to disintegrate. In this case, they 
form stable (quasi-chemical) entities and polymer behaves similar to a cured rubber: it 
cannot flow and it assumes a rubber-like physical (or relaxation) state. It is necessary to 
add that the lifetime is not a single constant of such a system, but a distribution of lifetimes 
of junctions (and consequently of relaxation times) always exists. 

Chemical bonds between chains decrease the average length of chain between neigh-
boring entanglements. This occurs in the process of curing (or crosslinking) rubbers. It is 
possible to treat chemical bonds as having an infinite lifetime (even though it is not abso-
lutely true: some cases are known when bonds break under stress at a sufficiently long 

Figure 3.3.2. Zero-shear-rate viscosity of polystyrene 
melt as a function of molecular mass. T = 200oC. This 
figure in the original publication summarizes the experi-
mental data of 18 studies. Here, only a part of experi-
mental points is reproduced. [Adapted, with permission, 
from A. Casale, R.S. Porter, J.F. Johnson, J. Macromol. 
Sci., Rev. Macromol. Chem., C, 5, 387 (1971)]. 
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time). These permanent chemical bonds prevent flow because chains cannot slide over 
each other. The shorter the distance between crosslinks, the more rigid a material 
becomes. 

An example illustrating the dependence of η0(M) in the high molecular mass domain 
is shown in Fig. 3.3.2. This dependence is represented by a power law with an exponent 
close to 3.4 (the averaged value of the slope for the points in Fig. 3.3.2 is ). This 
dependence is also valid for polydisperse polymers if one assumes that M in Eq. 3.3.15 
means the weight averaged molecular mass, , i.e., the dependence η0(M) for high 
molecular mass polymers is given by:

[3.3.16]

where constants K2 and b have the same values as in Eq. 3.3.15.
One can see that the viscosity of polystyrene, given in Fig. 3.3.2, as an example, 

changes in a very wide range exceeding 5 decimal orders. The same is true for any other 
polymer. Therefore, in contrast to low molecular weight substances, it is meaningless to 
put the question: which polymer is more or less viscous? The answers depend on the chain 
length.
3.3.4.2 Viscosity of polymer solutions
An example of the viscous properties of polymer solutions in the whole concentration 
range is given in Fig. 3.2.1. The viscosity of solution, η, is higher than the viscosity of the 
solvent, ηs. In very dilute solutions, macromolecules move independently. One may postu-
late that there is a linear dependence of solution viscosity on concentration, c.55 This linear 
dependence is written as

[3.3.17]

where the constant [η] is introduced as a coefficient of the first-order term. A more rigor-
ous definition of this constant is:

[3.3.18]

The constant [η] is called the intrinsic viscosity and its dimension is reciprocal to 
concentration. [η] is a measure of the influence of polymer dissolved in a solvent on the 
viscosity of a polymer-solvent system. In various molecular theories, it was proven that 
[η] depends on the size of the macromolecule. That is why [η] directly correlates with the 
molecular mass of polymer and can be used as a simple measure of molecular mass. As a 
general rule, this correlation is expressed by the standard Mark-Kuhn-Houwink equation:

[3.3.19]

where the parameters k and α are constants that are characteristics of polymer and solvent 
used. In many cases, at least for flexible-chain polymers, α lies between 0.5 and 0.8. 
Molecular mass related to [η] is known as a viscometric-averaged molecular mass which 
is intermediate between number-averaged, , and weight-averaged, , molecular 
mass.
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 The product c[η] is a measure of the volume occupied by macromolecules in solu-
tion. It is assumed that c[η] < 1 is typical of dilute solutions. In this case, one may neglect 
interactions between macromolecular chains. At c[η] > 1, intermolecular contacts influ-
ence viscous properties of solution.

The dependence η(c) is also represented by the Huggins equation,56 which can be 
written as:

[3.3.20]

where the constant KH is called the Huggins constant. The Huggins constant is a measure 
of interaction between polymer and solvent.

Many other approximations of η(c), dependence can be formally constructed as the 
sum of higher-order terms of concentration. Many fitting equations for η(c) dependence 
were proposed. The Martin equation57 is one of them:

[3.3.21]

where KM is the Martin constant.
The Kraemer equation58 is widely used in analytical practice: 

[3.3.22]

where KK is the Kraemer constant.
In the range of low concentrations, 

any non-linear equation is approximated by 
the simplest linear Eq. 3.3.17. The method 
of determination of [η] depends on the 
equation used for approximation. If the 
Huggins equation is used for fitting experi-
mental data, [η] is found by the presenta-
tion of the experimental data in coordinates 

 vs. c and extrapolation of 
this dependence to c = 0. The intercept 
gives the value of [η] and the slope of the 
straight line is a measure of KH. This 
dependence is linear.

The structure of equations commonly 
used for η(c) dependence shows that they 
can be presented in a dimensionless form. 
The argument is expressed as c[η], and the 
dimensionless viscosity as 

. These values are 
used in the analysis of concentration depen-
dencies of the viscosity of different poly-

mers. In the presentation of viscometric data with these dimensionless variables for 
different polymer-solvent systems, the common initial reference point exists:  at 

η ηs–
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Figure 3.3.3. Concentration dependencies of viscosity 
of polyisobutylene solutions in different solvents in the 
whole concentration range. T = 20oC. [Adapted, with 
permission, from V.E. Dreval, A.Ya. Malkin, G.V. Vino-
gradov, A.A. Tager, Europ. Polym. J., 9, 85 (1973)].
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c[η] = 0. This permits the comparison of concentration dependencies of different polymer-
solvent systems in reference to a common point.

Two polymers are further discussed: polyisobutylene (Fig. 3.3.3) and polystyrene 
(Fig. 3.3.4) solutions in different solvents. Polyisobutylene melts at the measurement tem-
perature. This permits us to measure the viscosity of its solutions in the whole concentra-
tion range. Polystyrene is in the glassy state at the measurement temperature. Thus, its 
solution at a certain concentration will form a glassy state. In the first case, there is a sin-
gle final point corresponding to the polymer melt. The difference in viscosity of equi-con-
centrated solutions is not large in the whole concentration range. 

Experimental data in Fig. 3.3.4 are represented by reduced (dimensionless) variables 
in order to have a common initial point. The viscosity grows unlimitedly when concentra-
tion approaches a certain value (different for various solvents). This corresponds to the 
glass transition of solution. Depending on the nature of the solvent, the difference in vis-
cosity of equi-concentrated solutions can reach several decimal orders. 

The difference in the concentration dependence of viscosity for different polymers is 
determined by the relaxation state of the polymer, i.e., whether the polymer is in a melt or 
glass state at the temperature of viscosity measurements. 

The influence of solvent on solution viscosity in the low concentration range is 
determined by the coefficients of the high-order term of the η(c) dependence. The initial 
parts of these dependencies coincide if the reduced argument KMc[η] is used. This argu-
ment permits the generalization of η(c) dependence in the whole concentration range. This 
is illustrated in Fig. 3.3.5. The reduced coordinates are used to construct a unique viscosity 
vs. concentration dependence for all solvents in the whole concentration range. It means 

Figure 3.3.4. Concentration dependencies of viscosity 
of polystyrene in five different solvents. T = 25oC. 
[Adapted, with permission, from V.E. Dreval, A.Ya. 
Malkin, V.O. Botvinnik, J. Polym. Sci.: Polym. Phys. 
Ed., 11, 1055 (1973)].

Figure 3.3.5. Concentration dependence of polyisobu-
tylene solutions in different solvents using the 
reduced coordinates. [Adapted, with permission, from 
V.E. Dreval, A.Ya. Malkin, V.O. Botvinnik, J. Polym. 
Sci.: Polym. Phys. Ed., 11, 1055 (1973)]. 
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that the parameters [η] and KM representing the η(c) dependence in the low concentration 
range are responsible for the viscous properties of solutions up to the limit of very high 
concentrations. 

The last statement is valid for many polymer-solvent systems (see Fig. 3.3.6).59

There is an initial universal part of the reduced dependence, , common to all poly-
mer-solvent systems. A universal character of this dependence for any polymer and differ-
ent solvents in the whole concentration range exists with a continuous shift in the position 
of the curve of flexible and rigid polymer chains. 

The η(c) dependence in the high polymer concentration range can be represented by 
simple analytical equations. In many cases, the power-law equation is useful:

[3.3.23]

The values of the exponent are m = 5-7.
Combination of Eqs. 3.3.16 and 3.3.23 gives:

[3.3.24]

Using ordinary values of constants (b = 3.5 and m = 5-7), the exponents ratio b/m is 0.5-
0.7. The value of the ratio b/m coincides with exponent α in Eq. 3.3.19. Then, combining 
Eqs. 3.3.19 and 3.3.24, the following equation for solution viscosity is obtained:

[3.3.25]

and viscosity of highly concentrated solu-
tions is a function of the product c[η] as in 
the low concentration range. The same fac-
tor also determines the viscosity of concen-
trated solutions. There is no proof, but 
circumstantial evidence, that the structure 
of solvent does not change in the whole 
concentration range and that the macromo-
lecular conformation (conformation of a 
statistical coil) continues to exist in the 
whole range of concentrations from dilute 
to concentrated solutions until the molten 
state. It means that solutions are homoge-
neous mixtures of polymer and solvent. It 
is not necessarily a general case. The oppo-
site situation is met when polymer mole-
cules in the solution are arranged in a 
regular structure. It is especially typical of 
rigid-chain (rod-like) polymers, which 
transfer into a liquid crystalline (LC) 
state.60 This transition may take place at a 
certain temperature (for thermotropic poly-
mer solutions) and in isothermal conditions 
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Figure 3.3.6. Concentration dependencies of viscosity 
for different polymers and solvents presented in reduced 
variables: 1 − polybutadienes of different molecular 
masses,  = 0-1.0; 2 − polydimethylsiloxanes,  = 0-
1.0; 3 − polyisobutylenes of different molecular masses, 

 = 0-1.0; 4 − acetyl cellulose,  = 0-0.35; 5 - polyary-
late,  = 0-0.3; 6 − polyvinyl acetate,  = 0-0.7; 7 −
polystyrene,  = 0-0.7. Each curve contains data 
obtained for several different solvents. [Adapted, by 
permission, from V.E. Dreval, A.Ya. Malkin, V.O. Bot-
vinnik, J. Polym. Sci.: Polym. Phys. Ed., 11, 1055 
(1973)]. 
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at a certain concentration (lyotropic solu-
tions).62 The latter case is the most interest-
ing for discussion of the concentration 
dependence of viscosity. It is illustrated in 
Fig. 3.3.7.61 The unexpected sudden 
decrease of viscosity at some critical con-
centration, c*, is observed instead of con-
tinuous growth as in Figs. 3.3.3 to 3.3.6. It 
corresponds to a phase transition from a 
homogeneous solution to the LC state. Flo-
ry62 has provided physical reasons for these 
transitions. He showed that a regular, paral-
lel positioning of the rod-like molecules 
becomes thermodynamically preferable at 
some critical concentration. This critical 
concentration of LC phase transition corre-
sponds to sharp maxima of viscosity in Fig. 
3.3.7.

The monotonous viscosity growth is 
given by the factor of the volume filling 
c[η] in the whole concentration range, and 
the rapid phase transition into the LC state 
with a drop of viscosity at c > c* are 

extreme cases (though the first one is rather typical of many polymer-solvent systems). In 
practice, it is possible to observe various intermediate cases of intermolecular interaction 
(for example, hydrogen bonding, the formation of colloid-like micelle clusters, and so on) 
leading to the appearance of various, more or less regular, structure aggregates of different 
sizes with various lifetimes. It results in different, sometimes very unusual anomalies of 
viscosity vs. concentration dependencies of real polymer solutions.
3.3.4.3 Viscosity of suspensions and emulsions
Suspensions and emulsions are multicomponent media consisting of the continuous phase 
and dispersed particles. So, in the discussion of the viscosity of suspensions, it is import-
ant to answer the following question: should a dispersion of solid particles (in suspension) 
or liquid droplets (in emulsions) in a flowing medium be treated as a homogeneous system 
neglecting its concentration and structure distribution? The answer to this question is not 
always positive. It depends on the ratio of particle size and the dimensions of the flow 
channel. It is reasonable to neglect the inner inhomogeneity of the medium and to consider 
a flowing system as a continuum to calculate some of its averaged characteristics, such as 
viscosity. In this case, viscosity represents a measure of energy dissipated in the flow of 
such a multi-component system. 

The same is also true for mixtures: the size of component particles may be large, but 
in many cases (with some caution), it is reasonable to calculate the viscosity of such a 
multi-component system as a measure of energy dissipation during flow.

It is well known that the concentration dependencies of the viscosity of suspensions 
and emulsions in the range of dilute and semi-dilute dispersions are analogous.63 This is 

Figure 3.3.7. Concentration dependencies of viscosity 
of poly-p-benzamide solutions in dimethyl acetamide −
transition to the LC state. Molecular masses of a poly-
mer are shown on the curves. [Adapted, with permis-
sion, from S.P. Papkov, V.G. Kulichikhin, V.D. 
Kalmykova, A.Ya. Malkin, J. Polym. Sci.: Polym. Phys. 
Ed., 12, 1753 (1974)].
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correct till approaching the close-packing limit of particles of disperse phase in suspen-
sions. However, in highly concentrated emulsions the concentration of the inner phase can 
exceed this limit. The latter case will be discussed at the end of this section.

The viscosity of liquid typically increases when the concentration of dispersed parti-
cles in the flowing medium increases. This is due to the additional energy loss for the liq-
uid to flow around solid particles. Einstein64 was the first who examined the problem of 
viscosity calculations of liquids containing small amounts of dispersed particles. He 
obtained the following relationship, which is a ground rule for all future studies in this 
field:

[3.3.26]

Here η is the viscosity of the suspension, ηs is the viscosity of a liquid phase, and  
is the volume concentration of solid spherical particles. 

This equation is the first, or linear approximation, valid for non-interacting particles. 
It means that the dynamics of flow around one particle does not influence the velocity 
field around any other particle. 

Many publications were devoted to the generalization of this equation for a range of 
higher concentrations. The complete form of expression for viscosity at higher approxima-
tions is a sum of concentrations with increasing power:

[3.3.27]

The values of coefficients are different in various theories. The values cited for the 
coefficient b vary from 4.4 to 14.1. However, it is worth mentioning that the essential part 
in the estimation of b is played by the number of terms in Eq. 3.3.27.

A rather simple Quemada equation provides a good correlation with experimental 
data in many cases:65 

[3.3.28]

where ϕ* is the dense random packing volume fraction that varies in the range of 0.48-
0.57.

The other popular and convenient semi-empirical equation for the dependence η( ) 
was proposed by Mooney:66 

[3.3.29]

This equation is converted to the Einstein equation at low concentrations. It satisfies 
numerous experimental data in the intermediate concentration range, and it describes an 
important effect of unlimited viscosity increase when approaching some critical concen-
tration, *. The latter has the meaning of limiting the possible degree of filling a space 
with filler particles. For example, if a solid filler is composed of spherical particles 
arranged in a hexagonal or cubic-centered manner * = 0.74. 

The typical shape of the concentration dependence of viscosity of dispersion of solid 
particles is shown in Fig. 3.3.8.
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We can find several dozen equations for concentration dependencies of the suspen-
sion viscosity in publications. The most general of them covering different versions of this 
dependence looks as given elsewhere67 and it is formulated as

[3.3.30]

Formulas of the power or exponential type, as discussed above, treat the viscosity of 
suspensions as unique functions of concentration. The following effects can lead to more 
complicated results:68 

• non-spherical shape of particles
• presence of particles of different sizes and shapes
• non-Newtonian properties of a liquid medium
• deformability of filler particles that are not necessarily solid (e.g., liquid or gas)
• physical interaction between liquid and solid particles, leading to the formation 

of stable surface layers
• interactions of various types between solid particles (for example, solid particles 

may mechanically touch each other, be charged, and so on).
Each of the effects on the list may have special importance for a particular system. 

For example, the deformability of solid non-spherical particles is especially important for 
the flow of blood. Physical interactions between solid particles are of special importance 
in processing and applied properties of rubbers, and so on.

Taking into account any of these effects requires modification of equations for the 
concentration dependence of viscosity. The modification has to include information about 
the content and structure of a flowing system. This is a problem that requires advanced 
and special investigations in the field of multi-component systems. Further discussion on 
the rheology of emulsions can be found in the reviews.69,70 

As was mentioned above, there is a close packing limit of spherical particles in the 
continuum, which for monodisperse particles is close to  ϕ* = 0.74. The degree of filling 

can be higher for the polydisperse particles 
because small particles can occupy empty 
spaces between larger ones. Meanwhile, 
the threshold of filling of solid particles 
does not much exceed this limit. 

If the concentration of a filler 
approaches ϕ*, a suspension lost a possi-
bility to flow due to the absence of suffi-
cient free volume for displacements of hard 
particles. This is the case of “jamming” or 
“dynamic (mechanical) glass transition”, 
i.e., the transition from a fluid to a non-flu-
ids state.71-73 This effect is well known to 
those, who tried to push a dispersed, in par-
ticular, granulated, material, such as sand, 
clay, any form of waste, etc., through a 
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Figure 3.3.8. Typical concentration dependence of the 
viscosity of suspension of solid particles.
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pipe; as the pressure is increased, the pipe is “plugged” at some moment and displacement 
of the material either becomes impossible or requires a disproportionate increase in pres-
sure. Different aspects of this phenomenon are discussed elsewhere.74 

However, such highly concentrated suspension of solid particles (also applies to dry 
solid particles) can move in a heterogeneous manner by blocks along boundary lines as 
shown in Fig. 3.3.9. 

Relative displacement of large clusters in highly concentrated suspensions was 
described  in Ref. 75. Ruptures in movement of granular materials were also found in Ref 
76. This kind of material displacement, which unlikely to be treated as "flow," is accompa-
nied by strong and irregular stress oscillations.77 Surely. it would be incorrect to try to esti-
mate the "viscosity" of this movement.

The situation with emulsion is different. They can be compressed leading to filling 
some space due to the transformation of spheres to polygonal objects separated by thin 
interface films. Then, the volume degree of filling can be as high as 0.93. The transition to 
the highly concentrated emulsions significantly affects their rheological properties. First 
of all, they become gel-like or pastes. It means that they exhibit a solid-like behavior at 
low deformations or low stresses. This is illustrated in Fig. 3.3.1078 (see also Fig. 2.8.12) 
where this effect is indicated by the absence of frequency dependence of the elastic (stor-
age) modulus. It should be noted that in this frequency range the loss modulus exhibits 
low value. 

The physical explanation of this kind of elasticity was proposed by Princen79 and 
later developed in Ref.,80 where the elasticity of compressed droplets was treated as a con-
sequence of the increases in the droplet surface under the osmotic pressure. However, the 
latest understanding of this phenomenon includes the input of interface interaction 
between compressed droplets.81 

Fig. 3.3.10. Storage modulus in a wide frequency 
range for highly concentrated emulsions with different 
concentration of an inner phase (shown at the curves). 
After I. Masalova, A.Ya. Malkin, Colloid J., 69, 185 
(2007).

Figure 3.3.9. Scheme illustrating the character of 
deformation in a highly concentrated suspension (dis-
placement along the slipping surfaces).
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3.3.4.4 Viscosity and viscoelastic behavior of nanocomposites
The rheological behavior of nanocomposites, i.e. polymers reinforced by nanometer-scale 
particles, such as carbon black (CB), carbon nanotubes (CNTs), nanoclays, etc. is exten-
sively studied. The most frequently used technique in these studies is a small amplitude 
oscillatory shear (SAOS) flow. It is used to characterize the structure of polymers and 
filled polymer systems in their original state. SAOS has a solid theoretical foundation 
based on the linear theory of viscoelasticity. The measured dynamic properties in SAOS 
are independent of the strain amplitude and strain rate amplitude. Rheological behavior of 
nanocomposites is attributed to the dispersion and breakdown of aggregates and agglom-
erates in the case of CB and CNT nanofillers and the intercalation and exfoliation in the 
case of nanoclays. The most extensive review on the effect of interactive fillers such as 
black and white fillers in elastomeric systems on their dynamic properties was published 
by Donnet.82 Four factors are identified to contribute to the storage modulus behavior of 
nanocomposites. These are matrix properties, hydrodynamic effects, nanofiller-matrix, 
and nanofiller-nanofiller interactions. Contributions of these factors to the overall 
dynamic properties in the most simplistic way can be considered to be additive. Although 
direct methods to fully evaluate each of these contributions are unavailable, the strain 
amplitude dependence of the storage modulus of nanocomposites is attributed to the nano-
filler-nanofiller interactions and at high strain amplitudes, to the matrix-nanofiller interac-
tions and the matrix properties. However, the dynamic properties alone would not lead to a 
full understanding of the problem. Applications of direct spectroscopic techniques that 
may reveal these interactions are beneficial. In contrast to microcomposites, containing 
micron-sized filler particles and exhibiting a solid-like behavior at a high filler concentra-
tion, nanocomposites exhibit such behavior at a low concentration of nanofillers. As an 
example of such behavior of nanocomposites, Figure 3.3.11 shows the storage modulus (a) 
and loss modulus (b) of polypropylene (PP) melt as a function of the frequency at various 
CNT (Nanocyl NC7000) concentrations in the linear region of their behavior. A typical 
terminal behavior at low frequencies with the scaling of G' ~ ω2 is observed for pure PP 
melt in Figure 3.3.11 (a) with incorporation of CNTs at a concentration of only 1 wt%, 
indicating that the long-range motion of polymer chains is restrained by the presence of 

Figure 3.3.11. The storage modulus (a) and loss modulus (b) as a function of frequency in linear region for metal-
locene polypropylene (PP3825) melt containing various weight concentrations of carbon nanotubes (CNTs, 
NC7000) at 160oC.
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CNTs. With further increase of CNTs concentration, the storage modulus is increased by 
several orders of the magnitude accompanied by a significant decrease of the slope of G' 
vs. ω at low frequencies, eventually leading to the appearance of the low-frequency pla-
teau of G' at 3 wt% and 5 wt% concentrations of CNTs. This is solid evidence of the for-
mation of the CNTs network at such a low concentration of CNTs and increasing the 
interaction between the polymer and CNTs. At high frequencies, CNTs showed less effect 
on the storage modulus increase, suggesting that CNTs do not significantly influence the 
short-range dynamic motion of polymer chains. In addition, as seen from Fig. 3.3.11 (b), a 
significant increase of the loss modulus, G'', with increasing CNTs concentration is also 
observed at low frequencies, which is also an indication of the effect of CNTs on the relax-
ation behavior of polymer chains leading to a solid-like behavior of nanocomposites at 
low concentrations of CNTs.

Figure 3.3.12 shows the complex dynamic viscosity as a function of frequency (a) 
and the apparent viscosity as a function of the shear rate (b) for PP and PP/CNT compos-
ites of various concentrations at 160oC. The complex viscosity of virgin PP shows a New-
tonian behavior at low frequencies. However, with the incorporation of only 1 wt% CNTs, 
the Newtonian behavior disappears and a strong shear thinning behavior is observed at 
low frequencies. With the incorporation of 3 wt% and 5 wt% CNTs the complex viscosity 
shows a much stronger non-Newtonian behavior with the slope of the complex viscosity 
vs. frequency being 1, indicating the unbound rise of the complex viscosity with the 
decrease of the frequency, i.e., nanocomposites show a solid-like behavior. This is due to 
the formation of the CNT network leading to an increase of the largest relaxation time of 
nanocomposites. Similar behavior is also seen for the dependences of the apparent viscos-
ity on the shear rate in the steady-state flow (Figure 3.3.12 b). However, a comparison of 
the complex viscosity with the apparent viscosity at frequencies being equal to shear rates 
indicates that these viscosities are equal for the pure PP melt only, indicating the validity 
of the Cox-Merz rule. However, a strong deviation from this rule appears for nanocompos-
ites with the complex viscosity being much higher than the apparent viscosity. This devia-
tion increases with an increase of CNT concentration in nanocomposites. 

It should be noted that during processing, the strain and strain rate are high. There-
fore, they affect the structure of materials. Accordingly, it is plausible to look at the strain 

Figure 3.3.12 Complex dynamic viscosity as a function of frequency (a) and apparent viscosity as a function 
shear rate (b) for PP and PP/CNT composites of various concentrations at 160oC.
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amplitude dependence of dynamic properties of PP/CNT nanocomposites. In particular, 
the large amplitude oscillatory shear (LAOS) flow is used to provide additional informa-
tion about structural changes in polymer melts.83 However, understanding and analysis of 
the dynamic properties of the LAOS flow are more complicated and less developed. In the 
LAOS flow, a sinusoidal oscillatory strain/stress with a large amplitude is imposed and the 
corresponding stress/strain response is not sinusoidal. The non-sinusoidal response signal 
is processed using the Fourier transform to calculate contributions from higher-order har-
monics. In the LAOS flow, the imposed strain is sinusoidal and the shear stress response is 
not sinusoidal. It contains odd harmonics, as given in the following Fourier series:84 

           [3.3.31a]

where σn is the nth harmonic of the shear stress and δn is the phase angle between nth har-
monic of shear stress and imposed strain. One can define a ratio of In/1 = σn/σ1 to measure 
the intensity of the nth harmonic defining the level of the nonlinearity of viscoelastic 
behavior. Eq. [3.3.31a] can be re-written as84 

            [3.3.31b]

where  and  are the primary storage modulus and loss modulus corresponding to 
the first harmonic of the shear stress, respectively.

Figure 3.3.13 shows the normalized primary values of G' and G'' (a) and the value of 
I3/1 (b) as a function of the strain amplitude for PP/5wt%CNT nanocomposites. The nor-
malized G' and G'' are defined as G'/G'0 and G''/G''0, where G'0 and G''0 are values of G' 
and G'' in the linear region corresponding to low strain amplitudes corresponding to the 
SAOS flow. It is seen that the normalized value of G' for the nanocomposite decreases 
with the strain amplitude, but the normalized value of G'' exhibits a maximum with 
increasing strain amplitude (overshoot) and then decreases. The explanations for the over-
shoot of G'' are very diverse.85-87 It is claimed that the overshoot of G' is due to the rear-
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Figure 3.3.13. Normalized primary values of G' and G'' for PP/5 wt% CNT composites (a) and ratio of the 3rd to 
a 1st harmonic of shear stress (b) as a function of strain amplitude at a frequency of 3 s-1 for various PP/CNT 
composites at 160oC.
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rangement of the loose clusters in the system,85 increase of the ineffective network 
density,86 and destruction and reformation of the microstructure in the system87 with the 
strain amplitude. The diversity of explanations means that the first harmonic of the shear 
stress is not sufficient in describing the nonlinearity. Therefore, the inclusion of the higher 
harmonic behavior is required to describe the nonlinearity. A variation of the values of the 
third harmonic, I3/1 = σ3/σ1, with the strain amplitude, is shown in Figure 3.3.13 (b). The-
oretically, the value of I3/1 is zero for the linear rheological behavior (SAOS) and is non-
zero for the nonlinear behavior (LAOS). For the pure PP melt, the value of I3/1 is seen to 
be close to zero at the strain amplitudes lower than 100%, and it increases to a value of 
0.02 only at a strain amplitude of 300%. The value of I3/1 increases monotonically with the 
strain amplitude and concentration of CNT. It is believed that in polymer nanocomposites 
when a nanofiller network is formed, the structure is analogous to that of a gel and exhibits 
a solid-like behavior. In these cases, the contribution of the higher harmonics of shear 
stress becomes large. 

Significant differences between the behavior of nanocomposites and microcompos-
ites are seen in Figure 3.3.14 showing the complex dynamic viscosity in the linear visco-
elastic region of polystyrene (PS) melt filled with various silica fillers versus the volume 
concentration at a low frequency of 0.01 s-1 (a) and a high frequency of 100 s-1 (b). The PS 
melt containing the precipitated porous spherical silica (FK140) and fumed smooth spher-
ical silica (Aerosil 90) with nano-sized particles having high surface areas forms nano-
composites, while the PS melt containing irregular shape silica (Minusil 5) and platelet 
shape silica (Novacite L337) of micron-sized particles, having low surface areas, form 
microcomposites. Large differences are clearly seen in the concentration dependences of 
the complex dynamic viscosity for mixtures containing these various fillers obtained at 
frequencies of 0.01 s-1 (Fig. 3.3.14 a) and at 100 s-1 (Fig. 3.3.14 b). Differences between 
the viscosity of microcomposites and nanocomposites cannot be attributed to a hydrody-
namic effect alone, since the significant differences in the complex dynamic viscosity 
behavior are seen at a low volume concentration of silica particles. The overall behavior at 
low concentrations is affected by a large relaxation time mechanism. The relaxation spec-
trum of the matrix is modified by the presence of strong filler-filler and matrix-filler inter-
actions, as was seen earlier from changes in the behavior of the storage modulus at low 

Figure 3.3.14. Dependences of the complex dynamic viscosity of various silica-filled polystyrene (Styrene 663) 
as a function of volume concentration of silica at frequencies of 0.01 s-1 (a) and 100 s-1 (b) at 200oC. Lines are 
drawn based on fitting to Maron and Pierce equation (Eq. 3.3.32).
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frequencies in Figure 3.3.14 (a) for PP/CNTs mixtures. The presence of strong filler-filler 
and matrix-filler interactions is directly observed in the SEM micrographs shown in Ref. 
88. Also, these large differences seen in the dependences of the complex dynamic viscos-
ity on the filler volume concentration shown in Figure 3.3.14 are analyzed using Maron 
and Pierce empirical model89 

[3.3.32]

which is equivalent to the Quemada equation [3.3.28], where ηr is the relative value of the 
complex dynamic viscosity of the mixture with respect to that of the matrix and ϕM is the 
maximum volume concentration related to rheological percolation concentration. Due to 
its simplicity and ease of fitting, this model is considered the best empirical expression.90

The results of this fitting are shown by lines in Figure 3.3.14. The maximum volume con-
centration, ϕM, obtained at a frequency of 0.01 s-1 and 100 s-1 are 5.51 and 9.22 vol%, 
6.07 and 9.98 vol%, 36.8 and 51.9 vol%, 43.2 and 63.6 vol% for Aerosil 90, FK140, 
Minusil 5, and Novacite L337, respectively. A large increase of the parameter ϕM is found 
at a high frequency in comparison with that at a low frequency. Therefore, the rheological 
behavior of these mixtures cannot be attributed to the particle-particle interactions alone, 
which shall follow frictional relationships being independent of the frequency. In addition, 
it is rather caused by the polymer-filler interactions. Obviously, one can argue that the PS/
silica mixture containing high surface silica at a concentration of 5 vol% is a dilute sus-
pension. However, based on the above obtained low values of ϕM, nanocomposites can 
actually be considered as highly filled suspensions, even at this low concentration level. A 
question arises what is the relationship between the rheological percolation threshold and 
the maximum volume concentration, ϕM, in polymer/particle mixtures. An answer to this 
question in a qualitative sense is very clear. The mixtures exhibiting low maximum con-
centrations would show low rheological percolation thresholds, such as occurs in nano-
composites. However, microcomposites exhibit high values of ϕM and therefore, high 
values of the rheological percolation thresholds.
3.3.4.5 Effect of filler surface area on the viscoelastic behavior of polymer  
            compounds
The effect of filler surface area on the viscoelastic behavior of polymers is demonstrated 
using silica-filled, tin-coupled star-shaped SBR (Duradene 739) compounds. Duradene 
739 is a solution polymerized 3- and 4-arm star SBR (Firestone Polymers). Its weight 
averaged molecular mass is 334,000. The rubber is comprised of 20% bound styrene, 60% 
vinyl, and an antioxidant stabilizer system.91 This rubber is a tin-coupled SBR that is com-
monly used in tire treads for its ability to improve various tire performance characteristics. 
Four different precipitated amorphous silica fillers (PPG Industries) were 532EP, 210, 
320G, and 190G. Its contents in SBR was 60 phr. The table below indicates the surface 
areas of the four silica grades.92 It is expected that a silica grade with a higher surface area 
will create stronger rubber-filler and filler-filler interactions, impacting both the morphol-
ogy and rheology of the compounds. These interactions are crucial to understanding the 
structure and behavior of a filled-polymer system. Forming these interactions consists of a 
series of complex processes, which are not yet fully understood. As a filler mixed with a 
polymer, the polymer chains interact with the filler, wetting filler particles. Once the parti-
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cles are wetted, dispersion takes place. Furthermore, in the case of rubber compounds, 
once the initial wetting and dispersion occur, the chains can form stronger bonds with the 
filler particles creating so-called "bound rubber." The wetting, dispersion, and bound rub-
ber formation processes are all kinetically controlled processes that occur concomi-
tantly.93,94 The adsorption-desorption kinetics are influenced by a number of aspects 
related to the filler nature (e.g., loading, surface chemistry, surface area, etc.) and the poly-
mer nature.93-96 Bound rubber is one of the most important metrics associated with rein-
forcement of filled elastomers. It is defined as the content of a filled rubber compound that 
cannot be dissolved in a good solvent. The reason a portion of the rubber cannot be dis-

solved is that it is strongly bonded to the 
filler particles.93-97 Thus, a high bound rub-
ber content is indicative of a highly rein-
forced elastomer. Bound rubber content is 
considered as a representation of the equi-
librium state of the adsorption-desorption 
process. The bound rubber content of a 
filled elastomer typically ranges from 20-
40%,93 although it can be higher in some 
cases. Several factors have been shown to 
impact the bound rubber content. Among 
the most important factors are the nature of 
the filler, the nature of the polymer, the 
filler surface area, and the mixing time. 
Generally, the higher surface area and 
higher mixing time lead to a higher bound 

rubber content, as seen in the table below. Additionally, the bound rubber content 
increases with storage time. The fraction of bound rubber usually plateaus within 3-4 
weeks for many filled rubber systems.97 

 In addition to the surface area of silica, the table above shows the measured bound 
rubber content in compounds. It is seen that SBR/190G exhibits the highest bound rubber 
content, followed by the SBR/320G, SBR/210, and SBR/532EP. Additionally, Figure 
3.3.15 depicts the bound rubber content as a function of filler surface area. Clearly, there 
was a direct influence of the filler surface area on the bound rubber content. The figure 
shows a monotonic increase in bound rubber content with filler surface area. This trend is 
due to the fact that the higher filler surface area promotes the greater rubber-filler interac-
tions, resulting in a higher bound rubber content.  

The surface area of silica and bound rubber content in compounds

Compound Surface area, m2/g Bound rubber, %

SBR/532EP 55 13.1 ± 1.9
SBR/210 135 25.3 ± 0.8
SBR/320G 165 31.3 ± 0.8
SBR/190G 195 33.5 ± 0.2

Figure 3.3.15. Bound rubber content as a function of 
filler surface area in SSBR/silica compounds. [Adapted, 
by permission, from Sandeep S. Pole, PhD Thesis, Uni-
versity of Akron, 2019].
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Figure 3.3.16 shows the 
SEM images for the four com-
pounds at 30,000X magnifica-
tions.99 From the images, it is 
apparent that SBR/532EP had the 
least rubber-filler network pene-
tration and also had the largest 
agglomerates. SBR/210 also 
showed strong agglomeration, but 
the agglomerates were better dis-
persed in comparison to those of 
SBR/532EP. SBR/320G and SBR/
190G both showed good disper-
sion, with sizes of the agglomer-
ates being smaller. A comparison 
of SBR/320G and SBR/190G 
indicates that agglomerates were 
smaller in SBR/320G. Evidently, 

this was due to the original forms of supplied silica fillers. Hi-Sil HDP-320G was supplied 
in the form of micro-granules, while Hi-Sil 190G was supplied in the form of granules.

Figure 3.3.17 depicts the storage (a) and loss (b) moduli, respectively, as functions of 
strain amplitude.100 As can be seen from the storage modulus behavior, the limit of the lin-
ear viscoelastic region was a strain amplitude of ~0.01 for all the filled compounds and 
~0.40 for the SBR gum. In addition, several important observations can be made. At low 
strain amplitudes, corresponding to the linear region of behavior, the storage modulus sig-
nificantly increases with the silica surface area due to high filler-filler interactions. 

A similar trend was also seen at different frequencies. Among various compounds, 
SBR/532EP had the weakest filler-filler network. At large strain amplitudes, the storage 
modulus also increases with the silica surface area due to higher polymer-filler interac-
tions and an increase in bound rubber content. Furthermore, a maximum was observed in 

Figure 3.3.17. Storage (a) and loss (b) moduli as functions of strain amplitude at 1 rad/s and 90oC. [Adapted, by 
permission, from S. S. Pole, A. I. Isayev, J. Appl. Polym. Sci., 138 (28), Article Number e50660 (2021)].

Figure 3.3.16. SEM images of SBR/532EP (a), SBR/210 (b), SBR/
320G (c), and SBR/190G (d) at 30,000x magnification. [Adapted, 
by permission, from S. S. Pole, A. I. Isayev, Rheol. Acta, 56 (12), 
983-993 (2017)].
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the loss modulus at a strain amplitude of 
~0.10 for SBR/190G, SBR/320G, and SBR/
210. This occurred due to significant vis-
cous dissipation arising from the breakup 
of the filler-filler network. SBR/532EP 
showed a very slight maximum at a strain 
amplitude of ~0.015. The maximum was 
not as pronounced as it was for the other 
compounds since the filler-filler network is 
very weak. Once the filler-filler network 
was broken in the filled compounds, differ-
ences in rheological behavior arose from 
rubber-filler interactions, hydrodynamic 
effects, and the polymer network. At higher 
strain amplitudes (γ0 > 0.50), the differ-

ences in the storage moduli between SBR/190G, SBR/320G, and SBR/210 became insig-
nificant. This occurred because the additional rubber-filler interactions caused by a higher 
filler surface area were destroyed in this high-strain-amplitude region, and there was no 
considerable difference in hydrodynamic effects or the polymer network. Also, at small 
amplitudes, compounds containing silica with high surface area exhibit a lower loss mod-
ulus. The latter means the compound has a lower loss tangent, indicating a more elastic 
material.

Figure 3.3.18 shows the time evolution of the linear relaxation modulus of SBR 
compounds containing silica of various surface areas.101 Similar to the observation in the 
storage modulus, the SBR gum exhibited the lowest relaxation modulus, followed by 
SBR/532EP, SBR/210, SBR/320G, and SBR/190G. Again, the differences in the stress 
relaxation behavior among the samples are attributed to the surface area of the silica filler. 
It is clear that the relaxation modulus increased with the filler surface area due to an 
increase in rubber-filler and filler-filler interactions. Additionally, the development of a 
plateau in the relaxation modulus was observed at large times for SBR/210, SBR/320G, 
and SBR/190G. This occurred due to the high rubber-filler interactions hindering the 
relaxation behavior of the compounds. SBR/532EP did not exhibit a plateau since its rub-

Figure 3.3.19. Relaxation modulus as a function of time at various strain levels for the SBR/532EP (a) and SBR/
190G (b) at 90oC. [Adapted, by permission, from S. S. Pole, A. I. Isayev, J. Appl. Polym. Sci., 138 (12), Article 
Number e50080 (2021)]

Figure 3.3.18. Relaxation modulus in the linear region 
as a function of time for SSBR and various compounds. 
[Adapted, by permission,  from S. S. Pole, A. I. Isayev, 
Rheol. Acta, 56 (12), 983-993 (2017)].



3.3 Equations for viscosity and flow curves 173

ber-filler network was not strong enough to significantly hinder chain relaxation. It is also 
apparent from the limit of the linear viscoelastic regime that the mere presence of a filler 
significantly increased nonlinearity in relaxation behavior.

The silica surface area also affects the behavior of relaxation modulus in the nonlin-
ear region. This influence is seen from Figure 3.3.19.101 The figure indicates relaxation 
modulus as a function of time at different strain levels for SBR/532EP (a) containing the 
lowest surface area silica and for SBR/190G (b) containing the highest surface area silica. 
It is obvious that the relaxation modulus decreased with both time and strain levels for 
both samples. Also, the development of a plateau in the relaxation modulus at long times 
of relaxation was observed for SBR/190G compound at all strain levels due to the strong 
rubber-filler interactions hindering relaxation behavior even in the nonlinear region. How-
ever, this plateau was not observed for SBR/532EP since the rubber-filler network was not 
strong enough to significantly hinder chain relaxation. For this reason, this compound did 
not exhibit a plateau at long times of relaxation. The relaxation behavior of SBR/532EP is 
similar to that of a rubber compound with a low filler content, which also does not exhibit 
a plateau at long times due to weak rubber-filler interactions.102 Additionally, it was seen 
from the extent of the linear viscoelastic region that the mere incorporation of filler sig-
nificantly increased the nonlinearity in the relaxation behavior of compounds. 

It is also seen that the relaxation modulus values at strain levels of 0.05 and 0.10 
were nearly identical for the SBR/532EP, indicating that the limit of the linear viscoelastic 
region was a strain level of 0.10. For SBR/190G, the relaxation modulus at strain levels of 
0.05 and 0.10 deviated significantly, especially at short times, suggesting that a strain level 
of 0.05 was the limit of the linear viscoelastic region. Also, similar to the strain amplitude 
dependence of the storage modulus, shown earlier, the relaxation modulus of the com-
pound containing the high surface area silica is more strongly affected by strain. There-
fore, the nonlinearity of the relaxation modulus increases with the increase in silica 
surface area. 

One important aspect of the stress relaxation behavior of polymer solutions and 
melts is the concept of time-strain separability. According to the principle of time-strain 
separability, the relaxation modulus can be factorized into two independent functions of 
time and strain as follows:

[3.3.33]

where G(γ,t) is the strain and time-dependent relaxation modulus, G0(t) is the time-depen-
dent linear relaxation modulus, and h(γ) is the strain-dependent damping function.103,104

According to Eq. (3.3.33), by dividing the relaxation modulus, G(γ,t), by the damping 
function, h(γ), a superimposable relaxation modulus master curve can be obtained. The 
applicability of the principle of time-strain separability was also analyzed for the different 
compounds. In order to determine the damping function, the relaxation modulus at the 
various strain levels was divided by the linear relaxation modulus at long times of relax-
ation, where the damping function is typically assumed to be time independent. This time 
was taken as ~1 s for the SBR gum and ~10 s for the filled compounds because the damp-
ing function of the SBR gum is expected to become time independent at shorter times of 
relaxation than that of the filled compounds. Figure 3.3.20 shows the reduced relaxation 
modulus as a function of time for SBR/532EP (a) and SBR/190G (b). A deviation at short 

G γ t,( ) G0 t( ) h γ( )×=
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times of relaxation (t < 0.1 s) was observed 
for all the samples due to a transient 
response of the instrument due to a non-
instantaneous imposition of strain. After 
~0.1 s, the SBR gum showed good super-
position, following the principle of time-
strain separability. As seen from Figure 
3.3.20 (a), the SBR/532EP compound con-
taining silica with the lowest surface area, 
also showed good superposition after ~0.1 
s, but a visible deviation was observed at 
longer times of relaxation (t > 10 s). At the 
same time, for the SBR/190G containing 

the highest surface area silica, the principle of time-strain separability was valid only in a 
very narrow range of times of relaxation, generally indicating the inapplicability of this 
principle for filled compounds.

The damping function is depicted as a function of silica surface area for all samples 
in Figure 3.3.21. The damping function is clearly a decreasing function of strain level. The 
sharpest drop in the damping function was observed for SBR/190G, followed by SBR/
320G, SBR/210, SBR/532EP, and the SBR gum. This trend for filled compounds is 
directly correlated to the surface area of the filler. The higher surface area caused a steeper 
decrease in the damping function, indicating significantly greater nonlinearity. Evidently, 
the increased rubber-filler and filler-filler interactions, due to a higher filler surface area, 
caused the increased viscoelastic nonlinearity. 
3.3.4.6 Effect of type of filler on the viscoelastic behavior of polymer  
            compounds
In the previous section, the effect of filler surface area on the rheological properties of 
polymer melts was discussed. Rheological properties are also affected by the type of filler, 
surface treatment, concentration, the polarity of polymer, and filler. There are a number of 
widely used commercial fillers. Carbon black (CB), silica, clay, kaolin, quartz, talc, and 

Figure 3.3.21. Damping function as a function 
of filler surface area at various strain levels and 
90oC. [Adapted, by permission, from S. S. Pole, 
A. I. Isayev, J. Appl. Polym. Sci., 138 (12), Arti-
cle Number e50080 (2021)].

Figure 3.3.20. Reduced relaxation modulus as a func-
tion of time for SBR/532EP (a) and SBR/190G (b) at 
90oC. [Adapted, by permission, from S. Pole, A. I. Isa-
yev, J. Appl. Polym. Sci., 138 (12), Article Number 
e50080 (2021)].
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graphite are the classic examples. Many investigations have been carried out to study the 
effects of CB,105 silica,106 clay,107 and white rice husk ash108 on the rheological properties 
of elastomers. However, the effect of the type of filler having the same surface area is sel-
dom studied. Therefore, dynamic properties of silica-, nanoclay- and CB-filled EPDM 
rubber compounds are discussed below. It should be noted that the compounds were pre-
pared utilizing the same mixing procedures, equipment, and mixing conditions. EPDM 
(Keltan 5636A, DSM Elastomers) with 5-ethylidene-2-norbornene (ENB) as a termono-
mer with 70% ethylene content, 4.5% ENB unsaturation was used. Three different kinds 
of fillers were utilized. These included: 1) amorphous precipitated silica, Hi-Sil 132 with 
BET surface area of 200 m2/g (PPG Industries); 2) an organoclay, Closite® 15A (Southern 
Clay Products); 3) carbon black, V1391 with a surface area of 202 m2/g (Cabot Corpora-
tion). It is seen that silica and CB have the same surface area. The effect of filler type and 
filler loading on dynamic properties of the mixtures of filled EPDM compounds is shown 
in Figure 3.3.22 depicting a comparison of the storage (a) and loss (b) moduli, complex 
dynamic viscosity (c) and Tan Delta (d) of EPDM and various filled EPDM mixtures ver-
sus frequency at 100°C obtained in SAOS.109 Obviously, the storage and loss moduli and 
complex dynamic viscosity of the silica-, nanoclay- and CB-filled EPDM mixtures are 
higher than those of the unfilled EPDM over the frequency measurement range. These 
properties continuously increased with increased filler loading with different fillers show-
ing their different level. In general, the storage and loss moduli and complex dynamic vis-
cosity of the silica-filled EPDM rubber show much higher values than that of the CB-
filled EPDM. There was no significant difference in the storage modulus between 10 phr 
(parts per hundred of rubber) silica- and nanoclay-filled EPDM mixtures at low-frequency 
values. However, the storage modulus of the 10 phr silica-filled EPDM mixture was 
slightly higher than that of the 10 phr nanoclay-filled EPDM mixture in the high fre-
quency region. The storage modulus for the 10 phr nanoclay-filled EPDM mixture was 
slightly higher than that of the 10 phr CB-filled mixture in the low-frequency region. 
However, the storage modulus showed an opposite trend at high frequency. Similar obser-
vation can be seen on the loss modulus and complex viscosity behaviors. 

The dependences of Tan Delta on frequency for EPDM and various EPDM/filler 
mixtures shown in Fig. 3.3.22 (d) indicate that Tan Delta decreases with frequency, but its 
frequency dependence decreases with increased filler loading. The reduction of Tan Delta 
with frequency was due to the fact that EPDM and EPDM/filler mixtures were in the tran-
sition region from the fluid state to the rubbery state within the frequency measurement 
range.110 The Tan Delta of the various EPDM/filler mixtures decreased with increased 
filler loading. The samples at 10, 20, and 30 phr silica-filled EPDM mixtures showed 
lower Tan Delta values than the CB-filled samples at the same filler loading. This indi-
cates that the silica-filled EPDM mixtures are more elastic than the CB-filled ones. In 
addition, Tan Delta of the 10 phr silica-filled EPDM mixture was higher than that of the 10 
phr nanoclay-filled one in the low frequency region, whereas the Tan Delta of the 10 phr 
silica-filled EPDM mixture was lower than that of the 10 phr nanoclay-filled one at high-
frequency region. This indicated that the 10 phr silica-filled EPDM mixture was less elas-
tic than the 10 phr nanoclay-filled sample in the low-frequency region. At the same time, 
the 10 phr silica-filled EPDM mixture was more elastic than the nanoclay-filled sample. It 
is also seen that the effect of various fillers on Tan Delta diminishes in the high-frequency 
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region. Finally, it is clearly established that in addition to the effect of filler surface area on 
rheological properties, different fillers with the same surface area affect the dynamic prop-
erties of compounds. 
3.3.5 EFFECT OF MOLECULAR WEIGHT DISTRIBUTION ON  
         NON-NEWTONIAN FLOW 
Various attempts to construct the flow curve equations are based on molecular models. For 
this approach, the knowledge of the mechanism of non-Newtonian behavior is required. 
Polymeric materials are characterized by their polydispersity, i.e., they are mixtures of 
fractions having different molecular mass. As demonstrated in Fig. 3.3.23, the viscosity of 
the monodisperse polymer is constant, η0 = const, until critical stress, σs, after which no 
flow is possible. Formally, it can be written as:

[3.3.34]

Let us mix two fractions of different molecular masses, each behaving like a Newto-
nian liquid until shear stress is σs. The results are shown in Fig. 3.3.23. The blend of two 
quasi-“Newtonian” liquids has non-Newtonian behavior. The deviation from the low shear 

η
η0      at    σ σs  or  γ· γ·s≤≤

σs γ·    at    σ σs>⁄   or  γ· γ·s≥



=

Figure 3.3.22. The storage (a) and loss (b) moduli, complex dynamic viscosity (c) and Tan Delta (d) as a function 
of a frequency for EPDM and EPDM/filler mixtures at 100°C.[Adapted, by permission, from H. Tan, A. I. Isa-
yev, J. Appl. Polym. Sci., 109, 767-774 (2008)].



3.3 Equations for viscosity and flow curves 177

rate Newtonian branch begins at a shear 
rate corresponding to a critical point, , of 
the high molecular fraction, as shown by a 
horizontal arrow in Fig. 3.3.23. This means 
that there are two domains in the flow 
curve of the blend and each of them is 
characterized by different rheological 
properties. In the low shear rate range, the 
blend, similar to both components, is a 
Newtonian liquid. In the shear rate range 
above the critical shear rate of the high 
molecular mass component, this blend is a 
non-Newtonian liquid. 

The following model of the non-
Newtonian behavior of a polydisperse 
polymer can be proposed.111 Low shear 
rate viscosity of a polydisperse polymer is 
determined by some rule of mixing; non-
Newtonian viscosity at the high shear rate 
range is calculated as the sum of inputs, 
first, low molecular mass components 
flowing as Newtonian liquids, and second, 
high molecular mass components flowing 
at shear rates exceeding their (different for 
different fractions) critical values  and 
behaving as non-fluid “filler”. 

The rule of mixing may have different 
forms based on empirical or molecular arguments. In particular, it can be assumed that the 
Newtonian viscosity of a polydisperse polymer, η0, is proportional to the weight-averaged 
molecular mass of a blend in the power b, as was discussed above (Eq. 3.3.16)

Based on the above-formulated suggestions, it is possible to write the following 
equation for a flow curve:

[3.3.35]

Here f(M) is a molecular mass distribution function.
The structure of Eq. 3.3.35 demonstrates that non-Newtonian behavior results from 

polymer polydispersity. The first term in this equation is the input of “flowing” fractions, 
and the second term represents the input of high molecular mass fractions which do not 
flow at high shear rates. The boundary between these two terms is the function of shear 
rate. This boundary (the upper limit of the first integral and the lower limit of the second 
integral) is expressed as:

γ·s

γ·s

η γ·( ) K2Mα( )
1 α⁄

f M( ) M
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M γ·( )

∞
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0
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Figure 3.3.23. Non-Newtonian behavior of a 
polydisperse polymer sample. Flow curve of a blend 
(0.7/0.3) of two monodisperse polymers. Polyisoprenes. 
MM are shown at the curves. 25oC. Horizontal arrow 
shows the spurt shear rate for a high molecular weight 
fraction. [Adapted, by permission, from A.Ya. Malkin, 
N.K. Blinova, G.V. Vinogradov, M.P. Zabugina, O.Yu. 
Sabsai, V.C. Shalganova, I.Yu. Kirchevskaya, V.P. Shat-
alov, Europ. Polym. J., 10, 445 (1974)].
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[3.3.36]

The validity of this approach is confirmed by the results of calculations of the non-
Newtonian branch of the flow curve of a blend (the solid symbols in Fig. 3.3.23). This 
method attracted attention of many researchers because it permits solving the inverse 
problem − calculation of molecular weight distribution, function f(M), based on rheologi-
cal measurements. Though it is an incorrect (ill-posed) problem,112 various methods for 
solving it are widely discussed in modern rheological literature.113 

The non-Newtonian flow of various fluids can originate from two different mecha-
nisms. First, this can be stress-induced structure rearrangement which is typical of multi-
component materials (emulsions, suspensions, and so on) or polymer with strong intermo-
lecular interaction. Second, this can be the result of polymer polydispersity because, in 
this case, we encounter mixtures of several substances with different viscoelastic proper-
ties.

3.4 ELASTICITY IN SHEAR FLOWS
3.4.1 RUBBERY SHEAR DEFORMATIONS − ELASTIC RECOIL

Results of continuous develop-
ment of shear deformation after 
application of constant shear 
stress are schematically shown in 
Fig. 3.4.1 by the 0AB part of the 
curve. Section 0A is an unsteady 
deformation range and the straight 
line AB represents the deforma-
tions corresponding to a steady 
flow. At point B stress is 
removed, flow ceases and elastic 
recoil takes place. The value of 
this elastic recoil is a measure of 
the elastic (or rubbery) deforma-
tion, γr, stored before the regime 
of steady flow was reached. This 

value is also called the recoverable strain, or recoil strain. The limits of elastic recoil are 
elastic deformations stored during the steady flow called ultimate recoil, . The total 
shear deformation, γ, is the sum of γr and the irreversible (plastic) deformation of flow, γf:

[3.4.1]

This sum reflects the superposition principle, which is valid in the linear viscoelastic 
behavior domain. However, it is not a universal principle. It is possible to carry out the 
same measurements at high shear stresses (the non-linear domain). In this non-linear case, 
the measured elastic recoil does not correspond to the elastic deformation stored at steady 
flow: if in the linear region there is no flow during elastic recoil, in the non-linear case, 

M γ·( )
σs

K2γ·
---------
 
 
  1 α⁄

=

γ∞

γ γr γf+=

Figure 3.4.1. Deformation and elastic recoil.
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some flow (accompanied by partial dissipation of the stored elastic energy) can take place 
during elastic recoil, and the measured value of γr is lower than expected. Therefore, the 
values of γr measured in the non-linear viscoelastic domain must be treated as relative 
(though might be useful) characteristic of elasticity only but not as the absolute values of 
rubbery deformations in the state of steady flow. 

Rubbery elasticity is characterized by the rubbery modulus, Ge, or by the reciprocal 
value − equilibrium shear compliance, Js, or (in the non-linear domain of viscoelastic 
behavior) ultimate recoil function. These parameters are determined as:

[3.4.2]

By definition, Ge and Js, are constants in the linear viscoelastic domain and they 
become dependent on the shear stress in the transition to the non-linear behavior domain.

Rubbery elasticity is typical for all 
liquid polymeric materials − melts, solu-
tions, dispersions, some colloid systems 
forming polymer-like structures, such as 
aluminum naphthenate colloid solutions, 
and some other materials.

A typical example of the ( ) 
dependence is shown in Fig. 3.4.2. The real 
measured values of recoverable strains may 
reach several hundred percent and they 
increase with the increase in shear rate (or 
shear stress). Changes in the rubbery mod-
ulus (or shear compliance) as a function of 
shear rate do not exceed one decimal order, 
even in the range of shear rates exceeding 6 
decimal orders.114 Measured values of the 
rubbery modulus in the non-linear domain 
have qualitative meaning only due to the 
noticed absence of superposition of elastic 
and flow deformations.

The initial (“linear”) value of shear 
compliance, , is an important rheological 
parameter (see Chapter 2). It is a factor 
related to the molecular structure of matter.

Many authors noticed that  of the so-called “monodisperse” polymers does not 
depend on the molecular mass (MM) of a polymer. 

The following values of  were obtained experimentally for “monodisperse” poly-
mers (or at least polymers with very narrow molecular-mass distribution):115,116 

Polydimethylsiloxanes 1.5*10-3 Pa-1 
Polybutadienes 1.6*10-4 Pa-1

Polyisoprenes 1.4*10-5 Pa-1

Polystyrenes 7.1*10-6 Pa-1 

Ge Js
1– σ

γ∞
-----= =

γ∞ γ·

Js
0

Js
0

Js
0

Figure 3.4.2. Elastic recoil as a function of shear rate for 
butyl rubber at various temperatures. [Adapted, by per-
mission, from G.V. Vinogradov, A.Ya. Malkin, M.P. 
Zabugina, V.F. Shumsky, Vysokomol. Soedin. (Polymers 
− in Russian), 11A, 1221 (1969)].
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These values are only estimates because of difficulties in the preparation of “mono-
disperse” polymers. 

The elasticity of polymer melts depends on the width of molecular-mass distribution 
(MMD). Regularly, MMD is characterized by the  ratio. However, the  
ratio is not a representative characteristic of MMD in its correlation with , because  is 
determined primarily by higher averaged values of MMD, i.e., the presence of even very 
small amounts of species with very high MM dramatically increases rubbery elasticity 
(quantitatively presented by the steady-state compliance) of melt.

The  values are determined by ratios of different average molecular weights, 
including the higher moment of molecular weight distribution. Two of these relations are 
the most popular. As was mentioned above, many authors used the ratio  as the 
measure of molecular weight distribution determining . In this case, the following equa-
tion is usually used:117 

The other equation is as follows:118 

Actually, it is rather difficult to make 
the choice between these equations. Both 
equations can successfully describe the 
same experimental data, as was demon-
strated for high-density polyethylenes.119

At the same time the ratio  can be 
used for the rough correlation with , as 
was shown for polypropylenes.120 

The role of small fractions of high 
MM fractions is illustrated in Fig 3.4.3, 
where  is presented as a function of the 
relative concentration in a mixture of two 
“monodisperse” polymers with different 
MM. The  values of mixed polymers are 
the same, but the blend has a very different 
value of . Also, a very strong effect of 
small amounts of high MM fractions is 
observed. Analogous experimental evi-
dence is known for various polymers. The 

 values are also sensitive to details of 
chain architecture and particularly to 
branching. Fig. 3.4.3 also shows that com-
pliance of solutions increases when solvent 
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Figure 3.4.3. Shear compliance of mixtures of “mono-
disperse” polyisoprenes − influence of MMD. w2 − con-
centration of a component with higher MM. 1 − MMs of 
components: 1.6*105/5.75*105; 2 − MMs of compo-
nents 6.5*104/8.3*105; 3 − Solution of a polymer (MM 
= 5.75*105) in low MM oligomer (MM = 7.3*103). 
[Adapted, by permission, from G.Zh. Zhangereyeva. 
M.P. Zabugina, A.Ya. Malkin, in Rheology of polymers 
and disperse systems and rheo-physics, Inst. of Heat 
and Mass Transfer, Belorussian Academy of Sciences, 
Minsk, 1, 161 (1975)]
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content increases and becomes much higher than  
of polymer melt.

The nature of recoverable deformations (elas-
tic recoil) in polymer melts and solutions is the same 
as in the cured rubbers: conformational changes in 
chain configurations in space. The difference 
between linear and cured polymers is in the lifetime 
of junctions: in cured rubbers junctions can be 
treated as existing infinitely long; junction (entan-
glement) lifetime in flowing solutions and melts is 
limited and therefore the elastic recoil is accompa-
nied by sliding in junctions, i.e., by flow.
3.4.2 NORMAL STRESSES IN SHEAR FLOW
3.4.2.1 The Weissenberg effect
Weissenberg described several abnormal observa-
tions from the point of view of classical fluid 
dynamics.121 Saponified hydrocarbon colloid gels 
and polymer systems (solutions and gels) become 
the main materials for demonstrating the Weissen-
berg effect.122 

Some examples of the phenomena called the 
Weissenberg effect are shown in Fig. 3.4.4, where 
the behavior of traditional viscous fluid and special 
“rheological” liquid are compared. The left pictures 
demonstrate what happens with an ordinary viscous 
liquid, whereas the pictures on the right side show 
the special phenomena observed in the deformation 
of “rheological” (or elastic) liquids. These are called 

the Weissenberg effect.
If a rod is rotating inside a “rheological” liquid, such liquid, instead of being dis-

placed out of the rotor by the centrifugal forces towards the walls of a vessel, begins to 
climb around the rotor (Fig. 3.4.4, case a). In the case of two coaxial cylinders (inner hol-
low), the rotation of the outer cylinder forces liquid into the inner cylinder (Fig. 3.4.4, case 
b). Another characteristic example concerns the flow of liquid between two parallel discs. 
When the outer disc is rotated around a common axis, the inner disc is lifted up by the nor-
mal force generated due to rotation (Fig. 3.4.4, case c), and if a hole were made in the cen-
ter of one of the discs, this “rheological” liquid, instead of being removed from the space 
between the discs to the periphery of the discs, is pressed through the hole. Some other 
related observations were also made which demonstrate similar unusual behavior of “rhe-
ological” liquid.

The immediate impression appears that in the flow of “rheological” liquid some 
forces exist which compress liquid from outside normal to its surface, acting like a stretch-
ing elastic ribbon twining around a sample and forcing it to move to the center. Such nor-
mal forces act not only normal to the surfaces of the discs but also in the radial direction to 
the central axis as well. 

Js
0

Figure 3.4.4. The Weissenberg effects (see 
text for details).
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Phenomena associated with the Weis-
senberg effect are very common in techno-
logical applications: reactors are supplied 
with rotating mixing elements (mixers) of 
different geometry and type. Such equip-
ment is used in various branches of the 
chemical, food, and pharmaceutical indus-
tries. Moreover, the last example of the 
Weissenberg effect shown in Fig. 3.4.4, 
case c was used to design a special type of 

machine for polymer processing, the so-called screwless extruder. In this design, a mate-
rial is mixed between two discs and pressed through a nozzle by the action of forces origi-
nated from the Weissenberg effect. Normal forces caused by rotation of parallel discs also 
give additional support in slide bearings if the “rheological” (elastic) liquid is used as a 
lubricant. Some investigators think that the Weissenberg effect provides the ability of 
articulations in biological organisms and that deficiency in this phenomenon leads to ill-
ness (“squeak in joints”).

It is interesting to understand the rheological origin of this effect, i.e., what happens 
at the reference point. The common feature of all phenomena is the appearance of forces 
acting in the direction of shear and in the perpendicular direction. In the language of con-
tinuum mechanics it is equivalent to the appearance of the normal stresses in shear. 

It can be anticipated that normal components of the stress tensor are related to the 
appearance of a diagonal component in the tensor of large elastic deformations. So, there 
is a common agreement that the Weissenberg effect is related to the existence of normal 
stresses in shear, and the latter can be explained by large elastic deformations developed in 
the flow. (It may be argued whether this explanation is general, but undoubtedly the large 
elastic deformations lead to normal stresses). 
3.4.2.2 First normal stress difference − quantitative approach
Stress combination in a simple shear is expressed by the stress tensor shown in Fig. 3.4.5. 
The tensor has the following structure: 

[3.4.3]

The stress tensor can be presented as the sum of hydrostatic pressure and the devia-
toric components. If the pressure is not high, it is possible to neglect the compressibility of 
liquid relevant in some real situations. Therefore, only the deviatoric part of the stress ten-
sor is important for the deformation of fluids. It means that if the hydrostatic pressure is 
superimposed, it will change all normal components of the stress tensor but would not 
influence flow. The direct consequence of this approach is that in order to characterize the 
effect of normal stresses in shear flow, it is not the absolute values of normal stresses but 
their differences that are important. 

The differences of normal stresses are defined as follows: 

σi j

σ11 σ12 0
σ21 σ22 0
0 0 σ33

=

Figure 3.4.5. Stress tensor in shear between two parallel 
planes.
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the first (or primary) difference of normal stresses: N1 = σ11 − σ22 
the second (or secondary) difference of normal stresses: N2 = σ22 − σ33 
In rheological literature, N1 and N2 are not often used but their coefficients (analo-

gous to the use of viscosity coefficient instead of the shear stress) are introduced. 
The first and the second normal stress coefficients are defined as

[3.4.4]

and 

[3.4.5]

It is interesting to compare the shear and normal stresses in a steady shear flow in 
order to understand the meaning and value of the normal stress effect. An example of 
experimental results is shown in Fig. 3.4.6 for the shear stress and the first normal stress 
difference. The normal stresses are smaller than the shear stresses at low shear rates but 
they are growing along with an increase of the shear rate much faster than shear stresses 
and they exceed the latter at high shear rates. The ratio between stress tensor components 
depends not only on the shear rate but on the nature of the liquid, temperature, and so on.
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Figure 3.4.6. Shear and the first normal stress depen-
dencies on shear rate in a steady flow at different tem-
peratures. Polyisobutylene. M = 1*105. Dotted lines −
shear stresses; solid lines − normal stresses. [Adapted, 
by permission, from G.V. Vinogradov, A.Ya. Malkin, 
V.F. Shumsky, Rheol. Acta, 9, 155 (1970)].

Figure 3.4.7. Relationship between the first differ-
ence of normal stresses and the shear stresses in a 
steady flow of butyl rubber solutions in cetane. T = 
20oC. Concentrations are labelled on the curves. 
[Adapted, by permission, from G.V. Vinogradov, 
A.Ya. Malkin, G.V. Berezhnaya, Vysokomol. Soedin. 
(Polymers − in Russian), 12, 2797 (1971)].
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The direct relationship between the first normal stress difference, N1, and the shear 
stress, σ, can be obtained after excluding the shear rate (see Fig. 3.4.7). N1 is proportional 
to the square of the shear stress: 

It means that the appearance of the first difference of normal stresses is the second-
order effect in relation to shear stresses.

The coefficients of normal stress differences (and apparent viscosity) depend on 
shear rate. This is caused by a strong non-linearity of the rheological properties of the liq-
uid. The initial values of the coefficients of normal stresses, Ψ0, as their limits at low shear 
rates, can be defined analogously to Newtonian viscosity.

The first normal stress difference is the second-order effect in the whole shear rate 
range, including the range of non-Newtonian flow. The following relationship is valid:

[3.4.6]

The first normal stress difference is the effect of the second order in comparison with 
the viscous flow and this directly leads to the relationship between Ψ0 and molecular mass 
of the polymer (based on Eq. 3.3.15):

[3.4.7]

where Kψ and b are constants.
However, normal stresses − contrary to shear stresses − are more dependent on 

higher moments of molecular mass distribution than viscosity, i.e., the M value in Eq.3.4.7 
for polydisperse polymers must be substituted not by  but by higher averaged values 
of molecular mass.
3.4.2.3 Second normal stress difference

The second normal stress difference seems 
less important for practical applications 
because N2 << N1. However, the measure-
ments of N2 are important for constructing 
different rheological models and theories. 
The published experimental results of N2
are controversial: in early publications, 
zero, negative, and positive values of N2
were found. However, careful analysis of 
possible experimental errors leads to the 
general conclusion that N2 is negative (N2 < 
0) and its absolute value is close to (0.1-
0.3)N1.123 Some shear rate dependencies of 
all components of the stress tensor are pre-
sented in Fig. 3.4.8.
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Figure 3.4.8. Shear and normal stresses in stationary 
flow of polyisobutylene [Adapted, by permission, from: 
N. Ohl and W. Gleissle, Rheol. Acta, 31, 294 (1992)]. 
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3.4.3 NORMAL STRESSES AND ELASTICITY
The common agreement that the normal stresses are related to the elasticity of liquid is 
quantitatively expressed by the Lodge equations valid for “linear” elastic liquids (see also 
Section 2.5.2):

[3.4.8]

or

[3.4.8a]

These equations can also be written as a relationship between coefficients:

[3.4.9]

These equations demonstrate that the 
normal stresses are second-order effects 
with respect to the shear stresses.

Eq. 3.4.9 is for Newtonian liquid 
capable of exhibiting elastic deformations. 
Therefore this equation contains coeffi-
cients for Newtonian viscosity, η0, and 
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---------= =

Figure 3.4.9. Comparison of independently measured 
values of Ge and the ratio ( ). Polystyrene solu-
tions in decalin. T = 25oC. Dotted lines − limits of 25% 
experimental error. [Adapted, by permission, from 
A.Ya. Malkin, G.V. Berezhnaya, G.V. Vinogradov, J. 
Polym. Sci., Symposia, 42, 1111 (1973)].

η0
2 Ψ0⁄

Figure 3.4.10. Comparison of concentration dependen-
cies of Newtonian viscosity, η0, coefficient of the first 
difference of normal stresses, 0, and elastic modulus, 

Ge, calculated as . In this Figure: 
 and ηs is the viscosity of a sol-

vent. Coefficient of normal stresses, 0, used in the 
original publications equals . Polybutadi-
ene solutions in methyl naphthalene. T = 25oC. 
[Adapted, by permission, from A.Ya. Malkin, G.V. 
Berezhnaya, G.V. Vinogradov, J. Polym. Sci.: Sympo-
sia, 42, 1111 (1973)]. 
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zero-shear-rate coefficient of the first normal stress difference, . The applicability of 
Eq. 3.4.9 is illustrated by experimental data in Fig. 3.4.9. The elastic modulus, Ge, and the 
coefficients η0 and Ψ0 were measured independently. The values of Ge and ( ) are 
equal.

Eq. 3.4.8 is not valid in the nonlinear range of viscoelastic flow, primarily because 
the directly measured elastic recoil does not correspond to the elastic energy stored at the 
steady flow regime (because of the absence of superposition of elastic and flow deforma-
tions in the nonlinear domain). However, the normal stresses can be used as a direct mea-
sure of the stored elastic energy in flow. The expression for the stored elastic energy, W, 
per unit volume can be obtained from the Lodge equation for an elastic liquid:

        [3.4.10]

This equation permits the estimation of stored elastic energy in non-linear regimes of 
steady flow.

Fig. 3.4.10 compares concentration dependencies of rheological characteristics of 
solutions, such as viscosity, normal stresses, and elastic modulus using the reduced con-
centration, c[η], as an argument. 

The Debye criterion, c[η] = 1 helps to establish a boundary of dilute solutions. This 
concentration range is on the left side of Fig. 3.4.10. There are two separate concentration 
ranges. In the low concentration range, at c[η] < (c[η])cr, where , η0 is a 
weak function of concentration and  is proportional to the square of viscosity (the sec-
ond-order effect). In the high concentration range, i.e., at c[η] > 7, η0 is proportional to c5

and  is proportional to c10 (again, the second-order effect). It is worth mentioning that 
concentration dependencies of the “apparent” modulus pass through a minimum at the 
same concentration (c[η])cr.

Thus, there are three concentration domains in polymer solutions: 
• domain of dilute solutions at c[η] < 1; in this concentration range, macromole-

cules deform independently of one another 
• domain of semi-dilute or semi-concentrated solutions at 1 < c[η] < 7; in this con-

centration range contacts between different macromolecules are possible but a 
continuous three-dimensional entanglement network is still absent 

• domain of concentrated solutions at c[η] > 7; in this concentration range, a spe-
cial entanglement network exists throughout the whole volume of solution.

Rubbery (large) deformations in solution happen in the range of concentrations in 
which macromolecular chains form a temporary network, i.e., at (c[η]) > (c[η])cr. Fig. 
3.4.10 shows that normal stresses and “apparent” modulus can be measured in the low 
concentration range, (c[η]) < 7. This means that the elastic energy can be stored not only 
by the molecular network but also by individual macromolecules, changing their confor-
mation under shear deformation in solution. It becomes increasingly more “difficult” 
(modulus increases) to deform a macromolecule by diluting its solution.

It can be predicted that normal stresses always appear if the shear deformation 
results in a three-dimensional (3D) reaction of structural elements in a flowing medium. 
The deformation of polymer liquid (either melt, solution, or cured rubber) inevitably 
results in changes in the macromolecular conformations. The deformation or relaxation −
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W
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due to statistical reasons − always proceeds in 3D space. Macro- one-dimensional shear-
ing leads to 3D micro-reaction and this is the reason for the appearance of normal stresses 
in a simple shear flow. This is also true for dilute polymer solutions where the 3D network 
is absent, but individual macromolecules deform in 3D space in any geometry of macro-
deformations. The same effect, not related to the elasticity of medium, can be expected in 
the shear flow of suspensions of non-spherical particles (e.g., the fiber in a Newtonian 
matrix). The micro-reaction is 3D and it results in a relaxation process restoring statistical 
distribution of particle orientation in space and normal stresses in shear flow.

3.4.4 DIE SWELL
When a stream of viscoelastic liquid leaves a die, 
the diameter of extrudate increases, and the ratio of 
the extrudate diameter to the die diameter is called 
the swell ratio, SR. Calculations based on the kinetic 
equations of classical fluid dynamics predict that the 
jet diameter changes for Newtonian liquid do not 
exceed 13% and extrudate contracts at high Reyn-
olds numbers. However, Barus124 demonstrated that 
there are liquids (e.g., marine glue) for which a large 
swelling of a stream was observed. Later, analogous 
experimental results were published by Mer-
rington125 who experimented with rubber solutions 
and soap-thickened mineral oils and directly 
explained this effect by the elastic nature of materi-
als used. 

The typical example of die swell (or post-
extrusion swelling) is shown in Fig. 3.4.11 for a 
polymer melt. The values of SR for real technologi-
cal materials can reach several units and they pro-
vide a measure of the elasticity of these materials. 

The observed values of SR depend on the preceding kinematics of deformation − the shear 
rate at the capillary and the length of the channel. Also, SR depends on the nature of the 
material, reflecting its capability to store elastic deformations.126 

Elastic deformations in the post-extrusion stage of polymer processing are caused by 
the release of elastic energy stored during deformations inside a channel. However, the die 
swell occurs in the nonlinear viscoelastic behavior domain and the elastic deformations of 
a free stream are accompanied by a partial dissipation of the stored elastic energy. This is 
why it is not easy to establish direct quantitative relationships between SR and the rheolog-
ical parameters of the material. However, SR can be used as an important and useful esti-
mation of the elasticity of the material. 

The extrudate swell distorts the shape of extruded articles in comparison with the 
sizes of calibrating devices (of a die). It gives an especially undesirable effect in the extru-
sion of complicated profiles because the elastic swell appears differently in different parts 
of a cross-section. The production of calibrating dies in the extrusion of such profiles is 
expensive, and it gives a good chance to develop numerical methods for calculation of SR
in the flow-through channels of various cross-sections.

Figure 3.4.11. Extrudate swell in post extru-
sion of polyethylene melt. (Original photo of 
the authors). 
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3.5 STRUCTURE REARRANGEMENTS INDUCED BY SHEAR 
      FLOW
3.5.1 TRANSIENT DEFORMATION REGIMES
In steady flows of liquids, there is a unique relationship between shear stress, σ, and shear 
rate, . In transient deformation regimes, such an unambiguous relationship is absent. It 
means that at σ = const, the shear rate continuously changes until it reaches its steady level 
and vice versa. 

A transient deformation regime also exists for Newtonian liquid, however, it is due 
to inertial effects alone. In contrast, inertial effects are negligible for highly viscous liq-
uids. The reasons for the transient behavior of non-Newtonian viscous liquids are: 

• development and storage of elastic (rubbery) deformation, superimposed on flow
• structure changes induced by shearing. 

Both reasons may exist simultaneously.
The transient behavior is observed for  = const. In this case, a pre-stationary evolu-

tion of shear stress is observed. Typical relationships are shown in Fig. 3.5.1 for an elastic 
polymer melt and in Fig. 3.5.2 for an inelastic grease. Formally both sets of curves are 
similar: at low shear rates, a monotonic growth of shear stress, σ, is observed; at higher 
shear rates, a maximum, σm, on a stress-vs.-time curve, σ+(t), appears. This phenomenon 
is usually called an overshoot. In both cases, the steady-state stress, σst, is reached at 

. There are some principal peculiarities in both sets of experimental data, and the 
transient behavior in both cases reflects 
two different mechanisms of this effect.

Analysis of the σ+(t) curves for poly-
mer solutions and melts shows that both σst

γ·
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Figure 3.5.1. Transient shear stress evolution at startup 
of shear flow at different shear rates. Values of shear 
rate are shown at the curves (in s-1). Polyisobutylene. 
MM = 1*105. T = 0oC. [Adapted, by permission, from 
E. Mustafayev, A.Ya. Malkin, E.P. Plotnikova, G.V. 
Vinogradov, Vysokomol. Soedin. (Polymers − in Rus-
sian), 6, 1515 (1964)]. 

Figure 3.5.2. Transient shear stress evolution at startup 
of shear flow of a grease at different shear rates. 
Increasing shear rates: 1 < 2 < 3 < 4. Curves 1 
and 2 − creeping flow of a material with undestroyed 
structure; curve 3 − deformation in the yielding range 
(transition through the maximum of the structure 
strength); curve 4 − flow of material with destroyed 
structure. [Adapted, by permission, from V.P. Pavlov, 
G.V. Vinogradov, Dokl. AN SSSR (Reports of the Acad-
emy of Sciences of the USSR − in Russian), 122, 646 
(1958); Kolloid. Zh. (Colloid J. − in Russian), 28, #3 
(1966)]. 
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and  σm are shear rate dependent and they 
increase monotonously with an increase in 

. Fig. 3.5.3 shows the σst( ) dependencies 
and the σm( ) dependencies. Analysis of 
the transient deformation regimes of poly-

mer systems compares σ+(t) curves with the development of elastic (recoverable) defor-
mations, γr, stored during the transient deformation range. The dependence γr(t) at  = 
const is shown in Fig 3.5.4 for 5% solution of polyisobutylene in vaseline. Analogous 
dependencies are observed for many polymer solutions and melts as well as for some col-
loid systems; for example, for aluminum naphthenate dispersions.127 

The following observations were made. At the beginning of shearing, the total defor-
mation is mainly elastic. Hence, the material in this deformation range is primarily 
“stretched” but does not flow. The elastic deformation can be as large as 60-80 units 
(6,000-8,000%). These are very large values. They are typically observed in materials 
such as aluminum naphthenate, some gels, egg-white, and others. Typical elastic deforma-
tions of synthetic polymer melts do not exceed several units. Similar to the σ+(t) depen-
dence, the γr(t) dependence passes through a maximum. It is caused by the elastic 
deformation of the entanglement network, the knots of which are temporary bonds 
between macromolecules or polymer-like colloid particles. If the time of deformation is 
shorter than the characteristic lifetime of these junctions, they behave as permanent bonds 
and the material mechanical behavior is similar to that of rubber. At longer times, macro-
molecular chains slip in the junctions, partly destroying the network. It results at the 
beginning of flow and a decrease in the stored elastic deformations. Part of the entangle-
ments (with a lifetime longer than -1) continue to exist even in a steady flow and there-
fore some elasticity can also be found in the flowing liquid. 

γ· γ·
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Figure 3.5.4. Evolution of elastic (rubbery) deforma-
tions for a 5% solution of polyisobutylene in vaseline. 

; T = 20oC. [Adapted, by permission, 
from A.A. Trapeznikov, Kolloid Zh. (Colloid J. − in 
Russian), 28, 666 (1966)].

γ· 160 s 1–=

Figure 3.5.3. Shear rate dependence of stresses at 
steady-state flow, σst (open symbols) and at maxima of 
the transient stage of deformations, σm (solid marks), 
Polyisobutylene. MM = 1*105. [Adapted, by permis-
sion, from G.V. Vinogradov, A.Ya., Malkin, E.P. Plot-
nikova, V.A. Kargin, Dokl. AN SSSR (Reports of the 
Academy of Sciences of the USSR − in Russian), 154, 
1421 (1964)].
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The existence of a very sharp maxi-
mum on the γr(t) curves suggests that the 
maximum on the σ+(t) curves reflects elas-
tic deformation in shear: at short times 
material deforms predominantly as a rub-
ber-like, and, only after partial disintegra-
tion of entanglements, the transition to 
viscous flow occurs. This physical reason 
explains the shapes of curves in Figs. 3.5.1.

The physical effects responsible for 
the transient behavior of greases (as well as 
numerous other technological materials) 
are different. At very low shear rates 
(curves 1 and 2 in Fig. 3.5.2), the transient 
σ+(t) curves are analogous to curves 
depicted in Fig. 3.5.1. These curves corre-
spond to very high viscosity values, typical 
of structured materials with the yield value. 
An increase in the shear rate (curve 3) leads 
to the appearance of a maximum on the 
σ+(t) curves. However, the steady-state 
stress value is lower than that of curves 1 
and 2. At very high shear rates (curve 4), 
the maximum on the σ+(t) curves disap-
pears, the apparent steady value of the 
stress, σst, increases again, and the viscosity 
at these shear rates is low, corresponding to 

the viscosity of a dispersion phase (oil). It is also important to mention that the steady-
state stress, σst, in the flow of plastic greases is constant in a wide range of shear rates and 
therefore it must be regarded as the yield stress, σY, typical of any viscoplastic materials. 
The stress values at the maximum of the σ+(t) curves, σm are also constant in the same 
shear rate range. 

The rheological behavior of this material is generalized in Fig. 3.5.5, where the 
dependencies of σst and σm on shear rate are shown, and the numbers at the points 1, 2, 3, 
and 4 correspond to the number of the curves in Fig. 3.5.2. It is evident that the material is 
viscoplastic, and the following features are characteristic of such materials in addition to 
the existence of the yield stress. 

First, if one follows the σst( ) dependence, a multi-valued branch of the flow curve 
appears in the transition region from the range of very low shear rates to the central part of 
the flow curve. This branch is shown in Fig. 3.5.5 by the dashed line aa. Possibly, this part 
of the flow curve is not reached experimentally and the attempts to “measure” the appar-
ent viscosity of this branch of a flow curve results in a sudden increase in flow rate. 

Second, the difference in viscosity values between the lower part (straight line 012 in 
Fig. 3.5.5) and the upper part (straight line 04 in Fig. 3.5.5) of the flow curve are very 
large and reach many decimal orders (the graphs in this figure are not presented in the 

γ·

Figure 3.5.5. Complete rheological curve of a viscoplas-
tic liquid (grease). 1-2 − creeping flow of material with 
undestroyed structure; aa − range of unsteady deforma-
tion regimes; 3 − range of yielding; σm − stress limit 
(strength) of structure; 4 − flow of liquid with destroyed 
structure. [Adapted, by permission, from G.V. Vinogra-
dov and V.P. Pavlov (see Refs. in Fig. 3.5.2)].
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same scale). The initial low shear rate branch of the flow curve is characterized by high 
viscosity values, which are typical of viscoplastic materials with solid filler (see Section 
3.2.2). Viscosity at the final high shear rate branch of the flow curve is low and close to the 
viscosity of a dispersion medium. 

Third, the difference between σm and σst values shows that the properties of a mate-
rial depend on its pre-history. The yield stress varies depending on whether the shear rate 
increases or decreases in the cycle of measurements: if the shear rate is decreased and 
measurements started, after the initial structure of the material is destroyed, it is possible 
not to “notice” the high yield stress value corresponding to σm. It is a reflection of the 
thixotropic behavior of the material, which will be discussed in more detail in the next sec-
tion. 

Systems such as greases, toothpaste, and other analogous viscoplastic materials are 
not rubbery at all. Rheological properties, as presented in Fig. 3.5.5, are attributable to 
structure effects and partial damage to their inherent structure caused by deformation. In 
this sense, the stress at the maximum σm of the σ+(t) curve can be treated as the strength of 
this structure.

The transient time dependence of stresses and the transitions through the stress max-
imum in materials of any type is generally explained by the “structure effects”, though this 
structure is different. For polymer and polymer-like colloid systems, it is the network of 
rubbery chains, which can store large elastic deformations and slip in temporary entangle-
ments at low deformation rates. For plastic materials, it is a rigid coagulated structure that 
is formed by solid particles. This structure is characterized by a certain strength and it is 
destroyed at the yield stress. Then, Figs. 3.5.1 and 3.5.2 show the difference in flow curves 
of elastic and plastic materials as discussed in Section 2.1. It is possible to find intermedi-
ate situations since the structure of the real natural or synthetic materials can be formed in 
various ways. 
3.5.2 THIXOTROPY AND RHEOPEXY
The term “thixotropic”128 means “sensitive to touching” and the effect of thixotropy is 
commonly regarded as slow changes in viscosity, or in a more common sense, any rheo-
logical properties induced by deformation and rest after deformation. The difference 
between “non-Newtonian” and “thixotropic” behavior is in the time-scale: by definition, it 
is supposed that the apparent viscosity of non-Newtonian liquid changes immediately 
along with the change in the shear rate, whereas the viscosity of the thixotropic medium 
changes slowly. This difference is evident in some cases, but it may not be easy to estab-
lish the time-scale of changes and in some cases, it may be reasonable to treat thixotropy 
as a cause of non-Newtonian behavior and vice versa. Deformation destroys the inherent 
structure of structured liquids, leading to non-Newtonian behavior, and recovery of the 
structure requires time, resulting in thixotropic effects. The difference between thixotropy 
and other rheological properties is not always clear for viscoelastic materials, because 
time effects due to elasticity are superimposed on structure rearrangements and can pro-
ceed within the same time-scale. Moreover, the question of whether the relaxation phe-
nomenon (which is also caused by structure rearrangements, e.g., molecular chain 
movements and/or disappearance of fluctuation) can be treated as “thixotropy” or not, can 
be discussed. 
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Structure processes in some cases 
may be thought to be similar to chemical 
reactions leading to the formation of chem-
ical bonds with unlimited (or at least very 
long) lifetime. In this sense thixotropy is a 
part of a more general field of the rheoki-
netic effects, i.e. rheological transforma-
tions taking place in the synthesis and 
reactions of different materials, primarily 
oligomers and polymers (see Section 6.3).

Thixotropy is understood in two ways 
(Fig. 3.5.6): first, as a slow viscosity 
decrease due to deformations (at the con-
stant shear rate), together with a reverse 
process of complete or partial restoration of 
the initial viscosity at rest after deforma-
tion ceases (Fig. 3.5.6a); second, as a 
decrease of steady-state values of the 
apparent viscosity at different shear rates 
accompanied by delayed restoration of the 
viscosity values with decreasing shear rates 
(Fig. 3.5.6b). Both cases are treated as the 
kinetic reactions of structural rearrange-
ments induced by deformations and it is 
commonly accepted that thixotropic materi-
als are those that have a microstructure, 
though the latter term can be understood in 
various ways. 

There is a large number of commercial materials which are thixotropic in nature. 
They include:129 

• paints, inks, and coatings
• sealants and adhesives
• detergent systems
• clay suspensions
• oils and lubricants
• coal suspensions
• metal slushes
• rubber solutions, especially filled with different fillers
• food and biological systems (including blood)
• creams and pharmaceutical products.
Viscosity decrease of many food products (yogurt, cream, pastes, gels), pharmaceuti-

cals, or concrete as a result of their mixing encountered every day are typical and techno-
logically important cases of thixotropic behavior. A typical example is shown in Fig. 3.5.7 
for a body lotion: a decrease in viscosity on shearing, followed by a slow increase at rest. 
It is pertinent that the quality (or performance properties) of products are determined by a 

Figure 3.5.6. Typical thixotropic effects. a: viscosity 
decrease in deformation at constant shear rate and vis-
cosity increase at rest; b: viscosity decrease as a func-
tion of ascending shear rate at steady flow and delayed 
restoration of viscosity at descending shear rate.



3.5 Structure rearrangements induced by shear flow 193

degree of the viscosity decrease and the 
rate of its increase, though the quality of 
products in everyday observations are pref-
erably judged as “good” or “bad”.

The deformation process in some sys-
tems may lead, not to a decrease but to an 
increase in viscosity. This is called 
“antithixotropy” or “rheopexy”. Some-
times, these effects are distinguished. Both 
terms are related to a continuous increase 
of viscosity with time at a constant shear 
rate, and/or thickening of material with the 
increase in shear rate, and the difference 
between them lies in the time scale. Both 
effects are much rarer than thixotropy, but 
they occur in some materials, especially in 
systems containing active chemicals, e.g., 
ionic or polar groups. Deformation may 
enhance the intermolecular interaction, 
resulting in a viscosity increase. 

The thixotropic behavior of the mate-
rial is well demonstrated in cyclic experi-
ments. The shear rate is continuously 
increased up to the upper level and then 
decreased to the initial value. The structure 
of the sample in such a deformation regime 
is first destroyed and then gradually rebuilt 
during the entire (t) dependence. A thixo-
tropic hysteresis loop is observed. The last 
point (at the lowest shear rate) may be dif-
ferent than the initial one if the characteris-
tic time of scan is shorter than the time of 
structure formation, i.e., the time is not 
long enough for the initial structure to 
recover during the time of measurement. 

Thixotropy, as well as rheopexy, is 
often observed for surfactant-water sys-
tems because intermolecular interactions in 
such systems are strongly pronounced. 
Shearing leads to structural transformation 
among colloid particles. Two examples 

from modern rheological literature illustrate the above-mentioned phenomena. First, the 
shear-rate dependence of the apparent viscosity measured in cyclic up-and-down deforma-
tion mode is shown in Fig. 3.5.8. The unusual effect of viscosity growth at about 10 s-1 is 
explained by the transition of the bilayer structure to more viscous vesicle particles.130
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Figure 3.5.7. Thixotropic properties of a body lotion: 
decrease of viscosity in shearing and slow growth at rest. 
[Adapted, by permission, from G. Schramm, “A practical 
approach to rheology and rheometry”, Haake, 1994]. 

Figure 3.5.8. Apparent viscosity evolution in up-and-
down changes of shear rate for a ternary system of alkali 
dimethyl oxide/alcohol/water. The period of shear rate 
scanning was 20 min. T = 25oC. [Adapted, by permis-
sion, from J. I. Escalante, H. Hoffman, Rheol. Acta, 39, 
209 (2000)]. 
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Then the positions of ascending and 
descending branches of the flow curve are 
different because they represent different 
structures of the flowing colloid system. 

 The same material may exhibit either 
thixotropic or antithixotropic effect, and 
the observed rheological behavior some-
times depends on minor details of the com-
position. Fig. 3.5.9 illustrates this 
phenomenon for lecithin solutions in water, 
forming polymer-like micelles.131 By 
changing the molar ratio of water to leci-
thin it is possible to cause a transformation 
from shear-thinning (thixotropic) to shear-
thickening (antithixotropic) rheological 
behavior in this colloid system. The effects 
observed are explained by the restructuring 
of the polymer-like micelles and their net-
work. Kinetics of restructuring is slow in 
contrast to quick viscoelastic effects 
observed in colloid systems. 

A quantitative description of thixotropic phenomena depends on the approach 
selected. Some authors consider it as a particular case of time-dependent effects in the 
deformation of materials, analogous to the viscoelastic effect. They prefer to treat it in 
terms of constitutive equations, i.e., in the framework of a mechanical approach only.132

However, it seems that this approach is not adequate, especially in practical applications, 
because the evident changes in rheological properties (in particular, viscosity) are 
observed even when no stresses can be measured. The situation is the same as with phase 
transitions or chemical reactions, which are not mechanical phenomena. It is, therefore, 
more fruitful to apply a quasi-chemical approach to thixotropy-antithixotropy phenomena, 
introducing a kinetic equation for some parameter of a system (it can be a number of 
bonds, or concentration of structure aggregates, or some arbitrary not rigorously defined 
“structure” parameter, and so on) determining viscosity or other rheological properties of 
the material.

Slow changes in rheological properties, definitely related to structural effects, are 
well demonstrated in examining the shear stress evolution measured at constant shear 
rates, =const. The σ(t) dependence has a maximum characterizing the “strength” of the 
structure destroyed by deformations. If one repeats this experiment just after cessation of 
the previous shearing, the maximum disappears and a monotonous shear stress growth is 
observed. However, if one lets the material rest, the maximum in the curve appears again 
and its height depends on the time of rest. This is shown in Fig. 3.5.10, where the subse-
quent curves correspond to successively longer times of rest. These observations can be 
easily explained by the structure rupture caused by deformations and slow structure resto-
ration during rest. 

γ·

Figure 3.5.9. Steady-state viscosity evolution in time, 
measured at  = 2.25 s-1 for organogels containing 250 
mg/mL lecithin. The ratio of water molecules to lecithin 
molecules is shown at the curves. [Adapted, by permis-
sion, from Yu.A. Shchipunov, H. Hoffman, Rheol. Acta, 
39, 542 (2000)]. 
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It is worth mentioning that this phe-
nomenon of structuring is not directly 
related to stress relaxation. Indeed, Fig. 
3.5.11 clearly demonstrates that both are 
developing in absolutely different time 
scales: stresses completely disappear 
during several minutes while the approach 
to the initial value of the maximum, σm, on 
the σ(t) dependence, continues for several 
hours. 

Examination of the transient behavior in shearing gives even more pronounced 
effects if one measure, instead of shear stresses, the first normal stress difference, 

(t).133 First of all, instead of a single maximum, two maxima are observed for normal 
stresses. Then, if the position of the first maximum is close (in time-scale) to the shear 
stress maximum, the second normal stress maximum appears after prolonged deforma-
tions reaching several hundred units. So, this effect must be related to a cooperative move-
ment of macromolecules but not to the relaxation of the individual chains. It is definitely a 
structure formation effect due to intermolecular interactions induced by shearing. Struc-
tures formed during prolonged shearing in some cases can be found by direct optical 
observations. These structures are thixotropic by their nature: they are destroyed and again 
restored at slow deformation and long rest time. 

It is interesting to notice that in measuring transient (t) dependencies, oscillations 
of stress are observed. Possibly this effect is also related to the formation and disintegra-
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Figure 3.5.11. Comparison of the relaxation rates of 
shear, s(t), and normal, N1, stresses after sudden cessa-
tion of steady shear flow (upper figure) along with the 
kinetics of structure restoration at rest as observed by 
the relative increase of maximal stress in transient flow 
(lower figure). Polyisobutylene. T = 20oC. [Adapted, by 
permission, from G.V. Vinogradov, A.Ya., Malkin, E.P. 
Plotnikova, V.A. Kargin, Dokl. AN SSSR (Reports of the 
Academy of Sciences of the USSR − in Russian), 154, 
1421 (1964)]. 

Figure 3.5.10. Thixotropic structure restoration of poly-
mer material in consecutive cycles of shearing and rest. 
1 − initial deformation; 2, 3, 4 − deformation after rest 
during different (increasing) times; 5 − deformation 
after very prolonged rest − complete restoration of the 
initial structure. Dotted lines − relaxation at rest.
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tion of larger structures in the flow, which influence the rheological properties of the sys-
tem as a whole.134 

Structure evolution in transient deformation regimes was well documented in the 
experiments performed with model immiscible polymer blends,135 as well as with textured 
polymeric liquid crystals.136 In particular, it was demonstrated that the yield stress appears 
to be different depending on whether the shear rate increases or decreases in the cycle of 
measurement: if the shear rate is decreased and measurements are started when the initial 
structure of the material is destroyed, it is possible not to “notice” the higher yield stress 
value corresponding to σm. 

The results of numerous observations confirm that the overshoot on the σ+(t) and 
(t) curves and evolution of rheological properties at rest are accompanied by large-

scale structure effects related to thixotropic properties of multi-component or textured sys-
tems.

Thixotropy is usually attributed to the time-dependent shear-induced phenomenon. 
Peculiarities in rheological behavior can also be related to volume effects. Effects of this 
kind are called dilatancy.137 This phenomenon was first described by Reynolds,138 who 
noticed that traces of footsteps on wet sand stay when deformed. It means that volume 
changed under shear deformation. Dilatancy is important for humid soils, such as wet 
sands and clays: shearing leads to change in water content and in an increase of viscosity. 
This phenomenon is called shear thickening. 

Volume effects (dilatancy) caused by shear are also possible in elastic bodies, as well 
as in viscoelastic liquids. This phenomenon for solids was described by Kelvin,139 who 
treated it as a second-order effect, i.e., volume changes are expected to be proportional to 
the square of shear deformations. In solids, it is known as the Poynting effect (see Chapter 
4).

Many industrial materials are thixotropic. In technological practice, transportation of 
these materials through long pipes is an important and frequently complex problem. 
Therefore methods of designing pipelines for the transportation of thixotropic inelastic 
liquids were developed.1407 The simulation procedures are based on the formulation of the 
constitutive equation for time-dependent (and non-Newtonian) viscosity and solving the 
dynamic problems. However, the complexity of the governing equations always calls for 
extensive numerical methods for finding the final results.

The effect of rheopexy also belongs to the group of structure rearrangement induced 
by deformation. According to the definition, rheopexy “is a solidification of a thixotropic 
system by the gentle and regular movement”.141 Fig. 3.2.6 demonstrates the effect of rhe-
opexy for super-concentrated water-in-oil emulsion. It is seen that deformation at a low 
shear rate is accompanied by the slow growth of apparent viscosity covering several 
decades. Actually, the apparent viscosity increases unlimitedly until the yield stress is 
reached.

It is also important that rheopectic effects can be observed at low shear rates only 
(i.e., at “gentle movement”). The experimental points in Fig. 3.5.12 were obtained at 
increasing and decreasing shear rates. The experimental points coincide in the high shear 
rate range, but the curves are different in the range of slow deformations and the differ-
ence increases with the shear rate decreasing. It is also worth mentioning that viscosity 
drops from the upper to the lower curve almost immediately after the cessation of shear-

N1
+
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ing. Structure rearrangement at rest, after 
shearing proceeds very quickly, can be 
explained by elastic deformation of dis-
persed droplets that causes a rheopectic 
effect.

Deformation can lead to self-organi-
zation in a flowing medium. Some exam-
ples of this effect have been already 
described in Sections 3.2.3 and 3.6.3. Self-
organization and induced anisotropy can 
also be created in dense suspensions of 
rigid particles.142 Here, it is reasonable to 
add that self-arrangement can also lead to 
the formation of anisotropic micellar struc-
tures in the flow of block-copolymers.143 It 
is interesting to report that structure effects 
in shearing can occur in self-oscillation 
(periodic) manner with corresponding 

periodic (in time) variation of apparent viscosity.144 
Structure formation leads to the anisotropy of the rheological properties of a matter.
In discussing the rheology of fluids with their structure dependent on deformation, it 

is necessary to introduce additional structural (or internal) parameters that should be cou-
pled with dynamic equations. An example of such an approach is the model incorporating 
the flow-induced anisotropic structural changes. The induced structure was described by 
the tensor, and its evolution was governed by a relaxation-type differential equation.145 

Finally, it is interesting to report that structure effects in shearing occur in a self-
oscillation (periodic) manner with corresponding periodic (in time) variation of apparent 
viscosity.146 
3.5.3 SHEAR INDUCED  SEPARATION
3.5.3.1 General approach
Shear flow can lead to a transformation of the material structure, and this is the main 
inherent cause of the non-linearity of the rheological properties. The structure evolution 
can be so fundamental that it results in the shear-induced phase transitions.

The rigorous concept of phase transitions treats this phenomenon as an equilibrium 
coexistence of thermodynamic equilibrium states of a matter. Any phase transition is char-
acterized by the intermittent change of macroscopic properties.

The interrelation between the temperature of phase separation is well known in clas-
sical thermodynamics. The following dependence was established:

[3.5.1]

where dT/dp is a change of the phase transition temperature due to changes in pressure, T 
is temperature, ΔV is a change of molar volume at the phase transition point, and ΔH is the 
molar heat of transition. 

dT
dp
------- TΔV

ΔH
------------=

Figure 3.5.12. Flow curves of a water-in-oil super-con-
centrated emulsion measured at upward and downward 
changes of shear rate. [Adapted, by permission, from 
A.Ya. Malkin, I. Masalova, P. Slatter, K. Wilson, Rheol. 
Acta, 43 (2004)]. 
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This equation, known as the Clausius-Clapeyron equation,147 relates the shift in the 
equilibrium phase transition temperature to hydrostatic pressure, i.e., to the volume 
changes of material.

It is evident that the concept of time, as well as the rate of the process, do not enter 
any thermodynamic relationships. However, rheology is interested in shifts in transitions 
induced by shear flow (proceeding mainly without volume changes).

The first observation related to the subject was the effect of extension-induced crys-
tallization of rubbers.148 The full theory of this effect as an analogue of the pressure-
induced shift of the crystallization temperature is well known.149 Later, it was shown that 
the shearing induces phase transitions in amorphous systems too.150 

It was stressed by many authors that shearing may result in two opposite effects: 
homogenizing of multi-component systems and flow-induced phase separation.151 Shear 
deformation always favors homogenizing of a multi-component system due to pure geo-
metrical reasons, and this is not necessarily related to the phase transition from a two- to a 
one-phase system. The shear-induced phase separation is caused by the same thermody-
namic reasons as the phase transition due to static pressure. It is caused by changes in the 
free energy of a system due to its deformation.152 It becomes possible in the shear flow 
because the flow in some systems (primarily polymer solutions) is accompanied by the 
storage of rubbery deformations, i.e., elastic energy (see Section 3.4).153 

There are three aspects of flow-induced transition.
First, the thermodynamic effect: deformations can lead to a shift of the equilibrium 

phase transition temperatures.
Second, the kinetic effect: deformations change the kinetics of a phase transition at 

the fixed temperature.
Third, the morphological effect: deformation-induced phase transition leads to the 

formation of different molecular and supermolecular structures, which determine the 
properties of the end product.

These three aspects are connected: a shift in the equilibrium phase transition tem-
perature results in a shift of the distance from a given temperature to an equilibrium one, 
and this is the reason for changes in the process kinetics and so on. 

The shear-induced structural transformations related to the chain alignment can 
result in the formation of an LC-state. Surely, this is possible only in the presence of rod-
like elements (molecules or anisotropic supramolecular or colloidal particles). The LC-
state formation of micellar solutions depends on boundary conditions, such as the nature 
of the boundary solid surface and the width of the gap between boundary surfaces (i.e., the 
width of a liquid layer).

The influence of deformation on the transition temperature was observed for both 
amorphous phase separation and crystallization. Fig. 3.5.13 shows the dependence of the 
shift in the equilibrium transition temperature, ΔT, as a function of shear rate for two poly-
mer solutions of different concentrations. The dominating factor is shear stress. Fig. 3.5.14 
demonstrates that the dependence of ΔT on the shear stress is similar for solutions of dif-
ferent polymers. The influence of shear flow on the equilibrium transition temperature can 
be as high as 30-40K.
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Two dotted lines are drawn in Fig. 
3.5.14. They show that the apparent transi-
tion temperature begins to decrease at very 
high shear rates. This observation is 
explained by the homogenizing effect at 
high shear rates.

The influence of shearing on the phase 
separation temperature is not only of purely 
academic interest. The following example 
illustrates its technological significance. 
Fig. 3.5.15 shows the increase of viscosity 
in a reacting medium during polymerization 
of caprolactam in bulk.154,155 The viscosity 
increase parallels an increase in concentra-
tion and/or molecular mass of polymer 
formed, i.e., the kinetics of polymerization. 
At high temperatures, shearing does not 
influence the kinetics of polymerization. 
However, at lower temperatures, an 
increase in the shear rate decreases the rate 

Figure 3.5.14. General dependence of the shift of sepa-
ration temperature on shear stress for: 1 − polystyrenes 
of different molecular masses; 2 − polybutadiene solu-
tions in toluene/ethanol mixture; 3 − polyvinyl acetate 
solutions in ethanol. [Adapted, by permission, from 
A.Ya. Malkin, S.G. Kulichikhin, V.A. Kozhina, Vysoko-
mol. Soedin. (Polymers − in Russian), 38A, 1403 
(1996)]. 

Figure 3.5.15. Viscosity evolution in polymerization of 
caprolactam at different temperatures and at different 
shear rates (shown on the curves). The field between 
the curves 0a and 0b covers points obtained in the shear 
rate domain from 0.1 to 100 s-1. [Adapted, by permis-
sion, from A.Ya. Malkin, S.G. Kulichikhin, Makromol. 
Chem., Macromol. Symposia., 68, 301 (1993)]. 

Figure 3.5.13. Shift in the phase separation tempera-
ture as a function of shear rate. Polyvinylacetate solu-
tions in ethanol. Concentrations are shown on the 
curves. T = 25oC. [Adapted, by permission, from 
A.Ya. Malkin, S.G. Kulichikhin, G.K. Shambilova, 
Vysokomol. Soedin., (Polymers − in Russian), 33B, 
228 (1991)]. 



200 Liquids

of polymerization until almost complete 
cessation of the process. It is a peculiar 
behavior because it can be expected that an 
increase in the shear rate (increase in the 
intensity of mixing) should accelerate the 
reaction. But the observed effect is the 
opposite, and this is because of the phase 
separation of the polymer from the reactive 
solution. 

The flow-induced phase separation 
has some special features in non-homoge-
neous polydisperse systems. In these cases, 
two effects take place. The forces forming 
curvilinear shear fields are different, espe-
cially if one bears in mind that all real 
polymers undergo separation differently 
since they contain species of various 
molecular masses. Therefore, the separa-
tion by the chain length (shear-induced 

fractionation) can proceed due to a differ-
ence in the migration speed.156 The effect is 
weak and it becomes important for very 
long chains, primarily for biopolymers.

The influence of shear flow on the 
kinetics of crystallization is shown in Fig. 
3.5.16 where the kinetics of crystallization 
is characterized by an induction period, tind. 
An increase in the shear rate shortens the 
induction period, i.e., accelerates the crys-
tallization process. However, after passing 
through a minimum, the induction period 
begins to increase again. This can be 
explained by the destruction of crystalliza-
tion nuclei at high stresses, which is the 
reason for slower crystallization. 

In other experiments, the formation of 
the crystalline phase was followed by mon-
itoring the transparency of polymer melt by 
the intensity of light transmission, Iopt, 
through a sample as a measure of crystal-
line content.158 Fig. 3.5.17 demonstrates 
the strong influence of shearing on the 
kinetics of crystallization. The analogous 
effect is shown in Fig. 3.5.18 for isotactic 
polypropylene. Use of the Avrami kinetic 

Figure 3.5.16. Influence of shearing at different shear 
rates on the induction period, tind, of crystallization for 
polyamide-6 melt (a) and 30% polyamide-6 solutions in 
caprolactam (b). Temperatures, oC: a: 1 − 230.0; 2 −
232.5; 3 − 235.0; b: 4 − 160.0; 5 − 162.5; 6 − 165.0. 
[Adapted, by permission, from A.Ya. Malkin, S.G. 
Kulichikhin, Kolloid Zh. (Colloid J. − in Russian), 41, 
141 (1979)]. 

Figure 3.5.17. The intensity of the transmitted light as a 
function of time in crystallization of isotactic poly(1-
butane) at 103oC under different shear rates, s-1: 0 (1), 
0.1 (2), 1 (3) and 10 (4). [Adapted, by permission from 
S. Acierno, B. Palomba, H.H. Winter, N. Grizzuti, 
Rheol. Acta, 42, 243 (2003)]. 
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equation shows that the rate of crystallization is 
enhanced as , i.e., the influence of shear rate 
is strong.

The mechanism of influence of deformation 
on the kinetics of crystallization of polymers is 
related to nucleation promoted by the flow. The 
crystallization process relies on two components: 
nucleation and growth of crystals. Deformation 
influences the rate of nucleation due to the orien-
tation of macromolecular chains. It was experi-
mentally proven that the density of nuclei is 

directly related to the mechanical work 
applied to melt (Fig. 3.5.19).159 

The morphological aspects of the defor-
mation-induced phase transition are worth 
mentioning. Shearing may lead to phase sep-
aration and phase inversion in multi-compo-
nent systems. The latter is especially frequent 

in blends of immiscible polymers. Direct microscopic observations confirm that morpho-
logical phase inversion is caused by shearing.160 The phase separation of the components 
in polymer blends during the shearing of a blend may result in the appearance of various 
structures. One of the interesting examples is the formation of a system of ultra-fine fibers 
of one polymer in the matrix of the other (Fig. 3.5.20).161 It is possible that it is related to 
the viscosity ratio of both components. The criterion of phase inversion in shearing is the 
equality of viscosities of both components in a blend.162 Generally speaking, the observed 
picture of structure formation is multi-faceted and depends on numerous rheological and 
technological factors.

γ·1.22

Figure 3.5.18. Kinetics of crystallization of isotactic 
polypropylene in static state and under shearing at dif-
ferent shear rates, s-1: 0.15 (1); 0.3 (2); 0.5 (3); 1 (4) 
and 1.4 (5). T = 136oC. [Adapted, by permission, from 
N. Devaus, B. Monasse, J.-P. Haudin, P. Moldenaers, 
J. Vermant, Rheol. Acta, 43, 210 (2004)]. 

Figure 3.5.19. Density of nuclei formation as a func-
tion of work applied to polypropylene melt. Dashed 
“averaging” line is drawn by us. [Adapted, by permis-
sion, from H. Janeschitz-Kriegl, E. Ratajski, M. Stad-
bauer, Rheol. Acta, 42, 355 (2003)].

Figure 3.5.20. Formation of ultra-fine fibers in the 
capillary flow of a two-component blend. Scanning 
electron microscope photograph of an extrudate trans-
versal section of the polyoxymethylene/copolyamide 
blend. [Adapted, by permission, from M.V. Tseb-
renko, G.P. Danilova, A.Ya. Malkin, J. Non-Newton. 
Fluid. Mech., 31, 1 (1989)]. 
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The conformational transition gives us a possibility to obtain a material with fully 
extended chains. It promises to produce material with outstanding mechanical properties. 
The theoretical possibility was proven experimentally.163 This approach was realized in 
some technological processes, and polymeric materials were obtained with strength and 
Young’s modulus approaching their theoretical (extremely high) limits.

The following consequences of shearing, related to the structure transitions, take 
place: 

• increase in the equilibrium phase transition temperature
• decrease in the induction period of the isothermal crystallization
• increase in the degree of orientation of macromolecular chains
• decrease in the nuclei size of a new phase
• increase in the formation rate of the new phase nuclei
• phase separation and/or phase inversion in multi-component systems
• formation of oriented structures.
All these effects are more or less pronounced for different deformation modes (for 

example, for extension or shear), though they are always present. The scale of these 
effects may reach several decimal orders and deformations may induce the above-listed 
processes, which in turn may lead to their influence on the rheological properties of mat-
ter. 

It is also interesting to mention that shearing may result in a post-flow effect of crys-
tallization. One reason for this effect is the acceleration of nucleation.164 
3.5.3.2 Shear banding
There are two types of shear-induced transitions − homogeneous in the bulk of a material 
(crystallization, creation of supramolecular structures, disorder-to LC transition) and 
appearance of spacial separated structures.

The phenomenon of shear banding has two aspects. First, this is a typical shear-
induced transition and this is why consider-
ation of shear banding is placed in this sec-
tion. Second, this phenomenon is a 
manifestation of the instability in the flow 
of elastic liquids and might be considered 
in the next section devoted to instabilities 
in flow of elastic liquids. However, this is 
not the limit of flow but only its peculiar 
mode.

A picture illustrating this phenome-
non is shown in Fig. 3.5.21.

Two circles in this Figure correspond 
to two different states of a material that was 
homogeneous before shearing but disinte-
grated into two liquids with different rheo-
logical properties.

Physically, this effect is due to a sepa-
ration of the initially homogeneous multi-
component fluid into two parts with differ-

Figure 3.5.21. The formation of two layers ("bands") in 
rotational flow in a narrow gap between two coaxial cyl-
inders.
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ent rheological properties. The phenome-
non of gradient banding is the most widely 
observed and studied for worm-like micel-
lar (colloid) systems (see e.g., ref.165 dis-
cussing rheologically (and structurally) similar to polymer solutions). Moreover, micelles 
can be formed by polymeric substances, e.g., block copolymers.166 The bands can contain 
different concentrations of a dispersed phase or can have a different order of structure 
organization. Accordingly, they exhibit different flow properties leading to different 
velocity gradients, as shown in Fig. 3.5.22. 

One of the layers with very high viscosity can be almost motionless (or even solid-
like at stress below the yield stress). Fig. 3.5.23 shows an example of this (appearing due 
to the separation of a polydisperse polymer to fractions with different molecular weight.167

Shear banding consists of the formation of a high molecular weight layer with viscosity 
much higher than the viscosity of the low molecular-weight component). The highly vis-
cous layer formed by a higher molecular weight fraction is almost motionless. Therefore, 
the velocity of this layer is close to zero and really, only the low-molecular-weight fraction 
flows.

The physical state of a mate-
rial in different bands can be in 
various physical states. This is 
shown in Fig. 3.5.24 which pres-
ents not only shear banding but 
also the formation of the LC-
phase of one band and widening 
this state in increasing the shear 
rate.168 

Shear banding can be 
observed in a stationary mode and 
also can take place in an oscilla-
tory mode, as shown in Fig. 
3.5.25.169 Similar periodic effects 
were observed by following the 

Figure 3.5.22. Velocity profile in flow of a fluid in the 
gap between stationary and moving surfaces after for-
mation of shear bands.

Figure 3.5.23. Separation of a polymer melt into frac-
tions with different molecular weights; the highly vis-
cous layer formed by a higher molecular weight 
fraction is almost motionless.

Figure 3.5.24. Shear banding with the phase transition into the LC-
phase. The flow occurs in a narrow gap between inner and outer 
cylinders. Screen shots from a to f correspond to an increase in 
shear rate. [Adapted, by permission, from J.-F. Barret, Rheology of 
wormlike micelles: equilibrium properties and shear-banding 
transition. Molecular gels, Elsevier, 2005.]
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structure of shear bands along a hysteresis 
loop.170 Periodic formation of shear band-
ing can be related to an isotropic-nematic 
phase transition induced during shearing 
and after-shearing rest.171 

Usually, the phenomenon of shear 
banding is related to multi-valued flow 
curves of the type shown in Fig. 3.6.13. 
Then each band corresponds to lower or 
higher branches of a flow curve and conse-
quently, its properties are characterized by 
different viscosity. The shear banding phe-
nomenon can also happen in flow of thixo-
tropic materials.

The hysteresis double branch flow 
curves reflect some delayed structural 
changes in increasing and/or decreasing 
stress. The up and down viscosity vs. shear 
rate dependences do not coincide. A role of 
thixotropy in the rheology of complex liq-
uids and methods for its modeling were 
discussed in the review.172 The double-val-
ued flow curves of thixotropic fluids can 
be a source of shear banding because dif-
ferent points on a hysteresis curve corre-
spond to various morphological states of a 
multi-component liquid. 

The start-up of shearing at high 
enough shear rates at the stage of the pre-
stationary flow can initiate another type of 
two-valued stress (shown in Fig. 3.5.26 by 
a horizontal line). 

The correlation between the behavior of viscoelastic liquids at the start-up (at rate-
control deformations) and its steady-state properties can be absent because of different 
relaxation scales of the transient and steady state of shearing. The only requirement is a 
possibility of the coexistence of a material in two different states (at any stage of deforma-
tion) can result in shear banding.173 So, shear banding can happen for a monotonic stress 
vs. shear rate function for steady flows which are expected not to form shear bands. Band-
ing starts immediately at the decreasing branch of the σ(t) curve.

The stable shear banding observed in the entangled polymer solution is not the "true" 
effect but may be "trapped" transient banding. Experimental studies of the transient 
regime of shearing of worm-like micelles showed that following a start-up, large temporal 
velocity fluctuations take place. They reflect the appearance of bands with different con-
centrations, although the wall slip can at least play a partial role.174 

Figure 3.5.25. Self oscillations in shear banding forma-
tion (aqueous solution of cationic surfactant and Na-
salicylate). According to Herle H., Fischer P., Windhab 
E.J., Langmuir, 21, 9051 (2005).

Figure 3.5.26. Overshoot at the deformation curve t a 
given shear rate.
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The above discussion concerning shear-induced phase separation in amorphous mix-
tures (polymer solutions) was based on the thermodynamic arguments. The Clausius-Cla-
peyron equation was the basis for the analysis of the role of shear flow on structural 
transformations in the early stages of studying this phenomenon. 

This phenomenon happens in the strong non-equilibrium conditions and it means 
that arguments of equilibrium thermodynamics are not adequate. The another approach to 
understanding the deformation-induced phase separation connects this effect to the stress-
diffusion coupling. he mechanism of this effect is considered as the displaying of instabil-
ity: large concentration fluctuations are enhanced due to an increase in the coefficient of 
diffusion under stress.

Helfand and Fredrickson in their pioneering works proposed a model explaining the 
physics of deformation-induced banding based on the concept of great deformation-
enhanced concentration fluctuations in a bi-component system, which are not treated as 
the true phase transition.175 As a result of such fluctuations and concentration inhomoge-
neity, the fundamental rheological parameters (apparent shear viscosity and normal 
stresses) being concentration-dependent become different through volume. This scenario 
leads to the movement of molecules along with the concentration gradient. This results in 
the growth of fluctuations, and finally in the phase separation (demixing) of a bi-compo-
nent system. This approach was applied for shear-banding.176 

The same model was successfully used for extension of polymer solutions in the 
extension of solvents used in the fiber spinning where phase separation is forced by 
mechanical stresses.177 

An initial simplified picture of the demixing process used only hydrodynamic argu-
ments, but the theoretical analysis also later included the thermodynamic factors (accord-
ing to the Flory-Huggins concept).178 

The direct experiment has proven the reality of the basic assumption of concentra-
tion fluctuations and the shear-induced shift in the concentration profile which confirms 
the basic concept of the model discussed above.179 

Therefore, the dominating modern understanding of the driving mechanism for 
shear-induced phase separation is the coupling of the stress distribution to an inhomoge-
neous concentration profile. 

This basic concept is included in conservation dynamic equations and their analysis 
explains the observed effects of instability, phase separation (demixing), and self-assem-
bly in the flow of multicomponent complex fluids and the prediction of possible effects. 
The concrete results of calculations depend on the choice of a rheological constitutive 
model. 

Two of the most popular physical methods for modeling the rheological behavior of 
complex liquids are also used in different versions for predicting shear-induced effects in 
their flow. This is a tube model180 and a slip-spring model.181 Any of these rheological 
models including the concept of stress-diffusion coupling allows for the main macro-
effects discussed above to be described: demixing and self-assembly in multicomponent 
complex fluids. This principle is possibly a consequence of the instability predicted by 
non-linear rheological models which lead to the coexistence of different states of a fluid 
under external forces.
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In the latest theoretical consideration, the shear induced demixing in chemically 
identical linear polymer blends with different molecular weight distributions was dis-
cussed (the generalized "multifluid" model).182 There is the difference in the alignment in 
the flow direction of short and long macromolecules and this is enough reason for their 
separation at high Weissenberg numbers where elasticity begins to play a dominant role. 
Then elastic forces promote a migration of short chains resulting in enhancing mixing.

The modern state of the understanding the shear-induced phase transitions is dis-
cussed in.183 

3.6 LIMITS OF SHEAR FLOW − INSTABILITIES
3.6.1 INERTIAL TURBULENCE
The term “limits of shear flow” in the title of this section should be understood as the limit 
of steady shearing before flow instability of any type appears. At higher velocities (or 
shear rates) shear flow continues but in an unstable mode. 

Instability is the phenomenon of large and uncontrolled disturbances induced by a 
slight and accidental cause. The most general type of instability, common to all liquids, is 
known as the Reynolds or inertial instability. The origin of this phenomenon, first found 
by Reynolds,184 is the inability in suppressing occasional flow fluctuations by viscous dis-
sipation. It means that at sufficiently high velocities inertial forces become large and 
exceed viscous forces. At low velocities, viscous forces damp any stream fluctuations, 
therefore streamlines are smooth and parallel layers of liquid slip over each other. This 
type of flow is called laminar. At higher velocity, fluctuations increase due to inertial 
forces and become more pronounced. Above some critical (threshold) velocity, the fluctu-
ations cannot be damped by viscous resistance. As a result, streamlines become irregular 
and the pathway of any individual particle in the stream appears chaotic. Such type of flow 
is called turbulent, and the transition to turbulent flow results in much higher energy dissi-
pation than in smooth laminar flow.

The criterion of the appearance of inertial turbulence defines a threshold value of the 
dimensionless ratio of measures of inertial and viscous forces. The Reynolds number, Re, 
is such a criterion and it is expressed by:

[3.6.1]

where V is the velocity, D is the characteristic geometrical size (e.g., the diameter of a 
capillary as in Eq. 3.6.1; the radius of a round tube or the distance between two parallel 
plates or another geometrical factor can be used in the definition of the Reynolds number), 
ρ is density, and η is viscosity.

The critical value of the Reynolds number, corresponding to the transition from 
steady (laminar) to chaotic (turbulent) flow, is close to 2,300. 

Inertial instability is very important for the flows of numerous liquids, such as water, 
low viscous oil products, and so on. Turbulent flow is a great field of study, and a lot of 
original publications and monographs are devoted to this subject. However, inertial (or 
Reynolds) turbulence is not primarily a rheological phenomenon, though it can also be 
observed for non-Newtonian liquids. This phenomenon is important for weak (dilute) 

Re VDρ
η

------------=
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solutions and suspensions (for example, blood flow). In all these cases it is necessary to 
re-define the value of the Reynolds number, taking into account the shear rate dependence 
of the apparent viscosity entering the expression for Re. 
3.6.2 THE TOMS EFFECT
For liquids of all types, the dependence of flow resistance (or energy dissipation) on flow 
rate in a laminar flow is commonly expressed by the Hagen-Poiseuille law:185 

[3.6.2]

where Q is the flow rate, Δp is the pressure drop, η is viscosity, R and L are the radius and 
the length of a capillary, respectively.

In publications and applied work on fluid dynamics, some other form of the Hagen-
Poiseuille law is preferred. It is based on the dimensional variables. The dependence of the 
coefficient of friction, λR, on the Reynolds number is defined as:

[3.6.3]

Then, the Hagen-Poiseuille law is presented as

[3.6.4a]

where the characteristic geometrical size in the Reynolds number is R but not D, unlike in 
Eq. 3.6.1. The physical meaning of both dimensionless variables, ReR and λR is not 
changed if the diameter of a tube, D, is used as a characteristic geometrical factor, but not 
the radius. However, the numerical coefficient in the dependence λ(Re) appears different, 
and Eq. 3.6.4a is changed to the following formula (if D but not R is used as a geometrical 
factor for the coefficient of friction and the Reynolds number):

[3.6.4b]

The dependence λ(Re), as expressed by Eq. 3.6.4b, is shown in Fig. 3.6.1 and 
marked by the letters H-P. The physical reality of this dependence was repeatedly con-
firmed by numerous experiments carried out for different liquids. It is illustrated by points 
that are related to both Newtonian (open circles) and non-Newtonian (solid circles) liq-
uids. It is worth mentioning again that this dependence is the same for liquids of different 
types. At the Reynolds numbers exceeding the critical threshold, , the coeffi-
cient of friction begins to increase; this is the transition zone (from laminar to turbulent 
regime). At the second decreasing branch of the λ(Re) dependence, marked by the letter 
B, a well-developed turbulent regime of flow exists. The λ(Re) dependence in turbulent 
flow is described by a very common equation, known as the Blasius rule:186 

[3.6.5]
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The Blasius rule is an empirical generalization of numerous experimental data 
obtained by different researchers for various liquids. It is an equivalent of the Hagen-Poi-
seuille law for a turbulent regime of flow. The coefficients of dynamic resistance in turbu-
lent flow are much higher than in laminar flow. This is explained by more extensive 
dissipative losses in the chaotic movement of liquid particles in comparison with a regular 
displacement of layers in the laminar regime of flow. 

Experimental data for non-Newtonian liquids in transient and turbulent regimes are 
very close to the generalized regularities found for Newtonian liquids if the convenient 
definitions for λ and Re are chosen.187 

Toms188 showed that very small 
amounts of additives, dissolved in liquid, 
can suppress turbulent flow, or at least 
decrease turbulent losses to a great degree. 
This effect, known as the Toms effect, 
sometimes is called drag reduction. These 
additives are polymers, and their amount 
does not exceed 100 ppm.189 

There are two main classes of liquids 
to which the Toms effect applies: water 
(and therefore water-soluble polymers, 
such as polyoxymethylene, polyacryl-
amide, some natural polymeric substances 
are used) and oil products and some syn-
thetic polyolefins. 

The decreasing extent of flow resis-
tance depends on many factors, including 
the concentration of additive, its chemical 
nature, temperature, and so on.190 How-
ever, there is a limit of drag reduction by 
the Toms effect. This limit is shown in Fig. 
3.6.1 and marked by the symbol V. The 
Toms effect causes the disappearance of the 
transition zone on λ vs. Re diagram and the 

shift of the λ(Re) dependence in the turbulent zone from B to V line in Fig. 3.6.1. This 
limiting curve corresponding to the maximum of drag reduction (line V) is called the Virk 
asymptote and it described by the equation:191 

[3.6.6]

The origin of the Toms effect is still the subject of intensive discussion. However, the 
common opinion is that the Toms effect is related to the elasticity of liquid caused by add-
ing polymer to water (or an oil product) and, possibly, the crucial factor is the extensional 
(or elongational) viscosity of such solutions. It is thought that the turbulent losses are 
related to the existence of multi-frequency oscillations superimposed on the main stream. 
Every mode gives its own input to dissipative losses. Then, it can be suggested that the 

λ 2.36
Re0.58
--------------=

Figure 3.6.1. Dynamic resistance as a function of veloc-
ity (in dimensionless variables vs. Re) in flow through 
tubes. Open circles − Newtonian liquids; dark circles −
non-Newtonian liquids; Squares − dynamic resistance 
due to the Toms effect. H-P − the Hagen-Poiseuille law; 
B − the Blasius rule; V − the Virk asymptote; TE − the 
Toms effect − decrease in dynamic resistance. 
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decrease in turbulent losses due to the Toms effect can be explained by oscillations at 
some modes that do not dissipate but continue because these oscillations become elastic.

The Toms effect leads to a decrease in the flow resistance, which can be as high as 
75%. This is a considerable change, and it was reasonable to search for its different appli-
cations. The most likely applications include an increase in the pumping rate of water and 
oil products in transportation through pipelines, or surface coating of sport boats and tor-
pedoes by polymer additives in order to decrease the resistance of their movement in the 
water and consequently to increase their speed. The Toms effect favors the stability of liq-
uid streams, and thus the presence of a small amount of polymer additive in water permits 
an increase in the length of a jet from fire-pumps. The Toms effect was also applied to the 
investigation of chemical reactions and physical transformations of dilute solutions.192 
3.6.3 INSTABILITIES IN THE FLOW OF ELASTIC LIQUIDS
3.6.3.1 Dynamic structure formation and secondary flows in inelastic fluids
Instability in the flow of fluids does not necessarily lead to the formation of chaotic pat-
terns. In many cases, self-organization, appearance of shear-induced structure, and/or sec-
ondary flows can take place. The effect of the flow-induced crystallization (i.e., the 
appearance of three-dimensional order) has been described in Section 3.5.3. Below, we 
will concentrate mainly on a dynamic phenomenon not related to phase transitions, though 

there is no well-defined boundary between 
different types of structurization in the 
flow.193 

The formation of the Taylor cells in 
flow between two rotating coaxial cylin-
ders is a well-known effect of dynamic 
shear-induced structure. One can expect 
fluid elements placed between coaxial cyl-
inders move along circumferences when 
cylinders rotate at different speeds. It is so-
called Couette flow. This suggestion is the 
base of rotational viscometry (see Section 
5.3.2). Meanwhile at some relationship 

between speeds of rotation, streamlines 
form closed figures − cells, as shown in Fig. 

3.6.2. These are so-called secondary flows, which organize streamlines in the planes per-
pendicular to the direction of the main flow.

This phenomenon is due to the centrifugal (inertial) forces which push a liquid from 
the inner cylinder towards the outer. This type of flow pattern and its theory were pro-
posed first by Taylor194 and then developed by other authors who discussed different kinds 
of rotational motions. When a stability threshold is overcome, inertial toroidal roll cells 
appear. Their height, h, is roughly equal to the gap clearance between the cylinders, i.e., 
the difference (R2 − R1). The term “instability” must be accepted here with certain accu-
racy; it only means that there are some secondary effects superimposed on the main 
stream. Meanwhile, these secondary streams can be quite stable in time and space.

Since the Taylor-Couette instability is the consequence of inertial forces, it is deter-
mined by a definite relationship between centrifugal (as a measure of inertial effects) and 

Figure 3.6.2. Taylor-Couette instability − formation of 
cells.
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viscous forces. This relationship is expressed by the dimensionless value called the Taylor 
Number, Ta, which is an analogue of the Reynolds Number by its physical meaning. The 
Taylor Number is expressed as 

[3.6.7]

where Ω is the frequency of rotation, R is the average radius of coaxial cylinders, and ν is 
the kinematic viscosity (Newtonian viscosity divided by density). The vortex structure 
(Taylor-Couette cells) becomes possible if the Taylor number exceeds some critical value 
Ta*, which increases with the increase of the Ω1/Ω2 ratio,195 while the minimum value of 
Ta* is close to 1700. 

The general “curve of stability” is 
shown in Fig. 3.6.3. This curve separates 
regions of stable and secondary flows. One 
can see that the experimental points per-
fectly correspond to the theoretical thresh-
old curve.

The Taylor-Couette cells are also 
formed in a Bingham viscoplastic media196

as well as in the flow of two immiscible 
viscous fluids.197 

It is interesting that cells are multi-
plied with the increase of the Reynolds 
Number and finally the laminar flow, 
though complicated with enhancing sec-
ondary flows, transforms to the turbulent 
regime of flow.

3.6.3.2 Secondary flows in the flow of elastic fluids
Cells of the Taylor-Couette type can appear in the flow of elastic fluids. Systematic studies 
of the Couette flow of elastic liquids showed that cells are also formed in these liquids. It 

is possible to observe a continuous 
transition from inertial to elastic 
instability by controlling the rheo-
logical properties of a fluid.198

Different types of coexisting cells 
of various sizes were observed in 
the flow of elastic liquids.199 

Sometimes, the appearance 
of secondary streams in the flow 
of an elastic liquid is considered as 
the consequence of the second 
normal stress difference. Though 
these stresses are not large, they 
are thought to be responsible for 

Ta 4Ω2R4

ν2
----------------=

Figure 3.6.3. Limit of stability in formation of Taylor-
Coutte cells.

Figure 3.6.4. Secondary flows in channels of elliptical (a) and 
square (b) cross-sections. Main stream is directed perpendicularly 
to the plane of a drawing.
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the development of elastic-type secondary flows 
during the flow of a liquid through non-round chan-
nels.200 Such secondary flows look as shown in Fig. 
3.6.4 for a channel of an elliptical201 (case − a) and 
square202 (case − b) cross-sections. 

Elastic instability can occur in different geom-
etries of flow. So, effects of this type were investi-
gated in the cross-channel flow,203 which can result 
in a steady asymmetric state even when flow takes 
place in perfectly symmetric geometry.204 

Secondary flows are also observed in the flows 
through channels with a sudden contraction − for 
example in the transition region from a round cylin-
der to a small diameter capillary (Fig. 3.6.5). Also, it 
was proven (by both, numerical and experimental 
methods) that the second normal stress difference is 
the driving mechanism of secondary flows in 
tapered channels.206 Besides, the second normal 
stress difference can be responsible for the edge 
fracture of viscoelastic liquids and suspensions (such 
as lubricating grease and toothpaste) in the circular 

flow of a liquid between a cone and plate or two parallel plates.207 
 It was shown that a regular dynamic structure can be observed in the flow of differ-

ent elastic liquids. The quantitative measure of the critical conditions is defined by the 
Deborah number, De, which is the ratio of characteristic internal (relaxation) and external 
(rate of deformation) times. The Deborah number in rotational flows of an elastic fluid 
characterized by a single relaxation time is determined as

 [3.6.8]

where Ω1 is the frequency of rotation of the inner cylinder (Ω2=0) in the Couette flow, ε is 
the dimensionless gap defined as

[3.6.9]

Definition of R1 and R2 is shown in Fig. 3.6.2 and λ is the relaxation time.
The Reynolds number in all studies devoted to instability in elastic fluids was very 

low, less than 7*10-3; this is four orders of magnitude less than the critical value corre-
sponding to the onset of the centrifugal instability. So, the Taylor numbers in all cases 
were several orders less than the above-mentioned critical value of Ta*. It means that this 
effect has nothing in common with the inertial mechanism, but is completely governed by 
the elasticity of a fluid.

It was found that there is a critical Deborah number Decr (or, equivalently, the critical 
Weissenberg number, Wicr) equal to 35.5, which is responsible for the onset of instability. 

De
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Figure 3.6.5. Secondary flows in sudden 
contraction − transition from a cylinder to a 
small diameter capillary.
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The critical Weissenberg number, Wicr depends on the gap clearance between coaxial cyl-
inders, and according to Larson,208 

[3.6.10]

Secondary flows of the elastic nature can be observed not only in polymeric systems 
but also in so-called worm-like micellar colloids,211 though the term Taylor-Couette insta-
bility is frequently used for these structures. Meanwhile, the origin of these cells is defi-
nitely elasticity but not inertia of a medium and can be connected with the inhomogeneity 
of normal stresses along the direction of the veloity gradient in the Couette flow.208 

In concentrated solutions and polymer melts, other types of instabilities occur much 
before the onset of the inertial turbulence is reached. Indeed, their viscosity is very high 
and the denominator in the expression for the Reynolds Number is large. As a result, it is 
impossible to reach high values of Reynolds Number, close to the above-mentioned criti-
cal value, at any real velocity.

Hence, the appearance of unstable regimes of deformation for non-Newtonian poly-
mer melts and concentrated solutions at high shear rates is not related to the inertial turbu-
lence but has other physical reasons. In fact, different kinds of irregular flow, or 
instabilities, in the flow of polymer substances have been described, and generally speak-
ing, they are related to the viscoelastic nature of deformation of these materials.209 

Several examples of the ordinary sequence of irregularities developing with the 
increase of flow rate of industrial-grade polydisperse 
polymers pushed through a cylindrical channel (cap-
illary, die) are shown in Fig. 3.6.6 (flow rate is 
increasing from left to right).

Instabilities appear initially as the surface 
defects of an extrudate. The unsteady flow is noticed 
firstly in the form of small-scale surface defects and 
as a result, the extrudate surface becomes matte. 
According to its look, this effect sometimes is called 
“sharkskin”. The most severe form of the sharkskin 
effect is the appearance of small-scale regular (peri-
odical) thread-like or screw-type defects on the sur-
face of a jet (Fig. 3.6.7). 

In many cases, instability of the sharkskin type 
in the flow of polymer melts appears at stresses 
close to 0.1MPa, though the exact limit and severity 
of the effect depend on the nature of a material and 

(to some degree) on the smoothness of a channel sur-
face and the material which it is made from.210 

The appearance of these small-scale defects has 
negative consequences for the quality of industrial 
products such as films, which lose their gloss and 
brilliancy due to surface defects, wire insulation, and 
others.

Wicr 5.9ε1 2⁄=

Figure 3.6.6. Typical polymer extrudates 
obtained at different shear rates (increasing 
from left to right) − transition from smooth 
stream to unsteady regimes of deformations. 
a: polyethylene; b: polyvinyl chloride. (Pho-
tographs were made in laboratory of Poly-
mer Rheology, Institute of Petrochemical 
Synthesis of Academy of Sciences.)
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The sharkskin effect is believed to initiate at the die exit. The ori-
gin of sharkskin is definitely related to a special dynamic situation near 
the exit section of a channel. Indeed, the sharp edge of a channel near 
its exit is a singularity and transition from a parabolic velocity profile 
inside a channel to a flat profile, which occurs right after the exit from 
the channel. The rearrangement of the velocity profile near the exit is 
quite evident and was well documented by visualization of a stream. 
Optical observations confirmed that small pulsations are visible in the 
exit zone with the same frequency as surface defects of the extru-
date,211 whereas flow along the whole length of a capillary stays stable 
and is not influenced by small-scale instabilities of the sharkskin type.

 The stability of a stream along the whole channel in spite of the 
appearance of sharkskin (related to the channel exit) allows one to 
measure the apparent viscosity in the range of stresses corresponding 
to this type of instability.

Sometimes the origin of periodic (“sharkskin-like”) defects on 
the surface stream is related to the cyclic generation of wall slip at the 
tube exit.212 High-speed video microscopy technique demonstrates that 

cohesive failure downstream of the exit accompanies each sharkskin cycle while surface 
treatment can initiate a strong slip and suppress sharkskin defects.213 

The stress distribution near the exit section of a channel was examined by means of 
the technique of flow birefringence, and it was confirmed that not only shear but also ten-
sile stresses appear close to the point of singularity.214 The following qualitative picture 
can clear up the origin of small-scale surface defects of an extrudate. When a melt is 
pushed out of a channel, the stream is hindered at the outlet section of the die. Meanwhile, 
the central part of a stream continues to move forward and pulls the other outer layers of a 
liquid. When this pulling force becomes high enough the adhesive contact between a melt 
and a wall is broken, and the material is detached from the die. This process is repeated 
periodically and it leads to periodic pulsations or oscillations of the surface defects. The 
appearance of the small scale defects is definitely related to stress conditions at the exit 
edge of a die: some extra energy is necessary for tearing a flowing matter off a solid sur-
face, this energy is stored in the form of elastic deformations, After leaving a tube this 
energy is released and it results in the periodical swelling of a jet. 

As a result of numerous visual observations and calculations, it was suggested that 
the mechanism of sharkskin is the surface rupture under tensile stress acting at the edge of 
a channel: periodic oscillations appear as the result of material rupture when this stress 
reaches some critical level.215 Indeed, it was shown that small traction zones appear on the 
surface of an extrudate, and the dimensions of these zones are of the order of magnitude of 
sharkskin amplitude. So, we can think that the main reason for the sharkskin effect is the 
rubber-like behavior of a melt near the die exit and cracks which appear perpendicular to 
the flow direction. They are due to elongational (normal) stresses created at the die exit 
and stored elastic energy is responsible for crack creation.

Figure 3.6.7. Small-
scale screw-like sur-
face defects − start of 
development of the 
unsteady flow of a 
polymer melt. Low 
density polyethylene. 
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The appearance of the sharkskin effect is not a 
threshold effect but develops continuously. Fig. 
3.6.8 illustrates the main stages of the formation of 
regular surface defects.216 It was noted that the wav-
iness length and amplitude of teeth is a monotonous 
function of the shear stress,217 though it is possible 
to estimate the critical stress corresponding to the 
appearance of slight visual effects. It is reasonable to 
think that the loss of gloss means that the order of 
magnitude of the defects becomes of the order of the 
wavelength of visible light, i.e. 0.4 - 0.8 μm. For lin-
ear polyethylene, this stress is of the order 0.1 - 0.2 
MPa.

A promising technological method of exclud-
ing sharkskin defects is related to adding some additives to polymer melt which create 
coating at the die wall and induce slip. This method was proposed, for example, for the 
extrusion of low-density polyethylene. Fluoropolymer processing additives were effec-
tively used to eliminate sharkskin surface defects. It was proven that these additives 
adsorb first in the entrance region of the die and then migrate towards the capillary exit 
where they suppress sharkskin defects.218 

It was noted that any tendency to slip at the die wall for the melt near the exit will 
reduce the acceleration of the surface layer and so reduce the stress level in that layer and 
so the severity of any rupture.219 

Bearing in mind the slip conception, the role of surface properties of the die becomes 
important. This is illustrated by Fig. 3.6.9, which clearly shows that the critical shear 
stress strongly depends on the surface properties of a material used for preparing a die.220 

Figure 3.6.8 Developing of surface defects in 
extrusion. Velocity of flow increases from 
top to bottom. a - smooth surface; b -loss of 
gloss; c - sharkskin. [Adapted, by permis-
sion, from E. Miller, J.P. Rothstein, Rheol. 
Acta, 44, 160 (2004)].

Figure 3.6.9. Influence of surface properties on the criti-
cal shear stress corresponding to the sharkskin effect. 
[Adapted, by permission, from H.J. Larrazabal, A.N. 
Hrymak, J. Vlachopoulos, Rheol. Acta, 45, 705 (2006)].
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An increase in the flow velocity and corre-
sponding stresses leads to the transition from 
sharkskin defects to the large-scale periodicity of 
surface defects. They can have a very impressive 
effect (Fig. 3.6.10).

Different terms were used to describe this 
phenomenon: fluid wraps, fringes, rings, collars, 
surface cracks, and so on. In all these cases, it is 
possible to point out the exit section of a die as 
the origin of these defects.

An attempt to increase the speed of flow of 
monodisperse polymer melts leads to the transition from regular gross scale to irregular 
defects. They may have different appearances. The origin of these gross scale defects is 
attributed to peculiarities of deformations inside a die or even at the inlet section of the 
die. 

When a monodisperse polymer melt is extruded through a die, the sliding of material 
along the solid wall of a channel begins at certain shear stress, σs. This effect was men-
tioned in Section 3.2.1 and it is known as spurt. The origin of the spurt is attributed to liq-
uid-to-rubber transition such as observed at high frequencies of oscillations (see Section 
2.7.2), i.e., to the quasi-solidification (hardening) of a melt in a near-wall layer at high 
deformation rates.221 It means that the lifetime of intermolecular contacts becomes longer 
than the characteristic deformation time (reciprocal shear rate) and the polymer melt 
behaves as a quasi-stable rubbery network. As a result, highly stressed boundary layers of 
material lose fluidity and adhesive contacts between polymer and wall is broken and the 
material begins to slide along the wall. Alternatively, cohesive breaks can happen because 
the strength of both is similar.

Figure 3.6.10. Large-scale periodic defects of the 
extrudate. [Adapted, by permission, from N. El Kissi, 
J.-M. Piau, T. Toussaint, J. Non-Newton. Fluid. Mech., 
68, 271 (1997)]. 

Figure 3.6.11. Flow curves and spurt stress 
for polybutadienes of different molecular 
mass (shown on the graph). [Adapted, by 
permission, from G.V. Vinogradov, A.Ya. 
Malkin, Yu. G. Yanovsky, E.K. Borisenkova, 
BV. Yarlykov, G.V. Berezhnaya, V.P. Shata-
lov, V.G. Shalganova, V.P. Yudin, Vysokomol. 
Soedin. (Polymers in Russian), 14A, 2425 
(1972)]. 
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The existence of wall slip is accompa-
nied by strong surface charge formation 
(“tribological effect”) that is characteristic 
for the friction of a dielectric material mov-
ing along metal; the electrical charge is a 
strong function of apparent shear stress.222 

It is interesting to note that critical 
shear stress, σs, corresponding to the transi-
tion from flow to spurt does not practically 
depend on the molecular mass of the poly-
mer (Fig. 3.6.11) and/or temperature, i.e., it 
does not depend on the viscosity of the 
melt. 

For many flexible-chain polymers 
(such as polybutadiene or polyethylene) 
the spurt shear stress, σs, is close to 
0.3MPa. However, σs is not the universal 
constant. More detailed analysis showed223

that there is a correlation between the rigid-
ity of the molecular chain and the σs values. 
It was found that for rigid-chain polyphosp-
hazenes σs can be as low as 0.009 MPa.

Spurt is not typical of melts of indus-
trial polydisperse polymers, though the 
phenomenon of transition from flow to slid-
ing or periodic sliding is very general for all 
polydisperse polymers. This periodic slid-
ing, known as the stick-slip phenomenon, 
leads to the appearance of periodical regu-
lar sequences of distorted and smooth parts 
on the surface of the extrudate and it is 
accompanied by periodic fluctuations of 
velocity (Fig. 3.6.12) and instant output.

This effect is attributed to the behav-
ior of flowing material on solid surfaces. 

Indeed, direct measurements of velocity profiles (made by the Doppler velocimetry 
method) confirmed that a classical velocity profile in the smooth part of the flow curve of 
high-density polyethylene is observed while strong macroscopic wall slip is documented 
for the upper part of the flow curve.224 It is worth adding that the existence of the surface 
slip is now a well-documented phenomenon.225

The typical level of shear stresses responsible for the appearance of stick-slip insta-
bilities in capillary flow is the same as the spurt stress for flexible-chain polymer melts, 
i.e., it is about 0.3 MPa (compare with data in Fig. 3.6.9 where it is seen that sharkskin 
effect appears at lower stresses). The frequency of oscillations can be very different vary-
ing from 2-3 till 20-30 per second.

Figure 3.6.12. Velocity fluctuation (at the axis of chan-
nel) during stick-slip regime of capillary flow. [Adapted, 
by permission, from L. Roberts, Y. Demay, B. Vergnes, 
Rheol. Acta, 43, 89 (2004)]. 

Figure 3.6.13. Hysteresis loop in measuring viscous 
properties of some polymer melts − multi-valued flow 
curve with spurt effect. 
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The stick-slip phenomenon is directly 
related to the existence of multi-valued flow 
curves, or hysteresis loops as shown in Fig. 
3.6.13. This phenomenon was observed in 
various polymers, including high-density 
polyethylene, polybutadiene, polyisoprene, 
etc. The area of a hysteresis loop depends 
on the molecular mass and the polydisper-
sity of the polymer. When apparent viscos-
ity, or flow curve, is measured with a 
capillary viscometer, two principal modes 
of the experiment are possible. First, a pres-
sure-controlled regime can be set. In this 
case, the pressure is constant and the flow 
output (or calculated shear rate) is mea-
sured. When pressure is increased, the mea-
sured output follows curve branch 0AB. At 
point B spurt happens, accompanied by a 
jump to point C. Then, the points of the 
apparent flow curve lie on the CM branch. 
If the pressure is decreased beginning from 
point M, the points on the apparent flow 
curve move along the upper branch MCD, 
and rapid change to the lower branch hap-
pens from point D to point A, followed by a 
decrease of the shear rate along the curve 
branch A0. 

Periodic oscillations of instant output 
also take place in a rate-controlled situation, 
i.e., when a total (averaged) flow rate is 
constant. For example, this occurs when a 
piston pushes material through a large 
radius cylinder and then through a die at the 
end of a cylinder. The velocity and output 
oscillate between upper and lower branches 
of a flow curve, as shown in Fig. 3.6.13. 
The oscillations of pressure in the extrusion 
of monodisperse polymers may happen in 

regular intervals, as shown in Fig. 3.6.14. There is a correlation between the points along 
the hysteresis loop and the measured pressure values.

In some cases, periodic oscillations look rather whimsical. For example, pressure 
oscillations appear at different shear rate ranges in a capillary flow and look like double 
oscillation loops (see Fig. 3.6.15). 

In many cases, the two branches in a flow curve correspond to two different physical 
states of a matter, and oscillations reflect periodic transitions between these states.

Figure 3.6.14. Regular pressure oscillations along the 
hysteresis loop. Points A and B correspond to the same 
points on the flow curve in Fig. 3.6.7. 

Figure 3.6.15. Double oscillation loops − pressure 
oscillations at two different shear rates in the capillary 
flow of linear polyethylene. a: main double-value zone 
on the flow curve (experimental points are omitted); b: 
secondary (high-shear rate) double value zone on the 
flow curve. [Adapted, by permission, from L. Robert, 
B. Vergnes, Y. Demay, J. Rheol., 44, 1183 (2000)]. 



218 Liquids

The hysteresis effect accompanied by regular periodic oscillations of the instant out-
put rate is related primarily to melt compressibility of material in a large volume cylinder 
before entering into a capillary (“capacity model”):226 the elastic energy of volume defor-
mations is stored in a large volume and periodically released. The second condition neces-
sary for the appearance of a hysteresis loop in an apparent flow curve is the possibility of 
the stick-slip phenomenon and/or spurt at certain critical shear stress. 

The position of points on a hysteresis loop is directly related to the types of extrudate 
distortions. The stream is smooth in the 0A zone, small periodic distortions (or a sharkskin 
effect) appear in the AB zone. Gross extrudate distortions are typical of higher pressures. 
However, in some cases a smooth extrudate surface again appears at the upper branch of 
the “flow curve”; this is called super-extrusion and can be useful for increasing the output 
in the processing of some polymers (for example, polytetrafluoroethylene). 

A multi-valued flow curve can be also observed in a rather special case under a con-
stant pressure condition if slip is built along half of the die wall. In this rather artificial sit-
uation, cyclic self-oscillations in capillary flow, accompanied with periodic changes in the 
appearance of an extrudate, are observed.227 

As shown in Fig. 3.6.6 (the last samples on the right), the final stage of instability is 
the appearance of highly visible gross defects of different types. In extreme cases a stream 
can even disintegrate into separate pieces. This stage of instability is called the melt frac-
ture.

It can be thought that such gross effects are the consequence of rubbery deformations 
and elastic recovery after material leaves the channel and restrictions (applied by the solid 

walls of the channel) to the elastic recoil are 
removed. Ruptures of the jet are caused by the large 
amount of elastic energy stored during deformations 
inside the channel. 

At higher shear stresses or velocities, distor-
tions become irregular and in the limiting cases they 
result in the breakup of the stream. Ruptures happen 
even inside a tube (channel) as was proven by direct 
observations.228 In this experiment, black pieces 
were introduced into a white melt flowing through 
the capillary. Inner oscillations at low flow rates and 

discontinuous streamlines at high flow rates were clearly noticeable (Fig. 3.6.16). 
It is interesting to mention that breaks occur along the channel axis, where shear 

stresses are absent. It suggests that these effects are caused by tensile stresses present at 
the die inlet. At high flow rates, the deformation of material inside the channel becomes 
irregular. Possibly, the discontinuous flow lines first appear in the inlet sections of a chan-
nel at the corners near the entrance to the die, where the rearrangement of stream takes 
place and additional high shear and tensile stresses appear. 

The transition from the steady flow regime to instability is clearly seen by direct 
optical observations and/or the birefringence method (Fig. 3.6.17). 

The left picture demonstrates the regular stress distribution, whereas the chaotic flow 
pattern with an irregular variation of stresses is typical of the instability regime (the right 
picture). Very strong stress concentration is evident in the inlet zone of the channel (espe-

Figure 3.6.16. Deformations of stream inside 
a channel: oscillations of a stream correlated 
with periodical extrudate distortions; rup-
tures of a stream along the extrudate axis. 
[Adapted, by permission, from P.L. Clegg, in 
Rheology of Elastomers, Pergamon Press, 
1958]. 
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cially near the corners). The shear stress in inlet and 
outlet zones may achieve the critical value, whereas 
inside the die the shear stress at the wall may be sub-
stantially lower than its critical value. If the critical 
stress is reached at the sharp corners, the polymer 
passes into the rubbery state, its adhesion to the wall 
diminishes, and a local spurt occurs. As a result of 
the detachment of polymer from the walls, the acting 
stress decreases, the polymer relaxes, and then it 
begins to flow in the layer adjacent to the wall.

Then, in contrast to flow with the sharkskin 
effect, it is not useful to measure apparent viscosity 
or to apply the concept of steady flow (as well as to 
analyze dynamic problems of flow) in such situa-
tions, because in this case instability means that the 
real flow is absent. 

It is possible to propose the following rough 
scheme of development of instabilities in the flow of 
viscoelastic polymer materials. First, outlet instabil-
ity appears due to stress concentration at the outlet 
section of a die and its corners. It results in periodic 

small-scale defects. Then, with an increase in flow rate, oscillations 
spread inside a tube, leading to surface (land) instability, possibly in 
the form of spurt or stick-slip or other surface distortions. At last, inlet 
instability occurs at the entrance of the tube. Then it develops along 
the whole length of the die and demonstrates itself as the melt fracture. 

As was discussed above, small-scale disturbances (sharkskin) are 
dependent on the quality and material of the tube (or die), while the 
onset of gross defects is not influenced by the material of a die surface 
at all.229 

Obviously, instabilities of different types are related to the special 
surface effects, and, at least in some cases, they are connected with 
wall slip of material. Three possible mechanisms of near-wall effects 
are discussed: an adhesive rupture inside a polymer melt, a cohesive 
failure and the appearance of a lubricating layer at the wall.230 It should 
be mentioned that the adhesive and cohesive strengths of polymeric 
materials are rather similar. Hence, whether it is an external or internal 
rupture it always depends on the nature of the surface material and the 

geometry of flow. The appearance of a lubricating layer is possible in the flow of polymer 
solutions or polydisperse polymers: a low viscous solvent or low molecular mass fractions 
can migrate to the solid wall and stay there in the form of a very thin coating, sliding along 
this lubricated layer looks like wall slip.

It is also interesting to examine the flow regimes corresponding to a pressure gradi-
ent that is a little larger than the critical value. This is depicted in Fig. 3.6.18, where the die 
entrance is shown in the left part; and the die proper in the right part; the lower edge of the 

Figure 3.6.18. Optical 
fringe patterns during 
flow of polybutadi-
ene in a rectangular 
duct under shear 
stress slightly above 
the spurt conditions. 
[Adapted, by permis-
sion, from G. V. Vino-
gradov, Rheol. Acta, 
12, 357 (1973)].

Figure 3.6.17. Birefringence pictures for 
steady (a) and chaotic (b) movement of poly-
mer melt through a capillary. Polybutadiene. 
[Adapted, by permission, from G.V. Vinogra-
dov, N.I. Insarova, V.V. Boiko, E.K. Borisen-
kova, Polym. Eng. Sci., 12, 323 (1972)]. 
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photograph corresponds to the middle part of the die along its length. With pressure gradi-
ents that create the flow pattern presented here, the ruptures in the flowing polymer extend 
over a limited zone adjoining the edges, and the random movement of the polymer takes 
place only in layers adjacent to the wall. As polymer lumps advance along the die walls, 
their internal stress is relaxed, and the distribution of interference bands of ever-improving 
regularity appears near the walls. 

The change in the slippage regime of the polymer − the movement of lumps of the 
polymer, which are randomly displaced relative to one another − explains the increase in 
the pressure gradient with the increasing rate of flow under above-critical regimes of poly-
mer movement in the die. 

It should be emphasized that at sufficiently high-pressure gradients and flow rates, a 
break in the continuity of the polymer occurs with a smooth entrance, as well. The sharp 
edges at the die entrance only facilitate this process but its origin is determined by the 
polymer in the rubbery state undergoing a rupture when the deformation rates and stresses 
exceed certain critical values. 

 The transition from true flow to wall instability (regardless of its detailed mecha-
nism) is evident from the observation of capillary flow at high flow rates. However, there 
are two additional factors that prevent one from making definitive conclusions about wall 

slip: continuous input of the fresh material 
into a channel and the variation of stress 
conditions along the channel due to the 
hydrostatic pressure decrease from inlet to 
outlet.

It is possible to exclude both factors 
and to follow a “pure” transition from flow 
to sliding. It is observed by imposing a 
continuous shear on a sample placed 
between a cone and a plate, where homo-
geneous stress exists (see Part 5, consider-
ing theory for these viscometers). This 
instrumentation permits observation of 
slow dewetting from the solid surface. A 
sample does not slide along the solid sur-
face at low shear stresses (or rates). An 
increase in the shear stress leads to the sep-
aration of the sample from a solid wall, but 
it happens not just as the stress is applied 
but after some deformation or time of 
shear. This critical time, t*, depends on the 
shear stress applied, as shown in Fig. 
3.6.19. Hence, the adhesive strength is 

time-dependent and at stresses corresponding to melt fracture in capillary flow (marked by 
the horizontal bar in Figure 3.6.19) this critical time becomes instantaneous for an 
observer.

Figure 3.6.19. Stress dependence of time corresponding 
to the break of the adhesion contacts between the poly-
mer melt and a solid wall. Polyisobutylene. MM=1*105. 
T = 25oC. [Adapted, by permission, from A.Ya. Malkin, 
B.V. Yarlykov, Mekh. Polym. (Polymer Mech. − in Rus-
sian), #5, 930 (1978)].
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Regular surface defects or regular variations of the form of a stream formally do not 
correspond to the rigorous definition of instability as large and uncontrolled disturbances. 
However, physical reasons for both effects − superposition of elastic and plastic deforma-
tions at high stresses − are similar and there is a continuous development of increasing 
extrudate distortions. That is why all extrudate defects are considered together in this 
Chapter. 

Indeed, all above-discussed types of instabilities in the flow of polymer solutions and 
melts are related to their viscoelasticity. Therefore, it is reasonable to introduce a dimen-
sionless criterion, characterizing the relationship between inherent relaxation properties of 
material and rate of deformation. This is the so-called Weissenberg number, Wi,231 deter-
mined as

  [3.6.11]

where  is the rate of deformation, and θ is a characteristic relaxation time.
It can be suggested that the instability begins at some critical value of the Weissen-

berg number.232 The exact numerical value of this threshold Weissenberg number depends 
on the method of determination of the relaxation time.

The rubbery deformation,  stored in the flow is one of the possible alternatives of 
the Weissenberg number, Wi. If one defines  as σ/η and θ as η/G, where G is elastic 
modulus, then the Weissenberg number can be presented by 

 [3.6.12]

The ratio σ/G is elastic (rubbery) deformation. In this approximation, the critical 
value Wi is equal to some critical value of rubbery (stored) deformation, , responsible 
for the melt fracture effect. Different authors proposed that this critical value of  lies 
between 3 and 7, and on average it is close to 5 units (500%). Possibly, this estimation is 
valid for polydisperse polymers and solutions, but  (at the spurt stress) of monodisperse 
polymers is much less due to their high rigidity (high values of G), and for polymers of 
this type critical value of the Weissenberg number .

Using the Weissenberg number as the criterion of melt fracture reflects the general 
physical possibility of the event. However, the description of the real situation in treating 
the instability needs to apply a mathematical model of the rheological properties of the 
material and to develop a rigorous analysis of the specific dynamic situation.

The theoretical analysis of the cell formation in elastic fluids is ordinarily limited by 
low Weissenberg numbers. One can expect that cells can duplicate themselves with an 
increase of Wi values, as occurs during transition to the Feigenbaum fractal chaotic struc-
tures. Indeed fractal approach was successfully applied to analyze the sharkskin effect.233

Such chaotic structures were observed in strong capillary flows, as shown, for example, in 
Fig. 3.6.17b.
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3.7 EXTENSIONAL FLOW
3.7.1 MODEL EXPERIMENTS − UNIAXIAL FLOW
The uniaxial extension is not easy to induce in some liquids. It is difficult to maintain the 
shape of a stream of low viscous liquid and stretch it while measuring its properties. Elon-
gational flow can be observed for substances having high viscosity, such as honey or resin. 
Molten glass threads are convenient objects for creating elongational flow. However, the 
most popular and important materials for studying elongational flows are polymer melts 
or concentrated solutions. The ability to stretch and to form fine fibers or thin films is a 
very special rheological property of polymers, which is the basis of many technologies in 
the textile industry and in polymer processing. It is easy to imagine why polymeric sub-
stances can be stretched: uniaxial extension of polymeric substances leads to alignment of 
macromolecules and creates a dominating orientation of matter. It results in increased 
resistance to further deformation of this stress-induced macromolecular structure. 

All industrial polymers are polydisperse, but the rheological behavior of mono-
disperse polymers is easier to study.234 This section is devoted to experimental results 
obtained in studies of uniaxial extension of monodisperse samples. 

Stresses increase in uniaxial extension (see Fig. 3.7.1). Deformations in Fig. 3.7.1 
are understood in the Hencky sense, i.e., ε=3 corresponds to about a 20-fold draw ratio.

The net tensile stress, σE, divided by the rate of deformation, , gives the ratio which 
is the elongational viscosity, ηE:

ε·

Figure 3.7.2. Development of normalized stresses in 
extension of polymer melt. Polyisoprene, 
MM=5.75*105. Initial experimental data obtained in 
the temperature range from 0 to 75oC are “reduced” to 
25oC. The stress scale is normalized by the final value 
of steady-state viscosity. [Adapted, by permission, 
from G.V. Vinogradov, A.Ya. Malkin, V.V. Volose-
vitch, V.P. Shatalov, V.P. Yudin, J. Polym. Sci.: Polym. 
Phys Ed., 13, 1721 (1975)]. 

Figure 3.7.1. Stresses vs. deformations in uniaxial 
extension at different constant deformation rates. 
Polyisoprene. MM = 5.75*105. 0oC. Deformation rates 
are shown on the curves. [Adapted, by permission, 
from G.V. Vinogradov, A.Ya. Malkin, V.V. Volose-
vitch, V.P. Shatalov, V.P. Yudin, J. Polym. Sci.: Polym. 
Phys Ed., 13, 1721 (1975)]. 
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[3.7.1]

It is an elongational viscosity of “pure” liquids (which deform without storing rubbery 
deformations). The theory predicts (see Section 3.1.1) that the Trouton law (Eq. 3.1.6) is 
valid for such inelastic liquids.

In experiments carried out at constant deformation rates (  = const), one could 
expect that the stress is also constant. However, the real case is quite different. Fig. 3.7.2 
shows the dependence of ratio (σE/ ) on time at different deformation rates. The values of 
the ratio (σE/ ) in Fig. 3.7.2 are normalized by their limiting value obtained at high defor-
mations, and that is the elongational viscosity, ηE, at a steady flow. The argument can be 
also treated as deformation, ε, because at =const, the deformation is proportional to the 
time of elongation. The data presented in this figure were obtained at different tempera-
tures and reduced to 25oC.235 

At first glance, the experimental results presented in Fig. 3.7.2 seem to contradict the 
Trouton equation because the ratio (σE/ ) is not constant but continuously increasing with 
the increase in deformation. However, one must be accurate in discussing this situation. 
Resistance to deformation increases, but it does not necessarily result in an increase of vis-
cosity. Eq. 3.1.6 is related to a “pure” flow but the stretching of polymer melts consists of 
a superposition of the elastic (recoverable or rubbery) deformations and flow (or plastic 
deformation). Then, the stress evolution with deformation of a polymer melt under exten-
sion must be treated as a behavior of the viscoelastic body. 

The theory of viscoelasticity is discussed in Chapter 2. The experimental results pre-
sented in Fig. 3.7.2 must be modeled to understand their significance.

For a linear viscoelastic material, the stress evolution in a uniaxial extension is 
expressed by

[3.7.2]

where G(θ) is the relaxation spectrum, measured, for example, at small-amplitude har-
monic oscillation in a wide frequency range. This is the same relaxation spectrum used in 
treating experimental data in shear deformation. Similar to the rheological behavior in 
shear, the extension is expressed by the same form of the equation for stresses with the 
change of a shear rate, , to an elongational deformation rate, , and the difference is in 
the coefficient 3, only. In particular, the limiting value of the expression for stress, σ, at 

 gives the Trouton viscosity, ηE, which equals 3η.
Dividing tensile growth stress function, , by , according to Eq. 3.7.2, one can 

expect the universal dependence of / ηE vs. time. If this ratio is normalized with 
respect to its limiting value, which is the elongational viscosity, then the limit of the uni-
versal dependence of / ηE and time should be equal to 1. This is true for a model 
polymer liquid, as shown in Fig. 3.7.2. It means that this material can be treated as a linear 
viscoelastic liquid with constant viscosity.

Fig. 3.7.3 presents results of direct measurements of the elongational viscosity at dif-
ferent deformation rates. It is seen that the elongational viscosity does not depend on the 
rate of deformation and it equals 3η. 
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The increase in the elongational viscosity at high deformation rates is sometimes 
considered as a necessary condition for the stability of a stream being stretched. However, 
this is not so as seen from Fig. 3.7.3. High draw ratios can be reached without a noticeable 
increase in viscosity. A many-fold increase in the deformation rate does not lead to the 
necessary growth of the apparent elongational viscosity.

The experimental results presented in Figs. 3.7.2 and 3.7.3 for monodisperse poly-
mers as well as the constancy of their Newtonian viscosity in shear are not universal for 
real materials, such as commercial polydisperse polymer materials. 
3.7.2 MODEL EXPERIMENTS − RUPTURE
Steady flow is possible up to some critical stress or shear rate level. What happens then on 
further extension? The material is ruptured above some critical stress or deformation rate 
level. This is predicted by a simple model of an elastic liquid.236 If the rheological behav-
ior of liquid is characterized not only by viscosity but also by a relaxation time, θ, then due 
to the effect of large deformations the elongational viscosity, ηE, as a function of deforma-
tion rate, , is expressed as

[3.7.3]

ε·

ηE
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Figure 3.7.4. Limiting stresses (at steady flow − open 
symbols, or at rupture − solid symbols) as a function 
of deformation rate for polyisoprenes of different 
molecular mass (shown on the curves). Experimental 
points were obtained in the temperature range from 

 to 75oC. [Adapted, by permission, from G.V. 
Vinogradov, A.Ya. Malkin, V.V. Volosevitch, V.P. Sha-
talov, V.P. Yudin, J. Polym. Sci.: Polym. Phys Ed., 13, 
1721 (1975)]. 

-25

Figure 3.7.3. Measured elongational viscosity at 
steady-state flow at various deformation rates. Polyiso-
prene. M=5.75*105. T=25oC. [Adapted, by permission, 
from G.V. Vinogradov, A.Ya. Malkin, V.V. Volosevitch, 
V.P. Shatalov, V.P. Yudin, J. Polym. Sci.: Polym. Phys 
Ed., 13, 1721 (1975)]. 
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where

[3.7.4]

is the Weissenberg number. It is the dimen-
sionless ratio of the rate of deformation and 
rate of relaxation.237 

At large deformation rates, namely at 
, the apparent elongational vis-

cosity and consequently the normal stresses 
increase unlimitedly. This means that the 
rupture occurs before a steady-state flow 
regime is reached. There is a critical value 
of the Weissenberg number separating 
domains of flow and stretching, which 
leads to rupture.

Fig. 3.7.4 shows dependencies of lim-
iting stress values reached in elongation at 
different deformation rates. In the domain 
of low deformation rates, the limiting 
stresses are reached when the steady elon-
gational flow regime is reached. These 

points correspond to constant values of elon-
gational viscosity (that is why these limiting 
stresses are proportional to deformation 
rates). Regimes of steady flow are marked by 
open symbols in Fig. 3.7.4. 

If the deformation rate is increased, the 
steady flow regime cannot be reached 
because the sample breaks before this state is 

attained. Then, the maximum (limiting) stress corresponds to the moment of rupture. The 
points corresponding to rupture are solid symbols in Fig. 3.7.4. There is a point of transi-
tion from deformations regimes, at which stretching leads to a steady elongational flow, to 
regimes when stretching ends by rupture before steady flow occurs. 

The location of transition from flow to rupture is important for understanding the 
rheological behavior of viscoelastic polymer materials in a uniaxial extension.238 The 
most important experimental result concerning this transition is that it happens at a certain 
value of the Weissenberg number, Wi, as predicted by theory, Eq. 3.7.4.

This criterion can be presented in different forms. In particular, the following rear-
rangements are pertinent:

[3.7.5]

where εr is elastic (rubbery) deformation stored in extension or tensile recoil.
According to the theory for linear elastic liquids, there is a critical value of the Weis-

senberg number corresponding to unlimited stress growth in extension, indicating that 
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Figure 3.7.5. Relationship between stress and rubbery 
deformations at the moments of rupture reached at dif-
ferent rates of deformation. Solid circles − polybuta-
dienes of different MM at different temperatures; 
Open circles − polyisoprenes of different MM at dif-
ferent temperatures; Squares − polybutadienes at 25oC 
in different liquid media (water and alcohols). 
[Adapted, by permission, from A.Ya. Malkin, C.J.S. 
Petrie, J. Rheol., 41, 1 (1997)]. 
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steady flow is impossible. The experimental confirmation that the transition from open to 
solid symbols in Fig. 3.7.4 (the transition to unsteady extension and rupture) takes place at 

.
However, the extension cannot be carried any further. An increase in the deformation 

rate leads to the growth of limiting (maximum attainable) stress, as shown in Fig. 3.7.4. 
There is universal dependence between this limiting (breaking) stress, , and the stored 
(elastic) deformation at the moment of break, . The latter, according to Eq. 3.7.5, is one 
of the possible interpretations of the Weissenberg number. This dependence is presented in 
Fig. 3.7.5 and it is expressed by the following linear relationship:

[3.7.6]

where K = 1.2 MPa is an empirical constant; σE,0 = 0.18 MPa and εr,0 = 0.5 are the param-
eters of the “transition point”, where the flow becomes impossible and stretching causes 
breakup of a sample. 

Fig. 3.7.2 demonstrates that the devel-
opment of stresses in the extension of poly-
mer liquids is the consequence of their 
viscoelastic properties. Eqs. 3.7.3 to 3.7.6 
confirm that elasticity plays the dominating 
role in the extension of these liquids. The 
understanding of the rheological behavior 
of polymeric substances in the uniaxial 
extension must be based on the treatment of 
stress development as a result of their vis-
coelastic properties − superposition of elas-
tic (rubbery) deformations and plastic flow.

The total deformation, εt, can be sepa-
rated239 into a recoverable (elastic), εr, and 
flow (plastic), εf, part to follow the devel-
opment of both components as a function 
of the deformation rate. The results of such 
separation in the linear region of the visco-
elastic behavior are shown in Fig. 3.7.6, 
where limiting values of deformations that 
can be reached at different deformation 
rates are presented. 

There are several regions in which the 
character of the deformation evolution is 
different. At low deformation rates, the 
total deformation may grow unlimitedly 
due to a steady flow (both upper parts of 
Fig. 3.7.6). Rubbery deformation, εr, 
increases with an increase in deformation 
rate (and, accordingly, stress). The values of εr, presented as a function of , are the equi-
librium values corresponding to the steady flow limit. The vertical dotted lines in Fig. 
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Figure 3.7.6. Separation of the total deformation into 
plastic and elastic parts: limiting total, t, plastic, f, and 
elastic, r, deformations at the moment of rupture. 
Experimental points are “reduced” to 25oC. [Adapted, 
by permission, from G.V. Vinogradov, A.Ya. Malkin, 
V.V. Volosevitch, V.P. Shatalov, V.P. Yudin, J. Polym. 
Sci.: Polym. Phys Ed., 13, 1721 (1975)].
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3.7.6 have the same meaning as the horizontal line in Fig. 3.7.4 − they correspond to Wi = 
0.5 and divide the whole deformation rate scale into two domains − slow (left of the line), 
where the steady flow regime is acceptable and fast (right of the line), where the steady 
flow is not possible and stretching ends with sample failure. Beyond this transition line, 
the flow becomes less and less noticeable but rubbery deformations (at the moment of rup-
ture) continue to increase together with the growth of stress. Combination of the decreas-
ing εf and increasing εr results in the appearance of the minimum on the total εt( ) 
dependence. At a sufficiently high deformation rate, the flow becomes negligible and the 
total deformation of stretching liquid appears to have a rubbery character.

The experimental data presented in 
Fig. 3.7.6 constitute only a part of the char-
acteristics of the limiting deformation evo-
lution as a function of the deformation rate 
because they do not show what happens in 
the domain of very high deformation rates. 
The complete sequence of events taking 
place during extension as a function of 
increasing deformation rate is shown in 
Fig. 3.7.7. The domains I, II, and the left 
part of domain III are the same as in Fig. 
3.7.6, but in comparison with Fig. 3.7.6 
additional domains (part of III and IV) 
exist. In a single experiment, it is very dif-
ficult to move through the whole deforma-
tion range covering all domains, as in Fig. 

3.7.7, because, in fact, the  scale spreads 
through 8-10 decimal orders. That is why 
the generalized picture, presented in Fig. 
3.7.7 is obtained by “reducing” experimental 
data to one reference temperature (see Chap-
ter 2).

The solid line in Fig. 3.7.7 is for break-
ing (total) deformations and the dotted line, 

converging to the solid line at high deformation rates, is for elastic deformations. The 
physical meaning of the four domains in Fig. 3.7.7 is as follows: 

• Domain I is a flow region, where extension causes a steady flow and the total 
deformation is unlimited. The boundary between domains I and II corresponds to 
Wi = 0.5

• Domain II is a viscoelastic region characterized by the superposition of elastic 
and plastic deformations, the latter equals the difference between the solid and 
dotted lines 

• Domain III is a rubbery or pure elastic region, where flow is negligible and large 
deformations realized in the extension are completely elastic (rubbery)

ε·

ε·Figure 3.7.7. General picture illustrating deformation 
rate dependencies of limiting total (solid line) and 
elastic (dashed line) deformations. Roman numbers 
show principal regions of viscoelastic behavior 
observed as a function of deformation rate. Vertical 
dotted lines are approximate boundaries of these 
regions. [Adapted, by permission, from A.Ya. Malkin, 
G.V. Vinogradov, Vysokomol. Soedin. (Polymers − in 
Russian), 27, 245 (1985)]. 
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• Domain IV corresponds to a decrease in possible deformation due to high-defor-
mation-rate-induced solidification of material and the end of this domain could 
be called a glassy region. 

The transition through the domains  corresponds in polymer 
physics to well-known transitions through different relaxation states of amorphous poly-
mer induced by increasing deformation rates.240 

There is a special point in Fig. 3.7.7 − that is, a maximum located in the transition 
from the rubbery to elastic region. It was suggested241 that the maximum value of the elas-
tic deformation in the extension of the polymer melt is close to 2 (it corresponds to the 
draw ratio of about 7.3). It seems that this value is in agreement with the experimental data 
in Fig 3.7.5. However, a more general idea was advanced:242 it was proposed that the max-
imum elastic deformation (the maximum on the curve in Fig. 3.7.7) equals the maximum 
extensibility of a macromolecular chain, which forms a statistical coil in an undeformed 
state. Then this maximum εe value depends on the molecular mass of the polymer.

Figs. 3.7.5 and 3.7.7 present results of model experiments carried out for mono-
disperse polymers and related primarily to the linear regime of viscoelastic behavior of 
these materials. They represent a general tendency in deformation evolution during the 
extension of polymer melts and solutions. The real relationships observed for industrial 
(polydisperse) polymers may be more complex and more difficult to understand. The 
common features of the superposition of flow and rubbery deformations and the depen-
dence of their relative values on the deformation rate and transitions through different 
relaxation states are the same for any polymeric material. Analogous qualitative results 
confirming the applicability of the general concept of Fig. 3.7.7 were obtained for indus-
trial-grade polydisperse polyethylene and polyisobutylene.243 

The rupture of liquids described in this section is, by its physical mechanism, equiv-
alent to the rupture of crosslinked rubbers. Temporary molecular junctions in the melt, 
present due to macromolecular physical interactions (for example, chain entanglements), 
are analogous to chemical crosslinking in rubbers. The difference is in the lifetimes of 
these junctions. However, if the characteristic time of deformation is short (or the defor-
mation rate is high), physical junctions behave like permanent chemical junctions (at Wi > 
0.5). Therefore, the mechanism of rupture during the extension at high deformation rates 
is similar to that of rupture of rubbers that can be treated as elastic. 
3.7.3 EXTENSION OF INDUSTRIAL POLYMERS
Uniaxial extension of polymeric materials is considered as a model for different techno-
logical processes, primarily fiber formation and film orientation. This is also a physical 
method that can be useful for material structure characterization. These are the reasons 
why this method is widely used in investigations of real industrial polymers.244 The exper-
iments in uniaxial extension of industrial polymers were initially based on a technique that 
utilized measurements in the regime of the constant deformation rate.245 Then many 
experimental investigations were made along the same lines. Their goal was to develop a 
variety of different polymers and to compare the results of these experiments with the 
molecular structure of the material (molecular mass distribution, branching of the chain, 
the chemical structure of the polymer, or the content of blend).246 

The most obvious difference in the results of experimental investigations of many 
industrial polymers and the model data, as presented in Fig. 3.7.2, is the potential influ-
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ence of strain hardening. It is often thought that the effect of strain hardening is of primary 
importance for polymer processing in fiber formation and in some other technologies. A 
comparison of the stress evolution in uniaxial extension of several polymers is shown in 
Fig. 3.7.8,247 where both possibilities are presented: a smooth increase of the stress up to 
the regime of steady flow is reached at low deformation rates (a) and an increase of 
stresses − “strain hardening” observed as the unlimited growth of stresses until the break 
at a high deformation rate (b). The situation presented in Fig. 3.7.8a is quite equivalent to 

the model case shown in Fig. 3.7.2, 
whereas what is seen in Fig. 3.7.8b is dif-
ferent. The unlimited growth of stresses 
until breakup can be expected, as predicted 
by Eq. 3.7.4, and it happens earlier in time 
with an increase in the deformation rate. 

The increase in stress was discussed 
by the authors of original publications in 
terms of strain hardening, though the 
mechanism of this effect can be treated as 
the transition to domain III in Fig. 3.7.7 
when elastic deformations become domi-
nating and finally lead to rupture. Quantita-
tive conditions of the breakup were not 
specified in the experiments under discus-
sion, though it is possible to think that the 
final stress increase at higher deformation 
rates is similar to experimental results 
obtained for model systems, as shown in 
Fig. 3.7.5. 

The difference in the evolution of nor-
mal stresses in Fig. 3.7.8 is remarkable and 
this is definitely the reflection of differ-
ences in the molecular structure of materi-
als under investigation. As the closest 
version, a smooth increase in stresses is 
expected from melts of linear polymers 
(PP-1 and PP-3), whereas the strain harden-
ing effect reflects the existence of branch-

ing in the macromolecular structure (PP-2). The next reason for differences in rheological 
behavior can be connected with the molecular mass distribution of commercial polymers. 
Also, it can be suggested that, at least in some cases, an intensive stress growth in exten-
sion can be caused by the stress-induced phase transition, possibly, even the crystallization 
of oriented chains.

Some cases are known when the steady-state regime during extensional flow cannot 
be reached at all, even at very low deformation rates. This is typical, for example, for ther-
motropic liquid crystalline polymers (Vectra A950),248 for which the regime of constant 
elongational viscosity does not exist but only strain hardening is observed. Possibly it cor-

Figure 3.7.8. Stress growth in elongation of polypropyl-
ene samples. Experimental data points, presented by the 
authors, are omitted in reproducing this figure. PP 1, 2, 
and 3 are different PP samples. [Adapted, by permis-
sion, from S. Kurzbeck, F. Oster, H. Münstedt, T.Q. 
Nguyen, R Gensler, J. Rheol., 43, 358 (1999)].
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responds to the well-known fact of the absence of a Newtonian flow range for liquid crys-
tals because at low stresses a tendency of viscosity growth with a decrease of stresses 
(apparent approach to the yield stress) is observed.
3.7.3.1 Multiaxial elongation
Multiaxial elongation is a special case of elongational flow. There are various possible 
combinations of deformation modes. The reasonable classification of these cases is based 
on the analysis of the deformation rate tensor written as249 

In the special case (discussed above) 
m = -0.5. This is simple elongation. The 
case of m = 0 is treated as planar elonga-
tion and the case of m = 1 is called equibi-
axial elongation. An example of apparent 
elongational viscosity evolution as a func-
tion of strain is presented in Fig. 3.7.9.250

Here elongational viscosity is normalized 
by the initial Trouton viscosity value (i.e., 

) in order to begin all curves 
from the same initial point. For equibiaxial 
elongation, only one elongational viscosity, 

, (called the biaxial stress growth coeffi-
cient) exists, while in planar elongation two 
viscosity values can be measured along 
with two directions of elongation. In this 
Figure,  is the biaxial stress growth 
coefficient, which is defined as the ratio of 
normal stress to the deformation rate. This 
value coincides with elongational viscosity 
in the absence of elastic deformations only 
(see Eq. 3.7.1 and its discussion).

The elongational viscosity varies in a 
very different manner, depending on the 
mode of deformation. In equibiaxial 
stretching, apparent viscosity is almost con-
stant, i.e., the behavior of melt is close to 
the linear viscoelastic, though a weak effect 
of strain-softening also exists. In planar 

stretching, one apparent viscosity demonstrates the remarkable effect of strain hardening 
(like in simple elongation) and the second (normal to the first) viscosity value decreases at 
high strains. It is also worth mentioning that the type of elongational viscosity behavior 
depends on the nature of the material.
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Figure 3.7.9. Elongational viscosity (normalized by the 
initial Trouton value) in equibiaxial (a) and planar (b) 
elongation of high density polyethylene as a function of 
strain (Hencky measure). 150oC. Deformation rates, 

, a: 0.003 (1); 0.010 (2); 0.030 (3); 0,099 (4); b: 
0.003 (1, 1'); 0.009 (2, 2'); 0.028 (3, 3'); 0.093 (4' 4'). 
[Adapted, by permission, from: P. Hachmann, J. Meiss-
ner, J. Rheol., 47, 989 (2003)]. 
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3.7.4 THE TUBELESS SIPHON EFFECT
Uniaxial extension of elastic (rubbery elastic) mate-
rials, capable of storing very large deformations, 
produces unusual effects. One of them is the so-
called tubeless siphon.251 This effect is observed 
during extension of dilute solutions of polymers 
(synthetic or biological) of ultra-high molecular 
mass. Such solutions are not very viscous but they 

are capable of storing large elastic deformations. In Fig. 3.7.7, the behavior of such solu-
tions corresponds to domain III. 

The tubeless siphoning effect is schematically presented in Fig. 3.7.10a. The fluid 
from a large free surface is drawn up through a nozzle by a vacuum. Then the nozzle is 
raised above the surface of the liquid. The liquid stream preserves its form and stability 
and it continues to flow upwards into the nozzle, even if a distance from the free surface to 
the die reaches several centimeters. 

Another example of the siphoning effect is shown in Fig. 3.7.10b: in this case, a 
stream taken from a free surface is winding on rotating roller.

The driving force for this effect is undoubtedly the elasticity: initially created elastic 
deformations pull liquid upwards. In this regard, the behavior of liquid in a tubeless 
siphon is rubbery-like rather than fluid-like. It is interesting to note that it is impossible to 
create the siphoning effect for Newtonian liquid even if its viscosity is high.252 

The siphoning effect produces high deformation rates in the extension of low viscos-
ity (but highly elastic) liquid. This can be the basis of the original experimental method for 
measuring rheological properties of such liquids,253 based on direct observation of the 
stream profile. However, the interpretation of the experimental results is not easy and it is 
intimately related to the rheological model used for treating the experimental data.
3.7.5 INSTABILITIES IN EXTENSION
3.7.5.1 Phase separation in extension
The influence of deformation (either in extension or in shear, though much more pro-
nounced in extension) on the phase separation is related to the partial or complete uncoil-
ing of a polymer chain. This phenomenon can be directly observed, and it was 
demonstrated that the transition from a coil to an extended conformation of a polymer 
chain is a phase transition. It was proven by birefringence measurements in very dilute 
solutions, where individual macromolecules are deformed separately.254 The ratio of cur-
rent birefringence to its limiting value corresponding to a completely extended chain, 

, is a measure of chain conformation, or extension of a polymer statistical coil. It 
is useful to apply the dimensionless deformation rate as a measure of the intensity of load-
ing. This dimensionless value (which was named above as the Weissenberg number) in the 
publications related to the subject under discussion, is usually named the Deborah num-
ber, De, which is (similar to Eq. 3.7.4) defined as 

[3.7.7]

where θ is the characteristic relaxation time and  is the deformation rate.255 According to 
the molecular theory the θ value is determined as

Δn Δn∞⁄

De θε·=

ε·

Figure 3.7.10. The tubeless siphon effect.
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[3.7.8]

where a is a constant of the order of one, M is the molecular mass of macromolecule, [η] 
is the intrinsic viscosity, η0 is the viscosity of solution, R is the universal gas constant, and 

T is the absolute temperature.
Numerous experiments showed256

that the dependence of the degree of uncoil-
ing on the deformation rate is similar to that 
shown in Fig. 3.7.11. It means that change 
in macromolecular conformation occurs in 
a rapid manner as a typical phase transition. 
It also happens at the critical Deborah num-
ber of the order of 1, i.e., this phenomenon 
is determined by the ratio of deformation 
and relaxation rate measures.

It is also well known that aligning 
macromolecules (and their forced ordering) 
favors crystallization. Therefore, this phe-
nomenon must be taken into account in 
constructing models of technological pro-
cesses (kinetics of stress-induced crystalli-
zation is a necessary part of simulating the 
melt spinning process).257 

The review of various types of instability phenomena of polymers in extension is 
discussed elsewhere.258 

At high enough deformation rates, the phase separation takes place consisting in the 
appearance of solvent droplets on the surface of oriented macromolecules. The mecha-
nism of this phenomenon was discussed above in Section 3.5.3. Shortly, this is stress-

θ
aM η[ ]η0

RT
-----------------------=

Figure 3.7.11. Increase in the degree of orientation 
(characterized by ) of individual macro-
molecules as a function of the dimensionless shear rate 
( ). Phase transition takes place at .

Δn( ) Δn∞( )⁄

De θε·= De 1→

Figure 3.7.12. A sequence of photographs showing the formation of droplets on the surface of the jet. Photos by 
I.Yu. Skvortsov − Lab of rheology, Institute of Petrochemical Synthesis RAS. a − Short section of a jet. b − Full 
set of the stages of stretching. [Adapted, by permission, from 1.A.V. Semakov, V.G. Kulichikhin, A.K. Tereshin, 
S.V. Antonov, A.Ya. Malkin, J. Polym. Sci.: Part B: Polym. Phys., 53, (8), 559 (2015).]
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induced phenomenon creating giant fluctuations 
which migrate from the volume to a surface of a 
stream.

The development of the phase separation is 
illustrated in Fig. 3.7.12.259 

The formation of the individual droplets is 
well seen in Fig. 3.7.13.260 

The above presented pictures demonstrate 
the peculiarities of instability in the extension of 
viscoelastic liquids that lead to the phase separa-
tion as the mechanism especially related to the 
elasticity of polymer solutions.
3.7.5.2 Rayleigh instability261 
Experimental data presented in Figs 3.7.6 and 
3.7.7 show that in domain I, the total deforma-
tion is unlimited. But the extensional deforma-
tion cannot be unlimited because unlimited jet 
thinning is not possible. In this sense, extension, 
in contrast to shear, cannot continue unlimitedly. 
A rupture of a stream in domain I occurs due to 
different causes than the elastic rupture in other 
domains in Fig. 3.7.7. The breakup of the 
stream, in this case, is the consequence of the 
Rayleigh instability.

It is well known and observed every day 
that when a liquid stream leaves a die (or a capil-
lary) it disintegrates into separate drops. The 
mechanism of this phenomenon is as follows. If the speed of stream movement is not high, 
the breakup of liquid into drops is caused by the action of surface (capillary) forces. The 
thermodynamic cause of drop formation is a tendency for the minimization of the surface 
energy of the fluid. Surface energy is not at minimum for a stream but the optimum shape 
is a spherical drop. 

The surface of a stream is disturbed by occasional factors. These small disturbances 
create surface waves which intensify until they disrupt the stream. The final result of the 
theoretical investigation is an expression for length, L, of the stream before disintegration:

[3.7.9]

where u0 is the stream speed, R is stream radius, ρ is density, and σ is the surface tension.
Viscosity does not enter this expression. However, detailed analysis262 showed that if 

the viscous forces are taken into consideration, another expression for the limiting length 
of a stream, L, is valid:

[3.7.10]

L 8.46u0
ρR3

σ
--------- 
 

1 2⁄
=

L
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σ
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Figure 3.7.13. Images of solvent droplets on 
fiber surfaces for aromatic polyamide solu-
tion in DMAc (left) and polyacrylamide 
solution is DMSO (right).
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where η is viscosity. This equation is correct for fluid moving through a medium with 
much lower viscosity than that of a viscous liquid stream flowing in the air.

The development of a theory of fluid stream disintegration leads to the field of spray-
ing or atomization of streams leaving a nozzle with a very high speed. This problem is 
principal for the operation of a carburetor in car engines and many other engineering 
devices. However, an analysis of this problem goes beyond the field of rheology. 

In extension of a viscous jet (during free falling), a regime of stable jet extension can 
exist and the profile of this jet can be exactly determined by solving the balance equa-
tions.263 The length of a free falling jet before its rupture is very long,264 greatly exceeding 
the limit predicted by the Plateau-Rayleigh limit. This delayed capillary breakup of falling 
viscous jets was treated as “paradoxical.”265 The general explanation of this effect was 
attributed to the transition from the capillary dominating regime to the viscous one.266 
3.7.5.3 Instabilities in the extension of a viscoelastic thread

If the liquid is not purely viscous and elas-
tic (rubbery) deformations superimpose on 
flow (some polymeric solutions, biological 
liquids, such as saliva), a stream’s breakup 
mechanism is changed dramatically. 

There are two main types of regular 
instabilities appearing in the extension of a 
thread. This is a draw resonance and the 
formation of small droplets along the 
thread (Fig. 3.7.14).

The draw resonance is the effect of 
large-scale periodic smooth variation in 
thread diameter (Fig. 3.7.14b) when this 
thread is taken up at constant speed.267 This 

phenomenon is of special interest for the technology of fiber formation because periodic 
oscillations in thread diameter lead to a decrease in fiber quality. 

A principal possibility of oscillations exists even for Newtonian liquid.268 It was 
proven that the draw resonance appears at a high draw ratio,269 and the critical value of the 
draw ratio, λcr, is close to 20.270 The theoretical analysis of the stability problem in an 
extension of viscoelastic liquid showed271 that the transition from stable to the unstable 
zone is determined by the dimensionless Deborah number, De, which is similar to that in 
Eq. 3.7.7, and defined as 

where θ is the characteristic relaxation time, V0, is the extrusion velocity (at the outlet of a 
fiber-forming nozzle) and L is the length of thread.

The theory predicts that elasticity stabilizes thread diameter. It was shown that for 
any Deborah number there are two limits of the stability zone:

• the lower limit, which is practically constant for any De and corresponds to the 

De
θV0

L
----------=

λcr 20≈

Figure 3.7.14. A view of viscoelastic jet leaving a noz-
zle: regular extrudate (a), draw resonance − periodic 
changes in thread diameter (b) and formation of a series 
of droplets joined by thin threads (c). 
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• the upper limit, which appears due to elasticity, and therefore the upper limit 
depends on De. The position of this upper limit of stability depends on the choice 
of model, which incorporates the elasticity into consideration. 

The stability in relation to the draw resonance phenomenon depends on whether 
fluid has extension thinning or extension thickening properties; the latter stabilize the 
form of the thread. Thickening might also be understood as the transition from the flow 
regime of deformation to the regime dominated by elastic deformations in extension.

The draw resonance effect can be avoided by quick thread cooling,272 which is an 
ordinary procedure in real technological processes. 

In some cases, which are typical for low viscosity but highly elastic liquids, it was 
observed,273 that instead of the breakup of a stream into separate drops, a thread looks like 
that are shown in Fig. 3.7.14c, i.e., the stream rearranges into a series of small droplets 
joined by a thin thread. The elasticity of liquid stabilizes the stream and prevents it from 
the formation of separate drops.274 This effect can be explained by the transition of visco-
elastic fluid connecting threads to domain III type behavior (in Fig. 3.7.7), in which they 
deform like an extendable rubber cord. This effect can be treated as the “extension thick-
ening” property of liquid, though it is related primarily not to viscosity growth but to the 
rubbery elasticity of the medium. 

Theoretical and direct visual observations confirm the difference in the mechanisms 
of the stream and drop breakup for viscous Newtonian and viscoelastic liquids.275 

3.8 CONCLUSIONS − REAL LIQUID IS A COMPLEX LIQUID
The concept of liquid seems commonly known. Nobody doubts that water and gasoline at 
room temperature are liquids. But toothpaste or adhesive are not commonly considered 
liquids. This shows that liquid is not necessarily a material that flows. A more rigorous 
definition is needed to properly assign the behavior of real materials.

It may be suggested that liquid is material that undergoes unrecoverable (irrevers-
ible) deformations, i.e., the changes in shape remain after the action of external forces is 
removed. It should be noted, however, that this definition is too wide because it covers all 
real materials. For example, one would need to consider metals as liquids because during 
some technological operations, e.g., punching of golden articles, wire drawing of silver, or 
rolling steel ingots, unrecoverable deformations are undoubtedly created. These examples 
show that the above definition covers two different types of behavior: viscous and plastic. 
In the first case, unrecoverable deformations (or flow) can be detected at any stress, 
regardless of how small it may be. In the second case, unrecoverable deformations appear 
only when stress overcomes a certain level, which is called the yield stress or yield point. 
This means that a plastic medium can be called “liquid” only with some precautions. Nev-
ertheless, treating deformations of plastic materials at stresses exceeding the yield stress as 
flow seems reasonable.

Liquids can also be defined as materials that can flow (or are able to accumulate 
unrecoverable deformations) under the action of infinitesimal stress. The possibility to 
flow under infinitesimal stress means that liquid at rest cannot store any stress. Formally, 
this definition is acceptable. But two questions arise, as follows:

• if stress is decreased by one (two, three, etc.) orders-of-magnitude, is it possible 
to reach the yield point at which flow, at very low stress, does not occur? Or is it 
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reasonable to think that yield stress exists in the case of any liquid but can be so 
small that it cannot be observed under ordinary experimental conditions but can 
be attained if conditions are changed? Indeed, it is never certain that the level of 
stress attained in an experiment is sufficiently low to assume that material is a liq-
uid from a rigorous point of view. 

• perhaps during the period of observation (or an experiment) unrecoverable defor-
mations are so small that they cannot be detected by ordinary methods, even 
though they presumably exist. If an experiment is continued, should the flow of 
material under investigation occur? It was demonstrated in Section 3.2 by several 
examples for viscoplastic materials, which can flow below the yield stress, as 
high viscosity materials, that a very long time is needed to detect flow.

Rheologists like to cite the famous exclamation from the Bible's Deborah: “The 
mountains melted from before the Lord”,276 bearing in mind that in the scale of eternity, 
the Lord can observe the flow of rocks (mountains). That is true, and the general answer to 
the problem raised by the theoretician lies in the comparison of the inherent time scale of 
material, tinh, and time of observation, tobs. This characteristic inherent time, tinh, can be 
treated as the time of relaxation, i.e., the time necessary for the recovery of a stable struc-
ture after the removal of external forces. Then it is reasonable to introduce the dimension-
less criterion tobs/tinh, which is called the Deborah number, De. The general form of this 
number is:

De = tobs/tinh 

If De >> 1, the material behaves like a liquid. This happens when tinh is small and 
relaxation occurs very quickly (in comparison with the time of observation). On the oppo-
site side of the time-scale (when De << 1), unrecoverable deformations cannot be 
detected, flow cannot be detected and material must not be treated as a liquid.

Another citation also illustrates this idea: “Measuring − measure time in thou thy-
self”.277 Indeed, estimation has real meaning in the scale of human existence.

Finally, a very general definition of liquid might be constructed on the basis of an 
energy concept. Any action is connected with energy consumption. Then two types of the 
post-effects can be established:

• the energy can be stored in the material and the stored energy returns after the 
removal of external forces. Storage of energy is characteristic of an elastic 
medium (elastic behavior in rheological media is discussed in Chapter 4.). 

• the energy of deformations can be dissipated by its conversion into heat, and this 
type of behavior is characteristic of viscous liquids because the viscous resistance 
to movement means heat dissipation of the work produced by the forces applied.

A viscous liquid, then, can be defined as a medium deformed in such a manner that 
the energy needed for deforming completely dissipates in the process of deformation. In 
essence, it means that no energy source for further deformation exists in the material after 
the action of external forces ceases and that is why deformation cannot be recovered (no 
driving force exists for the process).

Intermediate cases may exist when the energy of deformation is partly stored by 
material and only part of this energy can be dissipated. Such is the case of viscoelastic 
bodies, and in particular, of viscoelastic liquid. 
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The energy concept dividing materials according to their reaction to the work of 
deformation is the most general approach of characterization of the type of material 
behavior. Such a concept is not related to any considerations of local values of stresses and 
deformations and does not need to be related to the observation of material behavior in the 
coordinate axis. In this sense, the energy approach is invariant with respect to coordinate 
transformations and satisfies the general requirements of rheological equations of state.

All real liquids are complex liquids and the following principal effects are more or 
less pronounced in their deformations:

• non-Newtonian viscosity in a steady flow
• elasticity (rubbery deformations)
• time-dependent slow structure transformations to self-organization and/or phase 

separation
• existence of limits of flow (instabilities of various types at high velocities or 

deformation rates).
The fundamental reasons for these phenomena are:
• superposition of large elastic deformations on viscous flow, this leads to numer-

ous second-order effects
• changes in the intensity of energy dissipation depending on the deformation rate 

due to changes in streamline conditions at deformations or orientation of disperse 
phase particles in multi-component systems (stress-induced deformation of mac-
romolecules in solutions, rotation of solid particles, and formation of necklace 
structures in suspensions)

• increase in the share of solid-like modes in molecular movements and decrease of 
energy dissipation in the flow of viscoelastic media (this is the most typical for 
concentrated polymer solutions and melts)

• destruction of the molecular or supermolecular structure of matter, which exists 
due to physical interactions (polar forces or other secondary interactions) or 
mechanical contacts between particles in multi-component systems (this is typi-
cal for liquids loaded with an active solid filler, highly concentrated suspensions, 
polar macromolecules in solutions, liquid crystals).

The observed behavior of various media can be different and very strongly depen-
dent on the peculiarities of conditions of deformation and observation. Sometimes, effects 
characteristic of complex liquids are evident in the behavior of real liquids; in other cases, 
these effects appear under very special deformation conditions. This is the reason for a 
rheologist to say: do not ask what type of a material is, either liquid or solid, but try to 
understand how this material behaves − like a liquid or a solid.
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 developing primarily fundamental aspects of rheometry and constitutive equations. His textbook on 
rheology: M. Reiner, Twelve Lectures on Theoretical Rheology, North Holland Publ. Co, Amsterdam,

 1949) played an important role in teaching new generations of rheologists after the Second World War. 
277 Ezra, Non-canonical 9:1.
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QUESTIONS FOR CHAPTER 3
QUESTION 3-1
Can viscosity be negative? Explain the answer.
QUESTION 3-2
In measuring the viscous properties of the polymer solution, it appeared that the experi-
mental data within the experimental range of shear rates can be fitted with the power-law 
equation (Eq. 3.3.4). Analyze the possibility of extrapolating this equation to the range of 
very high shear rates.

Additional question
Which kind of rheological behavior at high shear rates is expected in this case?
QUESTION 3-3
What is the difference in stress relaxation of viscous liquids and viscoplastic materials?
QUESTION 3-4
Can we expect that the values of the yield stress, σY, found by treating a set of experimen-
tal data by means of Eqs. 3.3.7 to 3.3.9, are the same?
QUESTION 3-5 
Calculate shear stresses in the flow of liquid through a straight tube if the flow is created 
by the pressure gradient Δp/L (L is the length of a tube).

Additional question
Are the results valid for Newtonian liquid only?
QUESTION 3-6 
Calculate the radial distribution of shear rates and flow velocity of Newtonian liquid (hav-
ing viscosity η) through a straight tube with radius R.

Additional question 1
Calculate the volume output, Q, for the flow of Newtonian liquid.

Additional question 2
Express maximum shear rate, , via volume output.

Additional question 3
Is the last expression valid for a liquid with arbitrary rheological properties?
QUESTION 3-7
Calculate the velocity profile in the flow of a power-law type liquid through a straight tube 
with a round cross-section. The radius of a tube is R.

Additional question
Calculate the volume output, Q, as a function of Δp for a power-law type liquid. 
QUESTION 3-8
An experimenter obtained two pairs of data: at 1 = 1*10-3 s-1 σ1 = 100 Pa and at 

2=1*10-2 s-1 σ2 = 600 Pa.
Assuming that the flow curve is described by a power-law type equation, find the 

constants of this equation for a liquid under study.

γ·R

γ·

γ·
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Additional question
How do you find the constants of the power-law type equation if an experimenter obtained 
three or four pairs of experimental points?
QUESTION 3-9
Analyze the flow of a viscoplastic (“Bingham-type”) liquid through a straight tube of 
radius, R. Find radial stress and velocity distributions and calculate volume output as a 
function of the pressure gradient.
QUESTION 3-10
A ball with a radius R is falling in a Newtonian liquid having viscosity η. After some tran-
sient period, the velocity of ball movement becomes constant. Find the velocity of steady 
movement, .
QUESTION 3-11
An experimenter measured the viscous properties of the material at different shear rates 
and obtained a flow curve. What can he say concerning viscous properties of this material 
in the uniaxial extension? Explain the answer.
QUESTION 3-12
Prove the validity of Eq. 3.1.7 − the dependence between normal stress and deformation 
rate for Newtonian liquid in two-dimensional (biaxial) extension.
QUESTION 3-13
Normal stresses in shear appear as a second-order effect. However, at high shear rates, 
they exceed shear stresses. Estimate the condition under which it becomes possible.
QUESTION 3-14
Can normal stresses appear in the shear flow of suspension of solid particles? Explain the 
answer.

Additional question
Estimate the characteristic time (“relaxation time”), θ, of this process.
QUESTION 3-15
An experiment was carried out in shear at the constant shear rate,  = const, and the curve 
similar to shown in Fig. 3.5.1 or Fig. 3.5.2 was obtained. Can the ratio σ(t)/  be treated as 
the evolution of viscosity of liquid? Explain the answer.
QUESTION 3-16
A liquid layer is intensively sheared at shear rate  = 1*102 s-1. A liquid is Newtonian and 
its viscosity η = 500 Pa*s. Shearing continued for 10 s. Temperature dependence of vis-
cosity is neglected; density is assumed to be 1 g/cm3 and heat capacity is 0.5 J/(g*K). 

What temperature rise is expected?
Additional question

If shearing proceeds for a longer time, what physical phenomena must be taken into con-
sideration and what final thermal effect of shearing can be expected?
QUESTION 3-17
Analyze the Mooney equation (3.3.27) for the concentration dependence of viscosity for 
the limiting case and, in particular, calculate the intrinsic viscosity of dilute suspensions.

V∞
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QUESTION 3-18
Newtonian viscosity of polymer with molecular mass M1 = 3*105 is η1 = 5*105 Pa*s. 
There is also another polymer of the same chemical structure with molecular mass 
M2=4*104. How can one decrease the viscosity of the polymer by 10 times?
QUESTION 3-19
Experiments show that an electrical charge appears on the surface of the polymer stream 
leaving a capillary in an unstable or spurt regime. Explain the origin of the charge.

Answers can be found in a special section entitled Solutions.



4

SOLIDS

4.1 INTRODUCTION AND DEFINITIONS
The concept of solid is an idealization of the real behavior of numerous materials. Some of 
them are close to this model, for example, steel and stone. Other materials are far from this 
ideal model, but in some applications, they can also be treated as elastic solids, for exam-
ple, wood, rubber, and concrete. 

In the previous chapters, it was emphasized that any material can be treated as solid 
or liquid depending on the Deborah number, which is the ratio of inherent time-scale and 
characteristic time of loading. This is also true for the materials listed above. Therefore, 
the elastic solid is in fact a concept describing behavior rather than a particular material. 
The same material may behave as solid-like or liquid-like, depending on the time-scale of 
observation. Steel is a typical example in this respect. Nobody doubts that steel is solid in 
all its applications. However, in many technological operations (such as forging, rolling, 
drawing) steel flows, i.e., it is able to undergo irreversible deformation. This ability of 
solid material is characterized as plasticity.

In spite of departures from the model, it is important to discuss the concept of a solid, 
or elastic solid, because it is a limiting case in the rheological properties of real materials.

There is also another aspect of rheological interest in the elastic behavior of solid 
materials. There is a great number of elastic liquids, i.e., real liquids which also demon-
strate elastic behavior. These are polymeric substances, such as melts, solutions, and 
emulsions. The qualitative description of mechanical properties of such liquids must also 
include the characterization of their elasticity. For these reasons, we consider the “pure” 
case of elastic behavior of a solid, which is a suitable model useful in the rheological equa-
tion of the state of elastic liquids.

Main concepts and experimental facts on the mechanical behavior of solids are 
included in the framework of rheology. At the same time, considering that rheology is 
mainly a science devoted to liquids or flowing media, then this chapter is a secondary sub-
ject, though necessary in the general structure of rheology.

The basic idea of a solid is its ability to experience elastic (reversible) deformation. 
These materials store work done by external forces. They store work in the form of elastic 
energy and return this energy when forces are removed.

Elastic solids are also treated as materials with a clearly defined relationship between 
stresses and deformations, i.e., if the stress field is known, then the spatial distribution of 
deformations is also known, and vice versa.

The main point in both concepts is the absence of time or time-dependent effects. 
However, if the deformation is time-dependent (in a permanent stress field), then a charac-
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teristic feature of the viscous (dissipative) behavior of matter should be combined with 
elasticity. Therefore, the material is viscoelastic, as was discussed in Chapter 2.

Formulating the rheological model of an elastic solid, i.e., writing its rheological 
equation of state (or a constitutive equation), the transformation from components of 
stress and deformation tensors observed in an experiment to an invariant formulation is 
required. The formulation must not depend on the choice of the coordinate system. It can 
be an expression in the form of elastic potential (stored energy), W, as a function of the 
invariants of stress or deformation tensor or both. Also, this invariant formulation can be a 
relationship between the invariants of stress and deformation tensors. Both approaches are 
suitable in formulating a rheological equation of state. The result of the formulation based 
on the energy concept can be reformulated into the components of stress vs. deformation 
tensors.

This transition is based on a fundamental expression for stored energy:

[4.1.1]

Then, the following formula for stress components, in terms of an elastic potential, 
can be written:

[4.1.2]

If W (a function of deformations) is known, the components of the stress tensor can be cal-
culated from Eq. 4.1.2. A method of conversion from stress-deformation function to the 
elastic potential function is needed to be written using invariants. 

In a general case, W can be written as a function of three invariants:

[4.1.3]

where E1, E2, and E3 are invariants of the tensor of large deformations, as was discussed in 
section 1.2. 

Using an ordinary rule of function differentiation, the following formula can be 
obtained:

[4.1.4]

The last equation gives an answer to the problem formulated above: if a function 
W(E1, E2, E3) is known, the components of the stress tensor can be found from Eq. 4.1.4.

The above-written definitions and equations are applicable to any elastic material 
regardless of the form of the elastic potential function, Eq. 4.1.3. 
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4.2 LINEAR ELASTIC (HOOKEAN) MATERIALS
The basic concept and equation of Hookean material were frequently mentioned in the 
previous chapters (see Eq. 2.1.2) because it correctly represents numerous experimental 
data of real materials, but with two important limitations:

• the equation is written for one-dimensional deformations (extension)
• the equation is valid for small deformations.
It is thus necessary to formulate the general (invariant) form of Hooke’s law. The for-

mulation of Hooke’s law for an extension is:

[4.2.1]

where E is Young’s modulus, J = E-1 is the elastic compliance, σE is the normal stress and ε
is the deformation in extension.

It would be incorrect to write Hooke’s law by adding indices in the following form: 

Such an equation is correct for uniaxial extension (ij = 11). But experiments show that in 
uniaxial extension, the cross-section of the sample is reduced, and this effect is described 
by Poisson’s ratio, μ. This experimental fact means that the components of the deforma-
tion tensor ε22 and ε33 do not equal zero, but the external forces in the directions normal to 
11 (22 and 33 directions) are absent, i.e., σ22 and σ33 equal zero. This is the direct proof 
that this generalization of Hooke’s law is invalid.

An experiment in simple shear shows that a linear relationship between deformations 
and stresses exists:

[4.2.2]

and all-directional (hydrostatic) compression:

[4.2.3]

where σ is the shear stress, γ is the shear deformation, εv is the volume deformation (rela-
tive change in volume of material) and G and B are coefficients:

G − shear modulus
B − bulk modulus of compressibility 

which are different than Young’s modulus.
It is now necessary to find out whether these constants (E, G, μ, and B) are indepen-

dent and whether the number of constants is sufficient to characterize the material proper-
ties. For other forms of deformation, e.g., biaxial extension, the question arises whether it 
will be necessary to introduce a “modulus” characterizing the linear behavior of the mate-
rial in these types of deformation. 

Then the main questions are: 
• how a general rheological equation of state should be written to reflect its linear 

elastic properties in different modes of deformation, which would include all 
these relationships.

σE Eε 1
J
---ε= =

σi j Eεij=

σ Gγ=
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• what is the minimal number of independent characteristic constants (“moduli’) 
describing all types of deformation of material?

In uniaxial extension, not only the shape (form), but also the bulk (volume) of a body 
changes, and these two are independent effects. It is thus necessary to introduce at least 
two independent constants for the characterization of material resistance to volume and 
shape changes. This may suggest the use of previously proven methods to decompose 
stress and deformation tensors into spherical (isotropic) and deviatoric parts.

Let us assume that the linear relationships between spherical and deviatoric parts of 
both tensors exist separately. This assumption gives two independent invariant relation-
ships:

[4.2.4]

and 

[4.2.5]

where I1 is the first invariant of the stress tensor (sum of normal stresses, which is the 
measure of hydrostatic pressure), E1 is the first invariant of the deformation tensor (a mea-
sure of relative volume changes),  are deviatoric components of the stress tensor,  
are deviatoric components of the deformation tensor, and k and G are material constants, 
the first of them characterizing resistance to volume changes and the second one to the 
material shape changes.

Hydrostatic pressure is expressed via the first invariant of the stress tensor (Eq. 
1.1.15) as

[4.2.6]

Then, Eq. 4.2.4 can be rewritten:

[4.2.7]

where B = −k/3 is the bulk modulus of elasticity. The two fundamental coefficients, B and 
G, are sometimes called the Lamé constants. The value of G in Eq. 4.2.5 is the shear mod-
ulus, and coefficient 2 in this equation appears due to the formal definition of components 
of the deformation tensor.

The basic assumption of the generalized (three-dimensional) Hooke law is that Eqs. 
4.2.4 and 4.2.5 are valid for any type of deformation and that they are the invariant defini-
tion of Hookean elastic material (body). 

Then, it is important to relate the constants in Eqs. 4.2.4 and 4.2.5 with those, which 
are directly measured in a standard experiment of uniaxial extension, namely, Young’s 
modulus and Poisson’s ratio.

 Let σE be the extensional (normal) stress. Then Eq. 4.2.1 written for all components 
of the stress and deformation tensors is
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and

where E is Young’s modulus and μ is Poisson’s ratio (coefficient).
Hydrostatic pressure, p, in uniaxial extension is

Then, based on Eq. 4.2.4, the following equality can be written

This gives the desirable relationship between the constants:

Based on the same arguments, the following relationship can be easily obtained:

and this gives the following relationship between the other constants:

The results obtained in these relationships permit the calculation of any pair of con-
stants for any pair of variables, as summarized below.

• for known constants E and μ

, [4.2.8]

• for known constants B and G

, [4.2.9]

• for known G and μ 

, [4.2.10]

• for known E and G

, [4.2.11]

The calculations for any other pairs of constants can also be done.
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This set of relationships permits finding any value of material constant from two 
other values measured experimentally. It is important to note that there are only two inde-
pendent constants that must be measured. 

There are several principal physical limitations. If a body is compressed, its volume 
cannot increase; it can only decrease or may not change at all if a body is incompressible. 
It means that there is a principal limitation:

Then, it is evident that E > 0, and this inequality can be fulfilled only if 

Incompressible material is of special interest. For many solids

i.e., it is much easier to change the shape of a body than its relative volume (density).
In some cases, it is reasonable to accept that , i.e., to suppose that some mate-

rials are completely incompressible. It is a good model (or it is almost true) for all liquids 
and rubbers. This leads to two simple relations:

and

This means that for incompressible media there is only one independent or “free” mate-
rial constant.

Reformulating the rheological equation of state for a linear Hookean elastic material 
in terms of the elastic potential function, let us consider (for a sake of simplicity) an 
incompressible body. Then, E1 = 0, and W can be a function of E2 and E3 only. The sim-
plest is an assumption of a linear relationship between W and E2, i.e., 

[4.2.12]

where B is the single independent constant of the material.
It is possible to calculate all items entering this equation and to find derivatives:
• with the same indices

 

• with different indices 

Then, a combination of these results with Eq. 4.1.4 gives Hooke’s law, i.e., the linear 
relationship between deviatoric components of the stress and deformation tensors is 
obtained, as indicated by Eq. 4.2.5. This means that Eq. 4.2.12 is equivalent to the above-
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formulated concept of Hookean elastic material and this equation can be treated as an 
invariant definition of an incompressible linear elastic body in the limits of infinitesimal 
deformations. 

Both definitions are equivalent and it seems that Eq. 4.2.12 does not offer any addi-
tional advantages in comparison with the standard definition, describing the relation 
between components of stress and deformation tensors. However, it is not completely true, 
and when finite (large) deformations of an elastic body will be discussed, it will be seen 
that the formulation of the rheological equation of state through an elastic potential func-
tion is preferable.

The real range of changes in modulus for some typical materials is as follows:

Material Young’s modulus
High modulus, oriented fibers > 300 GPa
Steel 200 GPa
Copper, aluminum, and alloys 100 GPa
Stones 40 to 60 GPa 
Engineering plastics 5 to 20 GPa
Ice 10 GPa
Wood 1 to 10 GPa
Leathers 1 to 100 MPa
Rubbers 0.1 to 5 MPa
Polymer and colloid solutions 1 to 100 Pa

Young’s modulus may vary in the range of more than 11 decimal orders. Poisson’s ratio 
for many solids ranges from 0.3 to 0.4, and for rubbers, it is close to 0.5. 

The concept of a linear elastic (Hookean) material is the basis of many engineering 
disciplines, first of all, the theory of elasticity and strength of materials. The basic rheolog-
ical equations combined with the equilibrium equations (see section 1.1.6) are widely used 
for solving numerous applied problems. The discussion of all these problems goes beyond 
the scope of the present book.1 

4.3 LINEAR ANISOTROPIC SOLIDS
In formulating and discussing Hooke’s law, it was tacitly assumed that material has the 
same properties along any arbitrary direction, i.e., that material is isotropic. The conse-
quence of this assumption is that only two independent moduli, e.g., extension and shear 
are modeled. In fact, many real materials are anisotropic, i.e., their properties depend on a 
direction of measurement. The closest examples are oriented fibers, reinforced plastics, 
and wood − their rigidity and strength are very different along the fibers and normal to the 
fibers. The properties of monocrystals are different in different crystallographic directions 
due to different intermolecular interactions and different distances between atoms in the 
crystalline cell. 

The behavior of all these materials can be approximated (at least at small deforma-
tions) by linear relationships between stresses and deformations. However, it is rather evi-
dent that Hooke’s law in its standard formulation does not describe properties of 
anisotropic materials. Then, it is reasonable to make more general suggestions concerning 
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a possible relationship between the components of stress and deformation tensors within 
the framework of linear approximation.

There are six independent components of the stress tensor, σij, and six independent 
components of the deformation tensor, εij. The general linear relationship among them is:

[4.3.1]

where Eijmn are the components of elastic modulus for an anisotropic material and summa-
tion takes place by the indices corresponding to the components of the deformation tensor, 
m and n.

Comment
In order to elucidate Eq. 4.3.1 one of the components of the stress tensor is written below in an expanded 

form:

Eq. 4.3.1 can also be written in an inverse form to consider deformation as a function 
of the components of the stress tensor:

[4.3.2]

It is evident that this complete formulation includes 36 values of “moduli”, Eijmn, 
which, in fact, are the components of the modulus tensor, or the same number of compo-
nents of the compliance tensor, Jijmn. The correspondence between both is established by 
the rules of matrix algebra.

Based on some theoretical arguments concerning the mathematical properties of ten-
sors, it is possible to prove that there are not 36 but only 21 independent values of modulus 
(or compliance). 

This is the maximum possible number of independent characteristics of mechanical 
properties for a linear elastic material (body). The decrease of the number of moduli 
depends on the type of symmetry of material. 

It is necessary to use all 21 constants to describe the properties of a crystal of triclinic 
structure. The increase of the number of axes of symmetry results in a decrease in the 
number of independent constants. For a monoclinic crystal with the axis of symmetry of 
the second order, several moduli equal zero, and the number of independent moduli 
decreases to 13. For a rhombic crystal, only 9 independent moduli exist. The number of 
independent moduli for a cubic crystal with the axes of symmetry of the fourth-order 
decreases to 3, and coming back to an isotropic material with an infinite number of axes of 
symmetry, only 2 independent moduli can be determined. The latter relates to amorphous 
materials or to polycrystals. In polycrystals, the properties of individual crystals are aver-
aged because of the coexistence of a large number of individual anisotropic crystals ori-
ented statistically in space. Elastic properties of the material are measured using relatively 
large samples (at least, much larger than the sizes of individual crystals in a polycrystal 
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body), and therefore the properties of such materials can be described by a model of an 
ideal Hookean body.

The elastic potential of an anisotropic elastic material is determined by the following 
sum of products of the components of stress and deformation tensors:

[4.3.3]

The tensor Eijlm is symmetrical, and this reduces the number of independent constants 
characterizing elastic properties of the material. 

The determination of the components of the modulus tensor is very complex from 
the experimental point of view. It can be done for real monocrystals, and the results of 
such kind are not used in rheology but are of interest in the physics of solids. The situation 
is somewhat different for anisotropic structures, such as glass-fiber reinforced plastics. 
These materials are of great technological interest in various applications and therefore 
quantitative description of their properties is necessary for designing articles made of 
these materials because many of them are used for the construction of vital importance. 
These anisotropic materials possess several axes of symmetry and the number of moduli is 
limited: as a rule, they are oriented along one or two axes and used for producing thin arti-
cles (covers, hulls, cases, roofs, and so on). Nevertheless measuring constants for such 
anisotropic materials requires special experimental techniques and is not a trivial task.

4.4 LARGE DEFORMATIONS IN SOLIDS AND NON-LINEARITY
4.4.1 A SINGLE-CONSTANT MODEL 
Large elastic deformations result in non-linear dependence between stresses and deforma-
tions, and that is why both phenomena (large deformations and non-linearity) appear in 
the title of this section. Large deformations are not a single cause of non-linearity, as was 
discussed in section 2.8 for viscoelastic materials and will be illustrated here for elastic 
solids.

Discussion of large elastic deformations in solids is the most important for rubbers 
and rubber compounds (elastomers) because their main characteristics determine the qual-
ity and applicability of these materials and their ability to undergo large recoverable defor-
mations. 

The articles made out of rubbery materials work in various applications in which 
they are subjected to a three-dimensional stress state. The mechanical testing of these (and 
other) materials is carried out primarily in a unidimensional extension. Therefore, in for-
mulating a constitutive equation for these materials it is necessary to solve the problem, 
frequently mentioned in this book, of generalization of unidimensional experiments for 
three-dimensional (invariant) form. And again, it is worth noticing that this problem does 
not have a unique solution but continues to be the subject of many different attempts, 
involving personal experience and luck, though some general principles must be fulfilled.2 

Discussion of properties of materials in the domain of large deformations is based on 
some fundamental definitions advanced in section 1.2, where some results related to sim-
ple modes of deformations were also considered. 
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The invariants, Ei, of the large deformation tensor are written, as usual, via the prin-
cipal values of this tensor, εi, and the following notation will be used below:

The first (linear) invariant:

[4.4.1]

the second (quadratic) invariant:

[4.4.2]

the third (cubic) invariant:

[4.4.3]

Rubbery materials are practically incompressible (at least, their bulk modulus is by 
several orders of magnitude higher than shear modulus), and Poisson’s ratio, μ = 0.5. 
Therefore, the third invariant of the deformation tensor (determining volume changes in 
deformations) equals 1 and can be excluded from further discussion.

The first invariant of the deformation tensor, in the limit of small deformations, has 
the meaning of volume changes (see Chapter 1.2), and that is why in this case E1 = 0. In 
the range of large deformations, E1 does not have such a simple meaning, but the condi-
tion of constant volume at the deformation of any type permits us to reduce the number of 
independent invariants to two because the equality

[4.4.4]

is always valid for incompressible materials.
Then, any invariant expressed as a function of two others can be excluded. For 

example, the third invariant, which is expressed by means of Eq. 4.4.4, can be written as

[4.4.5]

These arguments reduce the dependence of W to two independent variables:

[4.4.6]

An invariant form of Hooke’s law providing the linear relationship between stresses 
and deformations has been formulated above (Eq. 4.2.12) as a linear dependence of an 
elastic potential on the second invariant of the deformation tensor. In the limits of Hooke’s 
law, E2 is the second invariant of the tensor of infinitesimal deformations. As discussed in 
section 1.3, in the case of large deformations, it is necessary to utilize the theory of finite 
deformations and use some measures of large deformations. It is a natural way of general-
ization of Hooke’s law, though the ambiguity of measures of large deformations may lead 
to different possibilities of representation of the relationship under discussion.

As the first approximation (or as the first reasonable simple idea), let us assume that 
an elastic potential is a linear function of the first invariant of the tensor of large deforma-
tions:

[4.4.7]
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Below, the main consequences of this approximation, i.e., Eq. 4.4.7, for different 
geometries of deformation are discussed. Eq. 4.4.7 can be written in an expanded form as

[4.4.8]

or

[4.4.9]

where λi are the principal extension ratios.
This formula is equivalent to the linear relationship between an elastic potential, W, 

and the first invariant, C1, of the Cauchy-Green tensor of large deformations

[4.4.10]

The problem of three-dimensional elongation of a body “at a point” can be analyzed 
by calculating the elastic potential of deformations in the principal axes. From the defini-
tion of W, it is easy to show that the elastic potential is expressed via principal extension 
ratios as

[4.4.11]

The following equality is valid for an incompressible material

and therefore

Then, after some simple rearrangements, the following formula for dW can be written 

[4.4.12]

Moreover, the following expression for dW can be obtained beginning from Eq. 
4.4.11 and the condition of material incompressibility:

[4.4.13]

A direct comparison of the last formulas for dW (Eqs. 4.4.12 and 4.4.13) gives the 
following system of equations widely used in the theory of rubber elasticity:

[4.4.14]
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The last system of equations is a solution to the problem of calculation of normal 
(principal) stresses at known principal elongations.

This solution is not complete because the system of Eqs. 4.4.14 contains only two 
separate equations for three independent variables, σ1, σ2, and σ3. This result is not unex-
pected because deformation in an incompressible medium is considered. The last limita-
tion means that, in principle, stresses can be determined up to an uncertain constant: σi + 
C, where the constant C cannot be determined unambiguously. Superposition of arbitrary 
hydrostatic pressure changes the stress state of the medium but does not influence its 
deformation state. As a result, the system of Eq. 4.4.14 determines components of the 
stress tensor in relation to the constant C that is dependent on hydrostatic pressure.

Therefore, the general solution in determining principal stresses in a three-dimen-
sional deformation state (i.e., when deformations are known or preset) can be written, in 
accordance to Eqs. 4.4.14, in the following form:

[4.4.15]

where the constant C may be found if the hydrostatic pressure is known beforehand.
With this background, it is possible to analyze the main cases of deformations of an 

elastic solid body with rheological properties obeying Eq. 4.4.7. In uniaxial extension 
along the axis x1, σ2 = σ3 = 0, if the extension ratio along the axis x1 equals λ, the condi-
tion of the constant volume of the body under deformation results in the following rela-
tionship:

Then, any of the last two equations of the system Eq. 4.4.15 gives the value of the 
“free” constant C:

The formula for normal (principal) stress in uniaxial extension for material with rhe-
ological properties described by Eq. 4.4.7 is as follows:

[4.4.16]

Comment
Eq. 4.4.16, within the limits of small deformations, degenerates to Hooke’s law. The value of the principal 

elongation is 
 

where l0 is the initial length of a sample and Δ is the increase of the length due to deformations; it is assumed that 
Δ << l0. Then, by direct substitution of the expression for λ in Eq. 4.4.16, after necessary calculations and 
neglecting higher-order terms of Δ, it is possible to demonstrate that Eq. 4.4.16 degenerates to the following lin-
ear relationship
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which is, evidently, Hooke’s law with Young’s modulus equal to E = 3A.

Materials obeying Eq. 4.4.16 are sometimes called neo-Hookean because this equa-
tion is the most evident and simplest generalization of Hooke’s law for a region of large 
deformations.

In engineering applications, it is frequently more convenient to use, not the true 
stress as in Eq. 4.4.16, but the engineering stress, fE, that is the force divided by the initial 
cross-section of the sample. Simple geometrical arguments show that

and therefore the constitutive equation for uniaxial extension of rubbers is formulated as

[4.4.17]

The reason for changing A to E/3 was discussed in the Comment above.
Eq. 4.4.16 is one of the possible methods of representation of experimental data for 

large deformations of elastic materials. This equation is a consequence of the invariant Eq. 
4.4.7. This equation is applied to the analysis of simple shear, which is relatively easy to 
study by experimental methods. For example, this mode of deformation can be realized by 
twisting a thin-walled cylinder. 

The principal elongations for simple shear were calculated in section 1.2 (see Eq. 
1.2.35, where εii are the principal elongations). Elastic potential for this mode of deforma-
tion is 

[4.4.18]

Shear stress is found from:

[4.4.19]

Rheological properties of the material, which are described by the invariant Eq. 
4.4.7, give linear dependence of shear stress on deformation. Thus, the value of the con-
stant A in this equation has the meaning of shear modulus. In the linear limit of elasticity, 
modulus in extension, , but for the non-linear domain of large deformations, this 
simple relationship is not valid, as is clearly seen from Eq. 4.4.16. Therefore, the follow-
ing conclusions can be made:

• Shear behavior of two different kinds of materials (Hookean and those described 
by the rheological equation of state, Eq. 4.4.7) can be the same, even though they 
are quite different rheological materials. This is confirmed by the difference in 
their behavior in extension. It is the direct proof of the thesis that investigation of 
stress deformation behavior in one mode of loading does not give enough infor-
mation for estimating the type of rheological model of the material.

σ1 3A Δ
l0
---- 3Aε= =

fE
σ1
λ
-----=

fE
E
3
--- λ 1

λ2
-----– 

 =

W 1
2
---Aγ2=

σ dW
dγ

--------- Aγ= =

E 3A=



264 Solids

• Elastic potential (Eq. 4.4.7) predicts the non-linear behavior of the material in 
extension and this non-linearity is a direct consequence of large deformations by 
itself. This rheological equation of state contains only one material constant, 
which has the meaning of shear modulus and can be used for the prediction of 
deformation behavior of the material at any mode of loading.

Elastic potential in the form of Eq. 4.4.7 was formulated as a consequence of the 
molecular (kinetic) statistical theory of rubbery elasticity and is called the Kuhn-Guth-
James-Mark potential.3 The potential function, expressed by Eq. 4.4.7, was proposed for 
rubbers. It can be considered as the first approximation describing the deformation of rub-
bers at equilibrium conditions. The last limitation implies that possible time effects are not 
included in consideration, though effects of such kind are quite typical for rubbers and 
observed in measuring stress-deformation relationship (see Chapter 2).
4.4.2 MULTI-CONSTANT MODELS
4.4.2.1 Two-constant potential function
Comparison of experimental data obtained for a typical rubbery material with a curve cal-
culated in accordance with Eq. 4.4.17 is presented in Fig. 4.4.1. The experimental curve 
consists of three sections: 

• At small deformations, the stress-deformation relationship is close to linear 
• In the intermediate deformation 

region, the relationship is pre-
dicted by Eq. 4.4.17

• At very large deformations, 
stresses increase rapidly and this 
effect is not described by Eq. 
4.4.17.

It is necessary to develop more com-
prehensive methods for the description of 
experimental data. For this purpose, rheo-
logical equations of state can be developed 
based on Eq. 4.4.7. Representation of rheo-
logical properties of solid materials via an 
elastic potential function W(C1, C2) is 
equivalent (after some formal mathemati-
cal transformations) to represent it as a 
function W(C1, ), i.e., it is possible to 
use first invariants of the Cauchy-Green 
and the Finger tensors of large deforma-
tions. There is great freedom in varying any 
conceivable form of this function in an 
attempt to fit various experimental data. 

Formally, no limitation in approximating function W(C1, ) exists because any approx-
imation obeys the general principle of invariance. Certainly, in real practice, it is desirable 
to search for approximations having the simplest form, possibly a linear form. 

The linear form is the simplest, and one of the examples of linear elastic potential is 
given by Eq. 4.4.7, but it contains only one argument, the first invariant E1, (or C1 as in 

C1
1–

C1
1–

Figure 4.4.1. Typical dependence of engineering stress, 
f, on relative elongation, λ (experimental data points) 
for a soft rubber and its theoretical representation by Eq. 
4.4.17 (dashed line).
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Eq. 4.4.10). Then the next possible approximation is a combination of linear functions in 
the form

[4.4.20]

where A and B are material constants.
This elastic potential can be rewritten via the principal values of extension ratios. 

After mathematical transformation, the following formula is obtained:

[4.4.21]

where “new” constants, G1 and G2, are expressed by “old” ones, A and B, as

, 

and the final result of the rearrangements is the expression of W, as a function of the first 
invariants of both the Cauchy-Green and the Finger tensors given by

[4.4.22]

This result confirms the equivalence of functions W(C1, C2) and W(C1, ). An elastic 
potential in the form of Eq 4.4.22 was proposed by Mooney4 and independently by Rivlin5

on the basis of his general approach to the construction of elastic potential functions for 
large deformations. The function W(C1, ) in Eq. 4.4.22 is known as the Mooney-Rivlin 
potential.

The role of the second term in Eq. 4.4.22 is illustrated by stress-deformation depen-
dencies for uniaxial extension and shear. In uniaxial extension

where λ is an extension ratio.
Using formulae for components of stresses discussed above, it is possible to show 

that normal stress in the direction of stretching, σE, is

[4.4.23]

with two other stress components equal to zero.
The acting force can be related to the initial cross-section of the stretched sample. 

This engineering stress, fE, is written in the following manner

[4.4.24]

The structure of Eq. 4.4.24 demonstrates that the addition of the second term in Eq. 
4.4.22 leads to the appearance of the “correction” term in Eq. 4.4.24. If G2 = 0, Eq. 4.4.24 
becomes the well-known formula for the stress related to one member of elastic potential 
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function (Eq. 4.4.7). The difference is because of 2G2/λ in Eq. 4.4.24. The influence of 
this correction can be estimated, bearing in mind that according to the experimental data, 

. However, the addition of the second term is of principal value, especially 
considering that other relationships between both constants are not excluded.

Treating experimental data in terms of Eq. 4.4.24 assumes that they ought to be pre-
sented in the coordinates fM vs. λ -1, where 

[4.4.25]

It is expected that the experimental data points, presented in these coordinates, will 
lie on a straight line. It is also worth mentioning that the function fM is, in fact,

[4.4.26]

Fig. 4.4.2 is an illustration of this approach. The dependence under discussion gives 
a straight line at λ-1 > 0.4 (i.e. at λ < 2.5). At higher degrees of extension, strong diver-
gence from the two-constant potential is evident. However, λ = 2.5 is already a large 
deformation, and it is important that at least in this deformation range Eq. 4.4.24 is valid. 

Is it possible to be certain that this potential function is a correct image of real 
changes (at least at λ < 2.5)? In order to answer this question, another type of deformation 
other than uniaxial extension must be examined. Let it be shear deformation. It is easy to 
prove that Eq. 4.4.21 leads to the following dependence of shear stress, σ, on shear defor-
mation, γ, 

[4.4.27]

where the sum (G1 + G2) is the shear modu-
lus.

The constitutive equation, expressed 
by Eq. 4.4.20, predicts linear behavior in 
shear, though it is non-linear in extension.

Repeatedly, this is proof that the same 
rheological behavior in deformations of one 
type (in this case, linear stress-deformation 
in shear) does not mean that the type of 
deformation under other conditions (in this 
case, stress-deformation in uniaxial exten-
sion) must be the same. The result demon-
strates again that the data obtained in 
experiments of one type cannot be a crite-
rion for the selection of rheological equation 
of state (constitutive equation) and cannot be 
used for unambiguous prediction of stress-
deformation dependencies in different 
modes of deformations.
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Figure 4.4.2. Linearization of experimental data in coor-
dinates of Eq. 4.4.24. [Adapted, by permission, from 
R.S. Rivlin, D.W. Saunders, Phil. Trans. Roy. Soc., 
A243, 251 (1951)]. 



4.4 Large deformations in solids and non-linearity 267

4.4.2.2 Multi-member series
Eqs. 4.4.20 and 4.4.21 can be formally treated as the first approximation (the first-order 
terms of a series) of some non-linear functions W(C1, C2) or W(C1, ). If one adds 
higher-order terms with their own material constants, one may expect to improve the cor-
respondence between the theoretical predictions and the experimental data. In particular, it 
is important for shear studies because the linear relationship in Eq. 4.4.27 is not a realistic 
result.

If linear functions (Eq. 4.4.7 or Eq. 4.4.20) are not sufficient (and they are not for 
three-dimensional deformations), the quadratic term can be added and the expression for 
elastic potential is

[4.4.28]

where A, B, M, G1, G2, and G3 are material constants, and the latter three are expressed 
via A, B, and M.

Based on Eq. 4.4.28, the following formula can be derived for the normal engineer-
ing stress in uniaxial extension:

[4.4.29]

It is evident that Eq. 4.4.29 contains a new quadratic term with its own material con-
stant in a “correction” term, compared to Eq. 4.4.24. Certainly, three empirical constants 
allow us to fit experimental data points much better than one or even two “free” constants 
in Eq. 4.4.24, and that is why Eq. 4.4.29 gives a satisfactory approximation of different 
experimental data. Moreover, Eq. 4.4.29 predicts the nonlinear dependence of the stress-
deformation function in simple shear.

The most general phenomenological form of an elastic potential function is

[4.4.30]

where Gα,β,γ are empirical constants and G000 = 0 because elastic energy of undeformed 
body is assumed to be zero. 

For an incompressible material, C3 = 0, and a simpler general form of the elastic 
potential can be written:

[4.4.31]

A very interesting and principal problem arises concerning the practical possibility 
of finding W as a function of invariants. The general answer to this problem is that it is 
necessary to compare the results of experiments carried out at different geometrical 
schemes of loading. For example, normal stress in uniaxial extension for an arbitrary func-
tion W(C1, C2) can be expressed as

C1
1–

W AE1 BE2 ME1
2+ + G1 C1 3–( ) G2 C1

1– 3–( ) G3 C1 3–( )2+ += =

fE 2 G1 G2
1
λ
--- G3λ2+ + 

  λ 1
λ2
-----– 

 =

W Gα β γ, , C1 3–( )α C2 3–( )β C3 3–( )γ

α β γ, , 0=
=

W Gα β, C1 3–( )α C2 3–( )β

α β, 0=
=



268 Solids

[4.4.32]

as is also seen from Eqs. 4.4.25 and 4.4.26.
The general form of the dependence of shear stress on deformation for simple shear 

(its measure is γ) can be formulated as

[4.4.33]

The dependencies of fM and σ/2γ on the elastic potential function are expressed in differ-
ent manners. From the comparison of dependencies of fM (see Eq. 4.4.25) and σ/2γ on the 
right-hand sides of Eqs. 4.4.32 and 4.4.33, it is possible to find the dependence W(C2) as 

Then the dependence W(C1) is found from Eq. 4.4.32 or Eq. 4.4.33.
Other types of fundamental experiments can also be used to find an elastic potential 

function W(C1, C2) but it is essential that at least two different geometrical schemes of 
loading are used and compared.

The idea that a function W(C1, C2) can be expanded into a power series, and that it is 
possible to use any desired number of terms of series, permits, by adding new arbitrary 
(“free”) empirical constants, a reasonable degree of correspondence between a theoretical 
(phenomenological) curve and experimental data.

The same concept can be realized in a somewhat different way. From the very begin-
ning, it was assumed that coefficients used, even in a very general formulation of an elas-
tic potential, Eq. 4.4.30, are constant but in reality, the material properties are not constant 
and may depend on deformation. The coefficients must be expressed as dependencies of 
“modulus” A in Eq. 4.4.7 on invariants of the deformation tensor. It means that nonlinear-
ity appears not only as a consequence of large deformations by itself but also as a function 
of some physical phenomenon (for example, structure transformation happening in the 
course, or as a consequence, of large deformations), i.e., the simplest quasi-linear potential 
(Eq. 4.4.7) is not sufficient for fitting experimental data when physical nonlinear effects 
are encountered.
4.4.2.3 General presentation
It was proven that the most general constitutive equation for elastic materials can be writ-
ten as6 

[4.4.34]

In this equation, tensor values of stress, σ, unit tensor, δ (see comments in section 
1.1.1), and the Cauchy-Green tensor, C, are used. The tensor C can be equivalently substi-
tuted by the tensor C-1.

It is important that the coefficients, α0, α1, and α2 in Eq. 4.4.34 are arbitrary scalar 
functions of the deformation invariants. For the particular case of incompressible material 
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(such as rubbers) α0 = −p (i.e., it is hydrostatic pressure). Also, it is easy to treat Eqs. 4.4.7 
and 4.4.20 as particular cases of the more general Eq. 4.4.34.

Both approaches expand the function W(C1, C2) into a power series or treat the mate-
rial parameters α1 and α2 in Eq. 4.4.34 as functions of invariants of the deformation ten-
sor. These are formal presentations of the elastic properties of solids. Eq. 4.4.7 can be 
based on some reasonable physical arguments (“statistical theory of rubber elasticity”).7
Its generalization, in spite of numerous theoretical attempts, has no such universally 
accepted physical ground and must be treated as an empirical relationship invented for fit-
ting the experimental data.

The last remark in this section regards time effects. Time must not be mentioned in 
this section at all, because this concept is not consistent with the idea of elastic (instanta-
neous) reaction of the material to the applied force. This fundamental idea already has 
been emphasized by stating that stress-deformation relationships discussed in this chapter 
are valid for equilibrium conditions. However, there is a great difference between instanta-
neous and equilibrium reactions and the gap between both is the field of time-dependent 
effects. Moreover, large deformations and rubbery elasticity are relevant to polymeric 
materials and various time-dependent effects (relaxation, etc.) are typical of these materi-
als. That is why it is important (though in some cases difficult) to separate time-dependent 
effects and distinguish “pure” (equilibrium) stress-deformation dependence.

The formulation of the elastic potential function should be based on fundamental 
molecular arguments determining the structure of the elastic potential function. In the sim-
plest case, such an approach was used in the single-constant Kuhn-Guth-James-Mark 
potential, which was previously discussed. This potential function is based on the affine 
transformation of a network created by macromolecular chains. Later a two-constant 
potential was proposed that incorporated a concept of limited extensibility of macromo-
lecular chains:8 

[4.4.35]

where K1 and K2 are constants and the small deformation limit of elastic modulus 
(Hooke’s modulus) E is expressed as 

This concept is useful in the explanation of the effect of hardening in the extension of 
polymer melts (see section 3.7.3). The construction of general non-linear models of visco-
elastic liquids also requires such molecular-based models of non-linear elasticity (see sec-
tion 2.8.2). 
4.4.2.4 Elastic potential of the power-law type
A method of introducing a multi-component elastic potential function is based on the gen-
eralized (nonlinear) measures of deformations. The following assumption for the W(λi) 
function was proposed:9 

[4.4.36]
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where G, m, n, and B are material constants, and IE is the first invariant (the sum) of the 
generalized measure of deformations, Eα, which is expressed as

This approach leads to non-linear dependencies in the deformation of any arbitrary 
type. The potential function, including extension and simple shear, is based on a compari-
son of invariant dependencies of stresses and deformations, including the geometry of 
deformations of different types. The calculations or two-dimensional model gives the fol-
lowing equation:

[4.4.37]

where indices α and β define principal stresses and extension ratios defined in principal 
axes.

The left-hand side of this equality will be noted as X and the right-hand side as Y. 
Then the dependence of X on Y is expected to be a straight line inclined by 45o to both 
axes regardless of the geometry of deformation. Experimental results for two different 
materials and four geometries of deformation are presented in Fig. 4.4.3 in the coordinates 
X-Y. It is seen that the power-law type elastic potential fits the experimental data in the 
invariant form, and that is why this equation can be considered as acceptable.

This approach is useful for fitting 
experimental data obtained from studies of 
different rubber-like materials.
4.4.3 THE POYNTING EFFECT
Large deformations, even uniaxial, lead to 
three-dimensional effects. In liquids, it is 
the Weissenberg effect (see section 3.4.2). 
In solids, a similar effect is called the Poy-
nting effect.10 

The experiments demonstrated that 
twisting thin wires affects their length. This 
effect becomes noticeable at relatively 
large angles of twisting, for example, after 
several turns of wire. 

The characteristic (dimensionless) 
geometrical size of wire is the ratio of its 
radius to length, R/L. This ratio is smaller 
than 1. The values of relative deformations 
are also small, but they are comparable 
with values of (R/L)2. The Poynting effect 
is a typical phenomenon of the second 
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Figure 4.4.3. Experimental data for two materials and 
four types of deformation presented in the coordinates 
of Eq. 4.4.36. [Adapted, by permission, from B.J. Blatz, 
S.C. Sharda, N.W. Tschoegl, Trans. Soc. Rheol., 18, 
145 (1974)].
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order. The changes in length are proportional to the squared value of , where Ω is 
an angle of twisting. 

The Poynting effect applies to large deformations in shear. Shearing does not cause 
volume changes. However, this is not true in large deformations. That is why the other 
outcome of the Poynting effect is volume change. It is analogous to dilatancy (volume 
change in shear) in liquid-like materials.

4.5 LIMITS OF ELASTICITY
4.5.1 STANDARD EXPERIMENT − MAIN DEFINITIONS
The limit of elasticity is a result of standard experiments in uniaxial extension of solid 
samples. Two typical cases are shown in Figs. 4.5.1 and 4.5.2. Sometimes, the normal 
stress-deformation dependence, σE(ε), is monotonous (e.g., for mild, low carbon, steel, or 
copper, as in Fig. 4.5.1). In other cases, a sharp maximum is observed on the σE(ε) depen-
dence (e.g., for many metallic materials and plastics, as in Fig. 4.5.2). 

Point A in these figures corresponds to the limit of proportionality, and the OA part 
of the full curve is a domain of validity of Hooke’s law. Elastic deformations continue up 
to point B, which is called a limit of elasticity. After this point, irreversible deformations 
are detected. Deformations of this kind increase greatly along the plateau in the range BC 
(or B'C) and this is known as a domain of plasticity or plastic deformation. The maximum 
stress (points A and B in Fig. 4.5.2) is called a limit of plasticity, or yield stress.11 The 
σE(ε) curve ends at point D, marking a failure of the sample, and this point is called ulti-
mate or tensile strength of the material. Deformation, corresponding to this stress, is called 
the ultimate elongation or elongation at break.

There is a large number of fragile or brittle solid materials which break close to point 
B (e.g., reinforced plastics, many ceramics, inorganic glass, pig iron, monocrystals, etc.). 

Two phenomena define the limits of elasticity:

RΩ L⁄

Figure 4.5.1. Typical deformation curves for mild steel 
(solid line) and non-ferrous metals (dashed line). 
Characteristic points are marked.

Figure 4.5.2. The deformation curve with a peak and 
plateau of plasticity.
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• elastic-to-plastic transition 
• failure. 
It is noteworthy that both effects are observed not only in extension but also in defor-

mation of any geometry, for example, in uniaxial compression, shear, a combination of 
twisting and extension, etc. Only all-dimensional (hydrostatic) compression occupies a 
special position. Quantitative measures of conditions, corresponding to the limit of elastic-
ity, are different depending on the deformation mode. 

The elastic-to-plastic transition, as well as fracture, can be considered as some criti-
cal event on the deformation-stress dependence. Therefore, both phenomena can be con-
sidered in analogous terms, especially when the three-dimensional effects are discussed 
and the general criteria are searched for.
4.5.2 CRITERIA OF PLASTICITY AND FAILURE
The limit of elasticity for elastic-to-plastic transition or failure is a critical point on the 
stress-deformation diagram if time-dependent effects are not taken into account (the time 
effects are typically assumed to be absent in the concept of solids). This critical point can 
be found in experiments of standard geometry. The principal question is how to construct 
the three-dimensional (invariant) criterion which can be used for an arbitrary stress state 
of the material. This is important in applications because stress states in real situations are 
three-dimensional. 

The generalized criteria of plasticity and failure ought to be formulated in the analo-
gous form because both of them are critical phenomena. For an isotropic material, the cri-
terion of transition must be the symmetrical function of principal stresses. The role of the 
average normal stress (i.e., hydrostatic pressure) is negligible. Therefore, it is sufficient to 
use two invariants of the stress tensor. Then, the critical state criterion must depend on the 
difference of principal stresses. It leads to the formulation of two criteria mostly used for 
applied purposes.

The search for the criterion of transition (or failure) in an arbitrary three-dimensional 
stress state is based on the concept of the equivalency of this stress state to some unidi-
mensional state determined by a single critical (or limiting) value of stress.
4.5.2.1 Maximum shear stress
Material transforms to the state of plasticity (flow) or breaks at a stressed state when the 
maximum shear stress exceeds some critical value, σ*.13 This condition is called the 
Tresca-Saint-Venant criterion.14 

For uniaxial extension, at normal stress, σE, shear stress equals σE/2 (see section 1.1) 
and therefore the condition of plasticity in extension is 

[4.5.1]

It means that the plasticity state (or failure) is reached when shear stress equals 
0.5  for  measured in uniaxial extension.

For a three-dimensional stress state, three maximum (“invariant”) shear stresses 
σ1,max, σ2,max, and σ3,max, are calculated as

σ* 0.5σE
*=

σE
* σE

*
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[4.5.2]

One of these differences is maximum (by its absolute value) and it determines the 
critical condition. According to this approach, σ* equals the difference of two normal 
stresses, maximum and minimum. The middle value of principal normal stress has no 
influence on the limiting state.

As an example, let us calculate maximum shear stress in a superposition of shear 
stress, σ, and normal stress, σE. Then the condition of limiting state, according to the 
results of calculations of maximum shear stress, is:

[4.5.3]

The critical (limiting) state is reached when and if the right-hand side of this equa-
tion becomes equal to the critical number − the acceptable value of shear stress.
4.5.2.2 The intensity of shear stresses (“energetic” criterion)
This approach accounts for three differences of principal normal stresses or three principal 
shear stresses, defined by Eqs 4.5.2.15 The criterion is formulated as 

[4.5.4]

This condition is called the Huber-von Mises criterion. The value T, is defined as

[4.5.5]

In the theory of stresses, it is sometimes called the intensity of shear stresses. Both values, 
σE and T, can be expressed by the “average” value of shear stress, σav, which is

Then, the criterion is written as

[4.5.6]

If T = σ, the following relationship between σ* and  takes place:

[4.5.7]

It is close, though not equivalent, to the criterion of maximum shear stress in Eq. 4.5.1.
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In the deformation of elastic solids, the work done is stored in the form of elastic 
potential energy. The total energy of deformation can be separated into components 
related to shape and volume changes. Then, accurate calculations show that the part of the 
energy that is responsible for shape changes, Wsh, is expressed as:

[4.5.8]

The last equation shows that the condition of a critical state is directly related to the 
stored energy, not to the total energy, but only to the part that is responsible for shape 
changes. This is the reason for calling the criterion an energetic criterion. Volume changes 
do not influence the state of the material. 
4.5.2.3 Maximum normal stress
The above-discussed cases were based mainly on the estimation of shear stresses, which 
determine conditions of the limiting state. This is directly related to the concept of shape 
changes of solid materials. However, volume changes in extension of solids also take 
place, and sometimes they lead to transitions. Neck formation in uniaxial extension of 
polymers is an example of such an effect (see Fig. 2.8.3). Though different explanations of 
the mechanism of neck formation were proposed and discussed, the following seems ade-
quate:16 a neck forms when a relative volume of the body increases up to a certain level. 
This formation of an extra free volume provides the conditions for relaxation transition. 
This is a transition from an isotropic to an oriented state. The role of volume changes is 
dominating.

The following condition of the limiting state can be introduced. The criterion of the 
condition is a critical level of normal stress, σ*. For a two-axis stress state, when shear, σ, 
and normal, σE, stresses act simultaneously, the criterion of the limiting state is written as

[4.5.9]

Normal and shear stresses influence the condition of the limiting state to a relatively 
equivalent extent. 
4.5.2.4 Maximum deformation
The physical meaning of this approach is close to the previous one. However, the quantita-
tive expression for the critical stress appears somewhat different. The detailed calculations 
show that for superposition of shear, σ, and normal, σE, stresses, the condition of the lim-
iting state is written as

[4.5.10]

In this case, too, there is a complicated superimposing influence of normal and shear 
stresses on the critical state of the material.
4.5.2.5 Complex criteria
Summarizing the above-mentioned, one can see that two concepts of a critical state condi-
tion exist: the dominating role of either shear or normal stresses is assumed. In the first 
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case, shear sliding (shape changes without 
volume increase) determines the critical 
state, and in the second, volume effects are 
a dominating factor, and the critical state is 
reached due to the volume transition or 
separation of one part of the material from 
another. 

It is reasonable to suggest that in 
reality both effects are superimposed and 
the dominating mechanism of the critical 
state depends on the nature of the material 
and/or the geometry of loading. Some situ-
ations are rather evident. For example, 
neck formation is a consequence of vol-
ume effects and thus of normal stresses. 
During the extension of many ferrous met-
als, the lines on the sample surface (so-
called Luders lines) inclined by 45o to the 
axis of the extension are formed. This is a 
result of the sliding of structure elements 
caused by the action of shear stresses. In 

some cases, the angle of inclination of these lines is not exactly 45o, and this is the direct 
proof of the superposition of both mechanisms − shearing and extension.

A comparison of experimental results measured in a planar (two-dimensional) defor-
mation field and predictions of the maximum shear stress criterion are shown in Fig. 4.5.3. 
The points marked are 1 − related to the uniaxial extension, 2 − compression, 3 − shear in 
twisting, 4 − biaxial extension, and 5 − biaxial compression. Points marked as 3 are the 
direct measures of the critical shear stress, σ*. Starting from this value, it is possible to 
construct the complete contour of limiting states, Eq. 4.5.1. This contour is drawn by a 
dashed line. The solid line is the contour built using the experimental data points. 

It is evident that the experimental data do not exactly correspond to the theoretical 
predictions. The main reason in the case of data presented in Fig. 4.5.3 is the difference of 
limiting states in extension and compression (i.e., in two different uniaxial stress states). 
This phenomenon is well known for many real materials, such as stones, pig iron, and oth-
ers. This phenomenon is the reflection of the role of hydrostatic pressure on a limiting 
state. The correct formulation of a criterion requires the introduction of a normal stress 
factor in addition to the maximum shear stress. Then, the critical condition can be written 
as:

[4.5.11]

The introduction of the angle, , reflects the inclinations of the direction of the max-
imum resistance from the line of the action of maximum shear stresses in uniaxial exten-
sion. This direction is oriented by the angle  to the axis of extension. 

σ1 σ3–
2

----------------- σ* σE ϕtan+=

ϕ

θ π 4⁄ ϕ 2⁄+( )=

Figure 4.5.3. Limiting states of polystyrene as predicted 
by the maximum shear stress criterion (dashed line) and 
measured experimentally. [Adapted, by permission, from 
W. Whitney, R.D. Andrews, J. Polymer Sci., C, 16, 
2981(1967)]. 
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According to the experimental data for polystyrene (Fig. 4.5.3), the angle  equals 13o

and   θ = 51o30’.
A general criterion of limiting states must reflect the influence of both shear and nor-

mal stresses. Normal stress modifies the conditions of transition (or break) according to 
the following linear relationship obtained from modification of the Eq. 4.5.4:17 

[4.5.12]

where I1 is the first invariant of the stress tensor (see Eq. 1.1.7) and v is an empirical fac-
tor. The condition v = 0 or deformation mode with I1 = 0 corresponds to the criterion of the 
limiting intensity of shear stresses. If I1 > 0, i.e., the material is stretched and the sample 
can resist lower shear stresses. Hydrostatic compression increases the ability to withdraw 
at higher shear stresses. 

A criterion accounting for different resistances to compression and extension is pre-
sented in the following way18 

[4.5.13]

where C and M are limiting values of normal stress in compression and extension, respec-
tively. If C = M, the material is isotropic and, again, the criterion of maximum intensity of 
shear stresses appears valid. However, if C > M (as usual), the situation appears more 
complex. 

The applicability of Eq. 4.5.13 to the 
analysis of experimental data is illustrated 
in Fig. 4.5.4. The asymmetry of the curve 
(due to the difference of properties in com-
pression and extension) is evident. Eq. 
4.5.13 fits the experimental data very well. 
It is worth mentioning that Eq. 4.5.12 also 
describes these experimental points in a 
satisfactory manner. Both equations are 
empirical and it is not possible to say which 
one of them is better. 

The criteria discussed above are 
related to isotropic materials. Numerous 
materials of engineering interest are aniso-
tropic in their structure, for example, rein-
forced plastics or monocrystals. Criteria of 
the limiting state also can be constructed for 

such materials, based on the same approaches that were used for isotropic materials. An 
analytical form of such criteria is complicated, though the physical principles are the 
same.
4.5.3 STRUCTURE EFFECTS
Departing from the limits of elasticity inevitably has an effect on structure and, thus, 
changes in mechanical (rheological) properties of matter. Such effects are, in many cases, 

ϕ

σ* σav
v
3
---I1+=

9σav
2 6 C M–( )σE+ 2CM=

Figure 4.5.4. Comparison of theoretical predictions 
based on Eq. 4.5.13 (solid line) with experimental data 
for polystyrene (solid circles) and some other polymers 
(open circles). The ratio of C/M is chosen to be equal 
1.3. Normal stresses σ1 and σ2 are normalized by limit-
ing extension stress M. [Adapted by permission from 
S.S. Sternstein, L. Ongchin, ACS Polymer Preprints, 
10, 1117 (1969)]. 
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irreversible. However, this irreversibility may be, at least, partly reversible on rest, though 
the rates of physical processes in solids are much slower than in liquids because of much 
longer relaxation times. The characteristic relaxation times in solids are at least in hours. 
In some cases, the increase of temperature and long storage at elevated temperature 
(annealing) may accelerate the process of structure restoration and make it observable. On 
the other hand, the damage of structure at large deformations may be so extensive that its 
complete restoration is not possible even with high-temperature treatment. This is why the 
initial state (shape) of material after plastic deformation cannot be reached by applying the 
same stresses but with the opposite sign. 

Example
The car body deformed by a single impact in an accident regrettably cannot be repaired by a single impact 

in the opposite direction.

The structure destruction and its (partial or complete) restoration in the case of a 
solid are similar to the thixotropy of liquid-like materials, though this term is rarely used 
for solids. The concept of structure is more definite and clear for solids than for liquids, 
because the structure of solids can easily be inspected by direct optical, electronic, or X-
ray methods. The mechanisms of structure rearrangement are also easy to investigate in 
many cases, though these mechanisms may be very different. One may be caused by slid-
ing along crystal defects (dislocations), another by destroying relatively large structure 
aggregates (e.g., spherulites), or by orientation, deformation-induced phase transitions, 
and so on. 

The reversibility of structure rearrangements suggests that this process proceeds in 
time, and it is necessary to consider the kinetics of this phenomenon.

It is reasonable to distinguish between time-dependent effects of two types:
• a domain of viscoelastic effects consisting of a superposition of energy storage 

and dissipation (see Chapter 2)
• the structure effects caused by changes in the macrostructure of materials 

induced by deformations. Effects of such kind are observed primarily by irrepro-
ducibility of the results of material properties measurements in repeated experi-
ments and their slow (complete or partial) restoration at rest. 

Some typical structural phenomena leading to the changes of mechanical properties 
in the domain of nonlinear inelastic deformations are discussed below. It is noteworthy to 
remind one that these effects are not viscoelastic phenomena but a structure time-depen-
dent effect. The situations cannot be well defined in various cases and it is not always pos-
sible to establish clear boundaries between the effects of these two different classes.
4.5.3.1 Strengthening
A crystalline material after additional loading, beyond the limit of elasticity (in a plastic 
zone), becomes more rigid on repeated loading. The limit of elasticity increases and the 
plasticity of material becomes suppressed. Also, impact strength and resistance to shock 
resistance decreases. This effect is called strengthening or stress hardening. Strengthening 
of the surface appears as a result of mechanical treatment in some technological opera-
tions and can be a purposeful technological procedure to improve properties of products.

Strengthening in plastic deformation decreases the resistance of the material to load-
ing in the opposite direction (this is known as the Bauschinger effect). Strengthening 
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partly or completely disappears after prolonged rest or annealing at elevated temperature, 
which is similar to thixotropic effects.
4.5.3.2 Thixotropy 

The effect of reversible changes of material 
properties in the range of large deforma-
tions was first described for filled rubbers 
(known as the Mullins effect)19 and later for 
deforming crystalline polymers (see Fig. 
4.5.5). The plateau part of the deformation 
curve decreases from σmax at an initial 
experiment to σmin in the repeated experi-
ments carried out just after one another. 
However, during prolonged rest (several 
hours) this plateau value of stress returns to 
its initial value. 

Structure destruction and restoration 
is a typical thixotropic phenomenon. It is 
very difficult to establish, which state of the 

material is in equilibrium due to very slow structure transformations.
4.5.4 PLASTICITY (INELASTIC DEFORMATIONS)
In previous chapters, the term "plasticity" was mentioned many times. When rheological 
properties of liquids were discussed, viscoplasticity meant a material behavior as solid-
like at stresses lower than the yield stress and plastic (i.e., it can flow) at stresses higher 
than this critical stress. In this Chapter devoted to solids, plasticity meant the transition 
through the critical point corresponding to the boundary of elasticity though it was not 
determined what happens at higher stresses. So, it is necessary to define what is under-
stood as the plasticity of solids.

Before the critical point, visco-plastic liquids behave in a solid-like manner, and the 
deformations are elastic (reversible). The same is true for solids. The difference is in the 
level of the elastic modulus, which can be less by several orders of magnitude in liquids in 
comparison with ordinary solids.

However, above the critical stress (that is defined in the previous Section), the under-
standing of plasticity becomes different.

Intuitively, plasticity is a possibility of irreversible deformations. This is true in both 
cases. However, the mode of these deformations in liquids and solids appears different.

In liquids, these irreversible deformations correspond to flow, i.e., the unlimited 
increase in deformations under applied stress, and there is no correspondence between 
stress and deformations developing in time.

In solids, irreversible deformations also take place, but applied stress creates only 
limited deformation, and there is an unambiguous correspondence between stress and 
deformation. Sometimes, speaking about the plasticity of solids, the term "inelastic defor-
mations" is used that seem to be more accurate.

The transition from elastic to plastic behavior of solids is a very important phenome-
non from two points of view. 

Figure 4.5.5. Thixotropy in deformation and rest of 
crystalline polypropylene − structure destruction and 
restoration. [Adopted, by permission, from G.P. Andri-
anova, Nguen Vin-Chii, Vysokomol. Soedin. (Polymers 
− in Russian), 14A, 1545 (1972)].
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First, the articles made of solids must store their form in the application. It is possible 
only if deformations in loading an article do not exceed the limit of elasticity. If it is not 
so, an article becomes useless, and in engineering applications, this transition is dangerous 
and crucial for construction as a whole. The solid articles after plastic deformations cannot 
be easily restored just because the deformed part does not "remember" its initial state. This 
situation is well known to everybody who had a car accident: dented parts are easier to 
replace than to restore.

This is why the limit of elasticity (or "limiting stress") is determined in the standard 
experiments for all materials. It is the most important engineering property of a material 
used as a starting point in all design and applied calculations. 

Second, many technological operations in preparing different articles are based on 
plastic deformations of a material that is forced to accept the pre-defined form via plastic 
deformations. The examples are quite evident: that is such operations as stamping, rolling, 
drawing through a die, and so on. So, technological operations require passing through the 
elastic-to-plastic transition.

A very important and independent field of application of the concept of plasticity of 
solids is geology and geophysics. It is widely accepted that many soils and rocks can be 
plastically deformed under the action of giant forces acting inside them, though the speed 
of their movement can be very slow. Displacement of glaciers is another important exam-
ple of plastic deformations of solids. Quantitative description of plasticity in geology is 
not yet developed well (mainly due to experimental difficulties in the determination of 
material properties of these media), though its importance is quite evident.

So, the following differences and similarities between visco-plastic "liquids" and 
plastic solids can be distinguished.

• In the domain of small deformations preceding plasticity, elastic deformations of 
visco-plastic "liquids" are negligible and not important in applications, whereas 
small deformations in solids are critically important because they determine the 
applied properties of a material. 

• The development of plastic deformations in solids is limited by the failure of a 
sample, whereas plastic deformations of liquids (i.e., their flow) can continue for 
an unlimitedly long time. 

• values of elastic modulus in the domain of small deformations preceding to the 
plasticity are of the order 1010-1011 Pa for typical solids, but not higher than 103

Pa for typical visco-plastic media;
• the values of stresses in the domain of plastic flow do not exceed 106 Pa (depend-

ing on viscosity and shear rate) for flowing liquids but of the order of 1010 Pa for 
metals and 107-108 Pa for plastics.

Besides metals (which are beyond the frames of this book), inelastic deformations 
are especially important for highly concentrated suspensions. In approach the limit of the 
closest packing of such suspensions, the apparent viscosity begins to increase along with 
the increase in shear rate (Fig. 4.5.6). This is the effect of shear thickening, sometimes 
treated as dilatancy. 

Usually, this kind of rheological behavior is observed in the concentration range of 
50-65 vol%. 
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Visual observations show that this effect is accompanied by easily detected periodic 
creation and destruction of jamming clusters that are concentration inhomogeneities.20-22

These oscillations demonstrate the coexistence of several structures with periodic transi-
tions between them like it happens in the shear banding phenomenon (see Section 3.5.3.2). 
However, these fluctuations are strongly suppressed by the increase of the viscosity of a 
liquid continuous phase.23 

Meanwhile, two important peculiarities of this effect related to highly concentrated 
suspensions are noteworthy to mention. 

First, the effect of thickening cannot be smooth like in continuous shear thickening
(CST) but happens as the sudden unlimited growth of viscosity like in discontinuous 
shear thickening (DST), and this transition occurs at the minor increase in concentration 
(Fig. 4.5.7).24 

Second, actually, the final stage of the shear thickening is the transition to the solid-
state that is called jamming and can be treated as the glass transition. This transition 
excludes the possibility of the flow. It is necessary to stress that this effect has the other 
nature in comparison of the flow-to-rubbery state transition discussed in Section 3.6.3.2, 
which is related to the relaxation on the macromolecular level. The liquid-to-solid transi-
tion is due to jamming obliged to macroscopic movement − friction of clusters in hetero-
geneous structure initiated by the deformation.

The creation of a quasi-solid structure happens very quickly, as well as its decay after 
cessation of loading, so that one can neglect the relaxation phenomena. The detailed the-
ory of jamming, taking into account the role of the interparticle friction, was developed 
in.25 

The solid-like structure that appeared at a high concentration of solid particles after 
DST is not elastic because the packing of solid particles allows for retaining some free vol-
ume that provides the possible movement of large structure clusters. This is reflected in 
strong and chaotic oscillations of stresses acting at the cluster boundaries and leading to 
their sliding in opposite directions.26 This is really an uncertain movement that is different 

Figure 4.5.6 The transition from shear-thinning to 
shear thickening along with the increase of shear rate.

Figure 4.5.7. Abrupt transition to shear thickening. 
[Adapted, by permission, from R.G. Egres, N.J. Wag-
ner, J. Rheol., 49, 719 (2005).]



4.5 Limits of elasticity 281

from the bifurcation leading to the forma-
tion of two coexisting structures like it 
takes place in shear banding. 

So, highly concentrated suspensions 
retain some movability, but this does not 
allow them to flow. In fact, this is an elas-
tic-plastic state, and the complete deforma-
tion at some given stress consists of two 
components − elastic and inelastic parts. 
The principal difference between elastic 
and elasto-plastic media are shown in Fig. 
4.5.8.27,28 

Fig. 4.5.8a illustrates the behavior of 
an elastic medium at different shear 
stresses: deformation γ appears instanta-
neously after the application of stress and 

does not change in time. After cessation of the stress, deformation comes back to zero, and 
there are no residual effects. Fig. 4.5.8b illustrates the behavior of an elasto-plastic 
medium. After the application of stress, deformation γ also appears instantaneously and 
does not increase, which corresponds to the absence of flow. However, a large portion of 
deformations retains after cessation of loading, and this is inelastic (not flow-induced!) 
deformation.

The ratio between elastic and inelastic deformations depends on the concentration of 
suspensions and the level of loading.

A possibility of inelastic (plastic) deformations of highly concentrated suspensions 
says about shear-induced structure rearrangements which accompany these deformations. 
It is possible to postulate that these deformations promote structure ordering in particles 
ensembles. As a consequence, material becomes more rigid that leads to an increase in the 
elastic modulus. This is seen in the repeated loading-unloading cycles (Fig. 4.5.9).

Figure 5.6.8. The behavior of elastic (a) and elasto-plastic (b) media - high concentration suspensions. [Adapted, 
by permission, from A.Ya. Malkin, A.V. Mityukov, S. V. Kotomin, A.A. Shabeko, V.G. Kulichikhin, J. Rheol., 64, 
469 (2020); Ya. Malkin, V.G. Kulichikhin, A.V.Mityukov, S.V. Kotomin, Polymers, 12, 1038 (2020).]

Figure 4.5.9 An increase in the elastic modulus for 60% 
suspensions in sequential loading-unloading cycles. The 
stress at loading was 500 Pa. 
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So, elasto-plastic domain of the rheological behavior exists inside the solid-state and 
can be important at some technological operations, e.g., powder molding.
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QUESTIONS FOR CHAPTER 4
QUESTION 4-1
Values of Young’s modulus, E, and the bulk modulus of compressibility, B, are measured. 
Find shear modulus for a Hookean solid.

Additional question
Show that for an incompressible material the last equation transfers to the relationship 
between extensional and shear modulus known for rubber-like materials.
QUESTION 4-2
A bar is placed between two rigid walls. Its temperature is 20oC. Then the bar is heated to 
200oC. What are the stresses that appear in the bar?

Additional question
Using standard values of parameters for steel, estimate the level of stresses. Ordinary val-
ues of the parameters of material are: α = 1.2*10-5 K-1, E = 2.1*105 MPa. It was assumed 
that ΔT = 180K. Then direct calculation gives  MPa.
QUESTION 4-3
Analyze the stress field in torsion of a cylindrical shaft caused by torque, T. This occurs in 
transmitting torque in a gearbox.
QUESTION 4-4
Compare the stress state in torsion of a solid cylindrical bar of radius Ro and a tube with 
the same outer radius and the inner radius equal Ri. What is the increase of the maximum 
shear stress produced by a decrease in cross-section of bar caused by changing solid cross-
section to a tube?
QUESTION 4-5
Calculate the principal stresses and maximum shear stress, if torque, T, and the stretching 
force, F, act simultaneously on the shaft of radius R.

Additional question
Are these results valid for shafts made out of rubber?
QUESTION 4-6
A shaft is twisted with a torque T, as in Question 4-3. However, the torque is high enough 
to produce stresses exceeding the yield stress, σY, of material. Describe the stress situation 
along the shaft radius.

Additional question
What will be the deformations after unloading the shaft?
QUESTION 4-7 
Prove that at small deformation, Hooke’s law is the limit of the rubber elasticity equation.
QUESTION 4-8
A rubber-like strip is stretched by the applied force F = 0.2N. The area of the cross-section 
of the strip is S = 1 mm2. The elastic modulus, E, was measured at small deformations and 
it equals 3*105 Pa. What is the elongation of the strip? What would be the estimated elon-
gation if one would use Hooke’s law for calculations?

σ 450–≈
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Additional question 1
Why does the coefficient 1/3 appear in this equation?

Additional question 2
Why was Eq. 4.4.17 used for calculations but not Eq. 4.4.16?
QUESTION 4-9
According to Hooke’s law, the use of compression instead of extension leads to the sym-
metrical change of normal stresses. Is it the same for a rubbery material with rheological 
properties characterized by Eq.4.4.17?

Additional question
Can the last result be treated as proof of anisotropy of material, i.e., the existence of differ-
ent values of elastic modulus in extension and compression, as is known for some other 
engineering materials, for example, concrete?
QUESTION 4-10
How are time effects taken into account in the formulation of the constitutive equation for 
large deformations, e.g., Eqs. 4.4.7 or 4.4.20?
QUESTION 4-11
A cylindrical rod of radius R was studied in uniaxial extension. It was found that it can 
work below the critical force F*. Then, this rod was used as a shaft working at torsion 
deformation mode. What is the limiting value of the torque, T*, that can be applied to the 
shaft?

Answers can be found in a special section entitled Solutions.



5

RHEOMETRY 
EXPERIMENTAL METHODS

5.1 INTRODUCTION − CLASSIFICATION OF EXPERIMENTAL 
      METHODS 
This part of the book is devoted to the selection and evaluation of modern experimental 
methods of rheology. The main attention is given to methods used in studies of the rheo-
logical properties of liquids.

 To measure rheological properties, the numerical values of constants that are 
included in rheological equations of the state of various materials have to be found. 
Depending on the choice of the equation, experiments are carried out in order to establish 
the influence of these constants on results. However, irrelevant of the choice of a model of 
rheological behavior, the measurement of two fundamental characteristic functions of 
material always plays a central role − viscosity as a function of a shear rate, and viscoelas-
tic properties, such as dynamic moduli, as a function of frequency. 

Experimental methods of measurement of rheological properties are defined by the 
general term rheometry, while, a more narrowly defined term, viscometry, is typically used 
in measurements of viscosity.

Two approaches are possible to determine the rheological properties of materials −
absolute and relative measurements. Both approaches are widely utilized in modern 
research and technological practice, with each playing its own role. 

Absolute methods of viscosity measurement are based on direct utilization of the 
main equation, Eq. 3.1.1, that defines the concept of viscosity. In this case, the shear stress 
and shear rate are measured and viscosity is calculated as a ratio of these quantities. Both 
values are termed as local values, i.e., they are referred to as some point in space occupied 
by liquid. Thus, in determining the shear stress and shear rate, the solutions of the problem 
of hydrodynamics are utilized to provide a relationship between measured macroparame-
ters and dynamic (stress) and kinematic (shear rate) characteristics of the stream at a point. 
In the experiment, force, pressure, torque, etc., may serve as values determining the 
dynamic macroparameters. A linear or angular velocity plays a role of kinematic macropa-
rameters. Thus, the main goal of absolute methods of viscosity measurement is to estab-
lish a relationship between pairs of values dependent on flow geometry defined by a 
design of a measuring device:

• force (torque) − stress
• flow velocity − strain rate.
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Relative methods of viscosity measurement are based on the comparison of proper-
ties of fluid under investigation with a model fluid of known properties. Sometimes it is 
sufficient to find some characteristics of one fluid in comparison with another that is con-
sidered to be standard even if its absolute viscosity values are unknown. Relative charac-
teristics of viscosity can be assumed, such as the time required for fluid to empty a vessel 
through a nozzle (similar to hourglass). In this experiment, the main focus is on keeping 
the same flow conditions and vessel dimensions. In this case, the term calibrated (strictly 
reproducible) dimensions are used. In contrast to the absolute method of viscosity mea-
surement, relative viscosity characteristics are determined, for example, flow time. 

Classification of methods of viscosity measurement, absolute as well as relative, is 
based on the geometry of flow. 

 Three main cases of flow are possible:
• flow of fluid between solid surfaces or through a hole in a solid body
• flow of fluid around a solid body
• free stream flow, relevant only to the extension of a fluid stream.
Fluid flow between two solid surfaces can be realized in the following geometries:
• fluid flow through a capillary with a cross-section of capillary being usually, but 

not necessary, circular
• rotational flow in which fluid is subjected to a circular motion in a gap between 

rotating cylinders, in a gap created by cone and plate or two conical surfaces, in a 
gap between two spherical surfaces, or other combinations of circular bodies

• shear flow of fluid between two parallel plates
• squeezing flow of fluid layer between two parallel plates approaching each other
• indentation of a solid body into the material.
Viscosity measurement in fluid flowing around solid bodies is usually carried out 

according to the following schemes:
• flow around a spherical or other surface moving in fluid with its resistance to 

flow depending on fluid viscosity. The space occupied by fluid may be restricted 
by solid walls or be infinite

• indentation of a solid body (indentor) into the fluid layer with shapes of the 
indentor being different − conical, spherical, cylindrical, etc.

Experimental methods also differ because of kinematics or dynamics of deformation, 
namely: force or velocity may be maintained constant or varied according to a given pro-
tocol; in modern instruments variations and/or combinations thereof are frequently used.

Properties of the final product may be defined and the technological process may be 
controlled either by removing samples from a process and studying them in the laboratory 
or by using in-line measurement techniques during processing. The design and construc-
tion of the utilized instruments may vary accordingly, but the principles of measurements 
remain similar. 

As mentioned in Chapter 3, the shear flow of much liquid media is accompanied by 
the storage of elastic (recoverable) deformations and the development of normal stresses. 
Measurement of the normal stresses at various shear rates is a separate problem of rheom-
etry that is important for the selection and evaluation of the adequacy of rheological mod-
els.
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Measurement of viscoelastic characteristics of materials represents observation 
involving transient regimes of deformation (see Chapter 2). When one of its characteris-
tics (kinematic or dynamic) is kept constant, the time dependence of other characteristics 
can be measured. 

Thus measurement of viscoelastic characteristics is usually carried out in the follow-
ing regimes:

• constant stress is imposed and variations of strain with time are measured, i.e., 
creep is studied at various stresses 

• a constant strain is imposed and variations of stress with time are measured, i.e., 
a relaxation of stress at various deformations is studied. 

A special place among the rheological measurements is occupied by periodic defor-
mations when the frequency of oscillations of strain (or stress) is given and changes in 
stress (or strain) response are measured. This most important method in rheology is called 
the dynamic or vibrational method and is widely utilized for the study of viscoelastic 
properties of materials as well as viscosity.

Similar to viscosity, the measurement of viscoelastic characteristics of materials can 
be performed according to different geometrical schemes. Thus, it is not necessary to 
include a separate classification of methods of measurement of viscoelastic characteristics 
according to their geometrical schemes of deformation. In addition, many modern instru-
ments permit a combination of viscometric measurements determining the relationship 
between the shear stress and the shear rate, as well as dynamic testing and/or creep and 
relaxation of stresses.

Rheological measurements can be combined with various physical methods that are 
especially important for the study of structural transformations caused by deformation. 
Here it is important to utilize optical methods in various ranges of frequency. These meth-
ods permit direct observation of characteristics of fluid flow by tracing particles in a 
stream to measure velocity fields. Of particular interest is a measurement of double refrac-
tion or birefringence during flow, since dynamic anisotropy of optical properties is 
directly related to the material stress state. The use of other physical methods such as, for 
example, X-ray analysis, neutron scattering, calorimetry, and others along with rheometry 
is also of special interest. 

5.2 CAPILLARY VISCOMETRY
5.2.1 BASIC THEORY
Capillary viscometry is the oldest and most widely used method of qualitative estimation 
and viscosity measurement. Its ubiquity is due to the obviousness of experiment, simplic-
ity of experimental units, relatively inexpensive, and its easy to standardize test procedure.

The essence of the method consists in measuring the resistance to the flow of liquid 
through a calibrated channel. The central task of capillary viscometry is establishing the 
correspondence between volumetric flux (output), Q, and pressure drop in capillary, Δp, 
which induces flow. The pressure at the entrance is usually much higher than at the exit. 
Therefore, it is possible to replace the pressure drop, Δp, with the pressure at the capillary 
entrance, P.
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The term “capillary” usually means any tube (channel) with arbitrary length and 
cross-section, though, as a general rule, cylindrical tubes (capillaries) with large length-to-
radius, L/R, (or diameter, D) ratio are used.

The basic theory of capillary viscometry uses the following assumptions:
• the Newton-Stokes law (proportionality of stresses and shear stresses) is valid at 

any point of a stream
• velocity is not very high and flow is laminar
• flow along the main part of a capillary is steady and rearranging the velocity pro-

file along the length does not take place; this assumption is not valid near the 
ends of a capillary: at the entrance and near the exit, the radial component of 
velocity appears due to velocity rearrangements

• circular and radial fluxes are absent; it might be not true if channels with non-
round cross-section are used; in the latter case, circular flux appears 

• flow is isothermal in the whole volume of liquid1 
• a capillary radius is constant along the full length and in all cases L/R >> 1; if so 

the flux can be considered as steady along the dominating part of the length
• velocity at wall equals zero (“hypothesis of stick”); this is the reason for velocity 

distribution along the radius of a channel; this assumption may not be valid in 
some cases, and, if so, the case requires special treatment. 

Quantitative analysis of flow through 
a channel is based on the formulation of 
equilibrium conditions for an axisymmet-
ric, cylindrical element shown in Fig. 
5.2.1a. The following forces act on this ele-
ment: pressure drop, dp, along the length, 
dl, shear stresses, σ, applied on the surface 
2πrdl. The balance of forces for a station-
ary flow (i.e., in absence of acceleration) is 
written as

[5.2.1] 

Then, the following expression for the distribution of shear stresses along the radius 
is obtained: 

[5.2.2] 

In the stationary flow, dp/dl does not depend on the longitudinal coordinate. There-
fore, 

and, finally, the expression for the radial distribution of shear stress takes a form: 

[5.2.3] 

dp πr2( ) 2πσdl=

σ r( ) 1
2
---dp

dl
------r=

dp
dl
------ Δp

L
------- P

L
---= =

σ r( ) Pr
2L
-------=

Figure 5.2.1. Basic scheme for viscosity calculation 
during liquid flow through capillary. Direction of flow is 
shown by arrow A. a: liquid element separated in 
stream; b: radial profile of shear stresses with σR being 
the shear stress at wall; c: radial velocity profile.
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This expression is conveniently represented by shear stress, σR, which acts on a cap-
illary wall, and it is calculated from Eq. 5.2.3: 

[5.2.4] 

Then the final formula for σ(r) takes the following form: 

[5.2.5] 

Thus, the radial distribution of shear stress during flow in a capillary of a circular 
cross-section is always linear. This distribution is shown in Fig. 5.2.1b. It is significant 
that this result is not connected with the Newton-Stokes hypothesis, but directly ensues 
from the common formulation of equilibrium condition, i.e., Eq. 5.2.5 is valid for any liq-
uid with arbitrary rheological properties, including Newtonian liquids. 

Shear stresses are applied in the direction opposite to the flow direction, i.e., to arrow 
A in Fig. 5.2.1. Therefore (if the longitudinal axis is oriented along with the arrow A), the 
stresses should be assigned a negative sign. 

It is now necessary to examine the kinematics of flow, i.e., to determine the distribu-
tion of velocities along a radius of the capillary, u(r), and to calculate shear rate:

For Newtonian liquid, the calculation of velocity distribution is based on the New-
ton-Stokes equation, which is written as: 

   

Hence, the radial distribution of shear rate is easily found: 

[5.2.6]

The distribution of deformation rates along the radius, as well as stresses, are linear. 
Hence, taking into account boundary conditions (u = 0 at r = R), the following 

expression for the distribution of velocity along the capillary radius is obtained: 

[5.2.7] 

Thus, the radial distribution of velocity during the flow of Newtonian liquid through 
a channel of a circular cross-section is expressed by a parabolic function (equation of the 
second-order).

Velocity is at maximum on the axis of the channel, i.e., at r = 0. This maximum 
velocity, Vmax, is expressed as 
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[5.2.8] 

Then the radial distribution of velocities can be expressed through Vmax in the fol-
lowing manner: 

[5.2.9] 

The obtained radial distribution of axial velocity is shown in Fig. 5.2.1c. The formu-
las, obtained for the radial distribution of velocity, permit the calculation of the volumetric 
flow rate. For a Newtonian fluid, it is expressed as follows: 

[5.2.10] 

Sometimes, instead of Q, it is convenient to use the average velocity, , which is 
expressed as 

i.e., the average velocity is the volumetric flow rate divided by the cross-sectional surface 
area of a channel.

Eq. 5.2.10 and following from it, the proportionality of the volumetric flow rate to 
the fourth power of the radius, is known as the Hagen-Poiseuille law.2 

Thus, for Newtonian liquid, the volumetric flow rate is directly proportional to a 
pressure applied (the proportionality factor depends on the geometric dimensions of a 
channel) and inversely proportional to viscosity.

The method of determining the viscosity of a Newtonian liquid is based directly on 
Eq. 5.2.10. If the volumetric flow rate at the assigned pressure is measured, then the vis-
cosity is calculated as

[5.2.11] 

Although Eq. 5.2.11 gives a completely obvious and single-valued method for enu-
merating the viscosity, it is an integral value, i.e., it does not directly use the basic determi-
nation of viscosity such as Eq. 3.1.1. This is not essential for Newtonian liquids, since the 
stresses and the shear rates at any point of flow are pre-determined, but it is important for 
liquids with arbitrary and a priori not specified rheological properties. 

The convenient expression for  is found directly from Eq. 5.2.10, which, after 
simple transformation, leads to the following formula: 

[5.2.12] 
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This formula for the shear rate at a wall of the channel is valid only for the Newto-
nian liquid since it is derived from the Hagen-Poiseuille law also valid for Newtonian liq-
uid. The integral definition of viscosity, i.e., Eq. 5.2.11, can be represented in a somewhat 
different form, namely: 

[5.2.13] 

where K = πR4/8L is the shape factor (or form-factor), determined from known dimen-
sions of the measuring device (capillary). 

The last formula is easily generalized for capillaries of any cross-section. The exact 
analytical solutions are known for channels with simple geometrical forms. The values of 
shape factor for channels of an arbitrary cross-section can be calculated using modern 
computer technology with any desirable accuracy. An approximate method for calculating 
the flow of fluids in channels of noncircular cross-section, based on dimensional analysis, 
is also proposed.3 

Another empirical method for determining the shape factor for the channel with an 
arbitrary cross-section is based on an experiment: Q and P are measured for liquid of 
known viscosity. Then, from Eq. 5.2.13, the geometric constant is calculated in an obvious 
manner. 

The theory of measurements of the apparent viscosity of non-Newtonian liquids is 
based on the same prerequisites, which were formulated for Newtonian liquids. Here one 
fundamental exception is made that at any point of the flow field, the Newton-Stokes law 
is not satisfied, i.e., the assumption about the proportionality of shear stress to the shear 
rate does not hold. 

If the experimentally observed dependence Q(P) is nonlinear, then liquid is non-
Newtonian, and determination of apparent viscosity must be based on a general definition 
of the apparent viscosity, according to Eq. 3.1.1.

Eqs. 5.2.3-5.2.5 for shear stresses remain valid for liquids with any rheological prop-
erties. But the expressions for shear rates obtained above are not applicable to non-Newto-
nian liquids, since the linear relationship between shear rate and shear stress is not 
fulfilled. 

The general solution of calculation of apparent viscosity of non-Newtonian liquid 
according to a method of capillary viscometry is based on enumeration of shear rate at one 
specific point, namely at a wall of the channel. The shear rate is a certain, a priori
unknown, the function of shear stress: 

Volumetric flow rate for liquid of any type is calculated as 

[5.2.14]

the integration of this expression leads to the following formula: 
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In the last expression, the variable of integration, r, is substituted with Eq. 5.2.5 for 
σ. After performing corresponding operations, the following formula is obtained: 

[5.2.15] 

where  is the average shear rate.
 The last expression is differentiated with respect to σR resulting in 

[5.2.16]

The function f(σR) is the shear rate at the wall of the channel, i.e. . Then, the compari-
son of Eqs. 5.2.15 and 5.2.16 makes it possible to obtain the following relationship: 

[5.2.17] 

or equivalent to the latter, but sometimes the following expression is more convenient in 
applications 

[5.2.18] 

Eqs. 5.2.17 and 5.2.18 are known as the Rabinovitsch-Weissenberg equation.4 These 
formulas solve the stated problem, since they allow one to calculate the shear rate at a wall 
of the channel, . 

Instead of the average shear rate, , sometimes a quasi-Newtonian 
shear rate, , i. e.,  is used. However, in the general case,  
is not equal to the shear rate at wall ;  =  only for Newtonian liquids. 

The present method of calculation of flow curves applies to measurements using a 
circular capillary. In the practice of capillary viscometry, the slit capillaries, having thick-
ness  and width B >> h, are also used. 

The shear stress at the wall of the slit capillary, σH, and the corresponding shear rate, 
,   are calculated as: 

[5.2.19] 

and 

[5.2.20]

where the average shear rate  during the flow in the slit capillary is calculated as 
, where B is the width of a slit channel.
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If results of measurement are processed correctly, the dependence  that charac-
terizes viscous properties of liquid being investigated must be independent of dimensions 
and geometric form of the capillary. 

Thus, the dependence  is the initial result obtained from experimental data. 
Further treatment of experimental data depends on the selection of a rheological model, 
i.e., function . If the model is unknown a priori, then it is necessary to use Eq. 5.2.18. 
If the model is known, then the task is reduced to the determination of a limited number of 
constants, entering the appropriate equation. This can be done by a computer program 
suitable for the determination of constants of function by minimization of error − devia-
tion of the calculated function from experimental data. 

Such computation method of determining a flow curve is sometimes examined 
within the framework of s general approach to the solution of incorrectly posed inverse 
problems. The special feature of such tasks is that an unknown function is under the inte-
gral, while the measured function is related to it by means of an integral equation. It is sig-
nificant that even a small (inevitable) measurement error can bring a large error in the 
calculation of the unknown function. In connection with capillary viscometry, the analysis 
of this task is based on somewhat modified Eq. 5.2.15, which is written in the following 
form: 

[5.2.21] 

Here the function Q(σR) is measured, and the function  is to be determined. For 
this purpose, the function  is represented by a certain analytical expression with a 
small number of constants to be determined. Minimizing the mean value of deviation of 
the calculated dependence from experimental data, the constants are determined and also 
the flow curve of material under study is known.5-7 
5.2.2 CORRECTIONS 
In reality, the measurements of viscosity require a number of corrections, which are 
intended to account for deviations of specific conditions of the experiment from idealized 
requirements, which were formulated at the beginning of Section 5.2.1. Even in measure-
ments of the viscosity of the Newtonian liquid, deviations from linearity of the depen-
dence of volumetric flow rate on imposed pressure can be observed. These deviations are 
caused by factors, which lead to the introduction of corrections. Corrections are of general 
importance in the practice of capillary viscometry. 
5.2.2.1 Kinetic correction
The liquid being investigated typically enters a capillary from a large reservoir. Then, the 
flow velocity of the stream substantially accelerates as a result of a change in cross-sec-
tion, i.e., the kinetic energy of flow increases. This change requires the additional expendi-
ture of energy, which looks like a growth of viscosity since viscosity is a measure of 
expenditure of energy required to create flow. 

If the total measured pressure drop is P, then the part of this pressure, Pk, is spent on 
an increase of the kinetic energy of the stream, and only the remaining part, Pv, is respon-
sible for overcoming the resistance of flow through a capillary, i.e., for the measured vis-
cosity. 
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Thus 

[5.2.22] 

where the value of Pk is responsible for the kinetic correction.
The value of Pk can be calculated as follows: 

[5.2.23] 

where, as earlier,  is the mean (output-based) velocity, ρ is density, and α is the coeffi-
cient reflecting the influence of the velocity distributions on the value of kinetic correc-
tion. For Newtonian liquid with the parabolic velocity profile in the capillary, it is 
considered that α = 1, although different theoretical estimates give the value of α in the 
range from 0.74 to 2.0. 

The correction taking into account a change in the kinetic energy leads to the follow-
ing expression for Newtonian viscosity 

[5.2.24] 

which is a modification of Eq. 5.2.11.
If we accept the standard value, α = 1, then the introduction of kinetic correction 

leads to the measurement error, which can 
reach even 10%. For non-Newtonian liq-
uids, it is difficult to determine the value of 
α a priori, but it is also of the order of 1. 

The calculation of kinetic correction 
is important during measurements of vis-
cosity of low-viscosity liquids, for exam-
ple, dilute polymer solutions, where a high 
accuracy of measurements is required.
5.2.2.2 Entrance correction
An important role in the theory of capillary 
viscometry is played by the so-called 
entrance corrections, which combine dif-
ferent dynamic phenomena at the entrance 
to a capillary as a result of rearrangement 
of the inlet velocity profiles. 

If we neglect the entrance corrections 
of different origins, then the results of 
measurements become dependent on the 
length of the capillary, due to the fact that 
the relative contribution of transient phe-
nomena becomes greater when a shorter 
capillary is utilized for measurements. 
This effect can be seen in Fig. 5.2.2, where 

Pv P Pk–=

Pk
ρV2

α
---------- ρQ2

απ2R4
----------------= =

V

η πPR4

8QL
------------- ρQ

8πLα
--------------–=

Figure 5.2.2. Dependence of quasi-Newtonian shear rate 
at a wall, 4Q/πR3, on the shear stress at a wall − role of 
L/D ratio. The values of L/D are shown on curves. 
Dashed line is a dependence of 4Q/πR3 on shear stress 
extrapolated to a capillary of infinite length. 60% solu-
tion of high molecular weight polyisobutylene in toluene. 
[Adapted, by permission, from E. Brenschade, J. Klein, 
Rheol. Acta, 9, 130 (1970)]
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the results of measurements of dependen-
cies of  on the shear 
stress at the wall of the capillary are shown. 
Even for sufficiently long capillaries with 
L/D = 61, the results of measurements are 
not invariant relative to the capillary length. 

The same figure shows dependence 
on shear stress determined by extrapolation 
for an infinitely long capillary (dashed 
curve). Only in this case is the desired 
result achieved − the obtained dependence 
precisely reflects the viscous properties of 
the liquid. 

For low-viscosity, inelastic liquids the 
so-called Couette correction plays the dom-
inant role in the transient phenomena. It 
reflects effects that do not yield direct eval-
uation, such as additional expenditures of 
energy for rearrangement of the velocity 
profile, the formation of the entry cone by 
the liquid in a reservoir prior to capillary 
entrance, maintenance of vortices/eddies 
(secondary flows) around the entry cone, 
etc. 

The influence of entrance effects becomes noticeable with the values of the Reynolds 
number, at least, the order of several tens, i.e., the corresponding effects become relatively 
significant for low-viscosity liquids. 

In practice, a general method is developed for the introduction of entrance correction 
as a measure of the effective length of a capillary.8 Let all additional losses of energy (with 
respect to losses caused by the flow of liquid through capillary) be determined by a certain 
fictitious additional pressure drop, Pk. Then, it is possible to imagine a certain fictitious 
capillary with the same radius, as utilized for measuring viscosity, but having a larger 
length. This additional length is selected in such a way that at this length the pressure 
drop, Pk, would occur exactly. This additional length of the capillary is expressed through 
a radius, R, as mkR, where mk is called the entrance correction factor. 

Fig. 5.2.3 shows the experimental example of the dependence of pressure at the 
entrance into capillary, on its relative length, L/R. According to the basic theory of capil-
lary viscometry (see Eq. 5.2.4), the dependence of pressure, P, on L/R at any constant 
stress, σR, must be linear and start from the origin of coordinates, i.e., for a capillary of 
zero length, pressure is zero. This does not happen and even at the zero-length of a capil-
lary, the pressure is non-zero, however, as a result of entrance correction. 

Data of such type, as shown in Fig. 5.2.3, can be represented in the form:

[5.2.25] 

γ·N 4Q( ) πR3( )⁄=

P Pk–
2σRL

R
--------------=

Figure 5.2.3. Dependence of pressure required to impose 
flow through capillary of different lengths at a constant 
value of quasi-Newtonian shear rate  = 7x104 s-1. 
Experimental data for 60% solution of high molecular 
weight polyisobutylene in toluene. [Adapted, by permis-
sion, from E. Brenschade, J. Klein, Rheol. Acta, 9, 130 
(1970)].

γ·N
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where Pk is the pressure loss that is responsible for the entrance correction (i.e., the value 
of the intercept of the straight line along the Y-axis in Fig. 5.2.3). 

It should be noted that the entry pressure losses, ΔPe, (defined as Pk in Eq. 5.2.25) 
measured by means of capillary viscometry for polymer melts are also important for vari-
ous processing operations, including flow in spinnerets during fiber spinning, flow in the 
dies during extrusion, flow in the molds during injection molding, etc. Therefore, for 
application purposes, it would be useful to find empirical correlations between these 
losses and the structural, rheological and processing characteristics of polymers. For this 
reason, attempts were made to develop master curves that would provide such a correla-
tion. For a given class of polymers, it has been found that the shear rate dependence of ΔPe
can be correlated by using the parameter , where β=Mw/Mn is the index of polydis-
persity.9 These master curves are shown in Figure 5.2.4 for two homopolymers, polysty-
renes (left) and HDPEs (right). In particular, the master curve for two polystyrenes from 
different manufacturers were tested at different temperatures with results shown in Figure 
5.2.4 (left). It shows that the approach works reasonably well, since all the experimentally 
measured entry pressure losses are scattered around a unique master curve. Moreover, Fig-
ure 5.2.4 (right) shows the similar master curve for six HDPEs of different molecular 
weights at a temperature of 190oC. The original data used here to plot this master curve for 
various HDPEs were taken from earlier study.10 Again, the proposed correlation is vali-
dated, since all the measured data collapse onto a single curve. This suggests that for any 
class of polymers there exists a unique curve independent of the molecular weight and the 
index of polydispersity. However, a further work is needed to obtain such correlations for 
other classes of polymers.

Figure 5.2.4. Master curves for two polystyrene melts at different temperatures (left) and for six HDPE melts at 
190oC (right). [Adapted, by permission, from A. I. Isayev, B. Chung, Polym. Eng. Sci., 25, 264 (1985)]. 

Introducing mk, the calculation of the shear stress at the wall of a capillary is per-
formed as follows: 

[5.2.26] 

with mk varying with the flow rate or pressure.

η0γ· β⁄

σR
PR

2 L mkR+( )
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For Newtonian liquids . The value can be much greater. In the practice of 
capillary viscometry a general, so-called differential, the method is used for correction of 
mk. 

The essence of this method is seen in Fig. 5.2.3: measurements on capillaries of dif-
ferent lengths are made and the results of measurements are extrapolated to the zero-
length of the capillary, to determine Pk and thus mk. 

The use of a differential method and elimination of entrance corrections is required 
in the capillary viscometry of polymeric materials.

The concept of end correction reflects 
the dependence of the experimental results 
on the relative length of a capillary. How-
ever, this approach is formal and does not 
carry clear physical meaning. It is reason-
able to think that this effect is dependent on 
the elasticity of polymeric fluids. Then it is 
possible to develop an alternative method 
for calculating the resistance to the flow of 
viscoelastic polymeric fluids in capillar-
ies.11 The method is based on the assump-
tion that pressure losses in short channels 
are determined by the average time of 
deformation in passing a fluid through a 
channel. Then it is possible to build a mas-
ter curve (see Fig. 5.2.5) using dimension-
less variables, which presents the 
dependence of the normalized shear stress 
σA on the Deborah Number for several 
polymers.

Here σA is the shear stress at the 
channel wall (see eq. 5.2.4) scaled by the 
elastic modulus Gc and the Deborah Num-
ber is the ratio of the characteristic relax-
ation time λc found from the frequency 
dependencies of the components of the 
dynamic modulus to the mean residence 
time T of material in a capillary: De = λc/T. 

As said above, the physical nature of 
the end correction mk is uncertain and, gen-
erally speaking, can be very different. 
However, the largest values of the end cor-
rections are observed for colloidal and 
polymeric liquids. Their main rheological 

peculiarity is elasticity and therefore it is reasonable to presume that just viscoelastic prop-
erties of these matters determine large end corrections in the flow through capillaries. This 
point of view is supported by experimental data presented in Fig. 5.2.6 for set of different 

mk 1≈

Figure 5.2.5. Master curve for four polymeric materials 
in dimensionless variables.

Figure 5.2.6. Correlation between the end correction and 
the Weissenberg Number for polyethylenes with differ-
ent MWD. Various symbols correspond to different sam-
ples. [Adapted, by permission, from A.Ya. Malkin, V.G. 
Kulichikhin, I.V. Gumennyi, Phys. Fluids, 33, 013105 
(2021).]
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polyethylenes. Their viscoelasticity was varied due to the difference in molecular-weight 
distributions. 

One can see that there is a direct correlation between the end correction and the 
Weissenberg Number that is determined by the product of the shear rate and the relaxation 
time. In this case the relaxation time corresponding to the terminal zone of the viscoelastic 
properties has been chosen. The similar results are obtained with using another character-
istic relaxation time, e.g., the relaxation time corresponding to the crossover point on the 
frequency dependencies of the components of the complex modulus.

The physical connection of this result with the data presented in Fig. 5.2.4 is rather 
evident; in both cases the viscoelasticity of polymeric liquid plays the most important role.
5.2.2.3 Pressure losses in a reservoir of viscometer
The capillary viscometer is a combination of two cylindrical channels − a reservoir of a 
large radius, whence the material being investigated enters the measuring part of a capil-
lary having a small radius. If the ratio of radii is very large, then losses of pressure during 
flow through the reservoir can be disregarded. However, this is not always correct, since if 
a constant pressure, P, is imposed in a reservoir, the pressure at the entrance of capillary, 
P0, that is required for calculation of viscosity, increases as the reservoir is being emptied. 
This results in the growth of the volumetric flow rate with time during the duration of the 
experiment. 

If a constant volumetric flow rate is imposed in an experiment, instead of constant 
pressure, then the pressure at the entrance into the measuring capillary decreases with 
time. This reduces pressure loss in the reservoir.

 The above-indicated phenomena caused by flow in a reservoir prior to the entrance 
into the measuring capillary, indicate that a change in the apparent viscosity with time 
occurs. The reasons for these time-dependent effects, as explained above, are different. 

It is possible to consider the pressure losses during the flow in the reservoir quantita-
tively if the rheological properties of the liquid being investigated are known. Then flow 
in the pair of cylinder-capillary channels is considered as flow in two sequential channels, 
and pressure losses as functions of shear rates are calculated for each of them. 
5.2.2.4 Temperature correction 
In the basic theory of viscometry, a flow is assumed to be isothermal, although it is well 
known that the viscous flow is accompanied by dissipation of energy leading to tempera-
ture increase. The rate of heat generation depends on shear rate, and as such, it is non-uni-
form along a radius. Furthermore, a part of the heat is transferred to the environment as a 
result of heat transfer. Therefore, temperature varies along both radius and length of the 
channel, which leads to appropriate changes in viscosity. 

The temperature rise, ΔT, during the adiabatic flow of a Newtonian liquid with flow 
time, , is expressed as 

[5.2.27] 

where c is the heat capacity of liquid and ρ is its density. A convenient expression for cal-
culating viscosity change caused by heat dissipation is obtained from the following 
form:13 

t

ΔT ηγ·2t
cρ

----------=
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[5.2.28] 

where λ is the heat transfer coefficient, and k is a coefficient of the temperature depen-
dence of viscosity, which is expressed as 

[5.2.29] 

In this case, η0 is the viscosity at temperature, T0, imposed during the experiment, 
which in the course of experiment rises to temperature, T, causing viscosity reduction to a 
value of η. 

The true value of viscosity at temperature, T0, can be found using Eq. 5.2.28. For this 
purpose, the measurements should be conducted at several values of factor QP/L, entering 
this formula. Then, data are extrapolated to zero value of QP/L that corresponds to the 
absence of dissipative contribution. The values of viscosity, η0, and the value of the coef-
ficient, k, can be found.
5.2.2.5 Pressure correction
Viscosity measurement during the flow of liquid through a capillary may be affected by 
pressure. The higher the shear rate at which it is desirable to measure the apparent viscos-
ity, the higher the imposed pressure. The pressure increase by itself may lead to viscosity 
increase, which sometimes leads to a very unique phenomenon. If a pressure necessary for 
viscosity measurement at high shear rate rises, it is expected that viscosity should decrease 
for shear-thinning liquids. Contrary to expectations, the measured viscosity increases. 
This occurs as a result of an increase in pressure, which prevails over viscosity decrease 
because shear rate also increases.

The dependence of viscosity on pressure is usually expressed by exponential func-
tion: 

[5.2.30] 

where η0 is viscosity value P = 0, b is the baric (piezo) coefficient of viscosity. 
The theoretical analysis, based on the solution of the dynamic equation of flow of 

Newtonian liquid, for which Eq. 5.2.30 is satisfied, gives the following expression for the 
volumetric flow rate: 

[5.2.31] 

where P is the pressure at the entrance into a capillary. 
At low pressures (where bP << 1), this formula degenerates into the standard Hagen-

Poiseuille equation. However, at large pressures, due to the influence of this factor, the 
effect cannot be disregarded. 

The influence of pressure on rheological properties is substantial for compressible 
(foamed) materials. However, no reliable methods of rheological studies of such materials 
have been developed.

η0
πR4P
8QL
------------- 1 kQP

16πλL
-----------------+ 

 =

η η0e
k T T0–( )

=

η η0ebP=

Q πR4

8Lη0b
---------------- 1 e bP––( )=



302 Rheometry Experimental Methods

5.2.2.6 Correction for a slip at a wall
The hypothesis that the velocity of the liq-
uid at a wall equals zero (no-slip hypothe-
sis) is assumed in the analysis of liquid 
flow. There are situations when this 
hypothesis is not satisfied and slip occurs 
near a capillary wall. Usually, it is not 
essential whether the slip of liquid along 
the solid wall actually takes place or the 
liquid ruptures near a wall or a very thin 
layer of liquid appears on a wall, along 
which the remaining liquid slides.

Slip may not necessarily occur contin-
uously, it may alternate with adhesion. This 
phenomenon, which is characteristic of the 
flow of melts and concentrated solutions at 
high shear stresses, is called the stick-slip 
phenomenon. In this case, the correspond-
ing mechanism of motion in the channel 
proves to be unstable (see Section 3.6). 

The slip effect at a wall in viscometric 
measurements can be found by observing the dependence of results of viscosity measure-
ments on capillary diameter. The procedure for calculation of slip velocity, Vs, and there-
fore viscosity in the shear flow based on these experimental results is called the Mooney 
method.14 

Let the velocity of the liquid at r = R be equal to Vs. Then the velocity profile is 
expressed as 

[5.2.32] 

where, as for any liquid subjected to flow,  is the flow curve.
It is possible, as usual in the theory of capillary viscometry, to introduce the value of 

an average shear rate . However, in the case of flow with slip at a wall, the 
value of  consists of two terms. The first term is the previously introduced value for 
flow without slip, , and the second term is a contribution of slip at a wall and equal to 
Vs/R. Thus: 

            [5.2.33] 

where the slip velocity at a wall, similar to the shear rate, can be a function of shear stress. 
The true shear rate at a wall, , (assuming that the thickness of the wall boundary 

layer, if this layer does exist, is very small) equals . It is computed from the Rabino-
vitsch-Weissenberg formula, but not from .
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Figure 5.2.7. Determination of slip velocity according 
to the Mooney method of extrapolation to R-1 = 0. The 
example is given for butadiene rubber at 120oC.
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The method of determining the shear rate, , and slip velocity directly follows from 
equation (5.2.33): the dependence of  on R-1 should be plotted and extrapolated to R-1 = 
0. An example of this plot is shown in Fig. 5.2.7. 

The procedure assumes that the greater the radius of a capillary, the lesser the contri-
bution of the slip effects such that it can be completely disregarded at R-1 = 0.

The phenomenon analogous to a slip at a wall can be observed during the flow of 
multicomponent materials. The diffusion of a low-viscosity component to a wall of a cap-
illary may affect shearing to be preferentially accomplished with this low-viscosity wall 
boundary layer and change velocity gradient. The measured apparent viscosity is less than 
the mean viscosity in the volume of a multi-component material. A similar phenomenon 
can be observed during the flow of polydisperse polymers. As a result of diffusion of low-
viscosity fractions to a channel surface, the enrichment of the wall boundary layer by low-
viscosity fractions occurs leading to a decrease of apparent viscosity. 
5.2.2.7 Adsorption on a channel surface
In the study of viscous properties of dilute polymer solutions, the effect of adsorption of 
macromolecules on the surface of a capillary was noted,15 which is a reverse phenomenon 
to slippage at a wall. This phenomenon is especially noticeable during the use of capillar-
ies of a very small radius. It leads to a decrease in surface area of effective flow, and, cor-
respondingly, to an increase in apparent viscosity. Adsorption is strongly enhanced in 
studies of polymer solutions capable of interactions with the capillary surface.

Adsorption phenomena must be considered with capillaries having a diameter of up 
to several tens of microns (e.g., filtration through porous media or capillary flow of bio-

logical substances). 
The effect of adsorption is usually expressed by a certain effec-

tive thickness of the adsorption layer on the surface of a capillary and 
is computed using volumetric flow rates, measured on capillaries of 
different radii. 
5.2.3 FLOW IN INCOMPLETELY FILLED CAPILLARY 
Observation of the boundary shift of a sample, which partially fills a 
capillary, is a unique version of the capillary method of viscosity mea-
surement. Such experiments are carried out at low external pressures, 
or, more generally, in the absence of external pressure. The driving 
force in such an experiment may be the gravitational forces or the sur-
face tension forces.

5.2.3.1 Motion under the action of gravitation forces 
Let us consider that liquid is filled into a capillary up to a certain height and it is moving in 
the absence of external pressure under its own gravitational force, as shown in Fig. 5.2.8. 
The height of the sample, l, the density of the liquid, ρ, and viscosity, η, of liquid do not 
depend on shear rate. Then, the distribution of velocity along the radius is described by a 
parabolic law:

[5.2.34] 
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Figure 5.2.8. Partially 
filled capillary. 
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where g is the gravitational acceleration, and product ρg determines the stresses arising 
under the action of the weight of the column of liquid. 

If we now measure the velocity of meniscus movement, U0, (on the axis of the chan-
nel at r = 0), then viscosity is calculated from the formula: 

[5.2.35] 

Velocity measurement of meniscus curving of an initially strictly cylindrical sample is a 
special case of the method under discussion. Viscosity is calculated from Eq. 5.2.35.

This procedure is especially convenient for viscosity measurements of high-viscosity 
materials at low shear rates and stresses. The range of shear rates in these measurements is 
10-4 to 10-2 s-1, and shear stresses are of an order of 102 Pa. 
5.2.3.2 Motion caused by surface tension forces
Let the liquid in a capillary, placed at angle  to the horizontal surface, rise under action 
of surface tension. Then, from the condition of force equilibrium, the following formula is 
obtained for calculating the length of capillary, l0, filled with liquid: 

[5.2.36] 

where σ is the coefficient of surface tension, β is the angle of contact formed by meniscus 
and surface of capillary, ρ is the liquid density. 

The measurement of l0 under equilibrium conditions makes it possible to determine 
σcosβ, which defines the velocity of liquid in a capillary. The shear stress at a capillary 
wall is calculated as 

[5.2.37] 

where l is the variable length of a capillary filled with liquid under study.
Hence, viscosity is calculated from the formula: 

[5.2.38] 

This procedure can be used for measurements of the viscosity of Newtonian liquids 
and yield stress of viscoplastic media. 
5.2.4 LIMITS OF CAPILLARY VISCOMETRY 
The capability of capillary viscometry is determined by fulfilling certain requirements that 
were formulated in Section 2.1.1. Therefore, the limitations of capillary viscometry are 
determined by the following effects:

• transition from laminar to turbulent flow conditions
• instability of flow as a result of fluid elasticity 
• mechanical and thermal degradation of the test specimen
• strong thermal effects at the high deformation rates.
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The upper boundary of shear rates in capillary viscometry is ~106 s-1. In usual instru-
ments, this limit is up to 104 s-1. The upper range of 104−106 s-1 is only possible with spe-
cial experimental techniques. 

The lower boundary of shear rates is determined, to a considerable extent, by the 
patience of the experimenter, because the flow is very slow, and by some other consider-
ations. First, the measurement of small movements of a fraction of a millimeter over a 
long time requires the use of a high-precision measurement technique, because of poten-
tial systematic instrument errors, caused by prolonged measurements. Second, the permis-
sible duration of the measurement is limited by both the chemical and structural stability 
of the investigated material under the imposed experimental conditions. Therefore, as a 
general rule, during measurements by capillary viscometry, it is very difficult to go below 
shear rates of ~10-2 s-1.

The upper limit of shear stress is determined by the appearance of instability, exces-
sive thermal effects, and mechanical and thermal degradation. The upper limit, in any 
case, does not exceed the value of 1 MPa. 

The lower limit of shear stress is determined by the influence of parasitic resistance, 
which appears practically in any design of capillary viscometers and contributes to the 
error that is difficult to account for during measurements. In capillary viscometers, it is 
practically impossible to go below the shear stress of ~102 Pa. 

The comparison of the above-indicated limitations on shear rates and shear stresses 
shows that capillary viscometers can measure viscosity in the range of 10-3 to 107 Pa*s. 
Different measurement techniques are used for different ranges of viscosity.
5.2.5 NON-VISCOMETRIC MEASUREMENTS USING CAPILLARY  
          VISCOMETERS 
In addition to viscosity, numerous attempts are made to use capillary instruments for eval-
uating other rheological properties of materials. These evaluations are based on general 
principles of rheology. In these cases, the estimates of various properties are obtained but 
not their absolute values. 

The most obvious is the use of a shape of flow curve as characteristics related to the 
structural features or elastic properties of polymeric materials. 

The elasticity of melts and solutions of polymers are evaluated according to two 
parameters − the capillary entrance correction and the extrudate swell at the exit from the 
capillary. 

The problems concerning the determination of the entrance correction were previ-
ously discussed.

As far as the extrudate swell is concerned, evaluation of elasticity is based on the 
experimental fact that the diameter of extrudate at the capillary exit is larger than the 
diameter of the capillary. This effect is related to the elasticity of flowing material. The 
extrudate swell (coefficient of swelling), α, defined as the ratio of diameters of extrudate 
and capillary, serves as a measure of the elastic properties of the material. 

The basic methodological difficulty in measuring the extrudate swell, α, is related to 
the fact that the measurements must be carried out under isothermal conditions on extru-
date leaving a capillary since α depends on temperature. The relationship between α and 
other rheological properties, or characteristics of the molecular structure of the polymer, is 
established on the basis of corresponding rheological theories and concepts. 
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5.2.6 CAPILLARY VISCOMETERS 
5.2.6.1 Classification of the basic types of instruments 
From the general theory of capillary viscometry, it follows that for determining the viscos-
ity, two parameters, pressure and volumetric flow rate, have to be measured. Typically, 
one of these parameters is assigned, and another is measured. 

Pressure in the capillary tube viscometers is imposed by one of the following meth-
ods:

• by a load of specific weight (in the load viscometers)
• by pressure of compressed gas (in the gas viscometers)
• by a pre-compressed spring
• by a power drive, in which force with aid of the feedback control is maintained or 

is regulated according to a required program
• by the weight of liquid being investigated.
Imposition and regulation of velocity of piston stroke (or volumetric flow rate) are 

achieved with aid of a mechanical or hydraulic drive by a method of varying velocity. 
The viscometers of the first group are usually simpler by construction and more fre-

quently used for standardized measurements.
The viscometers of the second group are usually constructed on the basis of standard 

testing machines (used for measurements of mechanical characteristics of solids) since 
modern machines of such type are equipped with a high-precision drive with an adjustable 
speed of motion over a wide range.

Modern instruments usually contain measuring devices (sensors) with an output of 
the measured parameters acquired by a data acquisition system connected to a computer 
for automatic processing of measurement results using computer programs, supplied by 
the instrument manufacturer.

Below, the basic standard solutions will be examined, which have found wide appli-
cations in contemporary research practice. 
5.2.6.2 Viscometers with the assigned load 
5.2.6.2.1 Load viscometers 
The most popular instrument of such type, utilized in many laboratories, is a Melt Indexer. 
This instrument measures the melt flow index, MFI, or the melt flow rate, MFR, of poly-
mers. The MFI is the value of the volumetric flow during 10 min, measured under strictly 
standardized conditions at a specified temperature and load on an instrument with the spe-
cific dimensions of capillary and reservoir. According to the definition, MFI is expressed 
in g/10 min.

The schematic diagram of such an instrument is shown in Fig. 5.2.9. This instrument 
basically consists of a calibrated capillary with the following standardized dimensions: 
length, L = 8.000 .002 mm; diameter, D = 2.098 .005 mm. 

According to ASTM D 1238, the length of the capillary must be 9.550 .007 mm. 
The weight of the load, which creates pressure, is also fixed by appropriate stan-

dards. The basic weight is 2,160  g. It is also permissible to use loads with weights of 
5,000  g, 10,000  g, and 21,600  g.

According to ASTM, different loads can be utilized, such that different combinations 
of temperature and load weight are possible, which determine measurement procedures.

0± 0±
0±

10±
10± 15± 20±
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Fig. 5.2.9 shows the simplest manual 
method of measurement of volumetric flow 
rate by measuring the speed of a lowering 
piston with the aid of a dial indicator and 
stopwatch. However, in the majority of 
modern instruments, the automated method 

of measurement of the piston speed with an aid of various electromagnetic sensors is used. 
The standardized instruments for the measurement of melt flow index are manufactured 
by a number of companies. 

The pressure can simply be generated with the aid of a load as shown in Fig. 5.2.9, or 
using a lever system (Fig. 5.2.10). Here, the pressure is varied not only by a change of the 
load weight but also by varying the length of an arm of the lever, through which the load is 
transferred to the test specimen. This way, it is possible to somewhat widen the range of 
the imposed loads. 
5.2.6.2.2 Gas viscometers
A tendency to increase a range of imposed loads, and, correspondingly, the shear stresses, 
led to an idea of using the pressure of compressed gas. This method may easily reach pres-
sures of an order of 20 MPa (200 bar), and using a multiplier it is possible to increase this 
pressure to 60 MPa (600 bar). With such loads, maximum shear stresses suitable for con-
ducting rheological measurements can be reached. 

Figure 5.2.10. Load capillary viscometer with lever 
loading system. 1 − plunger transferring pressure to 
sample placed under it; 2 − measuring calibrated capil-
lary; 3 − imposed load; 4 − lever; 5 − displacement 
indicator; 6 − intermediate rod transferring load; 7 −
liquid thermostat. 

Figure 5.2.9. Typical scheme of a load capillary viscom-
eter. Instrument for measurement of melt flow index. 1 
− measuring calibrated capillary; 2 − reservoir; 3 − load; 
4 − displacement indicator; 5 − polymer melt; 6 − heat-
ing element and heating chamber. 
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The system for generating 
and controlling the pressure in a 
typical gas viscometer is shown in 
Fig. 5.2.11. A standard pressur-
ized tank of nitrogen gas is the pri-
mary source of pressure 
generation. The initial pressure is 
reduced and it is maintained at the 
required level using an intermedi-
ate tank of a large volume so that 
the gas flow during sample extru-
sion from the viscometer would 
not cause a noticeable pressure 
drop. The error of pressure mea-
surement does not exceed 1%. The 
pressure ranges from 0.01 to 60 
MPa (from 0.1 to 600 bar).

Gas viscometers are instru-
ments typically used for research 
purposes. For the realization of 
their great possibilities, such vis-

cometers are equipped with a series of capillaries of different lengths and diameters, made 
from various materials and supplied with inserts in order to vary the entrance geometry. 
These instruments are also used as components of different rheo-optical devices, in which 
the direct measurements of viscosity are supplemented by observation of the optical mon-
itoring of flow.

Discharge velocity is usually measured by determining the weight of extrudate cut-
off at assigned time intervals. 

Gas viscometers measure in the range of shear rates from about 10-3 to 104 s-1 and 
shear stresses from about 102 to 106 Pa. Instruments are supplied with temperature con-
trollers permitting measurements in the range of temperatures from -40 to 250oC using liq-
uid for cooling/heating and electrical heating up to 400oC.

The method of measurement 
of volumetric flow rate is an 
essential drawback of an instru-
ment of this type. In this instru-
ment, the weight of extrudate (not 
its volume) is measured. The den-
sity of melt at a temperature of the 
experiment has to be measured in 
a separate experiment.

A possible scheme of non-
contact (remote) automatic mea-
surement of volumetric flow rate 
is realized in the instrument 

Figure 5.2.12. Scheme of gas capillary viscometer with automatic 
remote measurement of volumetric flow rate using a linear voltage 
differential transformer (LVDT). 1 − measuring calibrated capil-
lary; 2 − pressure transducer; 3 − sample; 4 − plunger; 5 − thermo-
stat; 6 − rod made of glass fiber filled plastics; 7 − LVDT rod; 8 −
LVDT coil; 9 − main body of instrument. [Adapted, by permission, 
from J. E. Bujake Jr., Rev. Sci. Instr., 36, 1368 (1965)]. 

Figure 5.2.11. Scheme for imposing pressure in gas capillary vis-
cometer. 1 − replaceable high pressure tank; 2 − pressure regulator; 
3 − distributing manifold; 4 − intermediate tank maintaining 
imposed pressure; 5, 6, 9 − pressure gauge display including gauges 
of various ranges of pressure; 7 − hydraulic multiplier; 8 − liquid 
pump. I − line of pressure supply to reservoir of viscometer. II −
line connected to vacuum system. 
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shown in Fig. 5.2.12. In essence, this is a typical gas viscometer. However, this instrument 
is equipped with a closed system of the automatic measurement of speed, and also with a 
pressure sensor, mounted directly before the entrance into the capillary. Experimental data 
are processed by computer.

A modern industrial version of a gas capillary tube viscometer (in accordance with 
the requirements of various standards, ISO 11443, ASTM D 3836 and DIN 54811) is man-
ufactured by Goettfert (Germany) under the name Rheograph 200. In this instrument, 
measurements are accomplished using two cylindrical reservoirs installed in parallel (a 
version of this instrument with one cylinder is also possible). The instrument applies pres-
sure in a broad range, from 0.1 to 210 bar. The heating chamber helps to obtain 400oC 
with deviations from the assigned temperature of not more than 0.1oC. The instrument can 
be used with the change of cylinders and capillaries. 

5.2.6.2.3 Viscometers with varying load 
Two types of capillary tube viscometers with varying loads are 
available. In the first case, the load is varied with the aid of vari-
ous design solutions. This is based on a feedback control in 
which load changes according to a predetermined program, con-
trolled by the pressure sensor. Another version is based on auto-
matic load change. 

Instruments with the spring load were very popular in the 
1960-1970's, but at present, these instruments should be consid-
ered antiquated since the varying load (if necessary) is simpler to 
achieve using an automatic system for feedback control. 

Instruments with automatic load control are traditional 
according to their design features. The control system in these 
instruments is their main attribute, although it is also solved by 
conventional methods of control.

Instruments are loaded by the weight of the column of liq-
uid whose height changes during the experiment. Instruments of 
this type are used for a relative measurement of viscosity. The 
viscosity measurements are carried out by using some measures 
(for example, by measuring the duration of discharge of a cali-
brated volume of liquid), or by comparison with the standard liq-
uids.

These instruments include viscometers of free discharge, 
which can be called “cup” and “glass” viscometers.
5.2.6.3 Cup viscometers
A characteristic example of a cup viscometer is shown in Fig. 
5.2.13.16 The liquid being investigated is filled into a container of 
a specific size, at the end of which the calibrated capillary is 

installed. Usually, the time of discharge of a specified (standard-
ized) volume of liquid through a capillary is measured. After 
removal of the plug from the instrument shown in Fig. 5.2.13, liq-
uid flows to a measuring flask having a volume of 60 cm3. The 
time required to fill this volume is used as a measure of viscosity. 

Figure 5.2.13. Measuring 
part of the Saybolt viscom-
eter. A − internal reservoir; 
B − die of large diameter; C 
− lower die; D − calibrated 
capillary; E − cork.
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The reliability and reproducibility of results are characterized by the variation of the time 
of discharge of a standard sample. If measured values of the standard sample are not 
within %, the viscometer is rejected as a measuring device.

There is a wide group of instruments and methods similar to the instrument in Fig. 
5.2.13. The Engler and the Redwood viscometers are utilized in European countries. These 
instruments were initially intended for measuring the viscosity of petroleum products and 
lubricating oils, but they are now used for other liquids. Results of measurements are in 
relative units. Conversion tables of these values to the absolute viscosity are available. 

These instruments seem primitive and obsolete, but they play an important role in the 
standardization of methods of measurements and they are successfully used in the indus-
try.
5.2.6.4 Glass viscometers 

Glass viscometers are included in a special group because 
they are made out of glass and utilized at comparatively 
small pressures, which cause flow. Pressure in such instru-
ments is created by the weight of a column of liquid being 
investigated, although the application of additional pressure 
is not excluded. Instruments of such type are widely used in 
laboratories and industrial practice for evaluating the viscos-
ity of dilute polymer solutions, which, in turn, is used as a 
measure of the molecular weight of the polymer. Although 
many original constructions of capillary tube viscometers are 
known, two basic versions of glass viscometers used in prac-
tice are shown in Fig. 5.2.14.

The Ostwald-Fenske viscometer is filled through arm b 
with investigated liquid, which is then sucked above marker 
m. The liquid is allowed to flow and the time of flow from 
marker m to marker n is measured. This time serves as a 
measure of viscosity. If dimensions of a capillary are known, 
then the absolute value of kinematic viscosity can be calcu-
lated by comparison of time for unknown sample with a time 
of discharge of a standard liquid of known viscosity. In real-
ity, this instrument measures relative values of kinematic 
viscosity.

The Ubbelohde viscometer is an improved version of the Ostwald-Fenske viscome-
ter. An important advantage of this instrument, which caused its wide acceptance, is the 
automatic maintenance of an identical level of liquid that is independent of their individ-
ual properties. This method provides high accuracy and excellent reproducibility of mea-
surements. To achieve reliable results of measurements, the viscometer is placed in the 
thermostatic bath, which ensures the maintenance of the assigned temperature with high 
accuracy. 

Glass viscometers can be used for measurement of viscosity from fractions of cSt to 
a few hundred St. Shear stress from 1 to about 100 Pa, and shear rates from 10-2 to 104 s-1

can be measured. 

1±

Figure 5.2.14. The Ostwald-Fen-
ske (left) and the Ubbelohde 
(right) capillary viscometers. In 
Ostwald-Fenske viscometer: A 
and B bulbs; a and b − arms; capil-
lary inserted in arm a; m and n −
marks. In Ubbelohde viscometer: 
A − bulb with marks m and n; B −
capillary; C − bulb; D − transition 
tube; E − reservoir bulb; a, b and c 
− arms.
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Pressure changes in the process of measurement. It is not always clear at what shear 
stress viscosity is measured. A certain smoothing of influence of pressure change in the 
process of measurement is achieved by using a monostat, that is, a device for maintaining 
constant pressure, in essence similar to that discussed with gas viscometers. The discharge 
of liquid through a capillary occurs under external pressure acting in addition to the 
weight of a column of liquid. Then, flow is accomplished in the opposite direction. The 
effect of the pressure of the column of liquid is excluded from the external pressure.

Glass viscometers are used for relative measurements. The calibration of the viscom-
eter is performed on liquids of known viscosity. This permits the measurement of absolute 
values of kinematic viscosity using a ratio of discharge times. The main characteristic of 
the viscometer is the discharge time, t0, for a standard liquid. The discharge time depends 
on geometric dimensions, especially the diameter of the capillary. It is desirable that the 
discharge time satisfies this condition: t0 > 100 s. If so, it is possible to disregard correc-
tions for kinetic energy. Instruments have acquired primary acceptance in the determina-
tion of intrinsic viscosity of highly dilute polymer solutions. Intrinsic viscosity is 
extrapolated from results of relative viscosity of polymer solutions at different concentra-
tions to zero concentration of polymer.

Glass viscometers are manufactured with different sizes of measuring reservoirs and 
capillaries. This permits variation of mean pressure in sequential measurements. It is also 
possible to monitor if there is a dependence of viscosity and shear stress. The automation 
of measurement procedure is the basic tendency with capillary tube viscometers. Higher 
accuracy and reproducibility of automated equipment reduce the measurement error of 
time to 0.001 s. 

In the most improved version of this instrument, all basic elements of instrument 
operation are automated, such as the measurement of discharge time using photoelectric 
transducers, the stepwise dilution of solution (for example, by 1.5, 2, 3, and 6 times), 
which is necessary for obtaining the series of points for extrapolation to zero concentra-
tion, and calculation of intrinsic viscosity according to one of the known procedures. In 
commercially manufactured glass viscometers, a measurement error is 1%, in the most 
precise viscometers, it can be lowered to 0.01%. 

For viscosity measurements at low shear rates (less than 1 s-1), the capillary is made 
in the form of a long spiral. In this case, the curvature of the channel can be disregarded 
because of the low flow rate. Several designs of glass viscometers were also proposed for 
chemically active, unstable, or highly volatile liquids.17 

The number of versions of glass viscometers includes the combination of viscometer 
with a system of fractionation of polymers (achieved by a method of gel permeation chro-
matography). This makes it possible to fully automate the process of determining the 
molecular-mass distribution of polymers and/or evaluation of their degree of branching.18 
5.2.7 VISCOMETERS WITH A CONTROLLED FLOW RATE 
Various methods are known for the imposition of the constant or controlled flow rate of 
liquid through a capillary varying according to a predetermined program. In this case, the 
measured parameter is the pressure at the entrance into the capillary or the force necessary 
for maintaining a given rate. 
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The following methods of regulating the rate of flow are available: mechanical 
power drive, which creates the motion of the plunger, hydraulic drive, and extrusion of 
material through a capillary, installed in a discharge head.
5.2.7.1 Instruments with a power drive
These instruments are most frequently used for the imposition of a constant volumetric 
flow rate. The adjustable drive creates a constant velocity of displacement of the plunger, 
extruding material from the reservoir of the viscometer through a capillary. The popularity 
of such instruments is caused by wide acceptance in the research practice of mechanical 
testing machines for solid materials in extension or compression. These machines, pro-
duced by a number of companies, are well-developed, reliable devices, supplied with 
heavy-duty drives. The entire construction of the machine is sufficiently rigid to ensure 
strict maintenance of the assigned conditions of deformation. Contemporary testing 
machines of such type are supplied with reliable force transducers capable of measuring 
pressure over a wide range and with good accuracy. 

All this makes such testing machines an excellent base for manufacturing viscome-
ters of constant flow rates. For this purpose, the upper clamp, rigidly attached to the 
adjustable drive, is connected to a plunger of the viscometer. The viscometer itself is 
installed on the lower fixed base plate of the testing machine.

Viscometers of such type, built on the base of the Instron testing machine, were man-
ufactured under the name of Rheometer 3210 or Rheometer 3211. These instruments mea-
sure the viscosity of plastics in the range of shear rates from 10-2 to 105 s-1 and at 
practically unlimitedly high shear stresses. The lower range of reliably measured shear 
stresses is usually close to 100 Pa.

Control features of Instron viscometers permit conducting measurements not only at 
a constant speed but also at a variable plunger speed according to a predetermined pro-
gram.

Another instrument, similar to Instron, is the Monsanto Processibility Tester, MPT, 
originally manufactured by Monsanto Instrument Company (now Flexsys) for measure-
ment of viscosity of elastomers under conditions of imposing flow rate. This instrument 
operates in the range of shear rates from 1 to several thousand s-1. The pressure transducer 
in the MPT is placed in a reservoir just before the capillary entrance. It is also supplied 
with a laser source to measure the extrudate swell. The instrument is supplied with capil-
laries of various lengths and diameters if the need arises to measure the slip effect during 
the flow of rubbers. A thermostat chamber is supplied to carry out measurements at differ-
ent temperatures. This instrument is widely used in the rubber industry for the evaluation 
of the processibility of rubber compounds. 

An instrument with all the basic capabilities of viscometers of this type is manufac-
tured by Rheometrics Scientific (now TA Instruments, USA) under the name Advanced 
Capillary Extrusion Rheometer (ACER 2000). In this instrument, the drive makes it possi-
ble to regulate the speed of the plunger at a ratio of 1:200,000, providing the possibility to 
vary shear rates from 0.02 to about 2x105 s-1. The replaceable force sensors make it possi-
ble to measure the maximal pressures up to 210 MPa, which, with the utilized sizes of 
operating units, ensures the possibility of reliable measurement of shear stresses on a wall 
of a capillary from 6x10-3 to 10 MPa. The temperature chamber is designed for studies in 
the temperature range from room to 400oC.
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The instrument is supplied with an extensive library of application programs for the 
processing of experimental data. At the customer's will, the instrument can be fitted with 
additional devices, for example, for measuring extrudate swell after exiting from a capil-
lary.

Instruments of this type have very high metrological characteristics: the stability of 
the assigned parameters, the high accuracy of measurement of force, the maintenance of 
baseline during a prolonged experiment, the compensation for parasitic loads, etc. All this 
makes these viscometers very valuable laboratory instruments for multi-purpose testing of 
different liquids. 
5.2.7.2 Instruments with hydraulic drive 
In such instruments, the constant velocity of the plunger is imposed and maintained using 
a hydraulic system, controlled by an adjustable hydraulic pump. This method was real-
ized, for example, in instruments manufactured in the USA by Standard Oil.19 

This instrument makes it possible to conduct viscosity measurements in the range 
from 2.5 to 104 Pa*s with shear stresses below 6.5x104 Pa. Since the output of the hydrau-
lic pump is constant, the shear rate can be varied, only by a change of capillaries. 

There is also a modification of this instrument, in which a continuous change of the 
output of the hydraulic pump is realized and, accordingly, shear rate can be changed 
during measurements. 
5.2.7.3 Extrusion rheometers 
An extruder is technological equipment, which creates a continuous flow of polymer melt. 
It suffices to install at the exit from the extruder a shaping die in a capillary form and to 
accurately measure pressure and temperature at the capillary inlet. Using these modifica-
tions a capillary tube viscometer of a constant flow rate is obtained. The viscosity of poly-
mer melts can be estimated using a set of capillaries of different lengths. 

This method of viscosity measurement is realized in some commercially produced 
instruments. The operating principle of these instruments differs by the construction of the 
pressure sensor. The uncertainty of sample prehistory, which may influence measurement 
results, is not considered in such instruments. With respect to their accuracy, extrusion vis-
cometers are inferior to specially designed capillary tube viscometers.
5.2.7.4 Technological capillary tube viscometers 
Capillary flow can be used as a method to control viscosity directly under production con-
ditions. A device that has a measuring capillary is installed in such a way that there is a 
possibility of sampling from this installation. This can be a reactor, pipeline, etc. In 
essence, the viscometer itself, utilized for the purpose of continuous technological control, 
differs little from any other capillary tube viscometers; it is only essential that it is possible 
to install this instrument on the production line. 

Some companies manufacture viscometers specially intended for use in the techno-
logical conditions of production. A characteristic example is a viscometer named the Pro-
cess Control Rheometer PCR-20, manufactured by Rheometrics Scientific (TA 
Instruments, USA). In this instrument, sampling with a strictly controlled volumetric flow 
rate is achieved from a production line using a dosing pump. A sample being investigated 
is pushed through a slit capillary, at the ends of which pressure sensors are installed. This 
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instrument is supplied with a set of capillaries of different sizes. Moreover, dosing pumps 
of different outputs can be used.

5.3 ROTATIONAL RHEOMETRY
5.3.1 TASKS AND CAPABILITIES OF THE METHOD
5.3.1.1 Viscometric and non-viscometric measurements
The use of rotational instruments makes it possible to measure various parameters charac-
terizing the rheological properties of materials. Therefore, in the discussion of rotational 
viscometers, it is more appropriate to use a general term of rheometry. 

Special features of application of rotational instruments for investigation of rheolog-
ical properties of liquids are as follows. The use of rotational instruments makes it possi-
ble, firstly, to create within the sample the homogeneous regime of deformation with 
strictly controlled kinematic and dynamic characteristics, and, secondly, to maintain the 
assigned regime of flow for an unlimited period of time. 

During material testing by rotational rheometry, different regimes of deformation are 
possible. The most important among them is the imposition of a constant rotational speed 

, or a constant torque, T = const. However, in many modern instruments, the 
method of scanning (or sweep) − the imposition of the controlled change of rotational 
speed or torque with time is realized. 

Furthermore, in many rotational rheometers, the capabilities of imposing harmonic 
oscillations for measuring the viscoelastic properties of materials have been created.

In all cases of application of rotational rheometry, a strictly one-dimensional circum-
ferential flow is assumed with secondary flows being absent.

Almost all modern rotational rheometers are supplied with the software that allows 
for carrying measurements in different preset automatic modes. For example, it can be 
shear rate or temperature scanning with certain duration of any step. This is very conve-
nient and attractive for serial experiments but can lead to erroneous conclusions in study-
ing new objects (a typical mistake in interpretation of the results of scanning 
measurements was presented and discussed in Fig. 3.2.6). So it is necessary to look at such 
data with caution and carefully differentiate transient and steady viscometric data. 
5.3.1.2 The method of a constant frequency of rotation
The typical experimental results, obtained from tests by this method, are shown in Fig. 
5.3.1 in the form of the time-dependent torque, T, which is related to the shear stress. In all 
cases, deformation at first leads to the appearance of a more or less extensive transient 
response. At the lowest speed (curve 1), the monotonic dependence of T(t) is observed 
until a steady-state flow process is reached. With an increase of speed (curve 2) during the 
transient stage, the shear stress maximum (stress overshoot) appears. With a further 
increase of speed (curve 3), the stress overshoot becomes more pronounced, and the 
region of steady flow, although it is observed, is followed by a drop in torque, which indi-
cates that an unstable regime of deformation is approached. Finally, at very high speeds 
(curve 4) steady flow is generally impossible. As a general rule, a drop in torque is an indi-
cation of the appearance of ruptures in a sample or its detachment from the solid rotating 
or stationary surface (cohesive or adhesive rupture). 

Ω const=
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Sometimes, a periodic stick-slip 
behavior occurs which is evident because 
of periodic oscillations of torque. A signifi-
cant influence on this phenomenon renders 
the rigidity (deformability) of the torsional 
shaft-force transducer assembly since its 
deformation leads to deviation from the 
assigned regime of , which con-
tributes to the onset of oscillations. 

During the imposition of a regime of 
deformation with  and use of a 
rigid force transducer, a change in mea-
sured torque with time is equivalent to 
shear stress, moreover, shear strains are 
easily calculated as

 [5.3.1]

such that at  or  = const, the dependence of σ(t) is equivalent to the depen-
dence of .

From the dependence of , it is possible to determine the number of characteris-
tic (non-viscometric) properties of the material being investigated.

The modulus of elasticity, G, in shear can be evaluated by different methods. The 
dependence of  at  can be treated as a reflection of elastic deformations, 
because, at the initial stages of deformation, flow is absent. Then

 [5.3.2]

 The initial section of the deformation curve is always measured with a significant 
error because of the inertia effects and deformation of a transducer itself. In some rota-
tional instruments a possibility of direct measurements of the accumulated elastic defor-
mations, γr, is provided. Then, the modulus of elasticity can be evaluated as 

[5.3.3] 

where σ is shear stress.
Rubbery deformation, γr, can be measured in different stages of shear, in particular in 

a transient stage. Then it is possible to trace the evolution of elastic deformations, in par-
ticular, to find the maximum value of γr, which is attained in the transient stage of shear. 
This value of γr,max may be related to the maximum deformability of individual macromol-
ecules or their segments before the structural network is destroyed by deformation.

The limit of shear strength, σmax, corresponding to its deformation, γm, at a given 
shear rate (i.e., the point of maximum on a shear stress-deformation curve) is frequently 
treated as a condition corresponding to the destruction of the structural physical network, 
which impedes development of flow. Both values, σmax and γm, depend on the deformation 
rate.

Ω const=

Ω const=

γ γ· t=

Ω const= γ·

σ γ( )
σ γ( )

σ γ( ) t 0→

G σ γ⁄=

G σ γr⁄=

Figure 5.3.1. Typical relationships of torque, T, on time, 
t, at various rotational speeds. Rotational speed increases 
from curve 1 to 4.
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5.3.1.3 The method of a constant torque

The typical character of an observed evolution 
with time of the rotation speed of measuring 
surface at different imposed constant values of 
torque is shown in Fig. 5.3.2. In all cases, in a 
region of small times, it is difficult to perform 
reliable measurements because of the high initial velocity. Stress cannot be imposed 
instantly and, therefore, the initial section of the curve remains undetermined. This uncer-
tainty is further aggravated by the presence of inertia effects.

At low torque values (and, respectively, shear stresses) slow monotonic transition to 
the steady viscous flow is observed (curve 1). At higher stresses, speed passes through a 
minimum, and only then the regime of steady-state flow is reached (curve 2). At very high 
shear stresses, after achieving the minimum of speed, a steady-state flow is generally 
impossible due to a gradual adhesive detachment of the sample from the measuring sur-
face or a cohesive rupture of the sample.

In the practice of rotational rheometry, the application of a method of T = const is 
limited. However, this method can be useful, at least, in the following cases:

• measurements of creep, which is one of the basic methods of determining the vis-
coelastic properties of the material

• scanning regimes of tests, when torque changes according to a predetermined 
program

• evaluation of lifetime of adhesive or cohesive joints
• evaluation of elastic deformations at different stresses. 

Figure 5.3.3. Schematic representation of 
viscometer with working cell consisting of 
two coaxial cylinders.

Figure 5.3.2. Typical dependencies of angular velocity 
on time at different levels of imposed constant torque: 1 
− low torque (monotonic change of velocity before 
achieving steady state); 2 − medium torque (steady state 
flow is achieved after passing through a minimum of 
velocity); 3 − high torque (steady state flow is absent).
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5.3.2 BASIC THEORY OF ROTATIONAL INSTRUMENTS
5.3.2.1 Instruments with coaxial cylinders20

A schematic diagram of a rotational viscometer of the cylinder-cylinder type is shown in 
Fig. 5.3.3. Here Ro and Ri are the outer and inner radii of cylinders, respectively. Both cyl-
inders have a common axis (i.e., they are coaxial). The ratio of radii Ro/Ri will subse-
quently be designated as ε. The height of the liquid in the clearance between the cylinders 
is h, and Ω is the rotational speed of the inner cylinder. It is assumed that the outer cylin-
der is fixed, although only the speed of rotation of cylinders relative to each other is 
important.

The liquid being investigated is also filled at the bottom of the cylinder end. Torque, 
T, for a layer of liquid, which is located at a distance r from the axis of cylinders is 
expressed as 

              [5.3.4]

where σ is shear stress, which acts over the area 2πrh at a distance r from the axis of the 
cylinders. At equilibrium conditions, torque does not depend on the radius. Therefore, the 
following expressions, which relate the shear stresses σo and σi acting on surfaces of the 
outer and inner cylinders, respectively, are valid: 

[5.3.5] 

Hence, it follows that the ratio between the stresses acting on the surfaces of cylin-
ders is expressed as 

[5.3.6] 

It follows from the given formulas that the distribution of shear stresses along a 
radius is expressed as: 

[5.3.7] 

or 

[5.3.8] 

Thus, the degree of heterogeneity of stresses in the liquid is determined by a value of 
ε, i.e., by the ratio of the radii of the cylinders. If ε is close to unity (which is typical of 
many rotational rheometers), then a practically uniform field of stresses in a clearance 
between the coaxial cylinders occurs. Specifically, the possibility of conducting an experi-
ment in a practically uniform stress field is the major advantage of rotational viscometers. 

Liquid resistance is determined by shear rate 

[5.3.9] 
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where ω is the angular velocity, which depends on a radial coordinate. 
For Newtonian liquid, a basic relation, Eq. 3.1.1, is fulfilled. Then, in a general case, 

obvious calculations give the following expression for velocity distribution, u(r), in the 
gap between cylinders when the outer cylinder revolves with a frequency, Ωo, and the 
inner cylinder with a frequency, Ωi: 

[5.3.10] 

This formula contains, as special cases, two situations when the inner cylinder 
rotates and the outer cylinder is fixed (  and Ωo = 0), and vice versa, when the inner 
cylinder is fixed and the outer cylinder rotates (Ωi = 0 and ). 

According to the diagram in Fig. 5.3.3: 

[5.3.11] 

In this case, the final expression for viscosity takes the form: 

[5.3.12] 

where h is the height of the liquid sample between cylinders.
This formula is called the Margules equation, which can be rewritten in the form:21 

[5.3.13] 

It means that the viscosity can be expressed through the ratio of T/Ω, and the geome-
try factor or form-factor, K: 

[5.3.14] 

Eq. 5.3.13, according to its structure and physical meaning, is identical to Eq. 5.2.13 
in the theory of capillary viscometry. 

Let us write down an expression for the distribution of shear rate along a radius: 

[5.3.15] 

i.e., the distribution of shear rates with an accuracy of a constant factor is equivalent to the 
distribution of shear stresses (see Eq. 5.3.8).

It is significant that for liquid of a constant viscosity, the torque is proportional to the 
frequency of rotation. If the ratio of T/Ω is constant, then this is direct proof that the 
medium being investigated exhibits properties of a Newtonian liquid. 
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The method of rotation of a cylinder in the infinite medium is frequently used for 
measurement of Newtonian liquids, i.e., conditions:  and Ωo = 0 are satisfied. The 
viscosity can be expressed as

[5.3.16] 

i.e., again the viscosity is proportional to the ratio of T/Ω with the multiplication factor 
being the form-factor, K. 

For calculating the apparent viscosity of non-Newtonian liquids from a measured 
torque and frequency of rotation in the rotational instrument, the shear rate has to be esti-
mated and correlated with the value of shear stress.

If the clearance between the cylinders, Δ, is small in comparison with the radii of 
cylinders, i.e.

[5.3.17] 

the problem is solved simply.
Then, it is possible to determine the average shear stress, , as 

[5.3.18] 

The value of the average shear rate is found from Eq. 5.3.15. It is equal to: 

[5.3.19] 

In this case, it is practically not important what value should be used for R in the last 
formula, the value of Ro or Ri. 

However, the situation is more complicated if it is not possible to consider that the 
clearance is small, or if the dependence of  is very strong, such that even insignifi-
cant changes in the shear rate in the narrow clearance would bring substantial changes in 
the shear stress.

Then, in a general case, it is possible to write that 

[5.3.20] 

and since T/2πh = const, then dr/r = dσ/2σ and dω = f(σ)dσ/2σ.
If the inner cylinder rotates, and the outer cylinder is fixed (i.e. ω = 0 at r = Ro and 

 at r = Ri), then: 

[5.3.21] 

When the outer cylinder rotates and the inner cylinder is fixed, Eq. 5.3.21 is also 
valid but the sign should be changed.
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Two cases are possible: the cylinder rotates in an infinite medium (i.e., the clearance 
between cylinders is infinitely large) or inequality (5.3.17) is not fulfilled.

If , then Eq. 5.3.21 takes the form: 

[5.3.22] 

The last equation can be differentiated with respect to σi to get

[5.3.23] 

Hence, the dependence of  can be determined as follows. The dependence of Ω
on σi is obtained and then the derivative of this dependence gives the function of 

.
The most general (although inconvenient from the experimental point of view) situa-

tion arises, when the clearance between cylinders is arbitrary. This case is methodically 
undesirable. In the practice of rotational rheometry, such a situation is avoided. If this can-
not be avoided, then the unknown function of f(σ) can be found by analytical methods of 
regularization, using known algorithms for finding unknown functions on the array of 
experimental data, if the relation between them is established by an integral equation. 

The above formulated classical theory of flow in the coaxial cylinders is valid for the 
homogeneous flow and can be applied to single-phase fluids. On page 202, the effect of 
shear banding, i.e., separation of the flux into layers with different properties was dis-
cussed. This effect is observed in rotational flows of multi-component fluids, in particular, 
the flow of emulsions and polydisperse polymer melts. In these cases, the jump on the 
shear rate appears and the standard theory of the flow between coaxial cylinders becomes 
unworkable because two fluids with different rheology co-exist in the gap between cylin-
ders. The same is also true for the other rotational units described below.

The phenomenon of shear banding requires a special technique for measuring veloc-
ity profile in the flow between cylinders. 
5.3.2.2 Instruments with conical surfaces

Instruments with conical surfaces are 
important in rheometry. They are especially 
valuable for the analysis of high viscosity 
fluids.

In this case, two versions of a device 
are possible, as shown in Fig. 5.3.4. A sam-
ple is placed into a clearance between two 
coaxial cones with a joint apex or into a 
clearance between the conical surface and 

the plate with the axis of the cone being normal to the flat surface. It is important that the 
angle between cones or the cone and the plate is small. 

The theory of viscometers with conical surfaces is based on the analysis of the flow 
of liquid in spherical coordinates such that the angle, α, is counted from the vertical axis. 
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Figure 5.3.4. Schematic representations of rotational 
viscometers containing conical surfaces: a − cone-cone 
type viscometer; b − cone-plate type viscometer.
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Torque with respect to the vertical axis generates shear stresses, σ. From the equilib-
rium condition for the volume element of a sample placed into a clearance, it follows that 
the dependence of σ(α) can be expressed as follows: 

[5.3.24] 

where C is the constant of integration, determined through torque, T, acting on the cone 
surface.

Thus, if the height of the outer cone in Fig. 5.3.4a equals T, the stress on its surface is 
σα, then the torque is expressed as: 

[5.3.25] 

Hence, the shear stresses, σα, can be calculated from the measured torque values as: 

[5.3.26] 

The angular distribution of shear stresses in a sample, located in a clearance between 
cones, is described by the following formula: 

[5.3.27] 

The last formula estimates the degree of homogeneity of the stress state in a sample. 
It is expressed by the ratio sin2α/sin2β. It also permits the calculation of shear stresses at 
any point of a sample being investigated at any measured (or assigned) torque. 

For instruments of the cone-plate type, which are most frequently used in practice, 
the angle δ between the conical surface and the plate is typically made very small (δ < 5o). 
Then, the degree of homogeneity of the stress state in a sample, that equals cos2δ, is not 
less than 99%. Therefore, it is possible to consider that σ = const in the entire volume of a 
sample.

Then the formula for calculating the shear stress in the cone-plate viscometer takes 
the following form: 

[5.3.28] 

In the spherical coordinates a value of shear rate, which is a function of shear stress, 
is defined as 

[5.3.29] 

where ω is the angular velocity, which depends on the angle β.
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The instruments with small angles δ are of basic practical interest. The shear rate 
field, as well as the shear stress field, is practically uniform, and the shear rate with suffi-
ciently high accuracy is calculated from the simplest formula: 

[5.3.30] 

Thus, the apparent viscosity is calculated as 

[5.3.31] 

where, as in the foregoing cases (see Eq. 5.3.13), viscosity is expressed as the ratio of T/Ω
with multiplication factor being an instrument constant or form-factor K. 
5.3.2.3 Bi-conical viscometers 

The combination of cylindrical and conical measur-
ing surfaces serves as a convenient method for the 
elimination of the edge effect. The diagram of the 
rotational viscometer, called bi-conical, is shown in 
Fig. 5.3.5.

The use of a bi-conical viscometer makes it 
possible to maximally fill a liquid into a clearance 
between the rotating and the fixed surfaces of a 
working cell. This prevents viscoelastic material 
from escaping from a clearance during the action of 
normal stresses (the Weissenberg effect) and, there-
fore, makes it easier to conduct tests.

It is usually considered that the influence of 
coupling cylindrical and conical surfaces on the 
results of measurements is insignificant and the dis-
tribution of stresses and shear rates can be calculated 
separately for the cylindrical and conical parts of the 
working cell.

The optimum condition of operation of the viscometer of such type is realized when 
the equality of stresses and shear rates on both parts of the instrument is maintained. Then, 
disregarding possible local effects at the position of coupling of surfaces of different 
geometries, it is possible to formulate the following requirement for the geometrical 
dimensions of bi-conical viscometers:

[5.3.32] 

The relationship between shear stress and torque for the bi-conical viscometer is 
expressed by the following formula (notations according to Fig. 5.3.5): 

[5.3.33] 
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Figure 5.3.5. Schematic representation of 
rotational viscometer containing cylindrical 
and conical surfaces − bi-conical viscometer.
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5.3.2.4 Disk viscometers 
A disk viscometer can be presented as a viscometer in which both conical surfaces degen-
erate into the parallel plates (disk-disk) separated by a clearance of a height, h. In this case, 
the liquid being investigated is placed into a clearance between the disks, and one of the 
disks revolves relative to another around the common axis. This instrument is called the 
disk viscometer.

Torque arises as a result of the action of shear stresses, distributed over the surface of 
the disk. This torque is expressed as 

[5.3.34] 

In this case, the shear rate varies along the radius (in contrast to flow between the 
cone and the plate, where the shear rate is constant). It is expressed as 

[5.3.35] 

where Ω is the angular velocity of disk rotation and h is the distance between disks. The 
variation of the shear rate throughout a volume of a sample being investigated is the main 
disadvantage of this measuring device. However, if the liquid being investigated possesses 
Newtonian properties, then torque is proportional to the frequency of rotation, and viscos-
ity is calculated from a formula that is analogous in structure to that obtained for other 
rotational instruments, namely:

[5.3.36] 

where the multiplication factor is the form-factor for this measuring device. 
The apparent viscosity of non-Newtonian fluids at the assigned frequency of rotation 

can be expressed through the maximum shear rate, computed at the edge of disk 
. In this case, the calculation of viscosity at this shear rate is reduced to a pro-

cedure, analogous to the Rabinowitch-Weissenberg equation in capillary viscometry, 
namely:22 

[5.3.37] 

where  is the average viscosity computed as

 Thus, by measuring the dependence of  or T(Ω), it is possible to find the flow 
curve of non-Newtonian liquid, if, of course, one neglects the edge effects.

The following diagram is an interesting special case of disk viscometers: a thin disk 
is placed into the infinite medium filled with a viscous fluid. Theoretical calculations23
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give the following formula for torque, T, of a disk radius, R, as a function of the frequency 
of rotation, Ω: 

[5.3.38] 

where ρ is the density of the liquid, in which the disk rotates. 
According to Eq. 5.3.38, the rotation of a thin disk in viscous fluid is a very special 

case: the viscosity is defined, not by the ratio of T/Ω, as in all other cases (see Eq. 5.3.13), 
but by the quantity T2/Ω3. 

The annular viscometer is a version of the disk viscometer in which the disk is sub-
stituted by a ring with an outer radius of Ro and an inner radius of Ri. The apparent viscos-
ity during the use of this geometry is also expressed by a formula of the type of Eq. 5.3.13, 
namely:

[5.3.39] 

The advantage of annular viscometers is the fact that the shear rate and stress field in 
the liquid being investigated can be considered as sufficiently uniform. In this case, the 
shear stress is calculated as

[5.3.40] 

and the shear rate as 

[5.3.41] 

where  is the average value of radius and h is the distance between the 
ring and the plane.

Using Eqs. 5.3.40 and 5.3.41 it is not difficult to find the apparent viscosity and its 
dependence on the shear rate. 
5.3.2.5 Viscometers with spherical surfaces
Two types of viscometers, in which the deformation of liquid being investigated is accom-
plished by rotation of spherical surfaces, are possible: 

• flow between two spheres (or hemispheres) with the same center
• rotation of one sphere in an infinite volume of liquid. 
In this case, one of the spheres revolves at a constant angular frequency, Ω, and 

torque, T, is measured. According to theory, the viscosity of Newtonian liquid during flow 
is calculated as: 

[5.3.42] 

where Ro and Ri are radii of outer and inner spheres, respectively. 
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Calculation of apparent viscosity, measured in a spherical viscometer, is also possi-
ble for non-Newtonian liquids. But, in order to do so, it is necessary to introduce an 
assumption regarding the form of the expected flow curve. 

The rotating sphere can be placed in a very large (theoretically infinite) volume of 
fluid. In this case, the wall effect of the vessel on the results of viscosity measurements 
can be disregarded, and the instrument for viscosity measurements is called a mono-spher-
ical viscometer. Then, in the region of low speed of rotation (more precise, the region of 
Re <<1), the following formula can be obtained for the calculation of viscosity: 

[5.3.43] 

where R is the radius of a rotating sphere. 
If the rotational speed is not small, then secondary flows appear. In this case, the 

torque is expressed as follows:24 

[5.3.44] 

where ρ is the density of the liquid being investigated.
The second term reflects a contribution of secondary flows to the value of the mea-

sured torque, which characterizes the viscous properties of the liquid. This correction 
becomes noticeable at sufficiently high values of the Reynolds number.

Eq. 5.3.44 permits finding values of viscosity by measuring torque at different rota-
tional speeds with a subsequent extrapolation in the linear region, in which torque is pro-
portional to the rotational speed. 

Mono-spherical viscometers can be of interest as instruments for the control of pro-
duction processes since it does not represent fundamental difficulties in placing the 
revolving sphere into an industrial reactor. 
5.3.2.6 End (bottom) corrections in instruments with coaxial cylinders
As in the case of capillary viscometry, during the processing of experimental data obtained 
on the rotational instruments, it is necessary to introduce corrections of different kinds. 

Although the geometric form of measuring surfaces in the rotational instruments 
influences the specific form of corrections, their nature remains one and the same for 
instruments of different geometry of deformation. 

Flow near the bottom and in the bottom region of the coaxial cylinder, instrument 
differs significantly from the theoretical approach utilized for calculating viscosity. Con-
sequently, it is necessary to consider this effect in some manner. Usually, this is done by 
one of the following experimental methods.

The method of two cylinders of different heights. The influence of the bottom effect is 
excluded by the fact that torque is measured at the same frequency of rotation, but using 
two different cylinders of the same diameter, but having different heights. In this case, the 
distance from the face of the cylinder to the bottom in both measurements should be iden-
tical. The calculation of viscosity is performed based on the difference in torques and 
heights of cylinders inserted into the calculation formula, being the difference in heights 
of two cylinders.
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The device with guarding cylinders. 
In this device, the outer cylinder revolves. 
Above and below the inner cylinder are 
coaxially installed fixed cylinders of the 
same radii. These cylinders are not rigidly 
connected with the torque measuring 
device, but with the stationary casing of the 
instrument. Therefore, the faces of the 
measuring (inner) cylinder do not contrib-
ute to the measured torque.

The device with bell-type cylinders. In 
this device, shown in Fig. 5.3.6, a pair of 
hollow cylinders is made in the form of an 
inverted container, and between them, the 
intermediate revolving cylinder is installed. 
Due to the small thickness of the wall of 
this cylinder, the effect of the bottom of the 
cylinder on torque is negligible. The shear 
flow of fluid occurs simultaneously in two 
clearances. The latter must be taken into 
account in the viscosity calculations.

Arrangement of conical or spherical 
bottoms. In instruments of this type the bot-

tom is made in the form of a cone or a hemisphere so that the combination of two rota-
tional viscometers with different geometries of working surfaces is obtained.
5.3.2.7 On a role of the rigidity of dynamometer 
Measurement of torque is usually accomplished with the aid of elastic elements (torsional 
shafts, or dynamometers) whose deformation serves as a measure of torque. The same 
scheme is also used in the compensating devices when the deformation of force transducer 
is compensated by action of external force and this force is measured. In any event, the 
dynamometer is deformed, and, thus, the conditions of liquid flow are changed. This fac-
tor plays no role during the steady-state flow. However, displacement of the dynamometer 
can have an essential effect on the results of measurements of torque in the transient 
regimes of deformation before a steady-state flow is achieved and during relaxation (after 
cessation of flow).

The theory of phenomenon under discussion shows that the greatest error in mea-
surement appears at .25 Therefore, one should treat the initial stage of the transient 
regime of deformation with special care (see Section 5.3.1).

The general methodical recommendation is to use as rigid a dynamometer as possi-
ble. In the use of the compensating devices, the general requirement is that the response 
time of the controlling device should be much less than the time of measurement, for 
example, the characteristic time of a change in the deformation rate in the scanning mode. 

t 0→

Figure 5.3.6. Rotational viscometer with coaxial cylin-
ders of bell type. 1 − rotating intermediate cylinder; 2 −
connected together outer cylinders; 3 − sample.
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5.3.2.8 Temperature effects 
At sufficiently high deformation rates, the self-heating of liquid being investigated can be 
a reason for significant errors. This factor can play a more important role in rotational rhe-
ometers than in capillary tube viscometers because of the unlimited long stay of the same 
material under the action of intensive deformation. 

During the viscous flow of fluid in a rotational instrument, different thermal effects 
are possible, including a rapid increase in temperature that is not compensated by heat 
transfer (so-called heat explosion). More frequent is an increase of temperature to a certain 
limit when heat generation is balanced by heat removal. If an increase in temperature is 
not very high, theory leads to the following formula for calculating apparent viscosity at 
an assigned temperature of measurement:26 

[5.3.45] 

where uR and σR are, respectively, the velocity and shear stress at the boundary surface, κ
is the coefficient of thermal conductivity of material being investigated, k is the coeffi-
cient characterizing temperature sensitivity of viscosity, h is the clearance between the 
bounding surfaces in viscometer. 

The quantity in front of the brackets in Eq. 5.3.45 is the isothermal value of viscosity, 
and the second term in brackets is the temperature correction. Then, by measuring values 
of apparent viscosity at different values of uR or σR and extrapolating the obtained data to 
zero, it is not difficult to obtain the unknown value of viscosity at an assigned temperature, 
and, at the same time, the coefficient characterizing temperature sensitivity of viscosity, k. 
5.3.3 LIMITATIONS OF ROTATIONAL VISCOMETRY 
Possible limitations of rotational viscometry at the low end are related to the design fea-
tures of experimental techniques used. Thus, while conducting measurements under con-
ditions of imposed strain rates, the required rotational speed is usually created by the 
power drive with speed control using a system of reducing gears. If such power transfers 
include many gears, then the natural mechanical imperfection of contacts in gears may 
lead to the inconstancy of the rotational speed, which is expressed by the appearance of 
shocks. The use of high-quality gears permits shear rates to be as low as 10-3 s-1, although 
the construction of instruments with even lower deformation rates is known. 

In using the method of measurement at imposed constant torque, it is necessary to 
eliminate or compensate resistance caused by friction in moving parts. By using the 
method of rotational viscometry, it is possible to measure the viscosity of any low-viscos-
ity liquid and even gas.27 

Basic limitations of rotational viscometry at the upper limit of the high shear rates 
(and high shear stresses) were indicated above. This, first of all, is an intensive heat gener-
ation and it is impossible to maintain a constant temperature of the sample, because of the 
dissipation of mechanical work at high shear rates and the escape of elastic liquid from a 
working cell as a result of the Weissenberg effect. The capabilities of rotational rheometry 
at high shear rates are limited as a result of the appearance of instabilities of the flow of 
different kinds. The physical causes of this phenomenon are the same as described for cap-

η0
σrh
ur

-------- 1
0.083hkσRuR

κ
---------------------------------+ 

 =



328 Rheometry Experimental Methods

illary tube viscometers, although the instability in rotational motion is manifested differ-
ently. 

Thus, viscosity measurements constitute the right choice only in the region of lami-
nar flow. The critical value of the Reynolds number, Rec, during the circumferential flow 
of liquid between coaxial cylinders, for the case when motion is generated by the rotation 
of the inner cylinder, is calculated from the following formula: 

[5.3.46] 

For real dimensions of rotational instruments, this corresponds to a value of Rec above 
100. 

If the motion is created by the rotation of the outer cylinder, then flow remains steady 
even at the higher values of the Reynolds number. 

For viscoelastic liquids, the instability of flow can be caused by their elasticity. This 
effect may appear as a result of a secondary flow from the eddies arising in the clearance 
between cylinders, the oscillatory motions of liquid, the detachment of the medium from 
the walls of the viscometer, the escape of liquid from the working cell, and ruptures inside 
the sample. In all such cases, measurements are practically impossible. Different types of 
sample ruptures during the circumferential flows appear at the stresses 5-10 times smaller 
than the critical stress, σ*, that corresponds to the appearance of elastic turbulence in the 
capillary flow. It is possible that the reason for this difference is the fact that the rupture is 
developed with the time of measurement, i.e., σ* depends on the duration of deformation. 

Sometimes to eliminate wall slip or ruptures (detachment from walls) in rotational 
instruments, hydrostatic pressure is applied. However, the described phenomena are 
related to the elasticity of the material, i.e., to its intrinsic properties, and not strictly to 
phenomena occurring near walls. Therefore, the imposition of additional pressure can be a 
useful method for warranting the initial adhesive contact of material (especially of high 
viscosity) with a solid wall. But the stress at which rupture occurs, as a result of deforma-
tion, hardly depends on the hydrostatic pressure. 

Another recommendation is to corrugate the working surfaces (or increase their 
roughness). However, the strength of adhesive contact and the cohesive strength of flow-
ing polymeric materials are usually close to each other. Therefore, corrugation of the sur-
face, ensuring the best adhesive contact, does not remove slippage at apexes of reefs, 
because of the cohesive rupture that takes place on the top of reefs. 
5.3.4 ROTATIONAL INSTRUMENTS
5.3.4.1 Introduction − general considerations 
Rotational viscometry has attracted the attention of researchers and designers for many 
decades. During this time, hundreds of new constructions and many technical improve-
ments of instruments of this type were proposed, described, patented, and found applica-
tion in research practice. It is worthwhile to note a difference between individual samples 
of laboratory instruments and viscometers made in serial production. The latter always 
appear more attractively made and are supplied with a collection of standard programs for 
processing experimental results. They are sufficiently simple in operation so that they do 
not require a highly qualified experimenter. Instruments of such type are convenient for 
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systematic and repeated measurements to carry out the same tasks each time. However, 
this does not prevent the possibility of using such instruments for scientific studies, since 
commercial instruments are frequently supplied with a wide collection of additional 
options of a high technical level. 

At the same time, such instruments are not always suitable for studying new phe-
nomena and refined effects that require additional consideration and understanding of the 
results of measurements and their possible errors. Certainly, the solution to such problems 
demands a qualified experimenter. Moreover, the data processing systems of some con-
temporary instruments are designed in such a way that they eliminate possible deviations 
from “smooth” dependences, considering them as random errors. The apparent (at first 
glance) random errors in the results of measurements can actually be hidden in new prop-
erties and important results for science. 

In spite of a variety of designs and measuring schemes used, it is possible to isolate a 
number of similar fundamental solutions, common to all instruments. It is possible to 
identify the basic requirements for rotational viscometers. Thus, for any instrument it is 
required:

• to have high-quality working surfaces
• to observe coaxiality (for the coaxial cylinders) or 

strict perpendicularity (for the instruments of the 
cone and plate type) during their assembly

• to obtain low parasitic friction in the bearing of the 
rotating part of a working cell (replacement of usual 
bearings by the gas-bearing and use of unsupported 
construction of the revolving shaft)

• to maintain assigned (constant or adjusted according 
to the required program) condition of deformation or 
torque without oscillations and jerks

• to quickly achieve a transient process while impos-
ing the required regime of deformation or load (this 
requirement is not very important during viscomet-
ric measurement, but important during the study of 
transient processes such as relaxation and creep)

• to control the assigned temperature conditions of 
tests.

 In accordance with these general requirements, the fun-
damental design of any rotational instrument can be repre-
sented in the form of a schematic diagram as depicted in Fig. 
5.3.7. All basic elements of the construction of the viscome-
ter are shown in this figure.

The basic element of the design is the working cell 
itself. In Fig. 5.3.7, this is the cylinder with a conical bottom, 
which revolves around a fixed cylinder that is coaxial with it. 
Other combinations of axially arranged symmetrical bodies, 
described above, can be used instead. The inner cylinder is 
subjected to rotation by means of a drive with the adjustable 

Figure 5.3.7. Schematic represen-
tation of rotational viscometer 
with its basic elements. 1 − rota-
tion drive; 2 − reducer; 3 − angu-
lar velocity transducer; 4 − inner 
(rotating) cylinder; 5 − outer 
(fixed) cylinder; 6 − torque trans-
ducer. 
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speed with the frequency of rotation during the experiment maintained constant or accord-
ing to a predetermined program. The frequency of rotation is measured by an angular 
velocity transducer.

In Fig. 5.3.7, the torque transducer is installed on the shaft that connects the outer 
cylinder with the base of the instrument. This sensor can also be installed on the revolving 
shaft, measuring the torque experienced by it. Typically, an elastic member torsion shaft is 
utilized as the working (receiving torque) part of the sensor. The basic requirement for this 
member is to have a linearity of its performance characteristics, i.e., the dependence of 
displacement (or angular deflection) on torque. Finally, an important element of the con-
struction of the viscometer (not shown in Fig. 5.3.7) is a temperature chamber since the 
entire working cell is usually thermostatically controlled. The temperature of the sample is 
monitored by a sensor, which is in direct contact with the material being investigated. 

The schematic diagram that is shown in Fig. 5.3.7 can be realized in the existing 
rotational viscometers in various configurations. However, all basic elements of the con-
struction of any viscometer are included in the drawing. 
5.3.4.2 Rheogoniometers and elastoviscometers
A large group of instruments with diverse capabilities of rotational rheometry is united 
under these names. In these instruments, viscosity measurement is augmented by possibil-
ities of determining different characteristics of the rheological properties of liquids. 

A typical example and the prototype of many instruments of this type is the Weissen-
berg Rheogoniometer, which was manufactured by Sangamo (Great Britain).28 

In essence, this instrument contains all the basic elements of the diagram, presented 
in Fig. 5.3.7. The working cell of this instrument is a system consisting of a cone and plate 
device. The drive (not shown in the figure) is connected with the driving member (lower 
plate) through a worm gear. The instrument operates in the regime of a constant frequency 
of rotation at a rotational speed of the main drive of 1,500 rpm. The construction of the 
gearbox makes it possible to vary shear rate in the range from 7.1x10-4 to 9x103 s-1 with 
steps of . Torque is received by a torsion shaft. The instrument is equipped 
with a collection of replaceable torsion shafts of different rigidity varying from 1 to 103

Nm/rad. By changing the torsion shaft, it is possible to measure shear stress in the range 
from 10-4 to 106 Pa.

Temperature control includes both liquid and electrical thermostats permitting tests 
in the range of temperatures from -50 to 300oC. 

In addition to torque measurements, the instrument permits the determination of nor-
mal stresses using the axial force transducer. In the latest modification of the instrument, 
the drive was improved in such a way that it also permits the imposition of harmonic oscil-
lations and the superposition of low-amplitude harmonic oscillations on steady rotation. 

A similar instrument of high-level technical capabilities, according to the tasks per-
formed, was produced by Instron29 under the name of the Rotary Rheometer 3250. At 
present, several important instrument-manufacturing companies have the capability to 
produce such instruments. One of them is Rheometrics Scientific (now TA Instruments, 
USA), which makes several high-precision instruments. One of these instruments is the 
ARES.30 This is a rotational rheometer with interchangeable working cells: cone-plate, 
disk-disk, coaxial cylinders. The drive system includes two direct current servomotors. 
The control system of the instrument allows one to conduct tests in different regimes, at a 
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given shear rate or shear stress as well as periodic deformations. The instrument includes 
torque and axial force transducers (for measuring normal stresses). The instrument is sup-
plied with a computer having an extensive library of programs. 

The same company manufactures other high-precision elastoviscometers, known 
under the names RDA III, RFS III, and RMS 800.31 These instruments allow one to con-
duct measurements in different regimes, including periodic oscillations and steady flow.

The recent achievement of the company in the area of instrument manufacture is the 
universal rheometer SR5.32 This instrument permits the implementation of different 
regimes of tests including relaxation, creep, periodic oscillations, and superposition of dif-
ferent regimes. The instrument is also equipped with a normal stress transducer. The 
salient capability of this instrument is the wide range of the measured torque, from 10-4 to 
50 mNm. As in other instruments produced by the company, the frequency can be varied 
in the range of 7 decimal orders. The temperature range is from -40 to 350oC. 

Bohlin manufactures a number of rotational rheometers (general designation of a 
series C-VOR) with an adjustable frequency of a rotation and measured stresses. Several 
modifications of the instrument are intended for conducting tests in different ranges of 
torques. Another series of instruments, produced under the designation CVO, is intended 
for measurements at controlled shear stresses. 

Paar Physica (Germany) manufactures a series of instruments. They possess a wide 
range of technical capabilities. The most complex instrument (produced under the abbre-
viation MCR) allows one to conduct measurements in different controlled regimes includ-
ing a constant velocity of rotation, constant stress, varying frequency in the regime of 
relaxation, and so forth. It can also carry out the measurements in more complex regimes 
of tests such as the superposition of periodic oscillations on the steady flow. 

A number of devices with similar characteristics are manufactured by Haake (Ger-
many). In some modifications of the instrument, the rheological measurements are aug-
mented by the possibilities of direct observation of structural transformations, caused by 
the deformation. 

Instruments of the type under consideration possess many advantages. But they also 
have one essential disadvantage − they are expensive. This is due to the complexity of the 
design and technological solutions used for their creation. Therefore, these instruments are 
not made for mass production, but as measuring systems, intended, first of all, for studies 
conducted in specialized laboratories. 
5.3.4.3 Viscometers with assigned rotational speed
5.3.4.3.1 Laboratory viscometers with adjustable rotational speed
Instruments of such type are simplified versions of rheogoniometers. They are intended 
exclusively for viscosity measurements. In these instruments, the frequency of rotation is 
assigned and the torque is measured. Accordingly, they are much simpler in construction 
in comparison with a rheogoniometer and substantially cheaper. All basic elements shown 
on the fundamental diagram in Fig. 5.3.7 are used in their design. Also, the possibilities of 
variation of shear rate in these instruments are sufficiently wide. 

Some designs of these instruments, which are manufactured on an industrial scale, 
are examined below, as an example. 

Fig. 5.3.8 shows the viscometer Rotovisco (Haake). Usually, this instrument is sup-
plied with a cylinder-cylinder type working cell, although in some modifications of the 
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instrument the use of working cells of other geometry is pos-
sible (for example, cone and plate).

The torque in this instrument is measured on the drive 
shaft. The measured shear stress ranges from 1 to 105 Pa, the 
range of shear rate is from 10-2 to 104 s-1. 

A design similar to Rotovisco and accordingly close to 
its technical capabilities (although more limited) is a popular 
viscometer Rheotest, manufactured in Germany. 

In the viscometer of Ferranti-Shirley, the working cell 
is made in a form of a pair of cone and plate with a very small 
angle between the generatrix of cone and plate. The special 
feature of this instrument is the stepless control of the fre-
quency of rotation of drive shaft using a direct current electric 
motor operating according to a diagram of the generator-
engine. 

A known series of viscometers Rheomat are manufac-
tured by Contraves (Switzerland). In one of the modifications 
of the instrument Rheomat 15T, a torque transducer allows 
one to measure the shear stresses in the range from 0.6 to 
2x105 Pa with drive allowing one to vary speed (stepwise) to 
achieve a shear rate from 0.5 to 103 s-1. In a more advanced 
modification of instrument Rheomat 30, the lower limit is 
substantially reduced to 4x10-3 s-1. Moreover, in this instru-
ment, it is also possible to attain continuous change of rota-
tional speed with the recording of the dependence of torque 
on the frequency of rotation. 

Of special interest is the version of the instrument 
known under the name of Rheomat, Block DC50. With this 
instrument, measurements can be carried out in vacuum or 
under pressure up to 50 bars in the temperature range from -
50 to 300oC. Measurements can be carried out in the range of 

shear rates from 2.3x10-2 to 170 s-1 with a viscosity of fluid ranging from 0.1 to 8x103

Pa*s. The possibility of measurement under pressure usually is not realized in other seri-
ally produced rotational viscometers. 

Simple and convenient rotational viscometers are also produced by Rheometrics Sci-
entific (TA Instruments, USA). The instrument RM 100 makes it possible to conduct tests 
at any of five fixed speeds of rotation33 with a maximum rotation frequency of 600 rpm. 
 5.3.4.3.2 Viscometers with extension rotor (immersion type)
In these instruments the outer cylinder is absent, and the inner cylinder, fastened to the end 
of a console, is submerged in the liquid being investigated. The rotor can be made not only 
in the form of a cylinder but a disk or another body of the arbitrary geometric form. The 
rotor is driven by the electric motor through a reducer with an adjustable frequency of 
rotation. The measuring element (torsion shaft) is installed on the drive shaft. Such instru-
ments are sufficiently simple in production and operation and are widely used for solving 
applied problems. 

Figure 5.3.8. Typical rotational 
viscometer operating under 
imposed rotational speed of rotor. 
Viscometer Rotovisco of cylinder-
cylinder type. 1 − torsion (elastic 
measuring) element; 2 − trans-
ducer for measurement of angle 
of torsional twist (potentiometer); 
3 − rotating (inner) cylinder; 4 −
fixed (outer) cylinder; 5 − sam-
ple; 6 − flexible connector from 
rotation control drive. 
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The most common instrument of such a type is the Brookfield viscometer. Different 
modifications of this instrument are produced. They are distinguished by a range of shear 
rates and by limits of measurements. The technical characteristics of the instrument are 
defined by the rigidity of the torsion shaft used, by the gearbox installed, and by the geom-
etry of the utilized rotational member.

The most critical part of viscometers of this type is the twisted spring of the force 
transducer. This spring is made from beryllium bronze and it is calibrated by the manufac-
turer. Brookfield viscometers are mainly utilized in technological laboratories for quality 
control of produced materials with the purpose of comparing production samples with 
requirements of technical specifications. They are also used at different stages of the tech-
nological process of materials’ manufacture. 

Some modifications of viscometers of this type are intended, in particular, for the 
measurements of viscosity at high temperatures (up to 1,500oC), for measurements of the 
viscosity of corrosive media, and also for measurements of viscosity at a distance from the 
location of the technological process. The latter is achieved by the application of an adap-
tor, connected to a spindle of viscometers.

Instruments of the type of Brookfield viscometer are manufactured by various firms 
under different names. For example Contraves (Switzerland) manufactures a Process Vis-
cometer TO and Haake (Germany) manufactures several modifications of the instrument, 
known under the names of Viscotester VT 181/VT24 and Viscotester VT 01. Rheometrics 
Scientific manufactures the instrument with the extension rotor under the name Rheomat 
RM 180. 
5.3.4.3.3 Constant torque viscometers

Load viscometers
The use of a measuring scheme in the regime of constant torque, T = const, has definite 
advantages in measurements not only of viscosity, but also of viscoelastic characteristics 
during deformation. 

In practice, several different methods of the imposition of adjustable torque are used. 
The most simple method for imposing a constant torque is by use of descending loads, 
installed at a certain arm with respect to the rotational axis. The speed of rotation of the 
operating unit or the speed of motion of loads is measured. The instruments in which this 
method is used are simple in design and experimental procedure. They do not require 
complex measuring equipment. At the same time, they usually do not give high accuracy 
of the measurement. An increase in accuracy of measurements entails the need of using 
more advanced equipment, which is hardly compatible with measurements that are carried 
out manually. This is characteristic of the simplest viscometers of a fixed torque. At the 
same time, simplicity of construction and measuring scheme is justified when a fast com-
parative evaluation of material properties is necessary rather than obtaining precise abso-
lute values of viscosity. 

Spring viscometers
The simple measuring scheme for viscosity at an assigned torque is based on the use of 
energy of the initially twisted (loaded) spring, which is done by hand. In the process of 
measurement, after the release of the spring, torque decreases from a given maximum 
value to zero. The operating unit of the instrument can be made in the form of a rotational 
body of any configuration. The time required for releasing the spring is a measure of vis-
cosity. The instrument is calibrated on the liquid of known viscosity. Then, viscosity is 
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determined by comparing the time of spring release for the standard liquid and the liquid 
being investigated. This is a very simple measuring scheme that is applicable even under 
field conditions in the absence of electric power sources. Certainly, because of simplicity 
and universality, the accuracy of measurements is somewhat lost. Therefore, in this case, it 
is needless to speak about the variation of conditions of deformation and other special fea-
tures if tests are conducted on non-Newtonian liquids. However, even this simplest mea-
suring scheme can be useful under specific test conditions. 

The automatic torque control systems 
In contemporary instruments, the maintenance of the assigned torque, constant or variable 
according to a predetermined program, is achieved by methods of automatic control, 
based on the principle of feedback control. 

Specifically, rheogoniometers described above and elastoviscometers operate in the 
stress-controlled regime. These can be both specific instruments and devices in which dif-
ferent conditions of the test are performed by adjustment of assigned torque and frequency 
of rotation.
5.3.4.4 Rotational viscometers for special purposes

The principal capabilities of rotational instruments 
are frequently realized in viscometers for special 
purposes. They are intended to solve various scien-
tific problems arising during the analysis of the 
physical properties of liquids. In this case, although 
the general rules of construction of rotational vis-
cometers are retained, the need for essential modifi-
cation and custom designs still exists. In the present 
section, some examples of the above-mentioned 
approach to the technology of rotational viscometry 
are given. 
5.3.4.4.1 High-speed (thin-film) viscometers
High shear rates in rotational viscometers with 
coaxial cylinders require the solution of two basic 
problems: high accuracy in maintaining a very small 
clearance between the cylinders and temperature 
control under conditions of intensive heat dissipa-
tion.

The technical tasks confronting the designer of 
this instrument were successfully solved during the 
development of thin-film flowing viscometer.34 In 
this instrument (Fig. 5.3.9) the measurements are 
accomplished in the scanning regime by the continu-
ous change of rotational speed. The clearance 
between coaxial cylinders is made open, such that 
the liquid being investigated, supplied with an aid of 

a press, can flow freely through the clearance in a vertical direction. Thus, a continuous 
change of volume of fluid being investigated is ensured and the effect of heat dissipation is 
reduced. The gap clearance between cylinders is 0.15 mm and the radius of the revolving 

Figure 5.3.9. High speed (thin film) viscom-
eter with continuous flow of sample through 
working clearance between coaxial cylin-
ders. 1 − ram supplying sample; 2 − radial 
air bearing; 3 − supporting air bearing; 4 −
rotor; 5 − stator; 6 − working clearance 
between coaxial cylinders.
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cylinder (rotor) is 2.681 cm. Constant conditions of deformation are reliably maintained 
by the application of rigid radial and axial air bearings. The use of this instrument makes it 
possible to investigate liquids with viscosity from 0.1 to 100 Pa*s. 

In one of the modifications of this instrument, the size of clearance between the cyl-
inders is brought to several micrometers. In this case, the clearance between cylinders was 
calibrated using standard liquids, thus producing a geometric constant of the instrument. 
Control experiments showed that even in such thin layers, the effects of absorption or ori-
entation of liquid being investigated are absent, so that one succeeds in obtaining reliable 
values of viscosity with error not higher than 2%. 
5.3.4.4.2 Viscometers with the noncontact drive (with the very low torque)
For the solution of many applied and theoretical problems, it is necessary to know the 
properties of materials at very low shear stresses. Measurements must be conducted in 
rotational instruments at low torques. Such low shear stresses require the imposition of 
deformation for a long period of time and are important in the evaluation of creep of high-
viscosity materials, speed determination of fluid runoff on vertical surfaces, etc. It is also 
needed for the evaluation of forces of intermolecular interaction, the strength of structural 
bonding, etc. In all these cases, there is interest in measurements in the shear stress range 
lower than 1 Pa.

From a methodology point of view, two problems must be solved: the creation of 
very low torque and elimination of friction in bearings. 

Air bearings are used. This allows one to achieve torque due to the frictional forces 
as low as 10-11 Nm. Presently, air bearings are traditional elements in the construction of 
these instruments. In such bearings, the radial clearance does not exceed 0.05 mm with an 
end clearance of 0.1 mm. Thus, it is possible to decrease friction in bearings to values that 
correspond to a shear stress of the order of 10-5 Pa. 

A more radical method for further 
reduction of the measured shear stresses is 
by the elimination of friction using a non-
contact method of the imposition of torque. 
The version of such an instrument in which 
this approach is realized is shown in Fig. 
5.3.10. The torque here is created using 
electromagnetic forces such that it can be 
conveniently small. The revolving (inner) 
cylinder made of magnetic iron is weighed 
in the liquid being investigated, i.e., its 
weight is balanced by an Archimedean 
force. In a typical instrument of such type, 
the outer cylinder is made in the form of a 
glass test tube.

Using this viscometer, called the 
Zimm-Crothers viscometer,35 it is possible 
to measure the viscosity of low-viscosity 
liquids and to observe the appearance of a 

yield point in the region of very low shear stresses. This is especially valuable for low-vis-

Figure 5.3.10. High sensitivity rotational viscometer 
having rotor without bearing used for measuring low 
torque values. 1 − test tube with sample; 2 − rotor with 
magnetic insert; 3 − thermostat; 4 − stator of electric 
motor.
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cosity structured liquids, biopolymers, colloidal systems, and liquid-crystal polymer solu-
tions. 

The electromagnetic method of imposing torque for viscosity measurements in the 
region of low shear rates is quite innovative for testing solutions of electrolytes. In this 
case, it is generally possible to operate without rotating parts. Flow appears as a result of 
electromagnetic interaction of the external field with ions of electrolyte.36 

Other variations of the method in question are possible. In particular, using a combi-
nation of layers of conducting liquid of high density (for example, a saturated solution of 
CsCl) and non-conducting liquid, it is possible to measure the viscosity of the latter by a 
differential method. 
5.3.4.4.3 Viscometers for electro-rheological liquids
The so-called magneto- and electro-rheological liquids are of some interest. These are liq-
uids having a structure that rapidly changes in a magnetic or electric field. Accordingly, 
their viscosity also changes. For viscosity measurements of such media and control of 
their change in electromagnetic fields, a number of rotational viscometers with the coaxial 
cylinders can be used. Their basic special feature consists of isolated outer and inner cylin-
ders. This is achieved by modification of the usual rotational instrument by the installation 
of separating bushings made out of non-conducting materials. The instrument itself is an 
electrical capacitor because electro-rheological liquids are dielectrics. This design com-
bines viscometric and electrical measurements.

Electrorheological measurements can be carried out also, using instruments with par-
allel plates (a modification of the rotational viscometer of Rheometrics System IV).37 In 
this design oscillations were imposed on the disk, but it is also possible to rotate the disk 
with assigned frequency. The analogous scheme of shear between two parallel electrically 
isolated disks was realized by some modification of viscometer RS -50 (Haake).38 
5.3.4.5 Rotational instruments for technological purposes
The technological evaluation of polymeric materials is one of the basic tasks of rheologi-
cal measurements. A number of specialized methods, which simulate real technological 
processes, were proposed. The procedures of measurement and basic geometric parame-
ters of instruments are standardized. This makes it possible to conduct reliable compara-
tive tests of real materials and to rely on previous experiences from processing these 
materials. Reliable recommendations can be made regarding their application and selec-
tion of a technological regime. 
5.3.4.5.1 The Brabender Plasticorder
This instrument is a typical example of tools used in technological applications. The Bra-
bender Plasticorder is manufactured in large quantities and widely used in the polymer 
industry. The instrument is basically a mixer with different mixing elements. Depending 
on the viscosity of the mixture, the shaft of the kneader arms experiences different torque. 
This torque is a measure of viscosity. By measuring torque, one can find some characteris-
tics of the rheological properties of processed mixtures and trace the evolution of these 
properties during mixing. Thus, some characteristic values influencing the evaluation of 
material and selection of an optimum technological regime are determined. 

Contemporary models of the Brabender Plasticorder are supplied with an adjustable 
drive allowing one to vary the frequency of rotation of rotors in the range from 1 to 400 
rpm, although there are modifications of the instrument intended for use at a fixed speed 
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of 31.5 or 63 rpm. The torque is measured using a torque transducer. The modifications of 
the instrument are produced for different maximum torque. In a working chamber, a vac-
uum or inert gas atmosphere can be created. The thermostatically controlled chamber 
makes it possible to conduct measurements up to 400oC. 
5.3.4.5.2 The Mooney viscometer
This instrument, in various modifications, is manufactured in many countries, since the 
Mooney test method39 appears in a number of standards for rubber compounds.40 

The tested material undergoes shear strains in a closed chamber in clearances 
between a revolving rotor and the chamber walls. The rotor can be made in the form of a 
smooth or a serrated disk. During the deformation of the material in a chamber due to a 
complex configuration, the complex fields of velocities and stresses appear, so that the 
Mooney viscometer gives a conditional characteristic of rheological properties of the 
material being investigated. 

The method of torque measurement is the original design feature of the Mooney vis-
cometer. It is determined by measuring the force exerted on spring by the drive shaft. 

The rotation of the rotor is achieved by means of a synchronous electric motor 
through the gear drive and the worm wheel. The material being investigated is located in 
the chamber under pressure, created during the closing of the upper and lower halves of 
the chamber. Typically, during the first compressing of a sample, the pressure created in 
the chamber is of the order of 200 Pa, and upon additional compression, with the aid of 
springs, the pressure is increased to 300-600 Pa. Heaters are installed in both upper and 
lower halves of the instrument chamber. Usually, tests begin 1 min after compressing the 
sample, without waiting to achieve steady-state temperature conditions. 

Mooney viscometers are manufactured with standard dimensions of the working 
chamber and rotor. The usual frequency of rotation of the rotor in the Mooney viscometers 
is 2 rpm. In some modifications of the instrument, capabilities are augmented by setting 
the frequency of rotation to 4 and 8 rpm, and also by imposing oscillatory motions of the 
rotor. 

The standardized requirements for tests according to Mooney are realized in a num-
ber of instruments. A typical example of a modern instrument of such type is the Mooney-
check Compact PC (Gibitre, Italy). 

A combination of possibilities of rotational and oscillatory motions of a rotor is real-
ized in an instrument of the type of Mooney viscometer being manufactured by Monsanto
(now Alpha Technologies). In an instrument known as Rheometer-100, capabilities exist to 
measure continuous changes of torque with time (according to ASTM D 2084) which 
makes it possible to follow the kinetics of vulcanization of rubber compounds. Rheometer-
100750 has a variable speed of rotation in the range of 1-150 rpm or a constant speed at 
750 rpm. Additional options permit conducting automatic processing of test results, deter-
mining characteristic points on a vulcanization curve − initial and minimum viscosities, 
curing time, and maximum value of modulus of elasticity of vulcanized rubbers. 

Further modifications of this instrument are in Moving Die Rheometer MDR (Mon-
santo Instrument Company, now Alpha Technologies, USA) and Rotorless Curemeter
(Goettfert, Germany) in which one platen oscillates. These rheometers use thinner sam-
ples of rubber than Rheometer-100. Therefore, less effect of transient heat transfer during 
curing takes place. The most recent developments are two new instruments − Rubber Pro-
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cess Analyzer, RPA, and Advanced Polymer Analyzer, APA (Alpha Technologies, USA), 
which permit tests over ranges of strain 0.7 to 1200%, frequencies of 0.1 to 2000 cycles 
per minute and at various temperatures. These instruments can measure the storage and 
loss moduli and tanδ during the curing of rubber compounds. 
5.3.4.5.3 The Goettfert instrument
Goettfert (Germany) developed a series of instruments intended to simulate real techno-
logical processes of processing plastics with the purpose of selecting parameters for an 
optimal regime of processing. One of these instruments is a rotational type viscometer. 
5.3.5 MEASURING NORMAL STRESSES
Section 3.4.2 discussed normal stresses in shear flow (the Weissenberg effect). The gen-
eral stress field produced in shear flow is determined by Eq. 3.4.3. It was also explained 
that from a rheological point of view, not normal stresses by themselves but two their dif-
ferences are essential:

the first difference N1 = σ11 − σ22 
the second difference N2 = σ22 − σ33

The necessity to operate with the differences of normal stresses but not with absolute 
values of normal stresses is based on the hypothesis of incompressibility of flowing liquid. 
Therefore, the addition of hydrostatic pressure (i.e., simultaneous change of all diagonal 
components of the stress tensor) would not influence the state of shear deformations and 
N1 and N2 values, consequently.

For this reason, an experimenter is interested to know how to measure N1 and N2 but 
not separate components of normal stresses. 
5.3.5.1 Cone-and-plate technique
The basic approach to measurements of the first difference of normal stresses is related to 
the use of the cone and plate technique as in Fig. 5.3.4b. 

The balance of force equation for a liquid element can be written (neglecting the 
mass forces) as

[5.3.47]

It is reasonable to suppose that both normal stress differences (σ11 − σ33) and (σ22 −
σ33) do not depend on the curvature of stream-lines and are determined by shear rate only. 
Then, integration of Eq. (3.5.47) gives the following equation for stress distribution:

[5.3.48]

The expression inside the square brackets does not depend on the coordinate r. It is 
reasonable to think (as many experimental works show) that (σ22 − σ33) << (σ11 − σ22) and 
that σ22(R) = 0. The latter reflects the absence of stresses at the free surface. Then, it is 
seen that the stress distribution along the radius must be logarithmic. 

Then, measuring the radial distribution of σ22, one can find N1 as a coefficient in the 
following dependence:

dσ33
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-----------
σ11 σ22 2σ33–+

r
---------------------------------------=

σ22 r( ) σ22 R( ) σ11 σ33–( ) σ22 σ33–( )+[ ] r
R
----ln+=



5.3 Rotational rheometry 339

[5.3.49]

Repeating these measurements at different shear stresses, one can obtain the depen-
dence .

The normal stress distribution along the radius was measured as shown in Fig. 5.3.11 
by several piezo-tubes.41 This differential method of measuring normal stresses was real-
ized in the Roberts-Weissenberg rheogoniometer, model R8. Later this method was not 
used for practical purposes and normal stresses were measured by the integral method. 
The total force acting perpendicular to the radius of the rotating cone is measured. This 
force, F, is calculated by integrating Eq. 5.3.48. After some rearrangements, the following 
relationship is obtained:

            [5.3.50]

This force, F, is the cause of the Weissenberg effect as 
described in Chapter 3. The last expression gives a direct 
method of determination of the first difference of normal 
stresses by measuring the total normal force. 

This is the most popular method of measuring N1, which 
is realized in several industrial rotational devices. The total 
force is measured by different transducers but the general rule 
is: a sensor must be as rigid as possible because the vertical 
shift (even very small) of a surface in a rotation device leads 
to distortion of the deformation field in the sample and to 
essential experimental errors. The maximum vertical shift in 
the best-known units does not exceed several microns and it 
permits measurement of normal stresses in the range from 0.1 
to 1*106 Pa at shear rates from 10-4 to 104 s-1. 

Modern rotational devices allow the experimenter to 
measure normal stress as a function of shear rate not only at 

steady-state flow regimes but also in transient deformation modes and in periodic oscilla-
tions as well.

The cone and plate technique gives an adequate and reliable method of measurement 
of the first normal stress difference and modern experimental devices realize this possibil-
ity. One example of such a technique is the Rheometrics RAA rheometer.42 

Using micro-machining technology and miniature pressure sensors positioned along 
the radius allows one to extend the possibilities of a standard cone and plate rheometer (in 
particular ARES rheometer described above) and enables one to measure simultaneously 
the first, N1, and the second, N2, normal stress differences.43 
5.3.5.2 Plate-and-plate technique
This method of measuring normal stresses is almost the same as the previous one, but the 
rotation of two parallel plates around their common axis is used instead of the cone and 
plate assembly. The main difference with the previous case is the variation of shear rate 

σ22 r( ) N1
r
R
----ln=

N1 γ·( )

F 1
2
---πR2N1=

Figure 5.3.11. Measuring normal 
stress distribution along the 
radius of a cone-and-plate assem-
bly.
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along the radius of the measuring device according to formula , where r is the 
current radius and h is the distance between the parallel plates.

Analysis of force balance of liquid element, and assuming that (σ22 − σ33) << (σ11 −
σ22) results in the following relationship directly valid for measuring the first difference of 
normal stresses:

[5.3.51]

Then, measuring the dependence of σ22 as a function of r at different shear rates, it is 
possible to find the dependence of N1 on shear rate.

Simultaneous application of two geometries of flow (plate-plate and cone-plate) per-
mits finding the second normal stress difference. The final equation is given by:44 

[5.3.52]

where subscripts p-p and c-p relate to values measured in plate-plate and cone-plate geom-
etries, respectively.

The alternative form of this equation, which is used in experimental practice, can be 
written as:45 

[5.3.53]

The value N2( ) is N2 as measured at a shear rate corresponding to the outer radius 
of plates.

This is one of the possibilities of measuring N2, which has a very low value (if not 
zero) in comparison with N1. The application of Eq. 5.3.52 or 5.3.53 gives the best way to 
measure the second normal stress difference. However, though this method is applicable 
in principle it should be treated with caution due to uncertain experimental errors because 
both members of difference in these equations are comparable in value. Therefore, this 
difference is determined with the largest possible error. 

Perhaps the most serious limitation in the application of rotational methods (either 
cone and plate or plate and plate) for measuring normal stresses is the edge effect includ-
ing the edge fracture of the sample.46 
5.3.5.3 Coaxial cylinders technique
The shear flow between rotating coaxial cylinders can be used to measure the second nor-
mal stress.47 For this purpose, the difference of radial stresses Δσ22 at the inner and outer 
cylinders should be measured:

Calculations based on the balanced equation show that if the difference between 
shear rates at inner and outer cylinders is large enough (i.e., the gap between cylinders is 
large) the following relationship is valid:
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 [5.3.54]

The subscript i shows that N2 determined by this equation is related to the values at 
the surface of the inner cylinder. The structure of this equation shows that N2 can be calcu-
lated if the flow curve is known and Δσ22 is measured as a function of shear rate.

Another way of measuring the second difference of normal stresses, N2, can be real-
ized on the base of the axial flow of liquid between two coaxial cylinders.48 However, it is 
necessary to mention that all these methods are more exotic than these in everyday use.
5.3.5.4 Hole-pressure effect

There have been several attempts to use 
flow through a capillary for measuring nor-
mal stresses.49 A possibility to obtain accu-
rate results by such a method is usually 
strongly dependent on the choice of rheo-
logical model and strict control of experi-
mental details. The most widely discussed 
example is related to the measurement of 
pressure in a hole at the channel wall, as 
shown in Fig. 5.3.12. The channel should 
be flat (i.e., made as a slit) in order to avoid 

problems related to the wall curvature. The streamlines are distorted near a hole (as shown 
in Fig 5.3.12). Additional tension is related to the elasticity of liquid and its value might be 
used as a measure of normal stresses. This method is rather controversial: on one hand, a 
curvature of streamlines must be created, on the other hand, a diaphragm of a transducer 
should be flash-mounted to avoid uncertain experimental errors.

It was shown that the pressure gradient along a channel, as measured by the hole-
pressure method is not only related to shear stresses but can be used as a method for esti-
mating N1.50 Possible experimental errors of this method require special rigorous analy-
sis.51 The difficulties of correct estimation of details of flow near a hole lead to 
controversial results in attempts to apply this method to measuring N2 (even the sign of N2
appears different depending on not well documented experimental details).52 That is why 
this approach is more of theoretical than applied value, and in modern laboratory practice, 
simpler (rotational) methods are preferred. 

5.4 PLASTOMETERS
5.4.1. SHEAR FLOW PLASTOMETERS
Instruments of this type provide an ideal model of shear flow experiments, as shown in 
Fig. 5.4.1. This measuring scheme, most clearly corresponding to the definition of viscos-
ity, seems to be optimal. However, in practice, the realization of this scheme of measure-
ments encounters specific methodological difficulties. 

If the surface area of the sample being investigated, placed between the plates, is S, 
and the distance between the plates equals h, then the shear rate is calculated from the 

N2 i,
2
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Figure 5.3.12. Measuring normal stresses by the hole-
pressure method. Curvature of a streamline near a hole 
is shown. T − pressure transducer.
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measured velocity of movement of one of 
the plates relative to another, V, as 

. Shear stress is determined 
through measured force, F, which must be 
created in order to accomplish the motion 
of the plate with a required velocity. This 
shear stress equals σ = F/S. Hence, accord-

ing to the general formula, the apparent viscosity is found as a ratio of measured values 
.

 Sometimes, shear plastometers are made in the form of a sandwich (Fig. 5.4.1): a 
moving plate is placed between two fixed ones, and the sample being investigated fills 
both clearances between the moving plate and each of the fixed plates. The velocity of the 
plate, V, and force, F, leading to its motion, are measured. In this case, the area entering 
the expression for calculating shear stress is doubled. 

Shear plastometers are convenient for measurements of both steady and transient 
flows during creep under imposed constant shear stress value, σ, elastic recovery (elastic 
deformations) after removal of external load. The important advantage of shear plastome-
ters is that they permit independent definition of shear rate and shear stress used then for 
calculation of apparent viscosity, i.e., these instruments can be considered as absolute.

The experiments carried out using shear plastometers can be performed in different 
regimes, either F = const or V = const; a possibility also exists (and it is actually used) to 
impose more complex conditions of deformation, in particular, the oscillatory conditions 
of deformation. Most frequently, these instruments are used with , since it is 
easier to carry out experimental work by loading the moving plate with the falling weight.

Shear plastometers are used as simple laboratory instruments, intended for the mea-
surement of materials having a high viscosity (>105 Pa*s), at low shear stresses and shear 
rates. However, if we make the clearance between plates very small, in the order of a few 
fractions of cm, then these instruments can also be used for measurements of materials of 
low viscosity. Shear plastometers permit measurement of viscosity in the range from 10 to 
1010 Pa*s. Shear plastometers are very convenient for measurements of yield points since 
they allow experimenters to conduct measurements at very low shear stresses.

The accuracy and reliability of results of measurements carried out on shear plastom-
eters, depend on the quality of their manufacture and adjustment, especially because very 
frequently these are homemade instruments individually manufactured by the experi-
menter. Moving and fixed plates of these instruments must be parallel. The variance of 
thickness must not exceed 20-30 μm, and deviation from parallel alignment may reach 
several micrometers.

It is important to reduce friction in bearings to a minimum, especially during studies 
at low loads and speeds. The use of a scheme in which a load is unsupported is optimal. 
This is achieved, for example, by the installation of plates in a vertical position and by the 
direct suspension of the load on one of the plates. At a very low speed of movement of the 
moving plate, it is sometimes necessary to measure displacement using a microscope. The 
prolonged maintenance of a uniform temperature field in a sample is an additional prob-
lem, which requires a constructive solution. 

γ· V h⁄=

η σ γ·⁄=

F const=

Figure 5.4.1. Sandwich shear flow plastometer.
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Shear plastometers permit the determination of limiting values of shear rates and 
shear stresses, which is of interest for experimentalists. But it is usually difficult to obtain 
reliable results of measurements with an error of less than several percent. 
5.4.2 SQUEEZING FLOW PLASTOMETERS 

In these instruments, a sample, as in the preceding case, is 
placed between two parallel disks, but the motion of the 
upper disk occurs, not in parallel to the lower disk, but along 
the common axis. Thus, the sample being investigated is 
compressed and spreads along the radius of disks. As shown 
in Fig. 5.4.2, two cases are possible. In the first case (a), the 
investigated sample initially fills the entire space between 
disks. Therefore, during its squeezing, a surplus of the sample 
is extruded from the working volume. In the second case (b), 
the volume of the sample remains constant in the process of 
tests, and during squeezing it flows between disks, remaining 
completely between them. 

The regime of squeezing can also be different. Tests can 
be carried out under a constant load, F = const, or under pro-
grammed change of force with time. In these cases, either 
speed of the upper disk is measured (in case a) or a change of 

radius of the sample is measured (in case b). It is also possible to impose speed of motion 
to the upper disk and measure an increase in the resulting force as a function of the time, 
F(t). 

The calculation of viscosity according to the test results is simple if the liquid has 
Newtonian properties. The motion of Newtonian liquid between converging disks was 
described in detail in textbooks on hydrodynamics. Therefore, it is expedient here to pro-
vide the known solutions. 

The basic calculation formula that relates squeezing force and speed of the vertical 
movement of disk takes the form:

[5.4.1] 

where η is the measured viscosity. Notations of geometric dimensions are shown in Fig. 
5.4.2. In this case, the value 2h is the variable distance between the disks. The rate of disks 
closure, V, equals dh/dt.

If the sample volume is  (where R0 is the initial radius of the sample, 
and 2h0 is the initial distance between the disks), then from Eq. 5.4.1 it is possible to 
exclude R, since in the course of experiment the condition of the volume constancy, 

 is satisfied. 
Then, it is possible to write the following equation: 

[5.4.2] 
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Figure 5.4.2. Squeezing flow 
plastometers. a − excess of mate-
rial is squeezed out; b − squeez-
ing sample of constant volume.
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This equation is integrated relative to h(t), resulting in the following equation: 

[5.4.3] 

Then, by plotting the dependence of h4(t) versus F(t), it is not difficult to find viscos-
ity from the slope angle of the obtained straight line. 

It is usually more convenient to measure the dependence of R(t) than h(t). Then Eq. 
5.4.3 can be converted after using substitution h = h0(R0/R)2. This leads to the following 
relationship: 

[5.4.4] 

or

 [5.4.5] 

where V is the constant volume of the test specimen. Using these formulas it is convenient 
to determine viscosity by plotting dependence R8 as a function of t at F = const. 

If a surplus of liquid being investigated is extruded from the working clearance 
between the disks, as shown in Fig. 5.4.2a, then integration of Eq. 5.4.1 under the condi-
tion  gives: 

[5.4.6] 

Then viscosity can be found from the dependence of h-2 and tF(t). If the experiment 
is carried out under the condition of F = const, then viscosity is determined by plotting the 
dependence of h-2 versus t.

The above-written relationships and calculation formulas permit the determination of 
viscosity based on experimental data, but with one fundamental limitation that viscosity 
must be constant. Analogous but more complex formulas can be obtained for other liq-
uids, with rheological properties described by a certain model. 

The solution to the hydrodynamic problem requires the assumption that there is no 
slip along the disk surface. This assumption is correct for Newtonian liquids. However, a 
squeezing plastometer is very frequently used for the rheological analysis of liquids, 
which can interact with a surface by complex means. Therefore, much attention is given to 
the theory of liquid spreading during squeezing of disks, using different boundary condi-
tions for the rigid surface.53

The absence of friction (slip) on a solid wall (a case opposite to flow when fluid 
adheres to the solid wall), the equation for calculation of force takes a form:54 

[5.4.7] 
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In many testing machines, the method of measurements is realized under the regime 
of V0 = dh/dt = const. Then integration of equation (5.4.7) gives: 

[5.4.8] 

Hence, the viscosity of liquid being investigated is determined from the measured 
dependence of F(t) and h-1(t). 

The method of velocity measurement of the motion of the upper disk is the most crit-
ical element of the construction of squeezing flow plastometers, since its displacements 
are small. In the simplest case, this is achieved manually using an indicator of displace-
ment of the dial-type and stopwatch. In more advanced instruments, displacement trans-
ducers of induction or capacitor type are used. For precision measurements, an 
interferometric method is used.55 This method allows one to measure very low speeds, as 
low as 3 x 10-7 mm/s, although the usual operating range is higher by two orders of magni-
tude. 

The critical element of the design of the squeezing flow plastometer is a strictly par-
allel installation of disks. Analysis56 shows that parallel misalignment of even 1-3o can 
give significant errors during the processing of experimental data. 

As a result of the simplicity of the device and comparatively low cost, squeezing 
flow plastometers found wide acceptance in the industry. Here, the Williams plastometer
should be noted. It was proposed in 1924 and until now it is widely used in practice in dif-
ferent modifications. The use of this instrument is standardized for determining the condi-
tional characteristic of viscometric properties of rubber compounds, called plasticity.57 

The squeezing flow plastometers also received wide acceptance in control of the 
degree of scorching of rubber compounds, for which the Goodrich plastometer is used. 

The variation of the squeezing flow plastometers are defometers − instruments in 
which the load, which causes deformation, is measured. By this method, the rigidity of 
natural rubbers and unvulcanized rubber compounds is evaluated.58 

The diverse variants of plastometers of industrial purpose (first of all, for the rubber 
industry) are produced by a number of instrument-manufacturing companies in different 
countries. 
5.4.3 METHOD OF TELESCOPIC SHEAR 
The shear between parallel planes is shown in Fig. 5.4.3. Here, flow is accomplished 
between the coaxial cylinders, but in contrast to the rotary instruments, one of the cylin-
ders does not revolve but moves along the axis. This flow is called telescopic shear, and 
instruments in which this flow is realized are called the Pochettino viscometers.59 

If the clearance between coaxial cylinders is small in comparison with their radii, 
i.e., , then the curvature of the channel can be disregarded, and tele-
scopic shear proves to be practically identical to shear in plastometers with parallel plates. 
But if clearance is not small, then the solution of telescopic flow is sufficiently simple 
only for Newtonian liquids. The rate of the lowering inner cylinder, V, which moves along 
axis under its own weight is expressed as follows: 

F t( )
3πηR0
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[5.4.9]

where ρl and ρs, are, respectively, the density of the liquid 
being investigated and the material from which the inner cyl-
inder is made, g is the acceleration due to gravity.

Hence, by measuring the speed of lowering of the inner 
cylinder, it is possible to find viscosity.

Usually, plastometers with telescopic shear are used for 
viscosity measurements at low deformation rates. This is due 
to a comparatively small force, created by the weight of the 
moving cylinder. At the same time, for viscosity measure-
ments of high viscosity materials, such as polymer melts, 
rubber compounds, asphalts and bitumens (with viscosity in 
the range of 105-109 Pa*s), this force is insufficient for mea-
surements within a convenient time range. Then, it is expedi-
ent to add weight to create an external force, F, as shown in 
Fig. 5.4.3. 

This method was effectively used in laboratory installation, in which the external 
force was created by pressure of compressed gas.60 With a radius of cylinders of the order 
of 25 mm and the clearance of 0.25 mm between them, a very rapid application of the 
force using aerodynamic drive created shear rates of the order of 105 s-1 for the duration of 

the experiment of about 0.01 s. The speed of 
movement of the cylinder was measured 
using an induction sensor, and the force, 
holding the external cylinder from move-
ment, was measured with a very rigid piezo-
electric transducer. The pressure of 1 MPa 
was reached, which made it possible to mea-
sure values of viscosity up to 150 Pa*s.
5.4.3.1 Telescopic shear penetrometer
A Penetrometer is a variation of plastometer 
utilizing a method of telescopic shear. Pene-
trometers are a separate group of instruments. 
The operating principle is based on the inden-
tation (penetration) of a solid body by a tool 
called the indentor. The instrument, a sche-
matic of which is shown in Fig. 5.4.4, occu-
pies an intermediate position between 
plastometers and penetrometers. If the clear-
ance between cylinders is small, then this 
measuring device is close to the classical 
plastometers. A difference in the diagram, 
shown in Fig. 5.4.4, from the basic principle 
of measurements during the telescopic flow, 
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Figure 5.4.3. Plastometer with 
telescoping flow.

Fig. 5.4.4. Telescoping shear in cylinder with closed 
bottom (Penetrometer).
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lies in the fact that the outer cylinder is made with a closed bottom. Therefore, the tele-
scopic shear between the cylinders is accomplished because the material under study is 
extruded between the cylinders from the bottom part of the instrument. Liquid resists a 
movement of the inner cylinder and the telescopic shear of liquid between cylinders 
occurs. Profiles of velocities of liquid flow between cylinders are different, as shown sche-
matically in Figs. 5.4.3 and 5.4.4.

The basic kinematic feature of telescopic flow in the instrument, shown in Fig. 5.4.4, 
is that the height of the layer between cylinders changes with time. As a consequence, the 
rate of motion of the inner cylinder under the assigned force is variable. 

The relationship between the force of insertion, F, and the rate of motion of the 
indentor (inner cylinder), V = dy/dt, is established by solving the hydrodynamic problem. 
Such a solution, known for Newtonian liquids, takes the form: 

[5.4.10] 

where K is the geometric (shape) factor, whose structure is evident from Eq. 5.4.10, and y 
is variable insertion depth. 

Further, using equality V = dy/dt, it is possible to obtain the following dependence of 
insertion depth on time: 

[5.4.11] 

By plotting the dependence y versus , it is possible to find viscosity. 
The possible method of viscosity measurement is to specify a certain assigned inser-

tion depth, y0, and measuring time, t0, required to achieve this depth under assigned load, 
F. Then, it is pertinent that 

[5.4.12] 

where coefficient k = F/K  is constant under selected (assigned) conditions of the exper-
iment.

In some cases, the resistance, exerted by the bottom surface of the indentor during its 
penetration into a liquid, can be disregarded in comparison with resistance caused by tele-
scopic flow. This happens, for example, when the indentor has the form of a needle with a 
sharp tip. With this form of the indentor, the shape factor is expressed by simpler means, 
namely 

[5.4.13] 

The above-written formulas cannot be used for non-Newtonian liquids. However, if 
the dependence of  is known, then the corresponding hydrodynamic problem for tele-
scopic flow can be solved. In practice, the method of telescopic shear, especially in the 
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version of combination with a penetrometer, is used only as a relative method of evaluat-
ing viscometric properties of the material. 

Penetrometers have found widespread use in technological practice. They are pro-
duced by a number of companies in different modifications. An instrument of such type is 
known as the Hoeppler consistometer (Germany). In the USA, the penetrometers are pro-
duced by Gardner. The geometric shape of the indentor can be arbitrary. For determining 
the softness of natural rubber, plastic materials, and unvulcanized rubber compounds, the 
so-called Humboldt penetrometer is used. Tests on this instrument are done as follows. 
Under a load of 150 g, the needle of the diameter of 1 mm with a rounded apex is pressed 
into a sample of standard dimensions. Penetration continues for 10 min, after which the 
indentation depth is measured. The latter value serves as a measure of the rheological 
properties of the material.

In some technical applications, an indentor, prepared in the form of a cone, is used. 
This is especially convenient for tests of high viscosity, filled, polymeric compositions. In 
this case, measurement of penetration velocity gives the characteristics of viscometric 
properties of the material, and the maximum indentation depth, reached during the appli-
cation of a specific load, characterizes certain structural strengths of the material. In the 
simplest case, this strength, FY, is defined as 

[5.4.14] 

where the shape factor, K, is expressed as K = πcos2αcotα with α being half of the vertex 
angle of the cone.

The main methodological problem arises because of measurements of small defor-
mations (displacements). This difficulty is especially significant when the application of 
large contact loads is inadmissible since measurements are carried out at low stresses and 
therefore small displacements. The general solution to such a problem is to utilize noncon-
tact methods of measurements, for example, using optical methods (including interferom-
etry), and also mechano-electronic lamp sensors. 

5.5 METHOD OF FALLING SPHERE
5.5.1 PRINCIPLES 
Experimental methods, considered in this section, are based on the measurement of resis-
tance to motion of a solid body in liquid. In contrast to all methods discussed in previous 
sections, these methods are about external flow around solid bodies. The resistance to 
motion of a solid body in the liquid is determined by its viscosity. Two versions of a 
method can be envisioned: one is velocity measurement of motion under a given force and 
another is the force measurement under a given speed of motion. These two versions are 
completely analogous to methods used in the theory of capillary or rotational viscometry 
where preselection of one parameter and measurement of another parameter from a pair 
pressure/volumetric flow rate or torque/velocity of rotation is used.

A theory of the absolute method of viscosity measurements will be examined below. 
The theory is based on the simplest measuring scheme: a solid sphere is used as a moving 
body. The sphere falls along the axis of a cylindrical tube filled with the liquid being 

FY
F

Kh3
----------=



5.5 Method of falling sphere 349

tested, and the velocity of the sphere is measured. This is shown in 
Fig. 5.5.1. It is assumed that the tube is vertical. The theory of 
motion of a solid sphere, which can be further refined, is valid as 
the first approximation under the following assumptions: 

• the motion is steady, i.e., the rate of sphere descent is con-
stant

• the inertia effects are considered negligible, i.e., motion 
occurs at low values of Reynolds number, Re (Re < < 1)

• liquid is Newtonian 
• the wall effect on a sphere motion is neglected, i.e., the 

sphere radius is much smaller than the tube radius
• the sphere moves strictly in a vertical direction.
During the sphere motion of a radius, R, made out of a mate-

rial having a density, ρs, in a liquid having a density, ρl, under the 
action of the gravitational force, the driving force equals: 

       [5.5.1]

where g is the gravitational acceleration. The force resisting motion 
of a sphere in a viscous fluid is described by the Stokes formula: 

[5.5.2] 

where  is the rate of steady (indicated by subscript ) descent of sphere and η is the 
viscosity of the investigated liquid. 

Under the assumption of the equality of the two above-written expressions (motion 
is assumed to be steady), the following formula for determining viscosity from the mea-
sured rate of sphere descent is obtained: 

[5.5.3]

The measured viscosity is inversely proportional to the steady state-velocity of 
sphere descent and linearly proportional to the difference in densities of sphere and liquid. 
It is usually considered that this formula is applicable if Re < 0.1. The Reynolds number is 
calculated from 

[5.5.4] 

The shear stress on the surface of the moving sphere, σR, can be estimated according 
to the following equation: 

[5.5.5] 
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Figure 5.5.1. Scheme of 
measurements of viscos-
ity by method of a falling 
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marks.
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5.5.1.1 Corrections 
5.5.1.1.1 Correction for inertia effect 
If the condition Re < 0.1 is not fulfilled in this experiment, then it means that it is neces-
sary to make the correction for the inertia effect using the following expression:61 

[5.5.6] 

The expression in brackets is a correction for the inertia effect. Eq. 5.5.6 must be 
used instead of Eq. 5.5.2 to introduce correction. It is sufficient to include the second term 
in the correction factor. Taking into account this correction, an expression for calculating 
viscosity takes the form: 

[5.5.7] 

Correction for the inertia effect is negligible if inequality  is fulfilled.
5.5.1.1.2 Correction for wall effect 
In many practically important cases, the wall effect of a tube on the results of measure-
ment cannot be disregarded, i.e., an inequality R << Ro is not fulfilled. In this case, it is 
necessary to make the correction for the wall effect. If η is viscosity, found from the first 
approximation, i.e., according to Eq. 5.5.3, then the viscosity η0, calculated by taking into 
account wall effect is determined as62 

[5.5.8] 

The correction for the wall effect can be neglected only if (R/R0) < 0.001, which is a 
sufficiently restrictive condition that is usually not satisfied. Therefore, an introduction of 
correction according to Eq. 5.5.8 is usually necessary. 
5.5.1.1.3 Correction for non-Newtonian behavior of liquid
A method of viscosity measurement based on the velocity of sphere descent is intended 
for the analysis of Newtonian liquids. However, it is a priori unknown, if the liquid being 
investigated exhibits Newtonian or non-Newtonian properties. But if the experiment does 
show that apparent viscosity, calculated from the above-given formulas, is dependent on 
shear stress, then a basic method is to extrapolate the obtained dependence of apparent vis-
cosity and the shear stress, η(σ), to a limit . For this purpose, it is assumed that the 
dependence η(σ) is described by known formulas. For example, it is possible to represent 
η(σ) by the following empirical dependence

[5.5.9] 

where η0 the initial Newtonian viscosity, K is the constant.
Then, after presenting experimental data in coordinates of η-1 vs. σ2 and extrapolat-

ing them to , it is possible to find a value of η0. In this case, a constant K is also 
determined. It can be related to the characteristic relaxation time of non-Newtonian liquid. 
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An analogous method is used if rheological properties of the liquid are described by 
a different equation than Eq. 5.5.9: a selection of the form of dependence of η(σ) is deter-
mined by the selection of coordinates which permit linearization of experimental data in 
order to ensure their reliable extrapolation to σ = 0. 

The use of the methodology of processing experimental data presented above makes 
it possible to obtain values of viscosity with an error not exceeding fractions of a percent.

Additionally, the increase in accuracy of measurements is achieved by the applica-
tion of the following recommendations: velocity measurements should be conducted in 
the middle part of the tube (in order to eliminate inertia effect at the initial stage of sphere 
descent and the end effects at the bottom of a tube); averaging data, obtained in repeated 
measurements after turning a tube by 180o (in order to exclude a non-perpendicularity of 
tube axis); use of an automatic method of timing motion of a sphere between two markers 
(in order to exclude a subjective factor in measurements), etc. In the measurement of vis-
cosity of Newtonian liquids, by varying material from which a sphere is made, or the 
sphere radius, it is possible to conduct measurements in the range of shear stresses from 
~1 to 100 Pa and to measure viscosity in the range from <10-3 to 102 Pa*s.
5.5.2 METHOD OF THE ROLLING SPHERE
A cylindrical tube can be used under a preselected angle, , in one of the variations of the 
method. The driving force, instead of Eq. 5.5.1, is written as follows: 

[5.5.10] 

The motion of the sphere occurs by rolling and sliding along a wall. The diameter of 
the tube is made slightly larger than the diameter of the sphere so that in reality flow of 
liquid occurs in a comparatively narrow clearance between the sphere and the tube wall. A 
solution of the flow of Newtonian liquid can be written as follows63 

[5.5.11] 

where p is the pressure exerted by a sphere of weight, F, namely p = F/πR2,  is the 
velocity of a steady motion of the sphere, C is the instrument constant. The theory gives 
the following formula for constant, C, expressed through the diameter of the sphere, D, 
and the clearance, δ, between the tube wall and the sphere: 

 [5.5.12] 

Use of Eqs. 5.5.11 and 5.5.12 allows one to consider instruments with the rolling 
sphere as absolute instruments. However, usually, instruments of such type are used for 
comparative measurements of viscosity. In this case, Eq. 5.5.11 is written in a somewhat 
different form, namely 

[5.5.13] 
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with the instrument constant, C0, found during calibration of the instrument for each 
sphere, available in a complete set. 

For evaluating shear rates and shear stresses, at which viscosity measurements in 
instruments with the rolling sphere are made, it is possible to use the following formulas: 

[5.5.14] 

and 

[5.5.15] 

Instruments of the type under consideration are rarely used for measurements of the 
viscosity of non-Newtonian liquids, although the theory of such measurements is 
known.64 
5.5.3 VISCOMETERS WITH THE FALLING SPHERE
Production of instruments with a falling sphere is simple. It is sufficient to have a glass 
tube, stopwatch, and a sphere of a known diameter. 

Commercial viscometers preferably do not use a free fall, but a rolling sphere. This 
helps in avoiding eccentricity during the free fall and gives reproducible results. Such 
instruments operate as viscometers for measuring relative viscosity, and their calibration is 
carried out on standard liquids. 

Viscosity measurements by the falling sphere method are standardized in a number 
of countries (e.g., ISO/DIN 12058, DIN 53015, etc.). 

The Hoeppler viscometer (Germany) is one of the commercial instruments. The 
instrument cylinder is made from heat-resistant glass. The cylinder has a diameter of 16 
mm, a length of 200 mm. The cylinder is installed at an angle of 10o to vertical. The cylin-
der is immersed in a liquid thermostat, maintaining temperature in the range from -35 to 

150oC. The experiment consists of the mea-
surement of time for the sphere to move 
between two markers, located on the cylin-
der in its middle part. The viscometer is 
supplied with a collection of spheres, made 
of materials of different densities, e.g., 
steel, glass, tungsten. Viscosity can be mea-
sured from a few hundredths to 200 Pa*s.

Many companies produce these 
instruments. Physica produces a portable 
viscometer, Anton Paar AMVn. Special 
features of this instrument are a very small 
volume of the test sample (to 150 ml), a 
possibility of changing the inclination 
angle of the cylinder from 15 to 80o, a pos-
sibility of conducting measurements in the 

γ·
2 U∞ δ⁄( )

1 δ D⁄–( )2
---------------------------=

σ 0.2 1 δ D⁄–( )1 2⁄=

Figure 5.5.2. Rusk viscometer with a rolling ball. a −
general view; b − tube placed in a high pressure cham-
ber. (Rusk Instruments, USA).
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range of temperatures from 10 to 100oC, automation of measurements and processing of 
the obtained results.

An interesting modification of instruments with a falling sphere is the Rusk viscome-
ter manufactured by Rusk Instruments, USA (see Fig. 5.5.2). Measurements of viscosities 
can be carried out under high pressures. In a working cylinder of this instrument, a pres-
sure of up to 84 MPa is created. The instrument can work at temperatures up to 350oC. 
The construction of the instrument makes it possible to vary the angle of inclination of the 
cylinder. Measurements of ball velocity are accomplished with an electrical detector, 
which makes it possible to automate the process of measurement.

Laboratory instruments, analogous in designs to the Rusk viscometer, are known in 
which pressure and temperature can, respectively, reach 500 MPa and 400oC.65 A working 
cylinder in this instrument is prepared from a quartz tube with a diameter of 7.125 mm. 
The tube can be installed at different inclination angles. The velocity measurement is 
accomplished by a non-contact method using capacitance pickups, which are the 
Nichrome rings, attached to the tube. For obtaining clear signals, the liquid being investi-
gated must have a specific resistance not lower than 106 Ohm*cm.
 5.5.4 VISCOMETERS WITH FALLING CYLINDER
In the laminar motion of any body in a viscous, Newtonian liquid, a force resisting motion, 
F, is proportional to the viscosity of the medium. Therefore, by measuring F, it is possible 
to determine viscosity. In viscometers in which this principle is used, sometimes instead of 
a falling sphere, a body of the cylindrical form is used. 

During the motion of a cylinder having a radius of Ri along its axis being coaxial 
with the cylindrical tube having a radius of Ro, a flow occurs in the space between two 
cylindrical surfaces. The velocity profile is described by a known formula, easily obtained 
from the equilibrium condition of a fluid element by taking into account corresponding 
boundary conditions. This formula takes the form: 

[5.5.16] 

where V(r) is the velocity, which depends on the radial coordinate, r, V0 is the velocity of 
motion of the inner cylinder.

Hence, the following expression for a force, f, resisting motion per unit length of the 
cylinder is obtained 

[5.5.17] 

and the shear rate (derivative dV/dr) is calculated on a surface of the inner (moving) cylin-
der.

Eq. 5.5.17 makes it possible to calculate a component of resistance to the motion of 
the cylinder, that acts on its lateral surface. A complete expression for the velocity of a 
body descending in a liquid under its own weight, V0, with a difference in the material 
densities (ρs − ρl) of the solid body and liquid, takes the form66 
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[5.5.18] 

where k = Ri/Ro, and χ the correction factor due to edge effects, the values of which can 
theoretically be computed. 

Checking this formula for Newtonian liquids with viscosity from 0.08 to 5 Pa*s 
shows that viscometers under consideration permit one to determine viscosity with the 
error of up to 0.5% if the Reynolds number does not exceed 25. 

In spite of the existence of theoretical background for viscometers with falling cylin-
ders, they are usually used for relative measurements of viscosity, by calculating viscosity 
from a measured rate of fall of a cylinder, V0, as 

[5.5.19] 

where B is the instrument constant, determined during its calibration using a standard liq-
uid of known viscosity. 

Viscometers with a falling cylinder are very simple to construct, but their use in prac-
tice is limited since they do not possess essential advantages of viscometers with the fall-
ing sphere. These instruments are used for measuring the viscosity of foaming liquids 
under conditions of high hydrostatic pressure.67 For this application, the instrument has an 
enclosed high-pressure chamber with noncontact measurement (by induction sensor) of 
rod velocity (rod is rigidly connected to the falling cylinder). The cylinder, lifted to a 
given height falls under its own weight. Measurements of viscosity at pressures up to 15 
MPa are possible.

5.6 EXTENSION
5.6.1 GENERAL CONSIDERATIONS 
Important and unique methods of determining viscometric properties of liquids are mea-
surements that are carried out by uniaxial extension. Mechanical properties of solid mate-
rials and rubbers under stresses are measured by uniaxial extension. A basic 
methodological difficulty exists for liquid measurements. The integrity of the stream has 
to be maintained in order to make successful measurements. This is difficult or even 
impossible with low viscosity liquids, such as water. But for high-viscosity fluid (e.g., 
polymer melts) integrity of a measured sample can be maintained for the duration of the 
measurement. The method is mostly used for polymeric materials. 

General theoretical considerations, related to the extensional flow, were examined in 
Section 3.7. Total deformation has to be separated into irreversible and elastic compo-
nents. For Newtonian liquids, there is a correlation between viscosity measured during 
shear flow and longitudinal viscosity (the Trouton law). The same is correct for a linear 
viscoelastic body, since viscoelastic characteristics, measured in shear flow, with factor 3 
are equal to the analogous characteristics, measured by elongational flow (see Eq. 3.7.2). 
Results of testing elongational flow in the nonlinear region give new independent infor-
mation about rheological properties of the material, which cannot be obtained from shear 
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flow measurements. For these reasons, the 
linear extension is an important indepen-
dent type of experiment. The information 
has theoretical value in rheological studies 
and it is important for many practical appli-
cations, for example, in the analysis of pro-
cesses of fiber spinning, film drawing, etc. 

Uniformity of deformation is of fun-
damental importance in uniaxial extension 

experiments. During extension experiments with viscous fluids, the sample retains its 
integrity because viscosity is very high (~109 Pa*s). But the sample decreases its surface 
of cross-section, which eventually leads to its rupture. With the extension of polymeric 
viscoelastic liquids, uniformity of sample shape along the length results from material 
elasticity, which is a stabilizing factor. 

Let us examine a diagram of a sam-
ple, that, at one end is fixed in a clamp, and 
the other end is extended at a certain speed, 
v, by force, F, (Fig. 5.6.1). The initial 
length of the sample equals l0. The length 
of the sample after extension for time, t, 
has length, l. Then, the external force is 
removed, and the sample restores its length 
to lf. The difference between lf and l0 is a 
strain experienced during viscous flow. 
Measuring this strain in time, t, the strain 
rate is obtained. By measuring the revers-
ible component of strain, i.e., the difference 
(l − lf), the elasticity of material under 
study can be determined.68 
5.6.2 EXPERIMENTAL METHODS 
5.6.2.1 The simplest measuring 
            schemes
In a simple experiment, a sample is 
attached to a fixed clamp and a load is 
attached to another end of the sample. 
Measuring the rate of extension gives 
strain rate and known load gives stress. 
Using these data, apparent viscosity can be 
calculated as a measure of sample resis-
tance to elongation, although, in a strict 
sense, calculated apparent viscosity is not 

true viscosity but a relative characteristic of rheological properties of the material in uni-
axial extension. This characteristic is useful for the technological evaluation of materials.

The molecular weight of ultrahigh molecular weight polyethylene was estimated by 
uniaxial extension.69 Stress at the extension of up to 600% was measured with different 

Figure 5.6.1. Typical diagram illustrating uniaxial 
extension.

Figure 5.6.2. Instrument Rheotens for qualitative evalu-
ation of extensibility and strength during elongation of 
polymer melts. [Adapted, by permission, from M. F. 
Wagner, B. Collington, J. Verbeke, Rheol. Acta, 35, 117 
(1996)]. 
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samples at 150oC for 10 min. The change of molecular weight from 2x105 to 107 (about 2 
decimal orders) increases stress by 4 decimal orders.70 

Rheotens71 (Fig. 5.6.2) is a commercial instrument used for measurements of viscos-
ity in extension. This instrument permits the determination of two basic parameters of 
polymer: apparent longitudinal viscosity and the maximum extension to rupture. Melt is 
supplied by an extruder into the head. Then, the extrudate is pulled from the head by rotat-
ing rollers. The speed of roller rotation can be varied. Pressure, P, at the entrance of the 
head and the force with which rollers pull the extrudate are measured (a block diagram of 
the latter is shown in the dash rectangle). By changing the feed rate of melt and roller rota-
tion rate, the deformation rate can be varied. A maximum permissible speed of drawing 
characterizes the melt strength properties during the extension.
5.6.2.2 Tension in a controlled regime 
Quantitative measurements of elongational viscosity in uniaxial extension consist of con-
trolled extension through the imposition of constant strain and measurement of stress, or 
imposition of constant stress and measurement of strain rate. In essence, the methodology 
here is the same as in any other rheological experiment, in which one parameter (kine-
matic or dynamic) is maintained constant and the other is measured.

The end of the extrudate in Fig. 5.6.1 is moved with a velocity of v(t), which is var-
ied with time in such a manner that strain rate (or similarly a gradient of the longitudinal 
velocity) remains constant. At the initial length of the sample, l0, the initial strain rate 
equals v0/l0, where v0 is the initial extensional velocity.

As extension progresses, the length of the sample increases according to the follow-
ing expression 

[5.6.1] 

In order for the strain rate to remain constant and equal to the initial value of , it is 
necessary that the rate of extension increases according to the equation 

[5.6.2] 

If stress is constant, then the initial tensile force, F0, must decrease proportionally to 
elongation, since elongation is accompanied by a decrease of the cross-section of the sam-
ple. Thus, if the sample was stretched λ times, then the tensile force must decrease to the 
value of F0/λ.

Automatic control of force or rate of extension must be used to conduct extension 
under controlled conditions. Early attempts used various mechanical devices, but now 
only electronic control systems are used. Measurement of longitudinal viscosity is shown 
in Fig. 5.6.3. The extension is accomplished using clamps with the speed of their rotation 
(also the strain rate) regulated by a drive system. The force is measured by a sensor con-
nected to an elastic element.72 In order to avoid sample bending, the sample is placed on 
the surface of the liquid. This liquid bath also serves as a thermostat.

The imposed strain rate is controlled by the selection of rotation frequency of driving 
rollers. If it is necessary to conduct tests under constant stress, then the force transducer 
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controls speed. Dimensions of the instru-
ment permit measurements of extension up 
to 50 times the initial length of the sample. 

These instruments can measure strain 
rates from ~10-3 to 10 s-1. Detailed analysis of errors confirmed the reliability of results 
and possible limitations of the method.73 

The latest version of the extensional rheometer intended for high tensile stresses can 
create tensile stresses of up to 0.3 MPa for a time shorter than 0.02 s. The total deforma-
tion ratio can be as high as 100 (it corresponds to Hencky deformation of approximately 
4.6). These parameters are achieved using a pneumatic loading system.74 

An interesting and rather simple method for extensional rheometry of films is known 
as the Sentmanat Extensional Rheometer (SER).75 The concept of the method is shown in 
Fig. 5.6.4 and the horizontal section of a sample is drawn in Fig. 5.6.5.

A film H (it can be rubbery-like or liquid film) is stretched due to the rotation of 
shafts A and B rotating with a given rate, Ω. The values under measuring are torque and 
thus stretching force F and the width of a film changing in time A(t) and thus the deforma-
tion of a sample. These values allowed us to calculate the rheological characteristic of a 
sample in extension. The Hencky strain rate applied to the sample is calculated as

Figure 5.6.3. Principal scheme of testing of sample in 
uniaxial elongation under controlled conditions. A −
sample; R − two pairs of drawing rollers; S − elastic 
element; T − force transducer.

Figure 5.6.4. Scheme of the SER method of measuring 
extensional properties of a film. A and B − rotating 
shafts, C − cups, D - coupling, E - screen, F − drive, G 
− torque transducer, H − sample under study. 

Figure 5.6.5. Section of a device showing the main 
parameter under measuring − time evolution of the 
width of a film A(t). 
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 Then the transient elongational viscosity is calculated as

5.6.2.3 Tubeless siphon instruments 
In a uniaxial extension of viscoelastic liquids a so-called siphon effect, described in Sec-
tion 3.7.4 and shown in Fig. 3.7.10, is observed. 

A complex velocity profile, arising during flow, does not permit us to consider this 
as an absolute method. However, direct measurements demonstrated that at a certain 
length of jet, the velocity gradient remains constant.76 The latter gives the basis for quanti-
tative calculations of elongational viscosity according to experimental data obtained in the 
regime of siphon flow. The strain rate is controlled by the variation of the speed of wind-
ing of the liquid jet. The force of extension is created either by connecting the free end of 
the capillary to a vacuum (as in Fig. 3.7.10) or by measuring the force acting on the wind-
ing roller (as in Fig. 3.7.10).

In known instruments of such type, the frequency of roller rotation is in the range 
from 0.1 to 170 s-1, which gives velocity gradients of up to 200 s-1. Such high rates of 
elongational deformation cannot be created in instruments with controlled regimes of 
extension. The attractiveness of this method is also related to the fact that with siphon flow 
it is possible to investigate comparatively low viscosity (but elastic), moderately dilute, 
polymer solutions that cannot be studied in instruments with controlled regimes of exten-
sion. At the same time, this method and instruments based on this principle should be con-
sidered as relative, since during the siphon flow it is difficult to separate viscous flow from 
the elastic deformation. 

5.6.2.4 Flow in convergent channels 
During an abrupt change in the cross-section of a channel, the 
longitudinal acceleration of flow is developed at the entrance 
to a small channel. It was proposed to use this special feature 
of flow for the evaluation of longitudinal viscosity.77 The dia-
gram of flow in a converging channel is shown in Fig. 5.6.6. 
It is evident that upon transfer from a tube having a radius, 
Ro, to a capillary having a radius, Ri, the cone-shaped flow is 
formed with an angle, θ, and length, L. In this zone, shear and 
elongational flows are superimposed. 

In order to estimate the elongational viscosity, a pres-
sure difference, Δp, at the entrance into a capillary should be 
measured. This difference is responsible for the elongational 
flow and determination of the normal stress. The rate of 
stretching deformation is found from rates of flow in the tube, 
Vo, and in a capillary, Vi, as 

ε·H
2ΩR

L0
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ηE
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Figure 5.6.6. Flow in converging 
channel − longitudinal velocity 
gradient.
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[5.6.3] 

Hence, it is possible to find a relative value of the elongational viscosity, ηE. 
However, a problem that remains undetermined during this evaluation is the contri-

bution of shear strains. For stricter calculations of the velocity field and, correspondingly, 
the elongational viscosity, the approach of a lubricating film layer is used. According to 
this model, it is assumed that shear occurs in a very thin (lubricating) layer, and in the 
material bulk uniaxial extension occurs.78 The problem with this concept is that correct 
theoretical calculation is possible only if the model of rheological behavior of investigated 
material is a priori known, which is not always possible. 

5.6.2.5 High strain rate methods 
Several methods of studying elongational flow were pro-
posed for the analysis of elongational deformations of dilute 
solutions, in the limit for studying the extension of individual 
macromolecules.79 A diagram of the four-rollers method is 
shown in Fig. 5.6.7. A liquid is taken into the interroller space 
and then it is drawn out of it. There is a certain region where 
flow occurs in a pure shear mode that is equivalent to two-
directional (planar) elongation (see Section 1.2.4.2). Using 
optical methods (birefringence) it is possible to estimate the 
gradient of longitudinal velocity and stress, and thus the elon-
gational viscosity of polymeric solutions at deformation rates 
of the order of hundreds s-1. This method is very informative 
for evaluating some physical properties of macromolecules 
(for example, see Fig. 3.7.11 and discussion in Section 3.7.5). 

This method also allows one to observe instabilities due to the elasticity of polymeric 
strands in dilute solutions. 

Another optical method of investigation of the longitudinal flow of dilute polymer 
solutions includes the flow of liquid in two coaxial capillaries moving towards each other. 
Here, in a certain flow region, the uniaxial longitudinal flow is realized. Deformation rates 
can exceed 103 s-1. Both methods can be used for studies in the field of polymer physics, 
in particular, to observe the coil-to-stretch transition of flexible macromolecules.
5.6.2.6 Capillary breakup elongational rheometry
The interest in extension properties of low viscosity substances (polymer solutions, emul-
sions) leads to the creation of a new type of instrument.80 The method consists of an exten-
sion of a small liquid droplet placed between parallel plates. This liquid droplet has a 
cylindrical shape. Then, the plates are rapidly moved apart from each other. This type of 
deformation can be treated as a step strain. The evolution of the liquid bridge between 
plates is treated in the terms of viscous and viscoelastic properties of a matter. The final 
stage is the break-up of the sample. This method can be applied to liquids with viscosities 
down to several tens mPa*s.

The scheme of this method is presented in Figure 5.6.8 (first proposed in81 and later 
widely used in many studies, including theoretical basing of the method, e.g.).82 
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Figure 5.6.7. Four-rollers method 
for creation of longitudinal flow.
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 A model of a sample under stretching 
is shown in Fig. 5.6.9. Measuring the pro-
file of a sample surface allows for calculat-
ing the relaxation times, while the L(t) 
function is determined by the driving 
device.

 A typical view of the profile charac-
terized by the changes in the radius at the 
most contracted position is shown in Fig. 
5.6.10.

The complete analysis of the dynamic of stretching a viscoelastic filament was given 
elsewhere.83 As the first approximation, the time dependence of the radius is described by 
the exponential function 

This approach allows us to find the characteristic relaxation time, θ, of a visco-elas-
tic liquid. 

The important advantage of the described method is a possibility of its application to 
rather low viscosity liquids including colloidal systems and dilute polymer solutions. This 
opens definite promising aspects in characterizing liquids used in oil recovery industry 
and in other non-traditional areas. For example, this method can be used for estimation 
fiber spinning ability defined as ln (Lmax/L0), where L0 is the initial length of a filament 
and Lmax is the length at the point of rupture.84 
5.6.3 BIAXIAL EXTENSION 
Material testing using the biaxial extension (at equal or different strain rates in two mutu-
ally perpendicular axes), just as in a uniaxial extension, gives independent information 
about rheological properties of materials, and therefore, it is of interest. Biaxial exten-
sional flow occurs in several polymer processing operations such as film blowing, blow 

R R0e t 3θ⁄–=

Figure 5.6.8. A scheme of the method for measuring 
deformability of a liquid droplet in extension.

Figure 5.6.9. A sample with measured values.

Figure 5.6.10. A typical time dependence of the sample 
radius at the most contracted position (at the middle of a 
sample).
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molding, and vacuum forming. 
Therefore, the rheological behav-
ior of polymers subjected to biaxial 
extension is of prime importance in 
understanding and improving such 
processes. Significant research in 
biaxial rheology has occurred, primarily during the last two decades. 

A number of methods are used to obtain a biaxial extension of polymer melts includ-
ing sheet inflation,85 axisymmetric and planar stagnation,86 lubricated squeezing flow,87

and sheet elongation.88 
Sheet or bubble inflation involves a circular sample that is clamped around its perim-

eter (Fig. 5.6.11). Inert gas or silicone oil under pressure is introduced to one side of the 
sheet, causing inflation of the bubble. An equal biaxial elongation occurs at the top of the 
bubble. The strain rate is calculated by measuring the deformation of grid marks made on 
the sample. The stresses in the inflated 
bubble are related to the internal pressure 
by controlling which one can impose a 
constant stress or constant elongation rate.

An axisymmetric and planar stagna-
tion flow involves impinging two melt 
streams through lubricated hyperbolic-

Figure 5.6.14. Instrument with rotary clamps for mea-
surement of biaxial viscosity. [Adapted, by permission, 
from J. Meissner, S. E. Stevenson, A. Demarmels, P. 
Portmann, J. Non-Newt. Fluid Mech., 11, 221 (1979)]. 

Figure 5.6.11. Schematic of bub-
ble inflation rheometer. 
[Adapted, by permission, from C. 
D. Denson, R. J. Gallo, Polym. 
Eng. Sci., 11, 174 (1971)]. 

Figure 5.6.12. Schematic representation of die for creat-
ing lubricated planar stagnation flow of a polymer melt. 
[Adapted, by permission, from H. H. Winter, C. W. 
Macosko, K. E. Bennet, Rheol. Acta, 18, 323 (1979)]. 

Figure 5.6.13. Schematic of lubricated squeezing flow 
instrument. [Adapted, by permission, from S. Cha-
traei, C. W. Macosko, H. H. Winter, J. Rheol., 25, 433 
(1981)]. 



362 Rheometry Experimental Methods

shaped walls (Fig. 5.6.12). Constant biaxial elongation rates are obtained with stresses 
measured by the birefringence method or by measuring the pressure required to drive the 
polymer melt through the diverging and converging flow by means of a pressure trans-
ducer.

A lubricated squeezing flow is achieved by placing a polymer melt disk between two 
solid disks with their surfaces lubricated by a low viscosity fluid (Fig. 5.6.13). Squeezing 
is imposed by moving the top disk towards the lower disk at a controlled speed. Constant 
elongation rates can be achieved. The normal stress difference is calculated by measuring 
the normal force during squeezing flow and therefore biaxial viscosity can be measured. 

A sheet elongation is achieved by stretching a sheet of polymer along its periphery 
using specially designed rotary clamps (Fig. 5.6.14). The rotary clamps are able to pull the 
sample at a controlled rate in two directions. The pulling force is measured on clamps. 
Depending on the arrangement of clamps, equal biaxial stretching or planar elongational 
flow can be achieved.

5.7 MEASUREMENT OF VISCOELASTIC PROPERTIES BY 
      DYNAMIC (OSCILLATION) METHODS
5.7.1 PRINCIPLES OF MEASUREMENT − HOMOGENEOUS DEFORMATION

Let a uniform isotropic sample be 
placed between two parallel plates 
A and B (Fig. 5.7.1). The gap 
between the plates is small in 
comparison with the size of plates. 
The edge effects are assumed to be 
negligible.

Plate A is subjected to 
forced oscillations in accordance 
with a harmonic law:89 

[5.7.1]

where xA is a displacement of plate A depending on time t, x0A is the amplitude, and ω is 
the frequency of oscillation.

It is assumed that slip on the boundaries of the plate is absent. Stresses appearing as a 
result of the movement of plate A are transferred via sample to plate B. The latter is joined 
to a stationary fixed frame of the measuring device through an elastic element − a spring 
of rigidity, Z.90 The displacement of the upper plate is a measure of stresses in the sample 
which characterize the rheological properties of the material. It is assumed that a layer of 
material is thin enough to suppose that stresses inside the sample are uniform and the mass 
of the sample is negligible. The last suppositions will be formulated quantitatively below 
in Section 5.7.2.

If properties of material do not change in time, the movement of plate B will occur 
by a harmonic law with complex amplitude  and with the same frequency, ω, 
as the movement of plate A:

xA t( ) x0Aeiωt=

xB
* x0Beiα=

Figure 5.7.1. Principal scheme of measurements in forced oscillat-
ing mode. 1 − sample; 2 − driving plate A; 3 − plate B connected 
with a measuring device; 4 − spring of a measuring device with 
rigidity Z.
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[5.7.2]

In this expression, x0B, is the amplitude of oscillations of plate B and α is the phase angle
− phase difference between displacements of both plates.

For material with arbitrary properties, the relationship between shear stresses, σ, and 
deformations, γ, can be written as 

where G* is the complex dynamic modulus depending on frequency.
The main experimental goal is to calculate G* = G' + iG" based on the pre-set value 

of x0A, and measured values of x0B and α, and known sizes of the measuring device at dif-
ferent frequencies.

In the ideal scheme of deformation considered here, the equation of motion of the 
point C in Fig. 5.7.1 is written as

[5.7.3]

The value (xB − xA)/h is deformation dx/dz, S is the surface area of plates, h is the gap 
between plates, the ratio K = S/h is the form-factor, and m is the mass of plate B. This 
equation is solved by substitution of expressions for xA (Eq. 5.7.1) and xB (Eq. 5.7.2). The 
final result obtained after rearrangements is

[5.7.4]

By separating real and imaginary parts of the expression for G*, one obtains the fol-
lowing formulas for the components of the dynamic modulus:

[5.7.5]

 [5.7.6]

and 

[5.7.7]

The factor p is the amplitude ratio: p = x0A/x0B.
Eqs. 5.7.5 and 5.7.6 are the solutions to the formulated problem. A particular case of 

this solution is important when Z >> mω2. The last inequality means that the inertia of the 
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moving parts of plate B is negligible in comparison with the force of the deforming spring. 
The high rigidity of the spring also provides its small displacement. So it can be assumed 
that in this case p >> 1. This leads to the most simplified expressions for the components 
of dynamic modulus:

[5.7.8]

[5.7.9]

The phase angle, α, equals loss angle, δ. However, this is not so in a general case, as seen 
from Eq. 5.7.7.

Eqs. 5.7.5 and 5.7.6 are valid in the whole frequency range except for the resonance 
frequency of the measuring device, ω0, which is calculated as 

[5.7.10]

The results of measurements in the vicinity of ω0 are unreliable because even a slight 
error in measuring phase angle and amplitude ratio leads to a large error in calculating 
components of dynamic modulus.91 

In the application of the principal scheme of the complex modulus calculation, a 
problem arises as to how to correctly measure small phase angles. One possible solution to 
the problem is to use controlled amplification of signals of a measuring device.92 This 
method permits the measurement of phase angles as low as 1*10-4 rad. The other approach 
is based on the correlation method − removing noise of signals by measuring the angle in 
a number of cycles of oscillations. This improves reliability in calculating components of 
dynamic modulus.93 In both cases, this problem is solved by the application of known 
electronic means and using computer techniques.
5.7.2 INHOMOGENEOUS DEFORMATIONS
An ideal scheme of measurements, as discussed in Section 5.7.1, did not take into account 
possible inhomogeneity in the sample deformation. However, a general case must include 
consideration of stress distribution inside a sample if a gap size between plates in Fig. 
5.7.1 is not very small. Besides, it is necessary to give a strict definition of the limitation 
of the gap size in order to consider it to be small. The solution is based on the analysis of 
equilibrium of an infinitesimally thin layer of material of thickness, dz, which is parallel to 
the plates. The equilibrium equation for this layer is

[5.7.11]

where ρ is the density of material under investigation.
The displacement x depends on time as well as on the distance from plate A desig-

nated by coordinate z (for plate A, z = 0). The general solution of Eq. 5.7.11 is

[5.7.12]

G' Z
Kp
------- αcos=

G'' Z
Kp
------- αsin=

ω0 Z m⁄=

ρd2x
dt2
-------- G*∂2x

∂z2
--------– 0=

x z t,( ) x0
* z( )eiωt x0eiαe

iωt
= =
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where  is the complex amplitude of oscillations in a layer located at position z and α is 
the phase angle in this layer (depending on z). 

Substituting Eq. 5.7.12 into Eq. 5.7.11 gives the linear second-order differential 
equation for  

[5.7.13]

The integration constants are found from boundary conditions:

 at z = 0

and the equilibrium conditions for forces acting at plate B:

 at z = h.

The solution of Eq. 5.7.13 with these boundary conditions gives the function x(z, t) and its 
particular case at z = h: . Then, the ratio  is found which is 
expressed in the following manner

[5.7.14]

where 
Eq. 5.7.14 is the complete solution of the problem under discussion because it is an 

equation for G* including all necessary parameters − x0A and , the latter being deter-
mined if amplitude, x0B, and phase angle, α, have been measured.

However, this equation is not convenient for practical applications because the 
unknown value G* enters not only the coefficient of the second term at the right-hand side 
of Eq. 5.7.14 but also constant k. Therefore, approximations based on this equation are 
ordinarily used. For this purpose, the functions entering this equation are presented as the 
Taylor series, and the higher-order terms of G*, other than (G*)-1, are omitted. Then, the 
linear approximation leads to

[5.7.15]

A possibility to use Eq. 5.7.15 instead of the exact solution Eq. 5.7.14 is determined 
by the condition (kh)2 << 5 or G* >> 0.2ρω2h2, i.e., the gap h must not be too large.

The practical application of Eq. 5.7.15 is based on separating it into real and imagi-
nary parts.

Eq. 5.7.15 can be written in a form equivalent to Eq. 5.7.4, if one writes the right-
hand side of Eq. 5.7.15 as

[5.7.16]
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where m0 = m[1 + (ms/2m)] is called the reduced mass and the value ms = ρSh is the mass 
of the deforming sample. The value ms/2 is called the coupled mass. Using m0 instead of 
m in Eq. 5.7.4 accounts for the inertia of the sample.

The physical meaning of approximation, Eq. 5.7.15, and neglecting the stress distri-
bution inside a sample, can provide a clear understanding of the meaning of the product 
kh. If the displacement of plate B is very small such that x0B << x0A, then it is possible to 
show that the initial amplitude of deformation, x0A, damps by e times at a distance δ from 
plate A determined by equality (kδ) = 1.94 The value δ in the theory of oscillations is 
called attenuation. Damping is negligible (or deformations in the sample can be consid-
ered as uniform) if the following strong inequality is valid: h << δ. This inequality shows 
that the term “small gap” means such a gap thickness along which damping oscillation 
inside the sample is negligible.
5.7.3 TORSION OSCILLATIONS
This type of deformation mode is realized for rigid materials if the sample is prepared in 
the form of a long rod that can maintain its shape. Also, this deformation mode is realized 
in all rotational devices, which were described in Section 5.3 for measuring rheological 
properties of fluid materials, if one uses oscillations instead of rotation. In this case, the 
sample fills a gap between coaxial cylinders, cone and plate, or two parallel disks in the 
rheometer. In all these cases, the angle of torsion is assumed to be small enough to exclude 
axial deformations.

An equation describing torsional oscillations of the cylindrical sample caused by 
twisting of one of its ends is written as

[5.7.17]

where  is a complex amplitude of twisting. Both amplitude and phase angle 
are varied along the vertical axis z.

This equation is identical to Eq. 5.7.13 with evident changes of linear sizes for circu-
lar ones. Then, all details of the solution and discussion of results of calculations are the 
same, if one changes mass, m, to the moment of inertia, I, rigidity, Z, to the twisting rigid-
ity of a torsion bar and the form-factor to K = πR4/2H, where R is radius and H is the cyl-
inder height.

If the experiment is carried out in a cone and plate device, then again nothing 
changes, though the form-factor becomes K = 2πR3/3ϕ, where R is the radius of the cone 
and ϕ is the angle between the cone and the plate.

In measuring rheological properties of viscoelastic liquid-like materials, the defor-
mation of a hollow cylindrical sample is often studied. Such a sample is formed by a mate-
rial filling gap of height, H, between two coaxial cylinders. One of the cylinders (let it be 
the outer cylinder with radius Ro) is oscillating with a frequency, ω, and an angular ampli-
tude, θ0A. The angular displacement of the other cylinder, θB, (with radius Ri) is measured. 
If the gap between cylinders is small, the curvature of the sample can be neglected and this 
is similar to shear deformation shown in Fig. 5.7.1. This situation takes place when the 
strong inequality (Ro − Ri) << Ri is satisfied. In this case, all discussion is the same as in 
Section 5.7.1 and the form-factor is expressed as

G*d2θ0
*

dt
----------- ρω2θ0

*+ 0=

θ0
* z( ) θeiα=
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The arbitrary size of the gap between coaxial cylinders can be an interesting case. 
The theory of this experimental method in its principal features is the same as described in 
Section 5.7.2, though an equilibrium equation, written in cylindrical coordinates, looks 
somewhat different than Eq. 5.7.13: 

[5.7.18]

where  includes amplitude and a phase angle, both depending on the current radius, r. 
The complete solution and analysis of this equation are possible95 but practical inter-

est is limited by the linear approximation, which gives:

[5.7.19]

Then, by separating complex numbers into real and imaginary parts, the following 
expressions for components of dynamic modulus are given by:

[5.7.20]

 [5.7.21] 

The analogy between these equations and Eqs. 5.7.5 and 5.7.6 is quite evident if one 
takes into account that p = θ0A/θ0B, and coefficient L is expressed as

[5.7.22]

This coefficient is equivalent to the factor (Z − mω2)/K that enters Eqs. 5.7.5 and 
5.7.6 with an appropriate choice of form-factor. Besides, the coefficient L includes the 
inertia of moving elements coupled with a torsion element and inertia of the moving mate-
rial. Therefore, similar to Eq. 5.7.16 reduced moment of inertia must include the coupled 
inertial term. 

An expression for loss tangent, derived from Eqs. 5.7.20 and 5.7.21, is equivalent to 
Eq. 5.7.7. It is essential that both equations for tanδ do not include any geometrical fac-
tors. Also, tanδ is calculated by measuring p and phase angle only. It is useful for measure-
ments in some applied problems where the main interest is in finding mechanical losses, 
but not for dynamic modulus.
5.7.4 MEASURING THE IMPEDANCE OF A SYSTEM
One of the versions of oscillating measurements is fixing plate A and applying force F(t) 
to plate B varying as
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[5.7.23]

where F0 is the force amplitude and ω is frequency.
Displacement of plate B, as well as its velocity, v, follows harmonic law. The charac-

teristic of such a system is its mechanical impedance, , determined as

[5.7.24]

and consisting of real (active), Rm, and imaginary (reactive), Xm, components.
In the scheme shown in Fig. 5.7.1 

[5.7.25]

and

[5.7.26]

Now it is reasonable not to measure force and velocity separately but to measure 
their ratio. It permits the calculation of components of dynamic modulus from the 
mechanical impedance. Some experimental devices directly measure mechanical imped-
ance and thus this is a simple way to calculate G' and G".

This experimental scheme can also be realized in torsion deformation if one fixes 
one boundary surface and varies torque by a harmonic law. One of the possible versions of 
this method of measurement of viscoelastic properties is by subjecting a tube-like sample 
placed between two coaxial cylinders to an axial displacement. The velocity of oscilla-
tions is given by the equation:

[5.7.27]

Then, by measuring mechanical impedance it is possible to find components of dynamic 
modulus. The theory for the arbitrary shape of the measuring device is not difficult, but the 
final equations are rather bulky. However, in the linear approximation (which is applicable 
in the majority of real experimental schemes), the result of the calculation is very simple 
as indicated by the following formula:

[5.7.28]

where the form-factor K is

[5.7.29]

Then, very simple equations for G' and G" are derived:
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[5.7.30]

and

[5.7.31]

which are analogous in their structure to Eqs. 5.7.8 and 5.7.9, respectively.
5.7.5 RESONANCE OSCILLATIONS
There is a very special case of oscillation when the amplitude of deformation is at maxi-
mum. These are called resonance oscillations.

The theory of resonance oscillations is based on the analysis of the movement of the 
upper plate B in Fig. 5.7.1, which is loaded by the oscillating force, as described by Eq. 
5.7.23. The equilibrium equation, in this case, is written as

[5.7.32]

where f0 is the amplitude of force, all other notations are similar to previously used.
The solution of this equation for components of dynamic modulus is

[5.7.33]

[5.7.34]

Then, excluding the phase angle, it is possible to obtain the following expression for the 
amplitude of oscillations of plate B:

[5.7.35]

Resonance corresponds to the maximum of x0B as a function of ω. However, it is 
impossible to obtain the exact solution for  from Eq. 5.7.35 because G' and G" are 
unknown functions of ω. The analysis becomes easier if rigid viscoelastic materials with 
low losses are considered, i.e., if G" << G'. In this case, the minimum value of the domina-
tor (and consequently, maximum of x0B) is reached at the resonance frequency, ω0, which 
is calculated as

[5.7.36]

Then, the components of dynamic modulus are easily found at this frequency as
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[5.7.37]

and 

[5.7.38]

The experimental procedure consists of varying frequency and measuring amplitude 
of oscillation until a maximum  is reached. Additional information can be obtained 
by measuring the width of a resonance curve. This width is the difference of frequencies 
Δω = ω1 − ω2 at half of the height of the resonance value, . In the case of low losses 
and sharp resonance, this value characterizes the loss modulus, which is calculated as 

[5.7.39]

The resonance method is applicable for measuring G' and G" at a single resonance 
frequency for low-loss materials. In fact, the resonance frequency can be changed (though 
not within a wide range) by varying the front-factor, K, and mass, m. A possible version of 
this method consists of measuring modulus at overtones of the resonance frequency.

5.7.6 DAMPING (FREE) OSCILLATIONS
The oscillations of plate B in Fig. 5.7.1 are sup-
ported by the applied force. If the force is imposed 
on a plate to initially shift its position from an equi-
librium state, the plate will approach this state either 
monotonously or in the mode of damping oscilla-
tions (Fig. 5.7.2).

The equation of motion of point C in Fig. 5.7.1 
is the same as in all previous cases with the differ-
ence in the boundary conditions used for the solu-
tion. The equilibrium equation can be written as

[5.7.40]

where the term in the parenthesis reflects both components (elastic, G', and damping, ) 
of the reaction of liquid.

The solution of Eq. 5.7.40 has the form

[5.7.41]

or

            [5.7.41a]
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Figure 5.7.2. Damping oscillations.
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where ω is the frequency of oscillations and α is a damping factor. The substitution of Eq. 
5.7.41 into Eq. 5.7.40 and dividing the resulting expression into real and imaginary parts 
gives 

[5.7.42]

[5.7.43]

and

[5.7.44]

The important characteristic of a measuring system is its natural frequency
, which is determined in an experiment without a sample. Using this value, 

the final expressions for the components of dynamic modulus are written as

[5.7.45]

[5.7.46]

and

[5.7.47]

These equations allow one to find G' and G" by determining the parameter of a mea-
suring device, ω0, and two experimental values ω and α.

The frequency of oscillations is easily observed and found from the experiment. The 
value of a damping factor, α, is related to the so-called logarithmic decrement of damping, 
Δ, which is determined as

[5.7.48]

where Xi are the maximum values of displacement (of the function x(t)) reached at the 
moments ti. The difference (tn − tn-1) is the period of oscillations and equals 2π/ω.

In the simplest case (which is valid in many real experimental situations), α/ω << 1 
and Z/mω2 << 1. Then, the following equations for G', G'' and tanδ can be used

[5.7.49]
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[5.7.50]

[5.7.51]

Parameters of material determined by the damping oscillation method are measured 
at a single frequency. This frequency can be measured or roughly estimated from Eq. 
5.7.49 as  assuming that α << ω. However, the frequency can be varied 
(though not within a wide range) by changing the parameters of the measuring system −
form-factor, K, and moving mass, m. 

The basic theory of damping oscillations does not take into account sample inertia. 
The situation here is quite the same as in the above-discussed cases. The equations derived 
in this section are valid, if , where ρ is the density of material under 
study.

Damping oscillations are often realized using the torsion mode of deformations. If 
the sample is cylindrical, Eqs (5.7.45) − (5.7.47) as well as Eqs (5.7.49) − (5.7.51) are 
valid with a change of mass, m, for a moment of inertia, I, and form-factor is 

.
Samples of other geometrical forms can also be used in the damping oscillation 

experiment utilizing torsion. Formulas for calculating G' and G" are much more compli-
cated due to the contribution of out-of-plane bending and twisting.96 
5.7.7 WAVE PROPAGATION
In these methods,97 the propagation of waves is directly observed for samples of a large 
thickness such that several wave lengths are present within the material. If the damping 
characteristics of materials are not high, the wavelength and attenuation can be measured. 
These methods are different from the previously discussed methods. In the former meth-
ods, the effect of a wave is detected on the surface of instruments with sample thickness 
being much smaller than the wavelength. Typically, shear and longitudinal waves are used 
for measurements of the viscoelastic properties of materials. 

5.7.7.1 Shear waves
In this case, a plate is placed in the 
material. The plate is subjected to 
oscillations in its own plane along 
the x axis, as indicated in Fig. 5.7.3. 
The wave propagates in the direction 
of the z-axis. The amplitude and fre-
quency of oscillations are xo and ω, 
respectively. At some distances z 
and z+dz from the plate, the dis-
placements in the material are x and 
x+dx, respectively. Then, the shear 
strain and shear stress at the position 
z in the material is, respectively:

G'' mω2
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-----------Δ
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---=
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π
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ω KG' m⁄≈

ω 1 h⁄( ) G* ρ⁄«
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Figure 5.7.3. Oscillation of plate along its plane in material.
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, [5.7.52]

Equation of motion is

[5.7.53]

with the shear stress, σ, being

[5.7.54]

Substitution of Eq. 5.7.54 in Eq. 5.7.53 leads to

[5.7.55]

Since the solution of Eq. 5.7.55 is proportional to eiωt, one obtains

 or [5.7.56]

with . The solution of Eq. 5.7.56 is

[5.7.57]

with k1 and k2 being integration constants that are determined based on the geometry of 
the experiment. In a semi-infinite medium, k1 = 0 and Eq. 5.7.57 becomes

[5.7.58]

It is convenient to replace  in Eq. 5.7.58 by

[5.7.59]

Then, Eq. 5.7.58 becomes

[5.7.60]

where λ is the wavelength.
It is seen that at z = z0, the amplitude of wave in material decreases by a factor e, and 

the value of α = 1/z0 is attenuation (Fig. 5.7.4). Then, the dynamic moduli are as follows:

[5.7.61]

γ t z,( ) ∂x t z,( )
∂z

------------------= dσ t z,( ) ∂σ t z;( )
∂z

------------------dz=

ρ∂2x
∂t2
-------- ∂σ

∂z
------=

σ G'γ G''
ω
------dγ

dt
-----+=

ρ∂2x
∂t2
-------- G'∂

2x
∂z2
-------- G''

ω
------ ∂3x

∂t∂z2
-------------+=

ρω2x G'∂
2x

∂z2
-------- iG''∂

2x
∂z2
--------+ G*∂2x

∂z2
--------= = ∂2x

∂z2
-------- Γ2x=

Γ ρω2( ) G*⁄–=

x z t,( ) k1eΓz k2e Γ– z+( )eiωt=

x z t,( ) x0e Γz– eiωt=

Γ

Γ 1
z0
---- i2πλ+=

x z t,( ) x0e
i ωt 2πz λ⁄–( ) z

z0
-----–

=

G' ρω2 4π2 λ2⁄ α2–( )

4π2 λ2⁄ α+( )
2

----------------------------------------------=



374 Rheometry Experimental Methods

[5.7.62]

[5.7.63]

It is pertinent from Eqs. 5.7.61, 5.7.62, and 5.7.63 that, by measuring wavelength 
and attenuation, the dynamic properties of the material can be measured. However, if 
attenuation is small the wave propagates over a long distance, and reflection from walls 

may cause the measured damping 
to be magnified. At the other 
extreme, if attenuation is large, 
the shear wave decays over short 
distances and this causes diffi-
culty in the measurement of wave-
length. Thus, an upper limit is 
typically λα = 3. This technique 
can be used in the range of fre-
quencies from 4 to 5000 Hz. At 
high frequencies from 3 kHz to 3 
GHz, the reflection of propagating 
waves in a quartz crystal against 
the interface between the quartz 
and a thin film of liquid is used.
5.7.7.2 Longitudinal waves
In this case, the oscillation of the 

plate is in the z-direction. The material is subjected to oscillatory extension and compres-
sion. The dynamic longitudinal moduli, E' and E" are measured according to the following 
equations: 

[5.7.64]

[5.7.65]

[5.7.66]

where B' and B" are the components of the complex dynamic bulk modulus B*.
5.7.8 VIBRATION VISCOMETRY
Viscosity (more exactly − Newtonian viscosity) of inelastic liquids is frequently measured 
by various versions of the oscillation methods. They are based on a very well documented 
theory of oscillations and the simplicity of apparatus is their realization. The main field of 
application of vibration viscometry is relatively low viscous fluids. 
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Figure 5.7.4. Propagation of a shear wave of wavelength, λ, and 
attenuation, 1/z0, in the direction z: A at time t =2πn/ω and B at 
t=(2nπ + π/2)/ω.
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The basic theory of viscosity measurements by oscillation methods is a particular 
case of a more general theory of measuring viscoelastic properties as discussed above in 
this chapter. However, the general theory can be substantially simplified if it is a priori 
known that G' = 0. Then, viscosity equals G"/ω, and, therefore, it is necessary to measure 
losses only. 

The basic equations of equilibrium for viscous inelastic liquid, according to the 
scheme shown in Fig. 5.7.1, is

[5.7.67]

instead of Eq. 5.7.3, where the term (1/h)[d(x − x0)/dt] is deformation rate. The solution of 
this equation gives two equivalent expressions for viscosity

 [5.7.68]

 [5.7.69]

where the notations are the same as before.
For the limiting case Z >> mω2 and p >> 1, Eq. 5.7.68 leads to

 [5.7.70]

which is equivalent to Eq. 5.7.9 because for inelastic liquid α = π/2 and sinα = 1.
If oscillations of the plate take place in a vessel of arbitrary size, the equilibrium 

equation is

 [5.7.71]

where m0 is a reduced mass, as in Eq. 5.7.16, and the coefficient . 
The solution of this equation is well known. It is an equation of harmonic oscillations 

with amplitude, x0A, and phase angle, α, which are expressed as

 [5.7.72]

 [5.7.73]

Any of these equations allows calculation of viscosity from measured values of x0A
or tanδ because viscosity enters expression for ku. However, these equations are not con-
venient in real practice. Therefore, the main interest is in the limiting cases. If a plate is 
vibrating in a large volume (such that h >> δ or h >> ; the meaning of the 
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parameter, δ, was explained in Section 5.7.2, then Eqs. 5.7.72 and 5.7.73 have the follow-
ing form:

 [5.7.74]

 [5.7.75]

For further analysis of these equations it is convenient to use the dimensionless vari-
ables:

dimensionless frequency: λ = ω/ω0, where  is the natural frequency of 
         a measuring device

dimensionless amplitude: a = AZ/f0 
dimensionless viscosity: 
After some rearrangements Eqs. 5.7.74 and 5.7.75 become:

 [5.7.76]

and

 [5.7.77]

The dependencies of a and α on the dimensionless parameters γ and λ are called the 
amplitude and phase characteristics of a vibrating system. These dependencies, built in 
accordance with Eqs. 5.7.76 and 5.6.77, are presented in Fig. 5.7.5. 

Some important particular cases are worthy special discussion. 
Measurement of resonance amplitude. If viscosity is low (γ << 1), then the resonance 

in Fig. 5.7.5 is reached at λ = 1. Viscosity is directly related to the resonance amplitude, 
, as 

[5.7.78]

where coefficient k can be calculated or found by calibrating a measuring system.
If viscosity is not low, the maximum is not sharp. Then, it is necessary to use the 

complete equation instead of Eq. 5.7.78.
Measuring amplitude at an arbitrary frequency. Viscosity can be calculated from the 

amplitude characteristics of a system at an arbitrary measured amplitude, though it is not 
convenient. Moreover, if the viscosity is not low this method becomes unreliable because, 
at large values of λ, an amplitude equals ~1 for all values of γ.
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Measuring amplitude at a defined frequency. There exists such a value of frequency 
at which the relationship between a and γ is rather simple. Indeed, let α = π/2. According 
to Eq. 5.7.77,  and a = λ3/2/γ. Then

[5.7.79]

For low viscosity materials, this condition is close to the resonance ( ), but in a 
general case, this method does not give reliable results because even a slight variation of 
frequency near the resonance results in large changes in viscosity.

Measuring frequency at a chosen phase angle. Viscosity is calculated from Eq. 
5.7.77. If α = π/2, then  and 

[5.7.80]

The dependence of viscosity on λ is strong, especially in the range of high values of 
viscosity, where condition α = π/2 corresponds to high values of dimensionless frequency.

Measuring resonance frequency. This method is invalid for low γ because resonance 
is achieved at λ = 1 for liquid of any viscosity. However, this method can be used for high 
viscosity liquids, though it is not sensitive as the resonance maximum is not distinctly 
expressed.

Measuring phase angle. As seen from Fig. 5.7.5, this method can be used for high 
values of γ. A particular case of this method is measuring the phase angle at the resonance 
frequency. The condition  leads to relationship between α and γ. Numeri-
cal analysis shows that noticeable changes in α take place in the range of γ between 0.1 
and 10. It corresponds to the phase angle changes by about 20o. Beyond this range of γ this 
method is not applicable, due to the very small variation of α.
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Figure 5.7.5. Amplitude a(λ,γ) (left) and phase α(λ,γ) (right) characteristics of oscillations of flat plate inside vis-
cous liquid (in dimensionless variables). Values of γ are: 0.01 (curves 1); 0.1 (curves 2); 0.3 (curves 3); 1 (curves 
4); 5 (curves 5); 10 (curves 6).
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5.7.8.1 Torsion oscillations
Similar to the above-discussed cases of measuring dynamic modulus, the transition from 
plane shear to torsion does not change basic equations, except for the use of circular dis-
placements instead of linear ones. 

For example, if the liquid is placed between two coaxial cylinders and one of them is 
under torsion oscillations, viscosity can be calculated from one of the following equations:

 [5.7.81]

 [5.7.82]

where p is the ratio of the amplitude of oscillations of inner and outer cylinders, Z is the 
rigidity of measuring device, and K1, K2, and K are form-factors. Their values can be cal-
culated without any problems, though the final formulas are rather bulky. They can also be 
measured by calibrating a measuring device. By measuring either ωpsinα or (pcosα − 1) 
as a function of ω2, viscosity can be found through an experimental procedure according 
to Eq. 5.7.81 or Eq. 5.7.82.
5.7.8.2 Oscillation of a disk in liquid
A plane disk of radius, R, is making torsional oscillation around its axis according to har-
monic function θ(t) = θ0cosωt, where θ0 is an angular amplitude and ω is its frequency. If 
a disk is moving in a sufficiently large vessel, an equilibrium equation is written as

 [5.7.83]

where M is torque and Ω is angular displacement. The coefficients in this formula are 
expressed as

coefficient of resistance: 
jointed (coupled) moment of inertia: 
If the liquid is placed on both sides of a disk, a multiplier 2 must be introduced in 

both coefficients, kω and Is. 
These equations permit us to find viscosity by measuring parameters of the disk 

movement. If the gap between an oscillating disk and stationary walls is small, the expres-
sions for the coefficient should be modified but the scheme of calculations remains intact.
5.7.8.3 Oscillations of the sphere
In torsion oscillations of a sphere around its diameter, torque appears, due to the resistance 
to movement of the sphere. The equilibrium equation is the same as Eq. 5.7.83, though the 
expressions for the coefficients are different:

 [5.7.84]

 [5.7.85]
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where a = R/δ, R is the sphere radius and Ω is the angular velocity. The physical meaning 
of δ was explained in Section 5.7.2.

Of special interest is a particular limiting case when a >> 1. In this case, Eqs. 5.7.84 
and 5.7.85 become:

 [5.7.86]

 [5.7.87]

An analogy between these expressions and the corresponding equations obtained for 
an oscillating plate is obvious with evident changes of coefficients. 

A special case is the oscillation of a sphere filled with liquid. Liquid impedes the 
oscillation of the sphere and it can be used as a method of viscosity measurement. This 
method was proposed as a very sensitive, absolute method of measurement. In this case, 
many methodical contrivances were used.98 
5.7.8.4 Damping oscillations
Damping oscillations in a liquid depend on its viscosity. Therefore, by measuring damping 
oscillations it is possible to find viscosity. The basic equation of equilibrium is Eq. 5.7.40 
with G' = 0 and η' = η. Then viscosity can be found from Eq. 5.7.46 as

 [5.7.88]

This equation is valid for any mode of damping oscillations (including torsional 
oscillations) by appropriate choice of form-factor, K. The corresponding values of K for 
different geometrical shapes of the sample were discussed above (in this chapter in con-
nection with rotational instruments of different types). All these expressions can be used 
in Eq. 5.7.88. However, an exact solution for damping oscillations of a sample of arbitrary 
shape in a vessel of arbitrary size may be complicated. However, there are no principal 
difficulties in obtaining such a solution. Nevertheless in real practice, it is preferable to 
take into account the limitations of applicability of Eq. 5.7.88 or to calibrate a measuring 
system using standard liquids.
5.7.9 MEASURING VISCOELASTIC PROPERTIES IN NON-SYMMETRICAL 
          FLOWS
Viscoelastic properties of the material are measured during unsteady motion with defor-
mation changing in time. A different approach was developed based on changes of defor-
mation in space when small harmonic perturbations of velocity are superimposed on a 
steady flow.99 

Let us consider circular flow with radial and axial velocity components equal to zero. 
Small angular periodic perturbations are superimposed on the main circular flow so that 
the velocity field is described as

              [5.7.89a]
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             [5.7.89b]

             [5.7.89c]

and the values u, v, and w are small in comparison with ωr.
In this formulation, the equation of motion is exactly the same as for viscous liquid if 

Newtonian viscosity is replaced by a complex viscosity, η*. Then, the problem consists of 
solving dynamic equations for a defined geometry of flow and calculating η* for different 
experimental schemes.

Parallel disks with shifted axes. The small radial shift of axes leads to periodic 
changes of velocity. As a result, radial forces Fx and Fy appear. Analysis of possible 
approximation based on the exact solution of the problem gives the following (linear 
approximation) formulas for components of dynamic modulus

 [5.7.90]

 [5.7.91]

where the form-factor K is

 [5.7.92]

R is the radius of disks, h is the distance between disks, and a is a radial shift of axes.
Parallel cylinders with shifted axes. Theoretical analysis of deformation gives (in 

linear approximation) the same equations as Eqs. 5.7.90 and 5.7.91 for components of 
dynamic modulus, where the form-factor K is

[5.7.93]

Ro and Ri are the radii of outer and inner cylinders, respectively, H is the height of a liquid 
layer in a gap between cylinders and a is the radial shift of cylinder axes. 

Rotation between surfaces with a small angle between them. There are three types of 
the simplest geometries of such kind:

• coaxial disks with inclined surfaces 
• cylinders with inclined axes 
• cones with inclined axes.
In all these cases, the angle between the inclined axes, ε, is small. 
Equations for calculating the components of dynamic modulus are the same in all 

cases. They are:

 [5.7.94]

 [5.7.95]

and the form-factor depends on the geometry of deformation.
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Rotation of spherical surfaces. There are two principal schemes of rotating spheres 
with small perturbations of the velocity field:

• flow between two spheres with slightly shifted centers
• flow between two spheres with the common center but slightly inclined axes of 

rotation.
For the first case, Eqs. 5.7.90 and 5.7.91 are valid, while in the second case equations 

analogous to Eqs. 5.7.94 and 5.7.95 can be used. The front factors are different in the cases 
under discussion.100 
5.7.10 ABOUT EXPERIMENTAL TECHNIQUES
Many hundreds of experimental devices have been constructed for measuring the visco-
elastic properties of different materials. In particular, many designs of vibration viscome-
try were described during the last century. It is impossible here to give even a short survey 
of all units. Therefore, only the main features of the design of experimental devices are 
presented below.
5.7.10.1 Rotational instruments
Essentially, these are rotational devices (rheogoniometers, rheometers, elastoviscometers, 
and so on) as described in Section 5.3. Instruments should be capable of oscillating mea-
surement, in addition to the steady rotation. These types of devices are instruments with 
variable mechanical drives. In modern versions of such instruments, the frequency can be 
changed in the range of more than 7 decimal orders.101 The amplitude of deformations can 
also be changed in a wide range, providing a possibility to follow the non-linear effects of 
the dependence of viscoelastic properties on deformation and to find the boundaries of lin-
earity in the mechanical behavior of the material.

Rotational instruments produced by some companies (Rheometrics, TA Instruments, 
Imass) are also equipped with techniques for measuring viscoelastic properties in non-
symmetric flows, commonly using a scheme with shifted axes.102 Contraves has made an 
instrument of this type that is called a Balance Rheometer, in which flow occurs between 
two spheres with inclined axes of rotation.
5.7.10.2 Devices with electromagnetic excitation
This type of experimental technique initially used a method of impedance measure-
ments.103 Instruments of this type were proposed primarily to study rigid materials. 

Another approach is based on separate measurements of forces and deformations, 
and measurement of properties of various fluid materials, including dilute solutions with 
modulus varying in the range from 0.1 to 104 Pa and viscosity varying from 0.2 to 103

Pa*s.104 
A promising development along this line of constructing instruments for measuring 

viscoelastic properties was the application of a multi-frequency resonator placed in liquid 
media.105 This instrument makes measurements at ten different frequencies in the range 
from 102 to 8.3x108 Hz. The optical system of measurement was used to measure ampli-
tudes as small as 10-3 degree. This instrument can measure modulus in the range from 0.1 
to 103 Pa for liquids with the viscosity not less than 0.2 Pa*s.

Electromagnetic excitation is also convenient in instruments for torsion deformation, 
where different modes of deformation are possible − forced oscillations, damping oscilla-
tions, creep, elastic recoil, and steady flow.106 An example of instruments of this type is 



382 Rheometry Experimental Methods

shown in Fig. 5.7.6.107 A sample 
is placed between a cone and a 
plate or between two disks. A 
moving part is fixed by torsions, 
which provide reliable alignment 
of the working unit. Frame is 
made of aluminum. It works as 
the rotor of an electrodynamic 
drive. By varying the electrical 
parameters, one can vary the 
regime of deformations. 

Electromagnetic excitation 
is also widely used in the vibrat-
ing-reed method (shown in Fig. 
5.7.7). Excitation of oscillation 

(periodic or damping) is created by 
means of a charge placed on the 
sample surface and an electromag-
netic drive. The frequency may 
vary in a wide range, practically 
from several to hundreds Hz. 
Deformations are followed and 
registered by an optical method 
(not shown here). This version of 
the method is applicable to materi-
als with modulus from 105 to 1011

Pa. The devices of this type can be 
combined with very different 
measuring techniques. These 
instruments are also very conve-

nient for the resonance method of measurement. These devices are simple and they are 
used either as home-made versions or produced by specialized companies.

This method is very convenient in different applications. In particular, the vibrating 
reed method was used at very low temperatures down to 4K and allowed measurement of 
loss tangent as low as 10-3.108 

Free bending oscillation (as in Fig. 5.7.7) can be applied to many materials. How-
ever, when testing mild materials an experimental scheme must be modified. An example 
of modification of a sample is shown in Fig. 5.7.8. Here, two layers (with the thickness h2) 
made of soft material (it might be rubber, gel, or a viscoelastic solution) are placed on a 
surface of rigid support (with thickness, h1). The whole sandwich construction oscillates 
together. Measurement of properties of support and sandwich sample separately permits 
calculation of rheological characteristics of a soft material. The reverse scheme − a soft 
material between two rigid layers − is also possible. 

Figure 5.7.6. Rotational instru-
ment with electromagnetic exci-
tation. 1 − sample; 2 − cone 
surface; 3 − plate; 4 − two torsion 
rods; 5 − frame-rotor; 6 − force 
coils of electrodynamic drive.

Figure 5.7.7. Vibrating 
reed method of measure-
ment. 1 − sample; 2 −
electro-magnets; 3 − sam-
ple holder.

Figure 5.7.8. A sandwich-type sample: layers (2) of a soft material 
are placed on a hard support (1).



5.8 Physical methods 383

A sandwich construction can be used in a different system. For example, it was pro-
posed to prepare samples as hollow cylinders and other cylindrical body, made of different 
materials. They were placed inside a hole.109 
5.7.10.3 Torsion pendulums
Torsion pendulums are the most popular and widely used instruments for centuries to 
solve different fundamental physical problems.110 In the practice of measuring viscoelastic 
properties, torsion pendulums were introduced in the 1950s,111 though earlier they were 
widely used in viscometry. Now devices of this type are frequently used as home-made 

instruments as well as being produced by several companies.
Principal schemes of torsion pendulums are shown in 

Fig. 5.7.9 in three different versions: upper scheme − direct 
pendulum, central one − reverse pendulum, and bottom 
scheme − pendulum for liquid samples. There are a lot of dif-
ferent designs of torsion pendulums differing in methods of 
deformation measurement, mode of load application, con-
struction of a holder, material of a torsion bar, design of 
thermo- and/or cryo-chamber, the geometry of measuring 
cell, and so on. However, all reproduce the main design fea-
ture of the instrument shown in Fig. 5.7.9. Depending on the 
design, special torsion pendulums can work at frequencies 
between 0.01 and 80 Hz, at temperatures from liquid nitrogen 
up to >1500K. They can measure modulus in the range from 
102 up to 1012 Pa and tanδ from 10-4 (or even lower values, 
though the latter requires very accurate measurements) up to 
about 3.112 Different optical or photo-electronic systems of 
measuring deformation are used. 

Torsion pendulums can be used for the monitoring pro-
cess of oligomer curing. This is realized by using a torsion 
element made as a braid (prepared from quartz, glass, silk, 
carbon fibers, and so on) impregnated with liquid. Then, the 
evolution of viscoelastic properties of such a complex sample 
is measured, which gives important technological informa-
tion about relative changes in the sample.113 The advantage of 
this method consists of the possibility to use a very small 
quantity of the sample, as low as 0.1 g, and to study unstable 
materials.

5.8 PHYSICAL METHODS
5.8.1 RHEO-OPTICAL METHODS
5.8.1.1 Basic remarks
The term the “rheo-optics” contains two words: rheo (flow) and optics. The rheo-optics is 
a method of study of deformations and stresses during the flow of transparent polymeric 
systems by means of optical techniques that measure the difference of the refractive indi-

Figure 5.7.9. Three versions of 
torsion pendulum: direct (upper), 
reverse (middle), and for liquid 
samples (bottom). 1 − sample; 2 
− inertial masses; 3 − holder; 4 −
gas bearing; 5 − measuring cell of 
a cylinder-cylinder type.
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ces, nij. The refractive index is determined by the polarizability of atomic groups and 
bonds in molecules. 

When a parallel beam of light is incident to the surface separating two transparent 
media, part of the light is reflected back into the medium and part is transmitted into the 
second medium. These are the reflected and transmitted rays. The direction of the trans-
mitted ray does not coincide with that of the incident ray and the transmitted ray is said to 
be refracted. The angles that the incident, reflected, and refracted rays make with a normal 
to surface at the point of incidence are known as the angles of incidence, reflection, and 
refraction and they are denoted as i, R, and r, respectively. Reflection and refraction in iso-
tropic media obey Snell’s law such that i = R and sini/sinr = n12. If light enters a medium 
from a vacuum, the above ratio is called the absolute refractive index of the medium. If c 
is the velocity of light in a vacuum, v1 and v2 are velocities of light in media, the absolute 
refractive indices are n1 = c/v1, n2 = c/v2, and n12 = v1/v2 = n2/n1. The frequency f of 
waves, f = v/λ, is unchanged when light travels through various media. Therefore, the 
wavelength, λ, changes. If λ1 and λ2 denote the wavelengths in the two media, then 

, , [5.8.1]

Polymer molecules are typically anisotropic. However, if molecules are in a coiled 
state and randomly oriented in space, they form optically isotropic materials. If molecules 
are oriented under deformation of the material, the material becomes anisotropic, causing 
a phenomenon of double refraction (birefringence) due to dependence of the refractive 
index on the direction. The degree of anisotropy of the refractive index is characterized by 
symmetrical tensor of the refractive index, nij:   

 [5.8.2]

This tensor is analogous to the stress or strain tensor. The components of the tensor 
of refractive indices follow the same rules as the components of other tensors during the 
transformation from one coordinate system to another. In particular, one can find three 
mutually perpendicular directions in which the diagonal components of tensor, nij, attain 
the maximum values of nI, nII, and nIII. These are the principal values of tensor nij.

Optical quantities related to this tensor can be determined by using a polarization 
optical technique. Through a transparent model (plate, channel, etc.), a transmitted beam 
of polarized light and reflected light give an interference picture, which characterizes the 
stress-strain state of the model. 

Brewster114 was the first to discover this phenomenon and suggested its use to study 
the stress state in glasses. Later it was proven that for a wide class of planar elastic prob-
lems, the distribution of stresses is independent of elastic constants of materials. Thus, the 
stress distribution can be determined using transparent models with elastic constant differ-
ent from the material of objects. This fact opened an avenue for use of polarization-optical 
techniques to study stresses and deformations in solids. This area of study is called photo-
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elasticity. Good examples of the use of photoelastic techniques are investigations of the 
stress state in models of bridges and dams made from glasses.

By means of interference, differences in the principal stresses and their directions, 
but not the stress components, can be determined. In some cases, this information is suffi-
cient to solve practical problems, but usually one needs to determine separate values of 
principal stresses. For these purposes, methods of separation of stresses are used.115 

At the beginning of the 20th century, work was initiated to study the relationship 
between the refractive index tensor and stresses during plastic deformation of transparent 
models. In particular, a method of coating received wide acceptance. According to this 
method, the photoelastic transparent coating covers a model. Coating deforms together 
with the surface and using the reflection technique, stresses can be determined on the stud-
ied object. This is a fertile area of research related to solid materials. 

However, the main interest here is the application of optical techniques to study the 
flow of polymeric melts and solutions. The major boost of research in the application of 
these techniques to flowing polymeric melts and solutions was received in the middle of 
the 1950s. This was due to the theoretical work done by Lodge,116 and the experimental 
work carried out by Philippoff,117 Janeschitz-Kriegl,118 and their co-workers.

At the present time, methods of the rheo-optics are used in various areas, such as 
studies of stresses and strains in solids, residual stresses, and structure in solids, stresses in 
fluids, rubbers, products made by polymer processing, etc. 

The most extensive information concerning the mea-
surement of birefringence of polymeric fluids is available 
for simple shear, as shown in Fig. 5.8.1. Here 1 designates 
the direction of shear, 2 is the direction of the velocity gra-
dient. Hence, shear occurs in plane 1-2. The third is 
known as a neutral direction, which is normal to the plane 
of drawing and corresponds to the direction of light propa-
gation. For simple shear the principal directions of a bire-
fringence tensor are defined by vectors nI and nII. They 
characterize the orientation of the birefringence ellipsoid 
in space. 

Experimental determination of this orientation is 
carried out as follows. Use is made of a system of crossed 
polarizing devices − the planes of polarization of light in a 
polarizer and analyzer are arranged at an angle of 90o

(cross Nicols); in this case, light does not reach an 
observer situated after the analyzer. The object under 
study is placed between the analyzer and the polarizer. 
The plane-polarized light of wavelength, λ, passing 
through a birefringent material of thickness, d, is split into 

two beams, which propagate along with the principal directions of the refractive index 
ellipsoid. Having passed through the analyzer, these two beams interfere with a phase shift 
of δ = 2πd(Δn/λ). Here Δn = nI − nII. It is this quantity that is a measure of birefringence. 

Upon synchronous rotation of the crossed polarizer and analyzer, the light will be 
annihilated. The angle of complete light extinction (the extinction angle) is taken to be the 

Figure 5.8.1. Coordinate system with 
axes of stresses and refractive indices 
in simple shear flow.
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smaller of the two angles between the plane of polarization and the direction of shear. 
Then, by definition, the angle, χ, is smaller than or equal to 45°. For low-molecular-mass 
liquids, the angle χ is 45° within ordinary values of shear stresses and shear rates. For 
polymer melts and solutions the angle, λ, equals 45° only at very low shear stresses. As 
the stress increases, the refractive index ellipsoid rotates relative to the neutral axis and the 
extinction angle diminishes. In the limiting case, the refractive index ellipsoid is found to 
be oriented in the direction of axis 1 and the angle equals zero.
5.8.1.2 Stress − optical rules for polymer melts
The method of quantitative measurement of stresses in polymeric fluids is based on a lin-
ear stress-optical relationship, which is sometimes called the stress-optical law. According 
to this rule, birefringence is linearly proportional to the difference of principal stresses and 
the directions of optical axes, χop, and mechanical stress axes, χmech, coincide such that

,  [5.8.3]

This rule holds true for a large group of industrially important polymers, such as 
polyethylene, polystyrene, and many other thermoplastic melts and solutions, uncured and 
randomly crosslinked (cured) elastomers. This rule is obeyed by polymeric systems con-
sisting of linear flexible-chain molecules. The stress-optical rule means that the principal 
axes of stress and refractive index ellipsoids coincide. This relationship is expressed 
through a proportionality factor, C, called the stress-optical coefficient, which is a funda-
mental characteristic of a polymer: 

[5.8.4]

where n is the mean value of the refractive index, which is determined from the relation 
; α1 and α2 are the longitudinal and transverse polarizabilities of the 

Kuhn random link of a chain molecule, k is Boltzmann constant, T is the absolute tem-
perature. The above expression for C and the stress-optical rule follow from the classical 
theory of an ideal network of rubber elasticity.119 There are many examples120 where the 
condition of C = const has been observed. It is measured in Brewsters (1 Br = 10-12 Pa-1).

The use of the stress-optical rule for estimation of stresses in polymeric fluids is 
based on Lodge's idea of the existence of a fluctuating entanglement network, which man-
ifests itself like a network formed by covalent bonds in crosslinked elastomers. Then the 
macromolecular chains between the entanglement points undergo numerous conforma-
tional transformations during the time required for small displacements of centers of grav-
ity of macromolecules. The most important criterion of applicability of the stress-optical 
rule to uncured polymers must be the existence of a random entanglement network.

A remarkable feature of the stress-optical rule is that, over a wide range of stresses, 
the quantity C does not depend on deformation and rate of strain. At the same time, it is 
well-known that in simple shear, the shear rate depends strongly on shear stress. The con-
stancy of C under simple shear for high-molecular-mass polymeric liquids may be 
explained by proceeding from the earlier discussed concept that the nonlinear relation 
between shear rate and shear stress for polydisperse polymers is due to the successive 
transition of the highest molecular mass fractions to the rubbery state (Section 3.3.5). This 
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reduces hydrodynamic losses, thereby 
changing the viscosity of polymers, but the 
transition of polymer from fluid to rubbery 
state is not accompanied by a change in the 
quantity C.

As an example, Fig. 5.8.2 shows the 
dependence of birefringence, Δn, on maxi-
mum tangential stress, σmax, which equals 
half of the difference of the principal 
stresses during the flow of polyisobutylene 
melt in a slit die.121 The linear relationship 
between birefringence and stress is fulfilled 
in a wide range of stresses indicating that C 
is constant. It should be noted that the lin-
ear stress-optical rule is also satisfied for 
the oscillatory flow of polymeric melts if 
the frequency of oscillations and tempera-

ture imposed are in fluid and rubbery states of polymer. These are shown in Figs. 5.8.3 and 
5.8.4 for series of polybutadienes and polyisoprenes of various molecular weights.120 In 
particular, Fig. 5.8.3 indicates that the birefringence amplitude as a function of the stress 
amplitude is linear. The lines drawn in this figure are based on the stress-optical constant 
of polymers obtained in steady shear flow. Fig. 5.8.4 compares phase shifts between oscil-
latory birefringence and strain, ϕΔn, and between oscillatory stress and strain, ϕ0. It fol-
lows from this figure that ϕΔn = ϕ0, i.e., phases of birefringence and stress with respect to 

Figure 5.8.2. Birefringence vs. maximal tangential 
stress, σmax, in a slit die during polyisobutylene flow. 
Stress-optical coefficient, C = 1414 Br. [Adapted, 
with permission, from A.I. Isayev and R.K. Upad-
hyay, J. Non-Newt. Fluid Mech., 19, 135 (1985)]. 

Figure 5.8.3. Dependence of birefringence amplitude, 
Δn0, on shear stress amplitude, σ0, for various polybu-
tadienes (1) and polyisoprenes (2) at different fre-
quencies. Lines are drawn according to the stress-
optical coefficient of the respective polymers. 
[Adapted, with permission, from G.V. Vinogradov, 
A.I. Isayev, D.A. Mustafaev and Y.Y. Podolsky, J. 
Appl. Polym. Sci., 22, 665 (1978)]. 

Figure 5.8.4. Phase angle by which oscillatory birefrin-
gence leads the oscillatory strain against phase angle. 
Line is drawn according the equality of these phase 
angles. [Adapted, with permission, from G.V. Vinogra-
dov, A.I. Isayev, D.A. Mustafaev and Y.Y. Podolsky, J. 
Appl. Polym. Sci., 22, 665 (1978)]. 
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the assigned deformation coincide, 
and hence they coincide with 
respect to one another as well.122 

In the transition region from 
a rubbery to a glassy state, the 
stress-optical rule is no longer 
valid.123,124 In this region, the 
stress-optical coefficient becomes 
a function of time and tempera-
ture, as shown in Fig. 5.8.5 for 
polycarbonate in the form of a 
master curve.123 With increasing 
and decreasing time and tempera-
ture the stress-optical coefficient 
approaches respective constant 
values corresponding to their val-
ues in the fluid and rubbery states 
and the glassy state. This non-con-
stancy of the stress-optical coeffi-
cient between the glassy and 
rubbery states is generally 
observed for many polymers. It 
should be noted that for polycar-

bonates, as seen from Fig. 5.8.5, the stress-
optical coefficient exhibits its positive 
value at any time and temperature. How-
ever, such behavior is not generally true for 
all polymers. In particular, for polystyrene, 
the stress-optical coefficient is positive in 
the glassy state and negative in the rubbery 
and fluid states, as shown in Fig. 5.8.6.123

Such a behavior of the stress-optical 
behavior of polystyrene was explained as 
follows. The birefringence of polystyrene 
is mainly determined by the orientation of 
the phenyl groups. Upon deformation in 
the glassy state, the motion of polymer 
chains is restricted. The phenyl groups are 
tilted toward the stretching direction, result-
ing in a positive birefringence. However, in 
the rubbery and fluid state, polymer chains 
are able to move freely and tend to align 
along the stretching direction to some 

extent. Thus, the phenyl groups lie preferentially perpendicular to the stretching direction, 
leading to a negative birefringence. Therefore, the positive value of C comes primarily 

Figure 5.8.5. Master curve of stress-optical coefficient for polycar-
bonate at reference temperature of 147.5oC indicating the depen-
dence of the coefficient on the time and temperature in the 
transition region from rubbery to glassy state. [Adapted, with per-
mission, from G.D. Shyu, A.I. Isayev and C.T. Li, J. Polym. Sci., 
Phys. Ed., 39, 2252 (2001)]. 

Figure 5.8.6. Master curve of the stress-optical coeffi-
cient for polystyrene at the reference temperature of 
97oC indicating the dependence of the coefficient on the 
time and temperature in the transition region from rub-
ber to glassy state. [Adapted, with permission, from 
G.D. Shyu, A.I. Isayev and C.T. Li, J. Polym. Sci., Phys. 
Ed., 39, 2252 (2001)]. 
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from the tilting of side phenyl groups, and the negative value of C results from the chain 
segmental orientation. The stress-optical coefficient of polymers is also affected by the 
strain level, especially when a polymer is in a glassy state. As shown for polycarbonates 
its stress-optical coefficient is a decreasing function of the strain.123 This time, tempera-
ture and strain dependency of optical behavior is a general feature of various polymers.

In addition, the stress-optical rule is not applicable to filled polymers even in cases 
when they exhibit high optical transparency and the light depolarization is insignificant. 
This also applies to some copolymers with a heterogeneous microstructure.

Turning to the quantitative aspect of the stress-optical rule, it is useful to refer once 
more to Fig. 5.8.1 which, apart from the geometrical characteristic of relationships 
between simple shear and birefringence, shows a graph that gives an idea of a system of 
acting forces. Assuming a linear relationship between birefringence and stress tensors, one 
obtains the following system of equations:

 [5.8.5]

where χ is the extinction angle measured by the optical technique and defining the direc-
tion of the principal refractive indices, χm is the mechanical angle measured by mechani-
cal means, and defining the direction of the principal stresses.

The determination of the stress optical coefficient, C, and tests of its constancy are 
usually carried out by using the relationship

 [5.8.6]

or

 [5.8.6a]

Though measurements of stresses by the optical method are not direct, they are of 
great interest for the following reasons. The method makes it possible to conduct measure-
ments in a polymer stream by a non-invasive method, without flow perturbations that 
could be caused by any measuring mechanical devices. The optical method is of special 
importance for the estimation of the first and the second normal stress differences. Such 
measurements can be made in rigid measuring devices. In the measurement of these val-
ues by means of mechanical devices, considerable difficulties arise, due to the deforma-
tion of various force transducers.

Let us consider briefly the latter method of measurement. Fig. 5.8.7 shows the 
scheme of measurements of the normal stress differences in a slit instrument. Measure-

Δn 2χsin 2n12 2Cσ12= =

Δn 2χcos n11 n22– C σ11 σ22–( )= =

n22 n33– C σ22 σ33–( )=

n11 n33– C σ11 σ33–( )=

2χcot
n11 n22–

2n12
--------------------

σ11 σ22–
2σ12

---------------------- 2χmcot= = =
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2χsin
---------------=
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ments of the quantities n11 − n22 and n11 − n33 in the AA and BB 
directions, respectively, can be carried out. The second normal 
stress difference, N2, can be found (see Section 3.4.2), which is 
proportional to (n11 − n22) − (n11 − n33). According to the results of 
these measurements, N2 < 0 and is about 10% of N1. This is in 
good agreement with data obtained by direct mechanical measure-
ments of N1 and N2.125 

The rheo-optical method can also be used for measuring 
quasi-equilibrium compliance, , phase angle, δ, and recoverable 
deformation, γ, corresponding to the steady-state flow. This is 
based on the following equation: 

However, determination of recoverable deformation based on polarization-optical mea-
surements can yield satisfactory results only at relatively low values of σ12.
5.8.1.3 Stress-optical rule for polymer solutions
The quantity C remains constant over the entire range of polymer concentrations, from 
infinitely dilute solutions up to molten polymers.126 At a low content of polymer in solu-
tion the properties of solvent begin to play an important role. Then, estimation of the 
observed optical properties must be carried out by taking into account the contribution of 
stresses on optical anisotropy of solvent compared with optical anisotropy of solution. As 
an example, it may be pointed out that, whereas the stress optical coefficient of polyisobu-
tylene has a value close to 1,500-1,600 Br, solvents, such as cetane and methylnaphtha-
lene, have C values equal to 1,100 and 1,900 Br, respectively. Therefore, depending on the 
ratio of optical properties of polymer and solvent, the stress optical coefficient may vary 
with the change of concentration of polymer solution. 

The general method of determining normal stresses in solutions using optical mea-
surements consists of separating the total observed birefringence into contributions of 
polymer and solvent. They are added up as vectors (in the case of biaxial stress) since the 
deformation of solvent is accompanied by the appearance of only shear stresses and that of 
the polymer by the development of both shear and normal stresses. The difference of the 
refractive indices of a system, Δn, is expressed in terms of the difference between the 
refractive indices of solvent, Δn0, and polymer, Δn1, using vector equality of Δn1 = Δn - 
Δn0. This is shown in Fig. 5.8.8a, which also gives an observed angle, χ, and angle, χ1, 
associated with stresses that arise because the polymer is in solution. The angle χ due to 
deformation of solvent equals 45° because no normal stress arises during its flow. The dia-
gram of stresses developing in solution is shown in Fig. 5.8.8b, where σ12 is the total shear 
stress acting in the system and  is the component of the total stress, which is due to the 
flow of pure solvent. The difference, , is the contribution introduced by 
the presence of polymer in solution to the shear stress (and, hence, to the viscosity of the 
system). The vector BC corresponds to the normal stress difference σ11 − σ22 and the vec-
tor OC is the difference between the principal stresses acting in solution. It is important to 
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o
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Figure 5.8.7. Scheme of 
birefringence measure-
ment in slit die.
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note that the angle χ between the direction 
of shear and the direction of principal 
stresses in solution is not equal to χ1. Of 
special interest in the case of dilute solu-
tions is the question of the relation between 
the angle χ1 and the stress-optical proper-
ties of the polymer. Experimental investi-
gation of this problem has shown that the 
extinction angle of polymer melt χm = χ1, 
but . The stress-optical rule for the 
polymer melt is written in the following 
form:

 [5.8.7]

where C is the stress-optical coefficient of the polymer melt, which is independent of the 
concentration of the solution and solvent type. 

The obvious difference between Eqs. 5.8.7 and 5.8.6 is that, instead of the total dif-
ference between the refractive indices, Δn, measured experimentally, in Eq. 5.8.7 use is 
made of the quantity Δn1, and the total shear stress, σ12, is replaced by the quantity, Δσ12, 
which refers to shear stresses that arise additionally because of the polymer presence in 
the system.

Calculations using the above relationships require knowledge of two parameters of 
solvent: viscosity, ηs, and stress-optical coefficient, C0. Then

, 

The quantities Δn and χ are determined experimentally and the method of determin-
ing Δn1 and χ1 using vector triangle is pertinent from Fig. 5.8.8a. The difference of normal 
stresses arising during the shear flow of solution is then calculated from the equation:

   [5.8.8]

In concentrated solutions, solvent makes a negligibly small contribution to stress and 
birefringence, and therefore χm = χ = χ1, and the decisive role is played by the stress-opti-
cal properties of the polymer.

If the stress-optical coefficient of polymer is unknown, then, according to Eq. 5.8.7, 
it can be found from the results of measurements carried out in dilute solutions.
5.8.1.4 Viscometers for optical observations
The study of structural transformations in liquid medium under the action of deformation 
represents a special field of research. The methodological basis of such studies is a combi-
nation of viscometers and optical measurements. Depending on the purpose, different 
methods are used. 

Extensive research is devoted to the measurement of birefringence in the flow of 
dilute polymer solutions based on the so-called dynamo-optic Maxwell effect. Birefrin-
gence appearing in a shear field results from structural transformations of macromole-
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o 2C0γ·ηs= =

N1 2Δσ12 2χ1cot=

Figure 5.8.8. Vector diagram of the plane stress state for 
a polymer solution: the difference of refractive indices 
(a) and stresses (b) for solution and polymer.
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cules, caused by deformation. During polymer solution flow, the Maxwell effect depends 
on geometrical, mechanical, and optical properties of dissolved macromolecules, i.e., on 
their structure. Therefore measurements of birefringence in the flow is an effective 
method of structural studies of macromolecules.127 

Instruments, in which birefringence during flow is measured, are called dynamo-
optimeters or rheo-optical instruments. The range of instruments of such type is distin-
guished by two basic elements of construction, namely viscometric and optical parts. The 
typical example, which illustrates the experimental measuring scheme is shown in Fig. 
5.8.9. A rotational viscometer with a bell type intermediate revolving cylinder is used. The 
shear of liquid being investigated is accomplished in narrow clearances between the 
revolving cylinder and two fixed cylinders. For the optical measurements during flow in 
the outer clearance in the upper base of rotor perforation in the form of a system of annu-
luses is arranged along the circumference. In the lower and upper bases, observation win-
dows, S, are made.

The viscometric part of the rheo-opti-
cal apparatus does not differ from usual vis-
cometers. The specific attribute of such 
instruments is optical measurement. The 
corresponding diagrams are described in 
the specialized monograph.128 Essentially, 
these diagrams give the possibility of mea-
suring two basic parameters − birefringence 
and orientation (extinction) angle during 
the flow of polymer melts and solutions. 

Instruments in which the viscometric 
and optical observations are combined are 
also used for the study of shear-induced 
phase transition in polymers (see Section 
3.5.3). For the realization of such studies, a 
rotational viscometer with coaxial cylin-
ders is applied with a transparent outer cyl-
inder.

The onset of phase transition is 
detected by the classical method of cloud 
point.129 A monochromatic light beam 
passes tangentially through a transparent 
outer cylinder, then through a flowing solu-
tion, and the exiting beam is detected by a 

photomultiplier (Fig. 5.8.10).130 In another version of this method, the light beam is sent 
along a radius of cylinders, then it is reflected from the polished surface of the inner cylin-
der, and, after passing twice through the solution being investigated, it is captured by a 
photomultiplier. The appearance of intensive light scattering (cloudiness) depends on 
shear rate. 

A combination of viscometric and optical schemes of measurements is especially 
effective for observation of transient regimes of deformation when structural transforma-

Figure 5.8.9. Bell-type viscometer as a rheo-optical 
instrument. R − rotating cylinder (rotor); D and E −
fixed inner and outer cylinders; S − windows for visual-
ization through the outer clearance. [Adapted, with per-
mission, from E.B. Frisman, V.N. Tsvetkov, Zh. Teor. 
Exp. Fiz. (J. Theor. Experim. Phys. − in Russian), 23, 
690 (1952)]. 
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tions due to deformation occur in multi-
component systems.131 

Commercial instruments supplied 
with optical devices, manufactured by spe-
cialized companies, can be used. Rheome-
ter Rheometrics RMS 800 (TA Instruments, 
USA) equipped with the optical system 
Rheo-optical Analyzer is equipped with a 
He-Ne laser. The working cell is equipped 
with cone and plate or parallel disks. The 
light beam is oriented in a direction parallel 
to the velocity gradient. The observed pic-
ture of light scattering at small angles gives 
a very good image of structural processes 

taking place during the deformation of a mixture of incompatible polymers.
5.8.1.5 Polarization methods for measuring stresses
Stress-optical measurements are the most effective and interesting in the study of polymer 
flow through channels and dies of different types, including capillaries. Experimental 
instruments are used for this purpose. As an example of the use of the polarization-optical 
method, let us consider measurement of normal stresses arising when polymer flows from 
a reservoir into a rectangular die.132 

Fig. 5.8.11 shows the dependence of the first difference of normal stresses (exten-
sional stress), N1, on the dimensionless length, Z/H, i.e., the distance along the flow axis 
referred to the die width. Each curve corresponds to a constant value of shear stress on the 
die wall in the region of a fully developed velocity profile. The positive values of Z/H 

refer to the pre-entrance region, and their 
negative values refer directly to the die. 
The value of  corresponds to the 
die edge. Inspection of Fig. 5.8.11 shows 
that in the pre-entrance region of die, the 
extensional stresses increase, reaching a 
maximum. The position of the maximum of 
extensional stresses is located over the die 
entrance at a distance of (0.2−0.3)H from 
the die edge. Then relaxation begins and 
terminates inside the die. 

The rheo-optical method can also be 
used to measure stresses under conditions 
of sinusoidal oscillatory shear.133 It has 
been shown that the normal stresses mea-
sured by the dynamic method consist of 
two components: the constant steady-state 
term, N1,c, and the oscillating term of dou-
bled frequency, N1,2ω, as compared with the 
frequency of specified shear stresses. The 

Z H⁄ 0=

Figure 5.8.10. Diagram of measurement of cloud point 
of polymer solution flowing between coaxial cylinders 
of rotational viscometer. 1 − monochromatic light 
source; 2 − lens; 3 − optical tube; 4 − working cell; 5 −
photocell. [Adapted, with permission, from A.Ya. 
Malkin, S.G. Kulichikhin, G.K. Shambilova, Vysokomol. 
Soedin. (Polymers − in Russian), 33B, 228 (1991)]. 

Figure 5.8.11. The first difference of normal stresses 
along flow axis at the entrance into a slit die for broad 
MMD polybutadiene (molecular mass 2.4 x 105; 25oC). 
The arrow indicates the direction of flow. The curves 
correspond to shear stresses at wall in the zone of devel-
oped flow: 0.051 (1); 0.098 (2); 0.141 (3); 0.21 (4); 0.25 
MPa (5). [Adapted, with permission, from V.I. Brizitsky, 
G.V. Vinogradov, A.I. Isayev and Y.Y. Podolsky, J. Appl. 
Polym. Sci., 21, 751 (1977)]. 
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constant component reflects the long-time 
end of the relaxation spectrum since the 
stress has no time to relax during each 
deformation cycle. 

The quantity N1,c in the linear defor-
mation domain equals , where γ0 is the 
amplitude of deformation and  is the 
storage modulus. Fig. 5.8.12 shows this 
relation for various polymeric materials. At 
low oscillatory amplitude, N1,c is propor-
tional to . At higher amplitudes, there 
is a deviation from proportionality between 
these two quantities, but a master curve can 
be constructed. 
5.8.1.6 Visualization of polymer flow 
            in dies
In Section 3.6.3, the critical deformation 
regimes for flexible-chain linear polymers 
and the associated spurt of their stream 
(loss of fluidity) in dies was discussed. It is 
very important to have experimental infor-
mation explaining what happens to poly-

mers during the spurt and under the above-critical 
regimes of occurrence of the elastic instability. The 
rheo-optical technique is useful for visualization of 
polymer stream. It is also particularly useful in the 
investigation of polymer flow through channels of 
complicated geometrical forms.134 

What can be achieved by the method of visual-
ization of polymer flow can be illustrated by the data 
presented in Fig. 5.8.13. The streamlines were 
recorded by observing a movement of 10-20 μm 
glass beads in the polymer. Flow at low shear rates is 
associated with the regular nature of streamlines in a 
die and at its entrance.

What can be achieved by observation of the 
flow of polymer under circularly polarized light was 
demonstrated in Figs 3.6.12 and 3.6.13. (see discus-
sion of results in Section 3.6.3).
5.8.2. VELOCIMETRY
One evident consequence of non-Newtonian flow 

properties of liquid is a non-parabolic velocity profile in round channels. This statement 
can also be formulated in an inverse form: if a velocity profile along the channel radius is 
non-parabolic, then the liquid is non-Newtonian. Measurement of velocity near a channel 
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Figure 5.8.12. Master curve showing dependence of the 
steady state component of the first difference of normal 
stresses on the amplitude of strain in oscillation regime 
of deformations. The portion of the curve ABC refers to 
polystyrene solutions according to data by H. Endo and 
M. Nagasawa, J. Polym Sci., A-2, 8, 371 (1970); the 
band CD refers to a series of polybutadienes and polyis-
poprenes. [Adapted, with permission, from G.V. Vino-
gradov, A.I. Isayev, D.A. Mustafayev and Y.Y. 
Podolsky, J. Appl. Polym. Sci., 22, 665 (1978)]. 

Figure 5.8.13. Flow lines of polybutadiene at 
shear stresses of 6.31x104 Pa (at a wall of 
rectangular channel). [Adapted, with permis-
sion, from G.V. Vinogradov, Rheol. Acta, 12, 
357 (1973)]. 
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wall in order to confirm the concept of polymer adhesion to a wall or to observe slip along 
the wall surface is a separate problem. Both effects require measurements of velocity pro-
file in order to carry out calculations of rheological properties of the liquid. 

This approach (called velocimetry) is successfully realized by utilizing several phys-
ical phenomena. The most popular phenomena used as a base for velocimetry are:

• the Doppler effect135 
• Nuclear magnetic resonance (NMR) imaging.136 
The Doppler effect is a change of frequency of vibration as a function of the velocity 

of relative movement of a source of vibrations and an observer. Measuring a shift in fre-
quency, a motionless observer can measure the velocity of movement.137 

NMR138 flow imaging (used in different versions) is the most interesting method 
because it allows the experimenter to obtain velocity values at many points across the 
radius of a channel approaching the wall of the channel (about 0.2 mm). This is especially 
interesting for measuring near-wall effects. NMR technique of velocimetry has many 
applications in medical studies as well as in investigations of the flow of thixotropic sus-
pensions.139 

Other versions of optical methods for measuring velocity include creating an inter-
ference pattern by means of a laser system and measuring the intensity of reflected light 
that varies as small particles cross the interference pattern.140 

Velocimetry can be useful to obtain data on velocity evolution in transient flow. The 
velocity profile in a steady laminar flow reflects shear rate distribution. The latter can be 
calculated if the velocity profile is measured. This is a typical inverse problem (analogous 
to some other mentioned in this book), which is solved by a standard procedure, e.g., by 
the Tikhonov regularization method.141 
5.8.3 VISCOMETERS-CALORIMETERS 
Measurement of thermal effects, which accompany viscous flow, can be of definite inter-
est for studying some physical phenomena, for example, detection of phase transitions or 
other structural transformations caused by deformation. These measurements are carried 
out using a combination of viscometers with a calorimetric device, i.e., strictly viscomet-
ric measurements are supplemented by measurement of heat fluxes.

As mentioned above (see Section 3.2.5), thermal effects always accompany viscous 
flow in view of energy dissipation of external forces. Therefore, it is important to separate 
structural phenomena from a trivial energy dissipation of forces of viscous friction. In 
practice, this is achieved by a combination of a rotational viscometer with a calorimeter 
into which the working cell of viscometers is placed.142 

Calorimetric measurements are accomplished by the installation of heat flux sensors 
on fixed and rotating cylinders. Calibration of the instrument is accomplished based on 
heat emission measured for standard Newtonian liquid. The intensity of heat emissions is 
proportional to the square of shearing rate: W = k . Thus, the instrument constant, k, is 
determined. Then, heat emissions during the shear flow of non-Newtonian liquids are 
measured. The component of heat flux due to structural transformation is evaluated based 
on the deviation of observed dependence  from quadratic dependence indicated by 
viscous flow. 

γ·2
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QUESTIONS FOR CHAPTER 5
QUESTION 5-1 
Melt flow index, MFI, was measured using a capillary with the following dimensions: 
diameter  mm, length L = 8.0 mm. The diameter of the barrel was D = 9.5 mm. 
Density of melt was ρ = 0.8 g/cm3. Let the weight of a load be G = 2.16 kg. Estimate the 
shear stress attained in this experiment and calculate the apparent viscosity if a measured 
value of MFI was 2 g/10min. 

Additional question
Give a general formula for calculation of apparent viscosity for some arbitrary weight of a 
load, G, and melt flow index, MFI.
QUESTION 5-2 
How do you calculate the shear rate at a wall for liquid with viscous properties described 
by a power-law type equation?
QUESTION 5-3 
Experimental study of the tube flow of suspension gave the following results: 

for tube I: D1 = 2 cm, L1 = 20 cm, output G1 = 42 g/min under pressure P = 4 bar;
for tube II: D2 = 4 cm, L1 = 40 cm, output G2 = 294 g/min (pressure P = 4 bar).
Density of suspension was ρ = 1.4 g/cm3.

Explain the results and estimate the rheological parameters of the material.
QUESTION 5-4
Calculate the velocity profile in the flow of Newtonian liquid through an annulus pro-
duced by two coaxial cylinders of length, L. Flow is induced by a pressure gradient, ΔP, at 
the ends of the annulus. The radii of inner and outer cylinders are Ri and Ro, respectively.

Additional question
How does one obtain the form-factor for this type of annular flow?
QUESTION 5-5
For a rotational viscometer of a coaxial cylinder type, what should be the diameter of an 
inner cylinder if the diameter of an outer cylinder is 40 mm and the acceptable inhomoge-
neity of the stress field is 5%?
QUESTION 5-6
In Section 5.7.3, a portable viscometer was described that measures viscosity via time of 
the turn of a light cylinder from the initial position by a constant angle, the initial deforma-
tion is set by twisting of a torsion spring. What is the relationship between measured time 
and viscosity?
QUESTION 5-7
In the principal scheme of measuring viscoelastic properties of the material, a spring is 
used (Fig. 5.7.1) that is not ideal elastic but viscoelastic (has some losses in deformation). 
How do you calculate the viscoelastic properties of the material under investigation?
QUESTION 5-8
In Section 5.7.2, the condition of uniform deformation of the sample in oscillation was 
formulated as h << δ. Analyze this condition for inelastic viscous liquid.

d 2.16=
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QUESTION 5-9
Prove that Eq. 5.7.39 is valid for materials exhibiting low losses.
QUESTION 5-10
The value of maximum displacement X0B appears in a solution of Eq. 5.7.41 of an equilib-
rium Eq. 5.7.40, but this value does not appear in Eq. 5.7.44 and other equations for G' and 
G". Explain why?
QUESTION 5-11
Prove that Eqs. 5.7.5 and 5.7.6 give Eqs. 5.7.53 and 5.7.54 for inelastic liquid.
QUESTION 5-12
In Section 5.7.6 deformations of the sample were treated as damping oscillations. Is it a 
unique case of damping deformations? Explain the answer.

Additional question
In which case does the deformation of inelastic liquid become aperiodic but not oscillat-
ing?
QUESTION 5-13
Eq. 5.3.49 is valid as an approximation only. What should be the exact solution?

Answers can be found in a special section entitled Solutions.
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APPLICATIONS OF RHEOLOGY

6.1 INTRODUCTION
Rheological measurements provide us with the properties of materials. Fundamental rheo-
logical theories show how to treat the results of measurements of these properties and how 
to use them in solving applied problems. This is similar to measurements of any other 
properties of materials. How to apply knowledge of rheological properties to solve real 
technological and applied problems depends mainly on our understanding of the physics 
of these problems. Rheological characteristics of materials determine their behavior in 
many applications and they are important, together with various other material properties. 

With this background, it is possible to point out several main directions of applica-
tion of rheology in practice:

• Rheology is a physical method of characterization of the structure of matter. 
Rheology gives unambiguous, physically meaningful, quantitative parameters of 
materials. These parameters can be correlated with the structure of matter, either 
chemical (molecular structure of a compound, length and architecture of a mole-
cule, and so on) or physical (physical intermolecular interactions, phase state, 
size and distribution of components in multi-component systems, and so on) 
structure. Rheological parameters correlate with the structure of the material and 
can be used for structural characterization.

• Results of rheological characterization of various similar materials give a basis 
for comparison of these materials. Rheology does not answer questions as to 
whether materials under test are “good” or “bad”. The answer depends on expert 
estimation and previous experiences in the application of similar materials. The 
latter allows us to establish what parameters characterize the “ideal” material, 
with which other materials of a similar type can be compared. This line of appli-
cation results in a great number of standards and standardized test methods
developed for the main types of commercial materials. Thus, rheology proposes 
methods for quality control of materials.

• Description (and modeling) of the dynamic behavior of different materials,
including their flow in technological equipment. The description is based on 
solving field equations and rheological (material) properties enter these equations 
as coefficients and/or functions. Predicted dynamic behavior strongly depends on 
the rheological properties of matter.

• Special rheological effects, i.e., phenomena, which do not exist in Newtonian 
liquids, but can be used for some practical application. Such rheological phenom-
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ena as, e.g., deformation-induced transition from liquid to rubbery state, the elas-
ticity of flowing liquids might be of theoretical and engineering interest. 

The most important and impressive examples of such effects are: 
• The Toms effect (suppressing turbulence at high Reynolds numbers) 
• The Weissenberg effect (rubbery elasticity and appearance of normal stresses in 

shear flow) 
• expandability of liquid streams due to the superposition of elasticity and fluidity 

of the material
• superposition of liquid- and solid-like properties providing stability of shape at 

rest and fluidity at intensive loading 
• memory of pre-history of loading and deformation
• thinning or thickening effects as a result of flow accompanied with deformation-

induced structure rearrangements
• solidification (liquid-to-solid transition) in intensive deformations, which may 

lead to stabilization of a liquid stream in various applications
• electro- (or magneto-) rheological effects (influence of electric or magnetic fields 

on rheological properties of liquid). 
All these effects can be used (and are used) in engineering practice. Their limitless 

applications depend on the inventiveness of engineers.

6.2 RHEOLOGICAL PROPERTIES OF REAL MATERIALS AND 
      THEIR CHARACTERIZATION
Rheology as an independent branch of natural sciences has come into existence as a 
method of characterizing deformation properties of real materials, which are far from ide-
alized models of Newtonian liquid and Hookean solid. 

Properties of numerous real materials are so diverse that it is impossible to invent a 
single or even a few different models. However, it is reasonable to try to classify numer-
ous real materials into several principal groups or classes, depending on their nature or the 
similarity of their rheological behavior. Such classification cannot be absolute, because 
the same material can be treated as belonging to different groups, depending on the 
approach to classification. For example, paint with a polymeric binder can be regarded as 
a polymeric material, or a colloid system, or dispersion. Blood is a special liquid, though it 
can be treated as a substance that belongs to a much wider class of dispersions. The same 
is true for numerous food pastes, creams, pharmaceuticals, and so on.

Below, the main peculiarities of rheological properties of different groups of materi-
als will be discussed with reference to the above-mentioned directions of application of 
the results of rheological studies.
6.2.1 POLYMER MATERIALS
This is a large group of different materials including polymer melts, solutions, filled mate-
rials, and multi-component blends.1 The main difficulty in the application of rheological 
methods for characterizing these materials is encountered because practically none of 
them is an individual material. In the best case, a real polymer consists of fractions of 
macromolecules of different lengths of the same chemical nature, i.e., real polymers are 
always polydisperse. This is the reason why possible correlations between rheological 
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properties and molecular parameters are 
based on averaged characteristics of molec-
ular mass distribution, MMD.

The most important correlations 
based on vast experimental data are the 
dependence of viscosity on average molec-
ular mass, M, and between flow properties 
(non-Newtonian behavior) and MMD. This 
was discussed in detail in section 3.3.4 
because analysis involves different aspects 
of rheology fundamentals. However, exper-
imental results on which this analysis is 
based, including Fig. 3.3.2 and Eqs. 3.3.14, 
3.3.15, 3.3.18, can be equally treated as a 
part of this section. 

As was established for many polymers, the initial Newtonian viscosity, η0, is very 
sensitive to the average molecular mass (see section 3.3.4). One illustration of this fact 
was shown in Fig. 3.3.2. The other illustration is the molecular mass dependence of initial 
Newtonian viscosity of different polymer melts (Fig. 6.2.1). The transition from a low-
molecular-mass branch of the  dependencies to a high-molecular-mass part of the 
curves is pertinent. The most important experimental fact here is the universality of a 
slope of a high-molecular-mass part of dependencies, which is close to 3.4-3.5.

Another impressive illustration of the relationship between viscosity and molecular 
mass is shown in Fig. 6.2.2 for polydimethylsiloxane covering 11 (!) decimal orders of 
viscosity changes. The slope of the curve changes more smoothly in this relationship. 

It is pertinent from these examples that the viscosity of polymers depends on their 
molecular mass, but the exact form of this dependence may differ for a specific polymer. 

η0 Mw( )

Figure 6.2.1. Relationship of viscosity and length of 
molecular chain (normalized MM) for: 1 − polystyrene; 
2 − polyvinylacetate; 3 − polyethyleneglycol; 4 − poly-
methylmethacrylate; 5 − poly(tetra-methyl p-silphenil 
siloxane); 6 − polybutadiene; 7 − polyethylene; 8 −
polyisobutylene; 9 − polydimethylsiloxane. Viscosity 
values are shifted along the Y-axes by the arbitrary val-
ues. One division on the Y-axis corresponds to one loga-
rithmic unit. [Adapted, with permission, from G.C. 
Berry, T.G. Fox, Adv. Polymer Sci., 5, 261 (1968)].

Figure 6.2.2. Molecular mass dependence of viscosity 
for polydimethylsiloxane. Collection of experimental 
data of T. Kataoka and S. Ueda. [Adapted, by permis-
sion, from J. Polym. Sci., Polym. Lett., 4, 317 (1966).]



406 Applications of Rheology

This is important in practical applications because the “universal” value of the slope is 
only a rough approximation.

As was shown in section 3.4, the dependence of the coefficient of normal stresses, 
Ψ0, on molecular mass is even more pronounced than the η0(M) dependence (see Eq. 
3.4.7). 

The dependence of intrinsic viscosity [η] on molecular mass is usually expressed by 
a power-type equation (see Eq. 3.3.18). However, the exponent in the [η](M) dependence 
is much smaller than the exponents in η0(M) and Ψ0(M) dependencies, i.e., the order of 
sensitivity of rheological parameters to molecular mass is: 

In practical technological applications, the direct determination of molecular mass is 
based primarily on measurements of intrinsic viscosity. The reasons for using the least 
sensitive quantity (in comparison with viscosity and normal stress variations) is partly 
because of tradition but mainly because of simpler experimental technique and the possi-
bility of measurements of small size samples. 

Rheological measurements can be used for the determination of the average molecu-
lar mass of the polymer. As discussed in section 3.3.5, it is possible to determine molecu-
lar mass distribution based on non-Newtonian flow curve measurements. However, this 
relates to the practical reliability of the method, which is always in doubt, because even 
strong variations of MMD are only slightly reflected by the shape of a flow curve. The 
ratio of viscosity values measured at two different shear stresses (i.e., measuring two 
points on a flow curve) can be used as a qualitative measure of the width of MMD and this 
method can be useful in comparing materials synthesized at analogous technological pro-
cesses. 

MMD of polymer is more effectively reflected in the elasticity of melt. A typical 
example was shown in Fig. 3.4.3. The addition of even small amount of high-molecular-
mass fraction immediately causes a rapid increase of compliance (decrease of the rubbery 
modulus). No complete theory relating the elasticity of melt to MMD exists, though the 
correlation between these two properties does exist and can be used in practice for estima-
tion of MMD. This correlation is expressed in the form of some empirical relationships 
relating steady-state compliance, , to ratios of average molecular mass, including higher 
values of MMD. The following structure of such relationships is the most popular and can 
be used in practical applications:2 

[6.2.1]

However, it is more likely that the elasticity of polymer solutions and melts is deter-
mined by higher values of MMD, though it is difficult to separate the role of different 
MMDs. For a monodisperse sample ( ) compliance does not 
depend on molecular mass. This is experimentally well-known.

 According to these or similar empirical relationships, and based on measurements of 
melt elasticity, qualitative estimation of width of polymer MMD is possible. Using the 
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relationship between molecular mass parameters and viscosity or elasticity, it is possible 
to regulate MMD to obtain the required properties of the material.

Rheological methods are also sensitive to the structure of the polymer chain. How-
ever, only qualitative estimations are possible. Also, a choice of experimental method 
depends on experience and its successful use by the experimenter. The central point here is 
a choice of parameter or dependence which is the most sensitive to structure details of 
interest.

Comparison of linear and branched polymers in uniaxial extension (see section 3.5.3 
and Fig. 3.7.8) is an important example of the application of rheological methods for char-
acterizing a structure of polymer chains. This is a qualitative comparison only. It is uncer-
tain what quantitative measure of branching of polymer chains can be used because it 
depends on polydispersity, molecular mass, distribution of branches, their length, and their 
position along a chain.

The activation energy of viscous flow (or the temperature coefficient of viscosity) is 
a rheological parameter that is sensitive to the presence of side branching. There is almost 
a two-fold difference between activation energy for high density (linear) polyethylene and 
conventional low-density (branched) polyethylene. Intermediate cases were also 
observed.3 Analogous effect was also described for linear and branched polystyrenes.4 

The effect of long-chain branching can be characterized by following concentration 
dependence of viscosity of the polymer melt with variable solvent concentrations.5 This 
dependence is different for linear and branched polyethylenes. The example demonstrates 
that the correlation between results of rheological measurements and structure parameters 
can be unusual and unexpected, but useful in practical applications if known.

Rheological properties are also sensitive to peculiarities of chain structure, such as 
the composition of copolymers, side group content, and so on. The results of rheological 
measurements can be used for polymer structure characterization. The kinetics of polyvi-
nylacetate conversion to polyvinylalcohol is one example. It is discussed in section 6.3. 

However, this area of rheology application 
is still more a potential possibility than a 
real technological method.

Polymeric materials are processed 
with a variety of other materials. Use of 
filler is commonplace (see example in sec-
tion 3.2, Fig. 3.2.4). The polymer melt is a 
continuous phase in this case, but polymeric 
substances may also be a disperse phase −
latex is an example. Polymer dispersions 
are mainly stabilized by colloid size. The 
viscosity of such systems can be estimated 
as for any other dispersion (see section 
3.3.4). The viscosity of dispersions depends 
not only on the total concentration of a dis-
persed (polymer) phase but on particle size 
distribution. This is illustrated in Fig. 6.2.3, 
where results of viscosity measurements of 

Figure 6.2.3. Particle size distribution effect on viscosity 
of polystyrene, PS, latex: relative zero shear viscosity as 
a function of the total PS volume fraction for a mixture 
of two monodisperse particles. Salt in water concentra-
tion [KCl] = 0.1 mM. Original experimental points are 
omitted. [Adapted, with permission, from F.M. Horn, W. 
Richtering, J. Rheol., 44, 1279 (2000)].
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latex-containing mixtures having fractions 
of two sizes with the same total concentra-
tion are presented. Control of the particle 
size distribution of a dispersed phase is a 
sensitive method of changing the rheologi-
cal properties of the material. 

The above-discussed measurements 
are treated in terms of absolute parameters 
of rheological properties, such as viscosity 
and compliance. There is a lot of standard-
ized rheological methods, which do not 
give absolute values of molecular parame-
ters of polymer but some technological 
characteristics related to molecular mass 
and (in some cases) concentration of poly-
mer in solution. All these rheological meth-
ods give valuable information concerning 
the technological properties and quality of 

polymeric material used in engineering practice.
Melt flow index, MFI, (see section 5.2.6) is a characteristic of viscosity directly 

related to the molecular mass of the polymer. However, MFI by itself is not suitable for 
determining any molecular parameter; it is only useful for a technical description of poly-
mers produced by industry, and many polymers are classified according to their MFI. This 
rheological parameter determines the recommended method of polymer processing, and 
vice versa, selection of the suitable polymer grade for a particular processing method is 
based on a value of MFI. This is illustrated in Fig. 6.2.4. 

A large number of different qualitative methods based on rheological measurements 
were proposed, standardized, and used in the technological practice of characterizing 
polymer melts and solutions. 

A list of the most popular methods includes:
Melt Flow Index (MFI) − according to ISO 292; ASTM D 1238; BS 2782 (the amount of extruded melt in 
 ten minutes under specified conditions, such as temperature, load, and size of the capillary)
Rossi-Peaks Test  − according to ASTM D 569 (a thermoplastic material flows a specified distance under
 a specified pressure when tested in a standard apparatus)
Davenport Extrusion Rheometer (for shear rates up to 104 s-1)
Ubbelohde Viscometer (for dilute polymer solutions)
Brabender Plastograph (for materials with changing properties)
Castor-Severs Viscometer (for plastisols and organosols at high shear rates)
Brookfield Viscometer (the same but for low shear rates, also for other polymer solutions and gelling 
 materials)
Cup Flow Method (for thermosetting polymeric materials)
Mooney Shearing Disk Viscometer − according to ISO 617 (a multi-purpose device for testing rubbery
 materials)
Humboldt Penetrometer
Hoeppler Consistometer
Meissner Drawability Tester 
Williams Plastometer
Goodrich Plastometer
Defoe Plastometer
Convey Extrusion Machine

Figure 6.2.4. Primary correlation between viscosity 
(expressed by MFI) of a polymer melt and recom-
mended processing method.
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Agfa Vulcameter
Ring-and-Ball Method (for synthetic rubbers of Novolac type)
Hot Plate Method (for polyamide and fluoropolymers)
Rebound Method (ASTM D 1054; DIN 53512) (estimating elasticity) 
Ford Cup Method (ASTM D 1200) (for paints and lacquers) 
Stormer Viscometer (ASTM D 562) (for polymer solutions).
It is important to stress two terms always present in the description of any method −

specified conditions and standard apparatus. Only because of these limitations is any such 
method useful for testing and qualifying polymeric materials.

Application of results of the rheological analysis of polymeric materials is based on 
the following concepts:

• polymers can be characterized by definite molecular values − molecular mass, 
molecular mass distribution, and branching. There are different empirical or 
model correlations between these values and rheological properties; therefore, 
when measuring rheological properties it is possible to make a prediction of 
molecular parameters of a polymer chain

• there is a large number of standardized methods which permit the characteriza-
tion of technological properties of polymers and defining grades of industrial 
products; therefore, rheological methods are widely used for technological and 
processing control.

6.2.2 MINERAL OILS AND OIL-BASED PRODUCTS
Mineral oils are natural materials obtained from various sources. Oil is a mixture of liquid 
hydrocarbons and other chemical compounds. These are waxes, paraffins, sulfur deriva-
tives, organic aromatic compounds, solid components, etc. The composition of crude oil 
differs depending on origin, see for example in Ref. 6. Consequently, the rheological prop-
erties of crude oils are different ranging from viscous liquids to viscoplastic materials with 
yield stress. Rheological properties of many oils are temperature dependent because the 
temperature of processing and transportation overlaps with a temperature of crystalliza-
tion of some components, mainly waxes, and paraffins. Temperatures of crystallization of 
these components are in the range from 40 to 80oC. It means that under processing condi-
tions (usually below 40oC) crude oils are either multiphase or unstable systems. 

Measurement of rheological properties of crude oils has practical importance for 
their transport properties and pipeline and pump station design. The composition of crude 
oils of different origins dictates the necessity of measuring rheological properties and 
methods of their quantitative description for any oil well.

Investigation of oils demonstrates that diverse rheological behaviors can be 
observed. Viscosity characteristics (flow curve) are the most frequently applied rheologi-
cal properties because oil transportation through pipelines is its main engineering prob-
lem. Crude oil is an unstable material and its rheological properties and transport 
characteristics also depend on material history, which determines the state of crystallizable 
components. Fig. 6.2.5 shows results of viscosity measurements for a model sample (con-
taining 25% wax) cooled at different rates. At a starting temperature (48oC), the material 
is a homogeneous liquid whereas during cooling gelation of wax components takes place, 
and viscosity increases. The gelation temperature (viscosity attains some limiting high 
value) depends on the rate of cooling. This also depends on wax content. 
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Measurement of gelation temperature 
helps to estimate the wax content but also 
data similar to that presented in Fig. 6.2.5 
can be used for the design of a pipeline for 
crude oil transportation. 

Similar to many other structured sys-
tems, the thixotropic effect is often 
observed for waxy crude oils. Viscous 
properties of crude oil can be described by 
the Casson model (see Eq. 3.3.8), but 
upward and downward flow curves are dif-
ferent, and, consequently, preliminary 
deformation results in a decreased yield 
stress.7 

No general equations or recommenda-
tions for the construction of a rheological 
model can be given for crude oils because 

of their variety. However, it is possible to obtain the parameters required for engineering 
calculations. 

Oil is a raw material used in the production of numerous commercial products. This 
contributes to a large number of standardized methods used to control their quality. These 
methods usually measure parameters of material performance, which cannot be recalcu-
lated into absolute characteristics of rheological behavior.

A list of main standard methods is presented below.
Seconds Saybolt Universal SSU 

    Kinematic Viscosity, centistokes 
    Kinematic Viscosity, ft/sec. 

        Saybolt Furol, SSF 
        Redwood 1 Standard 
            Redwood 2 Admiralty 
            Engler 
            Barbey 
            Parlin Cup 
            Ford Cup 
            Mac Michael 
            Zahn Cup 
            Demmier Cup 
            Stormer Load 
            Pratt and Lambert.

Light engine oils are usually treated as Newtonian liquids, though some viscoelastic 
effects can be observed at high rates of deformation. Therefore, they are characterized pri-
marily by their viscous properties at low and high temperatures.8 According to Standard 
SAE9 J300, engine oils are marked as xWy, where the first index x is a low-temperature 
viscosity parameter (which is measured at −18oC). The lower the index, the lower the low-
temperature limit of the practical application of oil.10 The last index y is kinematic viscos-
ity (in mm2/s) measured at 100oC. The letter W means that oil can be used in the winter-
time. 

The real performance of lubricating mineral oils is more complex, especially in low-
temperature applications. Wax and paraffin crystallization in crude oils is also important 

Figure 6.2.5. Influence of cooling rate (given on curves) 
on viscosity of a crude oil with 25% wax. Measure-
ments were carried out at constant shear stress 7.4 Pa. 
[Adapted, with permission, from P. Sigh, H.S. Fogler, 
N. Nagarajan, J. Rheol., 43, 1437 (1999)].
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for lubricating materials. The viscosity of mineral oils used as a base for lubricants 
depends on the rate of cooling and crystallization of wax.11 This results in the appearance 
of yield stress at low temperatures. Certainly, this effect is very crucial for engine start-up 
in winter-time, and rheology is the method of choice for estimation lubricant quality. 

Various greases are also oil-based products. The principal advantage of greases is the 
absence of fluidity in a stationary state, i.e., at low shear stress. From a rheological point 
of view, it means that these materials have a yield point and they are most likely obtained 
by the addition of solid components to oil. These additives form an inner structure charac-
terized by a certain strength (and that is “yield stress”). Yield stress causes grease not to 
flow out of a bearing. Greases are viscoplastic materials and yielding is their important 
designed function.

The rheological behavior of viscoplastic materials was discussed in section 3.2.2. 
The main peculiarities of their flow properties are shown in Fig. 3.5.5 and discussed in ref-
erence to this figure. The low shear stress domain is not very important because viscosity 
in this part of a flow curve, η0, is so high that behavior resembles a solid. Yield stress and 
viscosity, , in the high shear rate range are important characteristics of greases. The 
difference between η0 and  is substantial (Fig. 3.5.5 contains only a schematic diagram 
and it is not meant to give quantitative information on a scale of difference between η0 and 

 values). Low values of  provide low friction in bearing. The level of yielding is 
important for starting an engine. The structure of greases is thixotropic and its strength 
increases with time. This is especially important for winter applications. The engineering 
properties of greases are mainly determined by their rheological characteristics. 

Bitumens (also known as asphalts) consist of another group of oil-based products. 
They are viscoplastic materials of high viscosity. Frequently, their elasticity (or viscoelas-
ticity) is also important in their applications. Bitumens (natural or synthetic) are resin-like 
mixtures of higher hydrocarbons and their derivatives. Bitumens or asphalts, which are 

liquid binders, can be mixed with mineral 
fillers, such as sand, gravel, and other modi-
fying components to form paving or roofing 
compounds and other construction products. 
They are composite materials with dispersed 
particles. 

The behavior of these products in real 
applications depends on numerous factors. 
For example, in pavement applications, the 
amount and type of aggregate, and tempera-
ture properties of bitumen (especially low-
temperature properties), play a dominant role 
in temperate climatic conditions. The geo-
graphic location of pavement also plays an 
essential role as well as many other factors. 

Rheological properties of compositions used 
in road construction are frequently modified 
to address local requirements. One example 
of such modification is shown in Fig. 6.2.6. 

η∞
η∞

η∞ η∞

Figure 6.2.6. Example illustrating bitumen modifica-
tion by addition of polymer (SBS − block copolymer 
of butadiene and styrene). [Adapted, with permission, 
from F. Martinez-Boza, P. Partal, F.J. Navarro, C. 
Galegos, Rheol. Acta, 40, 135 (2001)]. 
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Here, the effect of the addition of a block copolymer changes the relationship between vis-
cosity and temperature. It is not immediately evident which one of these two materials is 
“better” or what else should be done in order “to improve” material. The answer depends 
on the requirements of the application. However, rheology gives a chance to compare 
materials of different compositions and suggests avenues to required modification of prop-
erties. 

Viscous properties of asphalts are important for technological processes. Mainte-
nance of characteristics of pavements or other compounded products depends on their vis-
coelastic properties and mechanical strength; the latter is most likely related to the 
viscoelasticity of material. 

In real practice, measurements of viscoelastic properties can be carried out in a lim-
ited experimental frequency (or time) window, whereas such materials as asphalts are used 
in a wide temperature range and therefore relaxation times are changing by many decimal 
orders. As discussed in section 2.7, estimation of relaxation characteristics of the material 
in a wide time range can be solved by applying the time-temperature superposition princi-
ple. It was proven that this method may also be applied to asphalts12 to estimate their 
relaxation properties and to calculate their strength and lifetime at different stresses. 

In many other cases, it is possible to estimate the quality of asphalt based on the cor-
relation between their structure and rheological properties, on one hand, and rheological 
properties and performance characteristics in product applications, on the other hand. 
Rheological measurements are also applied as standard methods in quality control and the 
results of these measurements are the necessary parameters for material characterization. 

The following are the applications of rheological methods in the oil industry:
• measurement of rheological properties of oils and oil-based products to develop 

reliable engineering criteria for pipeline design 
• estimation of temperature boundaries for transportation of crude oils and applica-

bility of oil-based composite materials 
• classification and grading of petroleum products for different applications
• development of new oil-based products on the basis of the correlation between 

applied properties of these products and their rheological characteristics.
6.2.3 FOOD PRODUCTS
The dough was one of the first objects of rheological studies, which demonstrated that 
dough is a viscoplastic material.13 Dough testing in bread production is probably the most 
successful application of modern, sophisticated, rheological studies in control of product 
development and intermediate quality testing.14 

Numerous food products were examined by rheological methods. The main problem 
in testing food products is their inhomogeneity. It is relatively easy to test such products as 
mayonnaise or cream but very difficult to experiment with a variety of products that have 
variable composition. Specific to food industry, rheological methods are widely used for 
product quality testing. 

A list of some standard methods of testing food products is given below.15 
Continuous Puree Consistometer
Denture Tenderometer
MIT Denture Tenderometer
General Foods Texturometer
Brabender Farinograph
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Mixograph
Extensiograph
Alveograph
Chopin Alveograph
Cone Penetrometer
Bloom Gelometer
F.I.R.A. Gel Tester
Bostwick Consistometer
FMS and Adams Consistometer
Werner-Bratzler Shear
Zhan Viscometer
Kramer Shear Cell
Brookfield Disks and T-bars
Stephens Texture Analyzer
Simple Compression

Difficulties in applications of standard rheological experimental methods for food 
products lead to attempts to invent new approaches for characterizing these materials. 
Squeezing flow between two parallel plates was considered a useful method for measuring 
rheological properties of “semi-liquid” food products, such as tomato paste, low-fat may-
onnaise, and mustard.16 

Analysis of rheological properties of 
numerous food products showed that they 
are mainly characterized using the follow-
ing features: 

• non-Newtonian flow properties
• yield stress
• thixotropy 

while elasticity and viscoelastic properties, 
though they exist, are not very important. 

It is also worth adding that the region 
of non-linear viscoelastic behavior of these 
products is reached at low deformation. 
This is explained by the weakness of the 
physical structure existing in these materi-
als, which is easily broken by small 
stresses. It was found experimentally that 
shear stress must be as low as 0.2 Pa (for 
yogurt) in order to carry measurements in a 
linear viscoelastic range.17 

A typical example of the viscous 
properties of some liquid-like food prod-
ucts is presented in Fig. 6.2.7 for tomato 
puree and mayonnaise.18 The following 
characteristic features of the rheological 
behavior of these products (as well as some 

others) are seen in this figure: the rapid change from upper to lower branches of a flow 
curve is large but flow at low shear stresses occurs and flow at maximum viscosity in this 
stress range is of practical importance. 

Figure 6.2.7. Flow curves of food products. Original 
experimental data obtained by C. Gallegos. [Adapted, 
with permission, from H.A. Barnes, J. Non-Newt. Fluid 
Mech., 81, 133 (1999)].
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The measured level of yield stress is several hundred Pa, which is typical for paste-
like food products. Yielding does not happen rapidly but viscosity is constant for some 
shear stress range. This type of rheological behavior was observed for many food materi-
als including some unusual products, such as “black cumin”.19 

Properties of chocolate mass20 are characterized by its rheological parameters. The 
recommended method21 of measuring rheological properties of chocolate mass is based on 
the Casson equation and viscous properties are measured in the shear rate range from 5 to 
60 s-1. Typical values of rheological parameters (entering the Casson equation) are:

for milk chocolate: σY = 0-20 Pa, ηp = 0.5-2.5 Pa*s
for chocolate bar grades: σY = 10-200 Pa, ηp = 1-20 Pa*s.
The full range of the above-mentioned rheological effects was observed in testing 

peanut butter.22 This is a suspension with micron-size particles. The yield stress in the 
range of 24-370 Pa (depending on composition) was measured. Its value correlated with 
stabilizing of a suspension structure. Strong non-linear effects in periodic oscillations were 
evident even at a very low-stress level. Time-dependent effects and non-Newtonian flow 
behavior were also observed in product testing.

Yield stress determines the quality and/or composition of the product. Sour cream is 
a good example. The yield stress depends on the amount of fat and it can be used as a 
quantitative measure of sour cream quality under standardized test conditions. 

Qualitative description of steady-state (excluding time-dependent behavior) proper-
ties is based on the Hershel-Bulkley equation or similar ones (see Eq. 3.3.9). If the clearly 
pronounced yield stress is absent, it is possible to describe the flow properties of food 
products by other equations. For example, flow curves measured for aqueous dispersions 
of spray-dried egg yolk were successfully fitted into the Carreau-type equation by adding 
a limiting value of the minimum Newtonian viscosity at high shear rates (see Eq. 3.3.3).23 

Many food products consist of polymeric substances. General approaches developed 
for polymer materials are also applied to food, as was demonstrated, for example, for soy 
flour.24 
6.2.4 COSMETICS AND PHARMACEUTICALS
There is a great variety of cosmetic and pharmaceutical materials such as body lotions, 
face creams, toothpaste, liquid soaps, and so on. The difference between “creams” and 
“pastes” is not essential, and from a rheological point of view, it is more quantitative than 
qualitative. Many materials are emulsions, i.e., dispersions of liquid droplets in another 
continuous liquid phase. There is frequently some amount of solid component dispersed in 
a continuous liquid phase. 

Two main classes of emulsions are distinguished: oil droplets dispersed in a water 
phase (O/W emulsion) or a water phase dispersed in a continuous oil phase (W/O emul-
sion). Emulsions with more complex structures also exist. Disperse phase is stabilized 
with an emulsifier covering the surface of droplets. 

Pharmaceutical emulsions, like many other emulsions, are liquids and can flow at 
any stress. Disperse phase creates some “structure” appearing due to inter-particle interac-
tions of a different nature. This structure contributes to a stress domain where viscosity 
drops rapidly. This stress region resembles yielding. At higher stresses, these systems are 
typical non-Newtonian liquids. 
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Two main rheological characteristics 
are most important in pharmaceuticals:

• non-Newtonian flow properties 
• yield stress.
The selection of a target value for 

these parameters is determined by human 
experience and goals of the application. 
Many cosmetics are viscoplastic materials 
(“pastes”) and yield stress is important 
because the material is expected to remain 
on the skin for a long time. The level of the 
yield stress depends on the application. The 
yield stress of body lotion is very low, 
about several Pa. The optimal level of σY
for body lotion is about 10 Pa, and for soft 
creams,  σY may reach 100 Pa. Thixotropic 
behavior is also important in some applica-
tions, and thixotropic effects are caused by 

an inner structure of some pharmaceuticals (e.g., see Fig. 3.5.7). This is a weak structure 
and it can be measured at low stresses.

Elasticity is not essential for the application of these materials, although viscoelastic 
properties and frequency dependence of elastic modulus are measured. These systems are 
strongly non-linear because inter-particle forces are weak and elastic in nature. Therefore, 
even at small deformation, amplitude the loss modulus becomes strain-dependent. 

“Super-concentrated” cosmetic materials of the W/O type with a concentration of 
disperse phase exceeding 74 vol.% form an unusual group of emulsions.25 The dispersed 
droplets are not spheres but polyhedrons. Such emulsions are viscoelastic liquids. The 
limit of linearity corresponds to very low stresses (see Fig. 6.2.8). Dependencies of this 
kind are typical for cosmetic emulsions26 and the maximum of the loss modulus is treated 
as yield stress. Its value is low but the existence of yield stress in pharmaceuticals in many 
cases is crucially important for the application,27 because creams should remain on a body 
surface without flowing.

Nature of components, the concentration of a disperse phase, and intimate details of 
the structure of an emulsion are the most important influences of rheological properties of 
pharmaceutical products and cosmetics. Measured rheological parameters by themselves 
do not express quality and application characteristics of the material. They only become 
valuable when compared with organoleptic features of materials, which cannot be 
expressed by the objectivity of measurement but must be compared with consumer accep-
tance of a product. Rheology helps to quantify these observations.
6.2.5 BIOLOGICAL FLUIDS
The central concept in the measurement of rheological properties of biological fluids is to 
establish the norm for a healthy individual and to compare the results of measurements for 
any person with such a norm. But norms may differ for various individuals in a broad 
range, and measures of this kind should be used with extreme caution in these applica-
tions.28 

Figure 6.2.8. Loss modulus as a function of stress ampli-
tude in testing highly concentrated W/O cosmetic emul-
sion. Concentrations of a disperse phase are shown at 
the curves. Curves are drawn instead of points in origi-
nal publication. [Adapted, with permission, from A. 
Ponton, P. Clément, J.R. Grossiords, J. Rheol., 45, 521 
(2001)]. 
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Blood is undoubtedly the most 
important biological fluid and its rheology 
is interesting from both theoretical and 
applied points of view. Other biological 
fluids such as synovial fluid and sweat are 
also interesting subjects for rheological 
analysis.

 “Blood is a juice of very special 
kind”28  − this statement is true in many 
aspects. By its structure, blood is a multi-
component system (suspension) consisting 
of elastically deformable particles (mainly 
red blood cells) dispersed in a Newtonian 
liquid (plasma). Blood viscosity (at differ-
ent velocities of flow), rate of coagulation 
(accompanied by the evolution of rheologi-
cal properties), and influence of medicinal 
preparations are directly related to the 
health state of an individual. The main 
problem in the characterization of proper-
ties of blood is the absence of a “norm”. 
Measurements are useful to compare prop-
erties of blood of the same person to study 

their evolution but are difficult to generalize and compare with the health status of an indi-
vidual.

Another problem in the estimation of blood properties is its instability, caused by 
temperature and chemical reactions in the presence of air oxygen. These reasons require 
special measures to assure that the rheological characteristics are free of artifacts. It is 
doubtful whether blood shows real yield stress. If it has, it may indicate that blood was 
exposed for too long to low shear stress and it is objectionable from a biological point of 
view. Sometimes blood is treated as a “percolating physical gel” to determine conven-
tional “yield stress” as its characteristic property.29 As discussed in section 3.3.3, the 
determination of yield stress depends on the method of approximation. If a method is 
selected for the whole range of samples, their properties can be compared unambiguously. 
This is shown in Fig. 6.2.9, where stress at shear rate equal 10-3 s-1 was “taken as a realis-
tic approximation of the yield stress of blood”. Experiments were carried out in a Couette-
type viscometer and deformations of red cells due to wall effects were absent. It is not a 
real, physically meaningful yield stress but a convenient measure of the rheological prop-
erties of blood. A good correlation between “yield stress” and the content of red cells was 
observed. The fitting curve for all points is well described by the cubic dependence:

[6.2.2]

where  is the content of red blood cells and A is an empirical constant.
The yield stress data appear to be different for three donor blood samples, though the 

variability of data was not very large.29 The authors of the publication emphasize that the 

σY Aϕ3=

ϕ

Figure 6.2.9. Yield stress as a function of the content of 
hematocrit (content of red blood cells). Open labels − 
original data; black labels − literature data. [Adapted, 
with permission, from C. Picart, J.-M. Piau, H. Gallard, 
P. Carpentier, J. Rheol., 42, 1 (1998)].
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results are strongly dependent on the details of the experiment. In particular, the measure-
ments made with smooth or roughened capillary surface lead to very different conclu-
sions. Variation of the method used for estimating yield stress can give quite different 
numerical values of this parameter. In the development of rheological methods for studies 
of blood properties, especially in clinical practice, it is very important to standardize con-
ditions of measurement and use the same procedure for treating experimental data.

Application of rheological analysis was found useful for other biological materials, 
such as bones, tissues, arteries, etc. 
6.2.6 CONCENTRATED SUSPENSIONS 
These materials include a variety of compositions. Concentrated dispersions in low vis-
cosity liquids, such as suspensions of minerals, sand, or stones in water, drilling composi-
tions, slurries, slush, mud, coal suspensions, coating colors, paints, and so on, are 
interesting objects of rheological investigations. The following rheological properties of 
concentrated suspensions are typical:

• non-Newtonian flow including possible thickening at high concentrations and 
high shear rates

• yielding; the yield stress is a strong function of concentration 
• critical concentration threshold corresponding to structure formation; at concen-

trations above this limit such effects as jamming, wall slip, and so on, take place 
• thixotropy.

The attention here is drawn to the “structure” formed by solid particles.
A typical example demonstrating the 

evolution of viscous properties in the tran-
sition from dilute to concentrated suspen-
sions is shown in Fig. 6.2.10. The addition 
of solid particles leads to the appearance 
and gradual broadening of a non-Newto-
nian region in a flow curve, which eventu-
ally results in rapid yielding. Experimental 
data were obtained for numerous suspen-
sions, though the boundary of concentra-
tion domains, corresponding to flow-to-
yielding transition, depends on the nature 
of dispersed particles and their surface 
treatment. Contrary to the data in Fig. 3.2.3, 
the low shear stress domain, corresponding 
to very high constant values of viscosity, 

was not reached in Fig. 6.2.10, even though high shear rate constant values of viscosity are 
present in Fig. 6.2.10. But it is likely that such a domain exists at low shear stresses for all 
suspensions, regardless of concentrations.

Viscoelasticity of material is generally not as important because the structure is 
formed by hard solid particles. The structure can be modified by the viscoelastic matrix. 
Inter-particle interactions have a negligible influence on the viscoelastic properties of the 
material. Solid filler suppresses the elasticity of the matrix. 

Figure 6.2.10. Effect of concentration on flow curves of 
PMMA spherical particles (diameter 5 μm) in silicon 
oil. [Adapted, with permission, from L. Heymann, S. 
Peukert, N. Aksel, Rheol. Acta, 46, 307 (2002)].
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The domination of a particular rheological effect depends on numerous factors, pri-
marily on solid-phase concentration and inter-particle interactions which can be modified 
by different methods.

Yield stress, σY, caused by a structure formed by solid components, does not depend 
on the viscosity of the matrix. This is shown for model materials in Fig. 3.2.5 and it 
applies to the majority of concentrated suspensions. At the same time, a matrix can influ-
ence the inter-particle interaction determining the strength of a solid-like structure formed 
by filler. The values of σY depend on solid-phase concentration and the nature of solid par-
ticles, and their surface treatment. 

The yield stress in concentrated suspensions in a low viscosity matrix depends on the 
concentration of solid particles. Fig. 3.2.4 and Fig. 6.2.11 demonstrate it very clearly. The 
role of particle sizes (surface area) is also evident from this experimental data. The con-
centration and particle size dependencies of yield stress, σY, for experimental data of this 
figure can be represented by the generalized fitting function:

[6.2.3]

where ds is the average diameter of particles, k and n are fitting parameters. It was found 
that for the concentration range ϕ < 0.42, the exponent n = 4.2 (at higher concentration n 
rapidly increases). The analogous dependence of yield stress on concentration was 
observed for numerous suspensions, for example, for clay dispersions.30 In fact, the expo-
nential dependence σY(ϕ) discussed in section 3.3.3 may be approximated by two power-
law functions with changing power-law index values. 

It is reasonable to think that there is some threshold concentration in suspensions 
corresponding to the formation of solid-like structures. The exact value of concentration 
corresponding to this threshold depends on the composition of the system.

The formation of such a solid-like structure leads to the rapid increase of yield stress 
and to changes in the rheological behavior of the material. A typical example is shown in 
Fig. 6.2.12.31 First of all, a very strong influence of concentration in a narrow range of its 

σYds
2 kϕn=

Figure 6.2.11. Yield stress in Al2O3 slurries as a func-
tion of volume fraction. Curves correspond to differ-
ent sizes of particles presented by their surface area 
(shown on curves). [Adapted, with permission, from 
Z. Zhou, M.J. Solomon, P.J. Scales, D.V. Boger, J. 
Rheol., 43, 651 (1999)].

Figure 6.2.12. Flow characteristics of slurry consisting 
of 1 μm particles of silica in water at pH = 8.1 with 
0.10 M added NaCl. Volume concentration (in%) of 
the solid phase is shown on curves. Points obtained in 
the original publication are omitted. [Adapted, with 
permission, from G.V. Franks, Z. Zhou, N.J. Duin, D.V. 
Boger, J. Rheol., 44, 759 (2000)].
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change is pertinent. A thickening effect is 
observed at a concentration above some 
threshold. The most popular interpretation 
of this effect is related to the formation of 
clusters.32 This effect of volumetric dila-
tancy is similar to attempts to force dry 
sand through a tube at high applied force. 
Shear thickening can be attributed to 
increased inter-particle interaction. 

Shear thickening at high shear rates is 
typical of many widely-used technological 
materials, for example, surfactant-stabi-
lized concentrated kaolin-in-water suspen-
sions.33 

From an applied point of view, the 
existence of a critical concentration at 
which strong shear thickening and transi-

tion from flow to slip becomes dominant, preventing steady transportation of a suspen-
sion, is the most important finding. 

Structure formation is a reversible process34 and from a rheological point of view, it 
leads to the thixotropy of material. The existence of thixotropy and, as its manifestation, 
viscosity bifurcation, was demonstrated for such popular concentrated suspensions as ben-
tonite-in-water suspensions.35 Sometimes, thixotropy (structure formation and destruc-
tion) can be observed as an unusual effect of periodic oscillation of apparent viscosity.36 

Thixotropy is mainly understood as reversible changes of viscosity (due to deforma-
tion and rest). In section 3.5.1 it was shown that the strength of the material is also time-
dependent. For concentrated suspensions, it results in the time dependence of yield stress 
for materials that were initially destroyed by deformation. This effect is illustrated in Fig. 
6.2.13. 

Thixotropic effects are typical of concentrated suspensions of different types, though 
not widely investigated. Their quantitative description is important for some technological 
processes, in particular for mixing and transportation.

As was mentioned in Section 3.3.4.3, the concentration dependence of rheological 
properties of concentrated emulsions is similar (in many aspects) to the behavior of sus-
pensions. For example, Fig. 3.2.9 discussed in Section 3.3.4.3 clearly demonstrates that 
the shape of flow curves changes in a rather narrow concentration range and this change is 
similar to the evolution of viscous properties of concentrated suspensions (see, for exam-
ple, Fig. 6.2.10). At high concentrations (Fig. 3.2.9), flow curves can be treated as those of 
solid-like substance with very high viscosity at low shear stresses exhibiting the yield 
stress. 
6.2.7 ELECTRO- AND MAGNETO-RHEOLOGICAL MATERIALS
Electro- and magneto-rheological materials (ER and MR materials, respectively) are a 
special type of concentrated dispersions of solid particles in a viscous medium.37 Their 
solid phase can be formed from inorganic materials. But, it can also be formed from 
hydrated starch particles37 or any other particles, which have induced dipole or dipole8-

Figure 6.2.13. Thixotropy of concentrated suspensions: 
recovery of yield stress as function of rest time for Na-
montmorillonite-based suspension. Concentration is 
shown on graph. [Adapted, with permission, from R.G. 
de Kretser, D. V. Boger, Rheol. Acta, 40, 582 (2001)]. 
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dipole interaction creating a continuous structure. These suspensions consist of micron-
level particles dispersed in a continuous phase. An inter-particle interaction in ER and MR 
liquids depends on the concentration of particles as well as on permittivity (for ER) and 
permeability (for MR) materials. 

A structure formed after applying an electrical or magnetic field has some strength 
due to the interaction of these dispersed particles. Therefore, such a composition placed in 
an electrical or magnetic field loses fluidity at stresses lower than the strength of the struc-
ture and becomes a viscoplastic medium with yield stress corresponding to the strength of 
particle structure. Application of field results in drastic changes of rheological properties. 

This effect can be used in numerous practical applications, such as the construction 
of switching devices, electrical valves, breaks, clutch dampers, and so on.

The rheological behavior of electro-sensitive suspensions can be described by equa-
tion used for viscoplastic medium, for example, the Bingham type, but with coefficients 
depending on the strength, E, of an electrical field:39 

[6.2.4]

Rheological properties of ER and MR materials can be changed from a purely vis-
cous liquid to a viscoplastic medium. According to Eq. 6.2.4, the following characteristics 
are important for ER liquids: viscosity, η, in the absence of a field, and the dependence of 
the yield stress on E. In magneto-rheological materials, the yield stress depends on mag-

netic flux density, B, instead of E. 
For practical applications, the charac-

teristic time of switching, tsw, i.e., time of 
formation and disappearance of solid-like 
structure, is an important factor. For systems 
of practical interest, this time must be in the 
range of 1-10 ms.

Structure formation on switching on an 
electrical field leads to yield stress and/or an 
increase in apparent viscosity. Material sub-
jected to stresses below σY is solid-like and 
this transition is of practical interest for 
applied science. 

The transition to solid-like behavior 
can be demonstrated by measuring the elas-
tic modulus under a superimposed electrical 
field. A typical example is shown in Fig. 
6.2.14 for diatomite suspension in trans-
former oil. An increase of elastic modulus 
attains several decimal orders of magnitude. 

The peculiarities of the rheological behavior of electro-rheological liquids depend on 
the concentration of the solid phase, though the strength of the structure (i.e., yield stress) 
is also sensitive to particle size distribution.40 Analogous effect of particle size distribution 
on rheological properties is a characteristic feature of various emulsions and suspensions.

σ γ· E,( ) σY E( ) ηγ·+=

Figure 6.2.14. Electro-rheological effect: influence of 
electrical field on storage modulus of diatomite sus-
pensions at frequency of 0.16 Hz, amplitude of shear 
deformation of 0.027. Concentrations are shown at the 
curves. [Adapted, with permission, from E.V. 
Korobko, V.E. Dreval, Z.P. Shulman, V.G. Kuli-
chikhin, Rheol. Acta, 33, 117 (1994)]. 
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An example illustrating the magneto-
rheological effect is shown in Fig. 6.2.15, 
where the dependence of yield stress on 
magnetic flux density, B, is shown. In an 
original study,41 this dependence was mea-
sured for 10% suspension of carbonyl iron 
in silicone oil and in 6 different greases. 
Silicone oil was a Newtonian liquid and 
greases were viscoplastic materials with σY
values in the range of 1-37 Pa. The depen-
dencies σY(B) for all these systems are 
within a narrow range, and the line in Fig. 
6.2.15 is an averaged curve. The magnetic 
field produces a structure with strength sev-
eral orders of magnitude higher than initial 
yield stress and in practice, this strength 
does not depend on the viscosity of the 
matrix. 

Properties of ER materials can be characterized by a dimensionless group (known as 
the Mason number, Mn) equal to a ratio of viscous to polarization forces.42 Polarization 
forces are proportional to the square of electrical field strength and electrical parameters 
of the system. However, experimentally observed σY(B) dependence is usually described 
by a power-law equation with an exponent close to 1.5.43 

The transition from viscous to viscoplastic behavior takes place at some critical 
value of the Mason number, which depends on the concentration of the interacting parti-
cles. The linear dependence of σY on the concentration of filler is a good approximation of 
real performance of some ER materials,44 though more complicated concentration depen-
dencies of σY can be observed, as was shown in section 6.2.6. 

The electro-rheological effect can also play a role in mixtures of two immiscible liq-
uids, e.g., polymer blend, including a liquid crystal polymer component.45 However, due 
to the high viscosity of the polymer system, transient switch-time in such systems 
increases up to several seconds, and viscosity jump is not sufficiently rapid as compared 
with suspensions of solid particles.
6.2.8 CONCLUDING REMARKS
The following is the summary of the concepts discussed so far in this chapter.

Rheological measurements provide a set of parameters characterizing properties of 
the material under test. It is supposed that these parameters are related to the molecular 
structure and composition of industrial materials. Establishing a correlation between rheo-
logical parameters and structure factors is the central research problem. The results of rhe-
ological measurements by themselves are not a direct indication of the quality and 
application properties of a product. The latter must be based on practical experience and 
expert evaluation. 

First, there is a triangle: “rheological properties” − “molecular structure and compo-
sition content” − “quality and application”. Any side of this triangle is the subject of stud-

Figure 6.2.15. Magneto-rheological effect: dependence 
of yield stress on applied magnetic flux density for car-
bonyl iron suspension in different media. A line is an 
averaged curve drawn for the same particles dispersed 
in 7 different media. [Adapted, with permission, from 
P.J. Rankin, A.T. Horvath, D.J. Klingenberg, Rheol. 
Acta, 38, 471 (1999)].
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ies and only the complex results of these studies form a basis for the application of 
rheological methods in material control and characterization. 

Rheology operates with different measures of resistance to deformation, primarily 
determined by viscosity and modulus, though these characteristics are being understood in 
a more complex sense than when they were initially introduced in basic theories. There is 
a difficult and in many cases impossible to solve the task of carrying out rigorous mea-
surements based on a modern complicated continuum or molecular theories. Such mea-
surements can be a goal of advanced academic investigations, which are not directly ready 
for technological applications. As an alternative to this rigorous approach, a great number 
of conventional industrial methods of material characterization, related to rheology, have 
been proposed and are used in the practice of testing various real materials. 

Second, the principal direction of application of rheology in material characteriza-
tion is the standardization of proposed experimental methods, including the design of the 
apparatus used and the testing procedure. The benefit of standardization depends on the 
correctness of the method selection for a specific field of application and its sensitivity to 
factors that are assumed by experts as determining product quality.

The choice of the most sensitive rheological parameter depends on the goals of test-
ing. The traditional subject of rheology is the flow of materials. Then, the dominant share 
of experimental methods is related to viscosity measured under different conditions. Many 
real (either technological or biological) materials are viscoplastic, and their rheological 
properties in the low shear stress range can be useful for the assessment of their quality. In 
other cases, time-dependent behavior, primarily the thixotropic properties of the material, 
can play an essential role in the application.

Third, it is not enough to limit oneself to apparent viscosity as an applied measure of 
rheological properties of real materials but it is necessary to deal with a wider choice of 
material characteristics. Among them, the yield stress is very important for many materi-
als and its reliable measurements are promising for practical applications. 

6.3 RHEOKINETICS (CHEMORHEOLOGY) AND RHEOKINETIC 
       LIQUIDS
6.3.1 FORMULATION OF THE PROBLEM
Rheological methods are used in practice to control chemical reactions in oligomeric and 
polymeric systems, physical transformations, and quality of products at different stages of 
the process. This branch of rheology is called rheokinetics, or sometimes the terms chemo-
rheology and kinetorheology are also used.46 

Its importance for polymeric materials (though not only these) is explained by the 
high sensitivity of rheological properties, primarily viscosity and elastic modulus, to the 
length of the macromolecular chain, its structure, and/or concentration of polymer in solu-
tion. This is contrary to reactions of low-molecular compounds, where rheological proper-
ties of reactive media are only slightly affected during the course of the reaction.

In rheokinetic measurements two different cases can be distinguished: 
• linear polymerization, where the increase of a linear chain is a dominating pro-

cess
• curing, where chemical reactions lead to the formation of a three-dimensional 

network. 
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In the first case, viscosity increases gradually (if the reaction takes place in a liquid phase). 
In the second case, when continuous network formation begins, the viscosity becomes 
unlimitedly high and material loses its ability to flow. The third case of interest for rheol-
ogy is related to the chemical (or physical) transformation of polymeric materials without 
changes in chain length or its branching.
6.3.2. LINEAR POLYMERIZATION
The rheokinetics of linear polymerization depends on the process chemistry and/or the 
chain growth mechanism. Three main reactions can be realized and modeled, such as ionic 
polymerization, radical polymerization, and polycondensation. 

According to the simplest model of ionic polymerization, the growth of chains hap-
pens on the active centers; both molecular mass, MM, of a newly-formed polymer and its 
concentration change. 

The model of free-radical polymerization is based on the supposition that the MM of 
the forming polymer is constant and polymerization proceeds by an increase of its content 
in a reactive medium.

Polycondensation is a process of polymer formation by reaction of growing chain 
ends; concentration of polymer in the reactive medium is constant but its molecular 
weight increases.

Then, viscosity dependence on the concentration of polymer in a reactive medium 
(solution) and its MM is supposed to obey the standard rules discussed in section 3.3. 
Based on these simplest arguments, rheokinetic depends on viscosity, η, on the degree of 
conversion, β, for the three model schemes of polymer formation in the solution that can 
be obtained as follows:

for ionic polymerization:

[6.3.1]

for free-radical polymerization:

[6.3.2]

for polycondensation:

[6.3.3]

where K1, K2, and K3 are constants, and the exponents a and b are the same as in the 
dependencies of viscosity on MM. As the first approximation, it can be assumed that for 
high MM compounds  and for concentrated solutions .

The types of η(β) dependencies are different for various chemical processes. In addi-
tion, it is necessary to determine the kinetics of polymerization, i.e., the equation describ-
ing the time dependence of the degree of conversion, β(t). Such equations are known for 
polymerization processes of different types.47 Then, it is possible to calculate the time 
dependence of viscosity for polymerization processes of any type.

Fig. 6.3.1 is an illustration of the time dependencies of viscosity and the degree of 
conversion measured simultaneously.48 Strong influence of temperature on rheokinetics of 
polymerization is pertinent. In fact, temperature influences rheokinetics in two ways. 

η K1βa b+=

η K2βb=

η K3 1 β–( ) 1–=

a 3.5≈ b 5≈
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First, viscosity depends on temperature. Sec-
ond, the kinetics of the chemical reaction is 
highly sensitive to temperature. Direct esti-
mations show that the second factor always 
dominates.

Calculation of time dependence of viscosity based on pure chemical and kinetic 
arguments is illustrated in Fig. 6.3.2 for free radical polymerization of methylmethacry-
late. Dotted (calculated) lines were found based on laboratory studies of the kinetics of 
polymerization and from independent data on viscous properties of polymethylmethacry-
late solutions. It is seen that the model of rheokinetic calculations gives realistic results.

Numerous experimental data confirm that the simplest rheokinetic schemes of linear 
polymerization work satisfactorily when and if chemical processes take place in a homo-
geneous phase. However, in real technological practice, newly formed polymers can be 
insoluble (in contrast to their monomers) in a reactive medium, and, at a certain degree of 
conversion, phase transformation occurs. Rheokinetic data clearly demonstrate this effect, 
as shown in Fig. 6.3.3. The polymerization proceeds in a mixed solvent and the “quality” 
of solvent is improved for a newly formed polymer by increasing the cyclohexane fraction 
in relation to toluene (movement from the right curve to the left curve). Polymerization in 
“good” solvent proceeds in a homogeneous system and the smooth rheokinetic curve is 
observed (right curve in this figure). If the concentration of the “bad” solvent is higher, the 
phase separation occurs at earlier stages of the process.

Figure 6.3.2. Comparison of experimental data (solid 
lines) and calculated viscosity profiles (dotted lines) in 
polymerization of methylmethacrylate at different con-
tent of initiator (its concentrations, [I0], are shown on 
curves). [Adapted, with permission, from A.Ya. 
Malkin, S.G. Kulichikhin, D.N. Emel'yanov, I.E. 
Smetanina, N.V. Ryabokon, Polymer, 28, 778 (1984)].Figure 6.3.1. Rheokinetics of ionic polymerization of 

dodecalactam. Evolution of the degree of conversion, 
β, and viscosity, η, at two temperatures. [Adapted, 
with permission, from A.Ya. Malkin, S.G. Kulichikhin, 
S.L. Ivanova, M.A. Korchaghina, Vysokomol. Soedin.
(Polymers − in Russian), 22A, 165 (1980)].
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The effects of phase separation in polymerization processes, regardless of cause, are 
always manifested by a maximum on the rheokinetic curve.

Rheokinetic measurements are, by necessity, accompanied by the shearing reactive 
medium. Then, it is natural to ask whether deformation influences the kinetics of the 
chemical process. Experiments have proven that the answer is “no” if the reaction takes 
place in a homogeneous system. However, the answer is the opposite if the system is het-
erogeneous. In this case, shearing is equivalent to mixing and averaging the content and 
properties throughout a reactive vessel, which influences the rate of reaction. However, 
the role of shearing can be even more impressive, if and when deformations shift the con-
ditions of phase separation. This phenomenon has already been mentioned in section 3.5.3 
and Figs. 3.5.14 and 3.5.15 are very clear demonstrations of the shear-induced rheokinetic 
effects.

Rheokinetic measurements also demonstrate the transition to the diffusion-controlled 
stage of reaction in linear polymerization, even if this transition is not accompanied by 
phase transition. This is shown in Fig. 6.3.4 for polycondensation synthesis of polysul-
fone. According to the general principles of chemical kinetics, the increase in the concen-
tration of reactants in solution causes acceleration of reaction. This concept is valid and 
corresponds to the transition from 20 to 60% concentration. However, further increase of 
reactant concentration leads to a reverse effect − suppression of polymerization, which is 
clearly seen from the rheokinetic data. This effect is definitely related to the diffusion-con-

Figure 6.3.4. Evolution of viscosity in the process of 
synthesis of polysulfone from reactive monomers. 
T=150oC. Concentrations of reactants are shown on 
curves. [Adapted, with permission, from A.Kh. Bulai, 
V.N. Klyuchnikov, Ya. G. Urman, I.Ya. Slonim, K.M. 
Bolotina, V.A. Kozhina, M.M. Gol'der, S.G. Kuli-
chikhin, V.P. Begishev, A.Ya. Malkin, Polymer, 28, 
1047 (1987)]. 

Figure 6.3.3. Polymerization of 50% solution of meth-
ylmethacrylate in a mixed solvent (ratios of solvents 
are shown on curves) − phase separation in the process 
of polymerization. Arrows show phase transitions. 
[Adapted, with permission, from A.Ya. Malkin, S.G. 
Kulichikhin, D.N. Emel'yanov, I.E. Smetanina, N.V. 
Ryabokon, Polymer, 25, 778 (1984)]. 
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trolled limitation of a chemical reaction. Rheological measurements are useful instruments 
in demonstrating this phenomenon.

As a summary of the present section, the following applications of results of the 
rheokinetic analysis of linear polymerization can be mentioned:

• calculation of viscosity change during the technological process with application 
to design of equipment (power of mixer motors, the output of pumps, and so on); 
the evolution of rheological properties of the reactive medium also influences the 
flow lines and efficiency of mixing49 

• monitoring and control of the technological process with feedback to regulating 
parameters 

• study of mechanisms of polymerization and estimation of their kinetic factors; 
this is achieved by comparison of theoretical predictions coming from different 
models with experimental data; a particular case of this line of investigation is 
based on using the Toms effect as the rheokinetic method.50 

6.3.3 OLIGOMER CURING
The evolution of two main parameters −
viscosity and modulus of elasticity − in the 
process of oligomer curing is schematically 
shown in Fig. 6.3.5. Both factors are 
important in technological applications. 
The following general characteristics of the 
rheokinetic analysis of the oligomer curing 
process, based on experimental data 
obtained for numerous oligomeric systems, 
can be formulated:

• viscosity grows unlimitedly when 
approaching a “critical” point (of 
time or degree of conversion); this 
point is called a gel-point, t*; gela-

tion occurs at a certain degree of transformation, β*
• noticeable values of the elastic modulus appear before the gel-point, though the 

main part of its growth takes place after the gel-point; however no special points 
can be marked on the G'(t) dependence, and the value of modulus at β* depends 
on the mechanism of three-dimensional network formation (more exactly, on the 
functionality of reactants)

• modulus reaches its constant limiting value at the end of the curing process
• loss tangent passes through a maximum at the gel-point, so it is a point of relax-

ation transition.
Let us discuss the behavior of different rheological characteristics of curing in more 

detail.
6.3.3.1 Viscosity change and a gel-point
The rate of viscosity growth is very important for technological applications at the stage of 
article formation. Viscosity should not be too high during wetting of reinforcing filler or 
forming a part’s shape. However, an increase in viscosity is expected to be rapid after the 

Figure 6.3.5. Evolution of main rheological parameters 
during oligomer curing.
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completion of these technological opera-
tions in order to shorten the overall process. 
It is necessary to know the technological 
time, i.e., the time required to reach gel 
point when the oligomer being cured is still 
in a liquid form.

Two matters are important for technology − estimation of the gel-time, t* and formu-
lation of the kinetic equation for viscosity evolution in time. 

The important point in the discussion of materials with increasing (in time) viscosity 
is the transition from fluid to a solid-like state. This point is conditionally treated as the 
gel-time, t*. Different methods for finding t* exist. In many publications, the gel-point is 
determined as the time when G'(t) and G''(t) dependencies crossover51 as shown in Fig. 
6.3.6.

The sense of this definition is rather evident: in the fluid state (at t < t*) G'' > G' and 
losses dominate over elasticity. At t > t* the situation is reversed: G'' < G' and this is 
treated as the solid-like state. 

However, material can remain in the fluid state even if G'' < G'. So, the gel-point 
determined by this method does not obligatory corresponds to the gelation of a material.

A technologically convenient definition of the gel point determines the gel-time and 
the time necessary for reaching some level of viscosity, e.g., 100 Pa*s. Formally, a mate-
rial remains fluid, but not gel, below this time. This high viscosity limits the possibility of 
further processing material and thus can be used as the threshold of the transition to a 
solid-like state.

Meanwhile, gelation, by definition, is the transition to the real solid state when the 
fluid flow is impossible. Then the gel-time is a limiting time at which . It is usually 
found by the extrapolation procedure. One viscometric method of its determination is 
shown in Fig. 6.3.7. Constructing dependence of reciprocal viscosity (or ratio η0/η, as in 
Fig. 6.3.7, where η0 is the viscosity of the initial uncured system) versus time and extrapo-

η ∞→

Figure 6.3.7. Finding a gel-time by extrapolation in 
coordinates η-1 − t for an epoxy resin with different con-
tent of curing agent (shown on curves). [Adapted, with 
permission, from A.Ya. Malkin, S.G. Kulichikhin, M.L. 
Kerber, I.Yu. Gorbunova, E.A.Murashova, Polym. Eng. 
Sci., 37, 1322 (1997)]. 

Figure 6.3.6. Time evolution of the components of 
dynamic modulus. 
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lating this dependence to η-1 = 0, it is easy to find t*. This method is satisfactory in many 
cases.

There are two limiting cases:
• macro-curing in which a three-dimensional network is formed throughout the 

whole volume of the sample
• micro-gelation in which curing proceeds in separate particles dispersed in the sol-

vent.
Fig. 6.3.8 shows how micro-gelation 

(marked by a dotted line tm-g) takes place 
before the loss of fluidity of material 
(marked by a dashed line t*) occurs. Micro-
gelation, or micro-phase segregation, is 
observed by an optical method as the inten-
sive increase of optical density of material 
because of the formation of insoluble cured 
micro-particles of colloidal size. This is the 
limiting case of heterogeneous curing. In 
fact, curing of real oligomeric products is 
more or less heterogeneous, and statisti-
cally homogeneous curing is a limiting 
ideal case only.

A quantitative description of viscosity 
growth, which is necessary for practical 
calculations in modeling technological pro-
cesses, can be based on various concepts.

The very rapid increase in viscosity 
suggests the use of exponential formulas of 
various types. A number of η(t) relation-

ships can be described by the simplest exponential equation:

[6.3.4]

where η0 is the initial value of viscosity (at t=0), and tc is some characteristic time constant 
(not to be confused with t*).

This equation does not fully fit experimental data, because it does not predict unlim-
ited growth of viscosity on the approach of the gel-point. However, it describes a wide 
range of viscosity values. Generally, it is assumed that this equation can be applied up to 
viscosity ~103 Pa*s. This limit corresponds to a high viscosity level that is close to the 
limit of the fluidity of most materials. For these reasons, it gives an acceptable technolog-
ical estimation of conditions of gelation.

A rigorous approach to η(t) dependence is based on a scaling concept.52 The follow-
ing equation is expected to be valid only close to a gel-point:

[6.3.5]

where s is the “scaling factor”. It equals 0.7+/-0.07.

η η0e
t tc⁄

=

η η0 1 t t*⁄–( ) s–=

Figure 6.3.8. Viscosity evolution on curing melamine-
formaldehyde resin in water solutions. Concentrations 
are shown at the curves. T = 80oC. Dotted line tm-g −
time of micro-segregation as observed by an optical 
method. Dashed line t* − gelation of system as a whole. 
[Adapted, with permission, from A.Ya. Malkin, S. G. 
Kulichikhin, Adv. Polymer Sci., 101, 217 (1991)]. 
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Numerous experimental data show that an equation of an analogous type can 
describe η(t) dependence even in a wider time domain, but the value of exponent s is not 
equal to the theoretical value but may change in a wide range, depending on the chemical 
composition of the curing system, temperature, and so on. Therefore, s is not a constant 
for various real systems, which means that the scaling concept is not valid in many practi-
cally important situations. This experimental fact can also be treated as indirect proof of 
heterogeneity of curing real oligomeric materials.

Another empirical equation for η(t) dependence can be proposed:

[6.3.6]

This equation contains a limited number of fitting parameters and correctly predicts 
important features of η(t) dependence: existence of gel-point (approach to ) and 
rapid growth of viscosity during curing.

Finally, it is worth mentioning that the rheokinetics of chemical processes of curing 
does not always coincide with results of a kinetic study made by chemical and/or other 
physical methods. Different methods emphasize different transformations and that is why 
even the form of kinetic equations obtained can be very different, depending on the 
method applied.53 
6.3.3.2 Curing at high shear rates
Shearing may influence the rate of chemical reaction in several ways. First, shearing is a 
mixing. In this sense, shearing promotes contacts of reactive groups and accelerates a 
reaction. Second, shearing can be a kinetic factor by itself (see section 3.5 and Fig. 3.5.16). 
The kinetic effect of shearing can be observed in multi-phase systems only, but no direct 
evidence of this effect in curing processes is known. Third, deformation at high shear rates 
leads to intensive heat dissipation and thus to non-isothermal effects. An increase in tem-
perature accelerates reaction and thus shortens oligomer processing. 

Let the induction period, when oligomer can be treated as a low-viscosity liquid, be 
t0 at low shear rates (in isothermal conditions). At high shear rates, due to heat dissipation, 
the induction period becomes shorter and equals tn. Dimensionless value  = tn/to < 1. 
Model calculations show54 that  is a unique function of the dimensionless shear rate, Γ, 
which is expressed as

[6.3.7]

where E is the activation energy of viscous flow, σ0 is the shear stress, at which the iso-
thermal induction period t0 is measured,  is the shear rate at which the induction period 
of curing is measured, c is the heat capacity, ρ is density, R is the universal gas constant, 
and T0 is the initial temperature at which t0 is measured.

The final equation expressing this dependence is 

[6.3.8]
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Experimental data obtained for vari-
ous oligomeric systems, having a different 
chemical mechanism of curing, and at dif-

ferent initial temperatures, T0, confirm that 
this equation completely describes experi-
mental data (one example is shown in Fig. 
6.3.9). The effect of shortening the induction 
period can be as high as a hundred times. 

Comparison of experimental and theo-
retical results shows that a non-isothermal 

effect is responsible for shortening the induction period at high deformation rates and, 
therefore, deformation rate plays a minor (if any) role in kinetics. However, it would be 
premature to make this conclusion about a direct kinetic role of shearing if curing leads to 
phase segregation, as in the case of melamine-formaldehyde oligomers (Fig. 6.3.8). 

In technological practice, high shear rates are common. That is why the results of 
measurement of the induction period performed at low shear rates should be used cau-
tiously for estimating of lifetimes of oligomeric compositions used in real technology. 
6.3.3.3 Curing after gel-point 
Monitoring the process of curing after gel-point is possible on the basis of elastic modulus 
measurements.

The general understanding of the curing process is based on two basic concepts: for-
mation of the three-dimensional network of chemical bonds at a certain degree of transfor-
mation (conversion), β*, and possible transition to glassy state at curing temperature. This 
transition occurs at some degree of conversion because network density must be suffi-
ciently high to restrict molecular mobility (at a given temperature). The transition to a 
glassy state occurs at isothermal conditions (in contrast to a trivial understanding of the 
glass transition as a phenomenon taking place on cooling).

The sequence of physical events which can happen on curing is presented in Fig. 
6.3.10. The solid line is a dependence of the glass transition temperature, Tg, on the degree 
of transformation, β. The vertical dotted line, β*, corresponds to the gel-transition. Four 

Figure 6.3.10. Dependence of the glass transition tem-
perature on the degree of conversion. 

Figure 6.3.9. Curing at high shear rates − dependence 
of the dimensionless induction period on dimension-
less shear rate. Experimental data are presented for a 
silicon-organic oligomer at different initial tempera-
tures, T0. Solid line is calculated in accordance with 
Eq. 6.3.8. [Adapted, with permission, from A.Ya. 
Malkin, G.I. Shuvalova, Vysokomol. Soedin. (Polymers 
− in Russian), 27B, 865 (1985)]. 
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domains of different states of material are 
recognized and designated by Roman num-
bers: in domain I, the material is liquid (it 
can flow); in domain II, the material is an 
elastomer (cured rubber); in domain III, the 
material is vitrified liquid; and in domain 
IV, the material becomes a glassy polymer 
(a polymeric glass). 

This scheme permits us to propose the 
primary analysis of the process of isother-
mal curing at different temperatures. Three 
temperatures, designated a, b, and c in Fig. 
6.3.9 mark different stages and behaviors as 
discussed below.

If curing proceeds at a temperature 
corresponding to line a, initially the liquid 
oligomeric system changes to the rubbery 
state after crossing line β*. The process of 
curing continues to the end − to the com-

plete consumption of reactive groups. Then the final value of β=1. Moving along line a, 
one maximum corresponding to passing through line β* can be observed on the tanδ-vs.-
time dependence.

If curing takes place at a temperature corresponding to line b, a liquid system also 
passes to the rubbery state at β = β* and the process continues in a rubbery state to line Tg
corresponding to the glass transition temperature. After this point, the chemical reactions 
stop because of freezing molecular motions, though in this case, when β < 1 two maxima 
on the tanδ-vs.-time dependence (corresponding to transition through β* and glass transi-
tion temperature) are observed. 

If curing proceeds at a temperature corresponding to line c, glass transition takes 
place before β*, i.e., when the material is still in a liquid state. Glass transition also mani-
fests itself as tanδ-vs.-time dependence passes through a maximum.

The kinetic factor is not reflected in the scheme in Fig. 6.3.10 at all, in spite of the 
fact that it is one of the determining factors in the rheokinetic studies, as becomes evident 
from the so-called T-T-T (Transformation-Time-Temperature) diagram in Fig. 6.3.11.55

Curing is impossible above the line Td, because of intensive thermal degradation at high 
temperatures. Curing is also impossible below the line Tg because chemical reactions are 
frozen at low temperatures. There is a domain between the lines Td and Tg (shadowed 
zone in Fig. 6.3.11) in which curing is realized. The S-shape form of curve Tg is caused by 
the competition between the rate of curing and the distance of processing temperature 
from the glass transition temperature.

Diagrams such as those presented in Fig. 6.3.11 can be constructed for different cur-
ing systems, and they are the basis for the selection of technological parameters of curing.

Rheokinetic curves for the G'(t) dependence are different for various ranges of the 
 diagram. If curing takes place along the line a, as in Fig. 6.3.9, the final equivalent 

state of the material is reached at various temperatures, and this state is characterized by 
T-T-T

Figure 6.3.11. T-T-T diagram of curing. Td − line of 
thermal degradation; Tg − line of the glass transition. A 
− domain of thermal degradation; B (shadowed zone) −
domain of curing; C − domain of solid state. [Adapted, 
by permission, from J.K. Gillham, Polym. Eng. Sci., 19, 
676 (1979)].
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the limiting (or equilibrium) value of modulus, , which in practice does not depend on 
temperature or frequency. Then, it is reasonable to determine the degree of transformation, 
β, in the following way:

[6.3.9]

where G'(t) are current values of elastic modulus and G'0 is its initial value. In fact, in all 
cases G'0 <<  and therefore the following equation is valid:

[6.3.10]

An example illustrating experimental results of curing of oligomer from the liquid 
through the rubbery state is shown in Fig. 6.3.12. The curve for the lowest temperature 
also reaches the limiting value β = 1, though this part of the curve is not shown in this fig-
ure because it corresponds to time as long as 104 min. 

Incomplete curing is shown in Fig. 6.3.13. In this case, the limiting values of elastic 
modulus are different at various temperatures because they relate to different degrees of 
transformations. Eq. 6.3.10 can be used in this case too if  is treated as the limiting 
value of modulus at the highest temperature, which is supposed to be above the glass tran-
sition line. The form of all curves is analogous to those shown in Fig. 6.3.13, but the ordi-
nate axis are limited to 1. Practical application of results of curing analysis and 
comparison of different materials and conditions of curing are based on fitting equations 

G'∞

β t( )
G' t( ) G'0–
G'∞ G'0–
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β t( ) G' t( )
G'∞

------------=
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Figure 6.3.12. Kinetics of curing of an epoxy silicone 
organic oligomer at different temperatures. [Adapted, 
by permission, from S.G. Kulichikhin, P.A. Astakhov, 
Yu.P. Chernov,V.A. Kozhina, L.I. Golubenkoba, A.Ya. 
Malkin, Vysokomol. Soedin. (Polymers − in Russian), 
28A, 2115 (1986)]. 

Figure 6.3.13. Kinetics of curing of phenylmethylsi-
loxane oligomer at different temperatures. [Adapted, 
by permission, from S.G. Kulichikhin, G.I. Shuvalova, 
V.A. Kozhina, Yu.P. Chernov, A.Ya. Malkin. Vysoko-
mol. Soedin. (in Russian), 28, 497 (1986)]. 
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for the rheokinetic curves. A general equation for kinetics, obtained by treatment of the 
results of calorimetric studies of curing, can be written in the following form:56 

[6.3.11]

or

[6.3.12]

where k0, k1, k2, m, n, and C are empirical parameters.
The particular cases of these equations are of interest. If C = 0, it means that the 

kinetics of curing is described by the standard nth-order equation (for example, n = 1 corre-
sponds to the first-order kinetics, n = 2 to the second-order kinetics, and so on). If C > 0, it 
shows that the kinetic equation reflects the effect of self-acceleration.

The same equations were applied to the kinetics of curing, and many constants are 
necessary for fitting experimental data. For complete curing curves, as in Fig. 6.3.12, the 
kinetic equation of self-acceleration type can be written as:

[6.3.13]

and practically all experimental data can be described using n = 1 or n = 2. In this case, the 
constant k0 is the initial rate of the curing process, and C reflects the effect of acceleration, 
regardless of the chemical mechanism of this phenomenon.

Incomplete curing, as in Fig. 6.3.13, requires the introduction of a special term into 
the kinetic equation which reflects this effect. A convenient rheokinetic equation for 
incomplete curing can be written as

[6.3.14]

where n = 1 or 2. The new factor  reflects the effect of limited curing. At , the 
limiting degree of curing βlim = -1 is reached.

Though the standard frequency of 1 Hz is mainly used for the rheokinetic monitoring 
of curing reactions by measuring G' as a function of time, the measurements can be carried 
out at different frequencies as well. It is difficult to compare results obtained at different 
frequencies because the sample is changing during measurements. This methodological 
problem can be solved by the mechanical Fourier transform spectroscopy (MFTS) method 
when several frequencies are superimposed and the output signal is analyzed by using the 
Fourier series.57 This shows that measuring at different frequencies gives non-identical 
results. The evolution of different relaxation modes during oligomer curing may also be 
examined.

Rheokinetic studies of curing processes (in different versions of instruments) are 
widely applied in the technology of oligomers for the following purposes:

• selection of the optimal technological regimes (time-temperature evolution) for 
compositions of practical interest 

• estimation and control of product quality
• qualitative comparison of different materials 
• solving boundary problems in modeling different technological processes.

β· k1 k2βm+( ) 1 β–( )n=
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6.3.4 INTERMOLECULAR TRANSFORMATIONS
6.3.4.1 Polymeric reaction
Polymer-polymer transformations (chemical reactions occurring in the side groups of a 
macromolecular chain) are a natural part of chemical technology. Transformations of such 
kind are easily detected with rheokinetic methods because changes in chain structure lead 
to changes in its rigidity (flexibility) and, thus, of rheological properties of the material. 
Rheological measurements permit the detection of phase transitions caused by chemical 
transformations. Shearing influences the phase state of the system and thus the kinetics of 
transformations.

Both situations − polymer-polymer transformations in a homogeneous state and 
influence of shear stress on this transformation due to transition to the heterogeneous state 
− are presented in Fig. 6.3.14, showing results of rheokinetic studies of polyvinylacetate 
conversion to polyvinylalcohol induced by sulfuric acid. The descending (linear) branch 
of dependence corresponds to a homophase reaction and viscosity decrease accompanies 
polymer-polymer reactions. Superposition of shearing leads to phase transition and the 
reaction reaches a heterogeneous domain.

Rheokinetic study is a convenient and sensitive method of monitoring chemical reac-
tions of polymer chains.58 
6.3.4.2 Physical transformations
Changes in the material state can be caused by slow physical processes (“aging”), such as 
crystallization and the formation of intermolecular physical bonds. Any of these processes 

are reflected in changes in the rheological 
properties of the material. Rheological 
measurements are useful instruments for 
monitoring the state of material and esti-
mating its technological quality. There are 
numerous materials for which these pro-

Figure 6.3.15. Solution-to-gel transition: evolution of 
rheological properties as a result of gelation process of a 
12% solution of polysulfone in dimethylacetamide with 
6% of water at T = 22oC. [Adapted, with permission, 
from A.Ya. Malkin, L.P. Braverman, E.P. Plotnikova, 
V.G. Kulichikhin, Vysokomol. Soedin. (Polymers − in 
Russian), 18A, 2596 (1976)]. 

Figure 6.3.14. Viscosity evolution in conversion of 
polyvinylacetate to polyvinylalcohol in homogeneous 
(decreasing thick solid line) and heterogeneous 
(increasing parts of curves) domains. The influence of 
shear stress on transition to the heterophase system is 
shown. The reaction takes place in 20% solution in 
ethanol at 20oC. [Adapted, with permission, from 
A.Ya. Malkin, S.G. Kulichikhin, V.A. Kozhina, Z.D. 
Abenova, Vysokomol. Soedin. (Polymers − in Rus-
sian), 28B, 408 (1986)].
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cesses are of practical importance. Fig. 6.3.15 shows a characteristic example. Aging 
causes a transition from fluid, through viscoplastic media (with a clearly expressed yield 
point), to a rubbery gel-like material.

6.4 SOLUTION OF DYNAMIC PROBLEMS
6.4.1 GENERAL FORMULATION
The previous parts of the book were devoted to the description of material properties “at a 
point”, i.e., establishing relationships between local stresses and deformation rates related 
to a point. The central problem in measuring these properties (Chapter 5) was the transi-
tion from measured macro-values (forces, torques, velocities) to the relationships between 
local tensors related to dynamic and kinematic values. For solving any applied problems 
of movement of a rheologically-complex medium, the inverse problem must be solved −
this is a transition from rheological properties measured in the laboratory to the prediction 
of material behavior in a real technological practice.59 

The general formulation of this problem is: rheological properties of the material are 
known (measured) − how then to find the relationship between forces and velocities for an 
arbitrary geometry of deformation (flow)? The answer to this question is represented by 
the scheme in Fig. 6.4.1.

The first line in this scheme 
is evident: it is relationships 
between stresses and deforma-
tions (and deformation rates) mea-
sured in different simple schemes 
of flow. Methods of measure-
ments were discussed in Chapter 5 
and numerous results of such 
measurements were presented in 
different parts of the book, mainly 
as dependencies of the shear stress 
on shear rates, as well as the elon-
gational stress on uniaxial defor-
mation rate. 

The left side of the second 
line in Fig. 6.4.1 is the fitting of 
experimental data by a suitable 
empirical or theoretically-based 
equation. Experimental data are 
usually obtained in one-dimen-
sional flow conditions in order to 
simplify their treatment. Then it is 
necessary to choose a method of 

their generalization for three-dimensional, 3D, deformations because the flow in a real 
processing environment takes place in 3D space. This general equation is called a rheolog-
ical equation of state or constitutive equation (or a rheological model) and initial experi-
mental data enter this equation as a particular case. 

Figure 6.4.1. General scheme illustrating the method of solving 
applied dynamic problems.
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Therefore, a crucial step is listed on the right side of the second line. This is the 
checking of a chosen rheological equation of state for conditions quite different than the 
initial experimental scheme used for measuring the stress vs. deformation rate relation-
ship. 

For example, initial data are shear stress vs. shear rate. These data are fitted by one of 
the equations discussed in section 3.3. Can one use this equation for the prediction of 
material behavior in the uniaxial extension? To answer this question it is necessary to 
write the fitting equation in 3D form using ideas of continuum mechanics in order to 
receive an invariant presentation of experimental data (as discussed in Chapter 1). The 
principal point is that the methods of such presentations are ambiguous and it is possible 
to do it in a different manner. This leads to different rheological equations of state for the 
same initial experimental data. Consequently, the predictions of different rheological 
equations of state might appear different for a new dynamic or kinematic situation. The 
right side of the second line shows that it is necessary to confirm that at least in some new 
experimental situations a generalized rheological equation of state gives reliable predic-
tions of material behavior.

There are several general rules (or principles) that must be fulfilled in the formula-
tion of a rheological equation of state:60 

• Principle of coordinate invariance requires that formulation of the rheological 
equation of state does not depend on the choice of a coordinate system while 
inertial systems are used. This requirement is realized by the formulation of any 
relationship between stress and deformation tensors via their invariants.

• Principle of determinism means that the stress state of material points can depend 
on the prehistory of its deformation but does not “feel” or forecast what will hap-
pen in the future. In fact, this principle is cast into the theory of viscoelasticity 
where the previous history of material is expressed via integrals with fading 
memory.

• Principle of local action supposes that only the closest neighboring points can 
influence the stress state at some chosen points. This principle denies the possi-
bility of a long-distance action, though in some cases long-distance forces can 
exist but they are not of mechanical origin. 

• Principle of material objectivity expresses the idea that behavior of material must 
be written in such a way that it would be independent of any motion of an 
observer, and in particular, of movement and rotation of a rigid body as a 
whole.61 Based on this principle it is necessary to use some complicated laws to 
coordinate transformation and objective tensors of deformations such as the 
Rivlin-Ericksen and the White-Metzner tensors mentioned in section 1.3.1.

The solution of boundary problems, which is the final goal of modeling any techno-
logical process, begins with the complete formulation of a system of equations describing 
this process. The central step here is a complete formulation of the model (left side of the 
third line in Fig. 6.4.1). This is based on combining a rheological equation of state with 
balance (or conservation) equations (the right side of the third line in Fig. 6.4.1). The latter 
are the general laws of nature. Three of them are of interest to the problem under discus-
sion.



6.4 Solution of dynamic problems 437

Conservation of momentum
These are equations formulating the conditions of equilibrium of all forces acting at a 
point. They were written in section 1.1.6 as a system of Eqs. 1.1.18 and in a simplified 
form as Eqs. 1.1.19. They can be written in different coordinate systems, for example, in 
cylindrical coordinates (see Eqs. 1.1.20). The equations for conservation of momentum 
are written in components of the stress tensor, which are 6 unknown variable values.

Conservation of mass 
This equation expresses the concept of constancy of mass. If we consider the flux of mass 
entering an elementary unit volume (i.e., at a point) and leaving the same volume and 
assuming that media is incompressible, then the mass of material inside this volume must 
be constant. This concept leads to the following balance equation:

[6.4.1]

where the notation of velocity components, vi, and axes, xi, is related to the Cartesian 
coordinate system.

Conservation of energy
This is also a fundamental law of nature expressing the following concept: changes of 
energy inside some volume of space can happen, due to heat flux into this volume and heat 
dissipation inside this volume as a result of viscous flow (which is dissipative by its 
nature). In some cases, it is necessary to take into account the heat of phase transitions or 
reactions taking place in this volume. Sources of energy other than heat flux are usually 
not taken into consideration in formulating dynamic problems. Heat flux is possible due to 
the existence of temperature gradients. That is why the equation of conservation of energy 
is formulated for temperature, T. 

Balance of heat fluxes in relation to a unit space volume leads to the following equa-
tion written in the Cartesian coordinate system:

[6.4.2]

where vi are the components of the velocity vector, a is the thermal diffusivity, ρ is density 
and cp is the thermal capacity. The coefficients a, cp, and ρ, as well as viscosity, are (poten-
tially temperature-dependent) properties of matter. 

The value, W, entering this equation is an intensity of energy dissipation. This value 
is the work required to sustain flow. For a viscous fluid, it is expressed as the product of 
stresses and deformation rates:

[6.4.3]

where Dij are components of the deformation rate tensor and σij are components of the 
stress tensor. It is evident that W is an invariant value (in respect to the choice of a coordi-
nate system).

Based on the above concepts, it is possible to formulate a flow model for material 
under discussion. Two main possibilities exist: to consider the flow of time-independent or 

∂v1
∂x1
--------

∂v2
∂x2
--------

∂v3
∂x3
--------+ + 0=

∂T
∂t
------ v1

∂T
∂x1
-------- v2

∂T
∂x2
-------- v3

∂T
∂x3
--------+ + + a ∂2T

∂x1
--------- ∂2T

∂x2
--------- ∂2T

∂x3
---------+ + 

  W
ρcp
--------+=

W σijDij
i j,
=



438 Applications of Rheology

time-dependent media. Then, it is possible to move to the fourth line of the scheme in Fig. 
6.4.1.

The solution of a system of equations describing the movement of a medium with 
known rheological properties is possible if boundary conditions are formulated. In fact, 
just these conditions specify peculiarities of flow in any arbitrary geometry, either through 
channels of a certain form or around solid bodies. Equations describing the flow of rheo-
logically complex liquids are very complex and only the simplest cases can be treated as 
analytical functions. At present, there are no principal difficulties in solving any correctly 
formulated boundary problem using modern computer techniques and developed compu-
tational methods. That is why the fourth line in the scheme of Fig. 6.4.1 supposes that only 
technical difficulties can appear in modeling any real technological (processing) situation. 

The solution of any concrete boundary problem gives quantitative model predictions 
of material behavior in a real processing operation. And this is the bottom line in Fig. 
6.4.1, which is the final goal of the application of rheological methods for engineering 
design and operation.

 It means that starting from rheological experiments it is possible to forecast all tech-
nological parameters of a process, such as dependence of output on force, stress and tem-
perature fields, and so on, up to discussing (based on the obtained numerical solution) the 
influence of variation of initial technological factors (composition, initial temperature, 
etc.) and boundaries of stability of the real technological process. 

As shown in Fig. 6.4.1, the boundary conditions are the necessary component for 
solving dynamic problems.

In most cases, it is assumed that a liquid moving in space and contacting solid body 
boundary sticks to this body and has the same velocity as the boundary, ether this bound-
ary is stationary or moves. When the boundaries of the space where a liquid moves do not 
move, the velocity at the surface equals zero. This supposition is called the hypothesis of 
stick and in many cases this assumption is correct. However, this is not always true since 
the slip along a solid surface is quite possible.62 In this regard, it is reasonable to distin-
guish two possibilities. First, this is a real slip with the detachment of a liquid from a wall. 
This phenomenon can be a consequence of the liquid-to-solid transition due to high defor-
mation rate when characteristic time of the process exceeds relaxation times (high Debo-
rah Numbers). This is typical for polymer melts and leads to spurt (Fig. 3.6.11). The wall 
slip can occur for visco-plastic media at low speeds when the shear stress is lower than the 
yield stress and a material behaves in a solid-like mode. The velocity of slip is not known 
beforehand and depends on the stress at the wall.

The second case is a quasi-slip that happens in the flow of multi-component materi-
als. This phenomenon is due to phase separation when a low viscosity component segre-
gates from a homogeneous liquid (e.g. in a concentrated solution) and forms a low-viscous 
layer at a wall. Then a jump in the velocity takes place and it looks like a wall slip. The 
same effect is observed in the flow of concentrated suspensions.

Measuring the rheological properties of different materials is a basis for engineering 
rheology, which is used for designing technological equipment and predicting processing 
characteristics of various real materials.

Engineering practice encounters two main types of flow: flow through tubes under 
applied pressure (“pumping”) and flow caused by the movement of a solid boundary sur-
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face (“drag” flow). The latter case can be caused by flow produced by rotation of the 
screw, calibrating rolls, brush spreading paint, rotor inside a mixer, and so on.
6.4.2 FLOW THROUGH TUBES
This is an important engineering problem, which models many real situations in the trans-
portation of rheologically complex liquids. The prime goal of calculations consists of 
establishing a relationship between the pressure gradient in a tube (or pipe) and output. 
This scheme is a good approximation of some other more complex situations encountered 
in processing equipment. 

The simplest case is the flow through a tube of a circular cross-section.
The output, Q, vs. pressure, p, dependence is calculated based on the analytical pre-

sentation of a flow curve. 
Some of the most important cases are considered below.
In the simplest case of flow of Newtonian liquid with viscosity, η, the Q(p) depen-

dence is expressed by Poiseuille’s well-known law:

[6.4.4]

where R and L are the capillary radius and length, respectively.
The Q vs. p dependence for a power-law type non-Newtonian liquid (see Eq. 3.3.4)63

is expressed as

[6.4.5]

This equation can be rewritten as 

[6.4.5a]

The last equation shows that for power-law liquid, Q is proportional to pm, where m 
is the same exponent as in rheological law and Kf is a form- or geometrical-factor. Then it 
is possible to think that for channels with an arbitrary cross-section this relationship is also 
correct with its own value of a geometrical (front) factor depending on the form of a cross-
section of the channel.

The Q vs. p dependence in the flow of a viscoplastic Bingham-type medium (see Eq. 
3.3.9) through a cylindrical channel is expressed by the Buckingham-Reiner equation (see 
solution of Problem 3-9):

[6.4.6]

where the rheological constants ηp and σY are the same as in Eq. 3.3.7.
This equation can also be presented in the following equivalent form:

[6.4.6a]
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Transport characteristics for the practically important case of flow of the Hershel-
Bulkley viscoplastic medium are written as:

[6.4.7]

where σR is the shear stress at the wall which is expressed in the usual manner as 
 and σY, K and n are rheological constants, as in Eq. 3.3.9.

The above-written relationships are useful engineering equations for designing trans-
port pipe systems, as well as channels in technological (processing) equipment.

However, there are the following limitations in applying these equations:
• they are written for steady flow in long tubes; therefore they are not correct for 

designing dies (for example, for channels with length-to-diameter ratio of the 
order of 1), especially in the flow of viscoelastic liquids; in the latter case the 
dominant role in resistance belongs to an elastic response

• time effects of thixotropic or rheokinetic nature might be important in the flow of 
some materials; these effects are not taken into consideration in the formulation 
of the above-written equations.

These situations must be treated using more complicated equations constructed for 
special time-dependent materials.

The solution of dynamic problems of flow through a channel of an arbitrary cross-
section is achieved by introducing the form-factor characterizing the geometrical form of 
the cross-section. For Newtonian liquid, the basic linear relationship is given by Eq. 5.2.13 
which is written as

[6.4.8]

Analytical method of finding constant K consists of a rigorous solution of the 
dynamic problem of flow through a channel with arbitrary cross-section. The channel can 
be rectangular, elliptic, or have any other cross-section. For channels with complicated 
geometry, the solution is found by numerical methods. 

Examples − form-factors for different cross-sections
Some important examples of the following geometries will be discussed:
• Flow through an elliptic channel with semi-axis a and b
• Flow through a flat channel. In this case, a channel is formed by two parallel flat plates; the gap, 2h, 

between them is much smaller than their width b >> h
• Flow through a circular channel formed by two co-axial cylinders along their axis; the radius of the 

outer cylinder is R0 and of the inner cylinder is Ri.
• Flow through a channel with a cross-section having a form of an equilateral triangle with the length of 

a side a.
In all mentioned cases, the values of the form-factor can be calculated analytically. These values are listed below.
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Flat  

Annular

Equilateral triangle

Modern computer technique permits calculation of form-factor for channels with any arbitrary cross-section. An 
experimental approach for finding the form-factor is based on measuring Q−P pair of values for liquid of known 
viscosity. Then the form-factor is found using Eq. 6.4.8.

Tube flow of non-Newtonian liquid is more complex because there is no unique ana-
lytical solution for Q(p) dependence analogous to linear dependence for Newtonian liquid 
and analytical equations for this dependence cannot be presented using a single geometri-
cal factor. However, there is a general solution for calculating the tube characteristic of 
any non-Newtonian liquid, for which a flow curve has been measured. This is known as 
the Rabinowitch-Weissenberg equation (see Chapter 5, Eq. 5.2.15). This equation can be 
written as

[6.4.9]

where  is the shear stress at a wall, and it is also normalized pressure, and 
f(σ) is the flow curve, i.e., the dependence of shear rate and shear stress measured in a lab-
oratory test. If f(σ) has been measured, Q(p) dependence can be easily calculated from Eq. 
6.4.9.
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Figure 6.4.2. Flow curve of emulsion (a) and transport characteristic of a tube (b) calculated using power-law 
approximation of the flow curve. Average diameter of dispersed particles is 8.2 μm. 30oC. [Adapted, with per-
mission, from A.Ya. Malkin, I. Masalova, D. Pavlovski P. Slatter, Appl. Rheol., (2004)].
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Function f(σ) can be expressed by several appropriate equations. The choice of fit-
ting method to describe function f(σ) is an important problem in engineering rheology. An 
experimenter usually tries to fit experimental points as accurately as possible, sometimes 
using multi-constant equations for this purpose. However, it is not necessary in any case. 
As an example, Fig. 6.4.2a presents experimental points obtained for super-concentrated 
water-in-oil emulsion.64 These points can be successfully fitted using the Cross-type equa-
tion: 

[6.4.10]

which is a simplified form of the Cross equation, Eq. 3.3.1.
The flow curve in Fig. 6.4.2a comprises the clearly expressed domain of Newtonian 

flow at low shear stresses and therefore equations with yield stress are not appropriate for 
this flow curve.

Eq. 6.4.10 can be used for predicting Q-vs.-p dependence for tube flow and undoubt-
edly this approach gives good results. The high-shear-rate part of the flow curve can be 
described by a power-law equation, Eq. 3.3.4, as well as the Hershel-Bulkley equation, 
Eq. 3.3.9. The straight line in Fig. 6.4.2a gives a power-law approximation. This type of 
fitting does not express properly a low stress domain. Fig. 6.4.2b presents Q-vs.-p predic-
tions based on power-law approximation calculated from Eq. 6.4.5. Points in this figure 
are experimental data. Power-law type approximation gives accurate predictions (maxi-
mum error does not exceed 2.3%). Similar results were obtained when the Hershel-Bulk-
ley approximation was used. 

This result, as well as some other results obtained for different materials,65 is 
explained by the fact that flow rates in real industrial transportation processes are high and 
the high-shear-rate domain of flow curves determines the total output. It is true in numer-
ous cases because industrial engineers are interested in increasing transportation rates. 
However, many cases can also be pointed out in which behavior of liquid in low-shear-rate 
domain controls the process, e.g., deformation of greases in bearings. In such cases, free-
dom in the choice of fitting equation becomes invalid.

The choice of analytical approximation of laboratory-measured rheological proper-
ties should be made based on goals of applications, though in many cases there is no need 
for “exact’ fitting of points obtained in the rheological experiment.

   In discussion of engineering problems of tube transportation, it is necessary to take 
into account the following limitations of the above written equations:

• these equations are correct for steady flow through a long channel 
• instabilities of various types may appear at high enough flow rates 
• normal stresses in shear flow lead to circular fluxes in cross-sections of non-

round channels. These fluxes do not give a large input into total energy consump-
tion but can influence mixing processes and quality of final products. 

6.4.3 FLOW IN TECHNOLOGICAL EQUIPMENT
These are primarily drag flows, i.e., flows caused by the movement of solid boundary sur-
faces in technological equipment.

η
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6.4.3.1 Pumping screw
The complete theory of pumping screw machines (extruders) is not a subject of this 
book.66 Here, only basic concepts related to the rheology of pumping materials are dis-
cussed.

The general engineering problem in designing a pumping screw extruder consists of 
establishing the relationship between the speed of screw rotation, power consumption, and 
output for equipment of known size, temperature regime of processing, and measured 
properties of the material. Rheological properties of the material are essential and neces-
sary parts of analysis.

A pumping screw is often used in different technological processes. In particular, 
various extrusion machines are widely used in polymer technology and transportation 
devices. 

A schematic diagram of a screw is 
shown in Fig. 6.4.3. Flow takes place in a 
narrow space between the body of the 
screw and a cylindrical barrel. Let us imag-
ine that this channel is not cylindrical but 
transformed into a flat rectangular channel 
with a width, W, (equal to the distance 
between neighboring flights of the screw) 
and height, H, (distance between a body of 
screw and a barrel). This operation is cor-
rect if it is possible to neglect the curvature 

of the channel, which is acceptable if H << D. The most important point is the source of 
liquid flow in a channel. This is the relative movement of the upper side (“roof”) of the 
channel, assuming that the channel is stationary. The velocity of movement has two com-
ponents − along the channel Vz and in transverse direction due to inclination of the flight 
with an angle, θ. The velocity component, Vz, provides the output while the transverse 
component leads to the circulation of liquid inside the channel and it is responsible for the 
mixing effect. 

The dynamics of flow in the channel of a screw pump are described by balance equa-
tions and a rheological equation of the state of liquid. Pumping screw extruders are usually 
used for plastic processing, and in this case, the theory67 is based on a power-type viscos-
ity law. 

A more complete theory of flow in a pumping screw extruder includes the following 
important additional details.

Flow in a channel creates a longitudinal pressure gradient; so the pressure gradient 
exists between neighboring sides of flight. Therefore, a back (leakage) flow in a gap 
between a flight and a barrel emerges and the negative input of this back flow into the total 
output can be essential. The gap is narrow and non-Newtonian effects in flow through 
these gaps are pronounced.

Typically, flowing liquid is highly viscous, therefore it is necessary to take into 
account a dissipative effect. The temperature of the barrel is different than that of liquid. It 
means that it is necessary to consider the process as non-isothermal with a thermal 
exchange between walls of the channel and the flowing liquid. 

Figure 6.4.3. Screw. Geometrical parameters: D − diam-
eter of barrel; W − distance between the neighboring 
flights; H − depth of channel; θ - helix angle (flight 
inclination).
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The complete theory of processes in a 
plasticating extruder must also consider 
that material enters the channel in a solid 
form and the movement of solid particles 
and their melting are inherent components 
of the technological process.

Pumping of plastic melts proceeds, 
not into empty space but into a die, which 
forms the shape of the article (profiles of 
various types − films, tubes, sheets, and so 
on). The die plays a role of hydrodynamic 
resistance; therefore, the pressure at the end 
of the screw exits, and under this pressure 
the back-flow occurs. As a result, a real 
flow consists of a superposition of two fluxes − drag flow produced by the screw and 
backpressure flow.

This is the most important feature of pumping extruders. Due to the superposition of 
two fluxes the total output, Q, can be (at the first approximation) written as

[6.4.11]

where A and B are constants, N is the rotational speed of the screw and m is an exponent 
in a power-law equation describing rheological properties of liquid. 

The real performance characteristics of an extruder in pumping polymer melts reflect 
two dependencies: performance characteristics of the screw as presented, for example, by 
Eq. 6.4.11, and resistance of die, as expressed, for example, by Eq. 6.4.5a. Combination of 
these dependencies results in the real performance of an extruder (operating point). This 
concept is illustrated in Fig. 6.4.4 in which two curves, N1 and N2, express Eq. 6.4.11 for 
two speeds of rotation (N1 < N2), and the curve “Die” expresses Eq. 6.4.5a. Points desig-
nated as A and B are two pairs of real values of output and pressure (operating points) at 
two different speeds of screw rotation. 

Curves are obtained from measuring rheological (and other physical) characteristics 
of the material. The solution of the problem, including all factors listed above and a full 
set of balance equations, is very complicated, though it can be realized using modern com-
putation techniques. In fact, there is available standard software which permits calculation 
of necessary parameters of an extruder based on its characteristics as well as rheological 
and other physical properties of the material used in the technological process.

Screw extruders are also used as primary transportation machines, especially for 
concentrated suspensions (clay suspensions, mud, and so on). For this field of application 
− in contrast to polymer technology − a rheological equation of state must include yield 
stress. A power-law type equation is not suitable. However, in this case, non-isothermal 
effects and die pressure might be immaterial. But a complete theory of screw pumping is 
expected to take into consideration the effect of jamming at high concentrations and high 
rates of rotation, as was described in section 6.2.6.

Screw extruders can be used as mixing devices. In this case, the main factor is the 
transverse flow in channel cross-sections and the relative movement of layers of different 

Q AN Bpm–=

Figure 6.4.4. Performance characteristics of an extruder 
with a die.
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materials. Rheological properties of both components play a dominating role in the mixing 
process and in formulation of process theory.

The extrusion process includes an important final stage: melt leaves a calibrating die 
and appears in free space. The crucial point here is a change of shape of an extruded pro-
file due to elastic forces stored during flow inside calibrating channels of the die. This is a 
swelling effect, which was discussed in section 3.4.4. It is rather simple to measure die 
swell after flow through a channel with a round cross-section. In real technological prac-
tice, the extruded profiles are very often asymmetrical. Even if the profile is axisymmetric 
but not round, for example, in producing square cross-section profiles, there is no guaran-
tee that the profile of the item is the same (square) as the cross-section of the die. The final 
profile is distorted in comparison with the profile of the die. In particular, it is very diffi-
cult to maintain sharp corners of the profile.

Calculation of profile evolution after leaving a forming (calibrating) die is a purely 
rheological problem. 

There are two main mechanisms of die swell under isothermal conditions:
• velocity profile rearrangement observed for any liquid; this is a kinematic effect 

and its value is close to 1.12-1.13 for axisymmetric flow 
• elastic unconstrained recovery; its value can be large and this effect is directly 

related to stored elastic energy in the flow of viscoelastic materials, as was dis-
cussed in Chapter 4 for rubbery solids; this mechanism dominates polymer solu-
tions and melts.

The majority of theoretical models of 
flow in extruder channels are based on non-
linear flow curves only and do not take into 
account viscoelastic effects. It is incorrect 
in calculations related to the die swell 
because viscoelasticity and rubber elastic-
ity are the main causes of this effect. There-
fore, the rheological model becomes very 
complicated, the determination of its con-
stants requires a more advanced experimen-

tal approach, and practical calculations can 
be carried out only by computational techniques.68 The progress in this field is limited and 
it is restricted to model calculations of simple geometrical forms.
6.4.3.2 Calendering and related processes
A schematic diagram of calendering is shown in Fig. 6.4.5. Drag is achieved by rotation of 
two rollers, frequently with different speeds. Rollers pull material into a gap. Material 
deforms and flows. The main technological result is a decrease in thickness of a sheet, 
though some other effects also take place, especially if the speed of rollers rotation is dif-
ferent: 

• intensive shearing in a narrow gap is accompanied by a significant heat release; 
rollers can also be heated up to a higher temperature to increase the temperature 
of the material (heating device)

Figure 6.4.5. Calendering.
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• calendered material is composed of many components; intensive shearing in a 
narrow gap provides good mixing of components; flow in an entrance zone is 
two-directional, which improves mixing

• stresses in the calendering process can be so high that they may cause rupture of 
molecular chains (mechano-chemical effect); roller mills are used to regulate the 
rheological properties of the material.

The central goal in the analysis of cal-
endering is to search for relationships 
between the speed of roller rotation, output, 
power of drive that rotates rollers, and forces 
acting in the transverse direction and caus-
ing separation of rollers.

Theoretical analysis of the process is 
based on analysis of conservation (balance) 
equations and rheological properties of the 
material.69 The analysis of process involves 
dimensional arguments that are valid for any 
rheological model. The characteristic longi-
tudinal length, L, (along the x-axis in Fig. 
6.4.6) is much higher than the characteristic 
length h in the y-direction, i.e., h/L << 1. In 
this approximation, the momentum balance 
equation can be written as 

[6.4.12]

Pressure p is assumed to be independent of y and it is a function of x, only: p = p(x).
As a result, the following equation for stress distribution is valid for flow between 

rollers in the calendering process

[6.4.13]

where C(x) is some function of x determined from boundary conditions (on the roller sur-
faces).

The condition of mass conservation is also valid for any medium and it is formalized 
by equation

[6.4.14]

where y1 and y2 are coordinates corresponding to the roller surfaces, and u is velocity in 
the x-direction.

Rheology becomes of interest when Eq. 6.4.13 is used because the rheological equa-
tion of state relates stresses and velocities. In the simplest case of Newtonian liquid with 
viscosity, η, the following relationship for velocity distribution is obtained:
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Figure 6.4.6. Velocity and pressure distribution in calen-
dering. U1 and U2 − circumferential velocities of rollers; 
Vx − velocity in the x-direction, p − pressure. 
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[6.4.15]

where h is the distance between rollers (depending on x-coordinate).
Pressure distribution, p(x), is found from the condition of constant output, which is 

calculated from Eq. 6.4.14 and is written as

   [6.4.16]

The force pushing rollers apart is calculated as the integral of pressure along the 
whole surface of rollers. The driving torque for rotating rollers is an integral of shear 
stresses acting on their surfaces.

A qualitative example illustrating the evolution of velocity distribution and pressure 
along the path of material in a gap between rollers is shown in Fig. 6.4.6. It shows charac-
teristic features of the process:

• forward and backward flux in any cross-section 
• rapid development of pressure along the material path with its maximum at some 

cross-section.
Extension of the calendering theory to flow of non-

Newtonian liquids is made according to the same scheme as 
for Newtonian liquid, i.e., based on a balance equation with 
the introduction of appropriate rheological law. In this case, 
calculations become more complicated and require the appli-
cation of numerical methods. The elasticity of rolled material 
is not involved in the discussion, though this rheological 
property plays an important role. Also mixing in calendering 
does not have definitive solution.
6.4.3.3 Extension-based technologies
There is a group of technological processes in polymer pro-
cessing based on the application of stretching. The process 
creates the orientation of macromolecules, and as a result, 
increases the strength of the material.

Fiber spinning is a typical example. It has the following 
peculiarities:

• deformation (flow and elastic strains) is primarily extensional and shear stresses 
are neglected

• fiber is strongly inhomogeneous along its length due to the die swell at an outlet 
from the die (spinneret) and due to decrease of a cross-section of fiber caused by 
stretching

• flow is non-isothermal due to cooling of fiber until complete solidification (crys-
tallization) of polymer; temperature is inhomogeneous along the radius of fiber 
due to slow heat exchange through the polymer

• tendency to increase the speed of spinning leads, in some cases, to various sur-
face instabilities.
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Figure 6.4.7. Schematic represen-
tation of the fiber spinning.
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All these peculiarities make theoretical analysis of the fiber spinning process diffi-
cult and not directly related to a simple model discussed in section 3.7.70 

A schematic diagram of fiber spinning is shown in Fig. 6.4.7.
Some basic qualitative relationships related to fiber spinning are as follows. The 

stretching force is constant along the length of the fiber and depends on normal stress, σE, 
according to the equation

[6.4.17]

Volume output, Q, is also constant along the length:

[6.4.18]

where V is the longitudinal velocity that is dependent on the radius, R, changing along the 
length of stretching. 

If the material being stretched is Newtonian liquid and the Trouton law is valid, then 
the gradient of elongational velocity, dV/dx, is expressed as

[6.4.19]

At the starting point, at x = 0, V = V0, and then the velocity profile along the fiber is 
expressed as 

[6.4.20]

The process of stretching is characterized by the value of draw ratio, DR, which 
equals V/V0, causing drawing along the length, L. Then, one can write

 and [6.4.21]

The above relationships provide some parameters determining the performance char-
acteristics of the fiber spinning process. The Trouton law approximation is not good for 
real technological processes of fiber spinning. It is not reasonable to use any other flow 
curve equations, as is sometimes done. Rheological properties are modeled by the calcula-
tion of drawing force as a function of the kinematics of spinning. The complete theory 
must take into account the transient character of deformations. It is necessary to use a rhe-
ological model for the viscoelastic medium. 

High rates of deformation in extension and the importance of orientation effects (as a 
technological goal of spinning) suggest that deformations in spinning processes are elastic 
(rubbery). It means that the rheological behavior of the material in spinning corresponds to 
zone III in Fig. 3.3.7, and it is preferable to search for a rheological equation of state from 
equations discussed in Chapter 4. The time factor can be excluded from the rheological 
equation of state and material can be treated as rubbery but not as a viscoelastic medium.

The rheological approach has to be combined with the kinetics of crystallization that 
proceeds under non-isothermal conditions. The crystalline phase influences constants of 
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the rheological equation of state and the spinning process continues up to the line of crys-
tallization (solidification) shown in Fig. 6.4.7. After that, the material solidifies and its 
deformation is negligible in comparison with stretching along with the distance from a die 
outlet to the solidification point. 

The above physical description of the spinning process seems reasonable, though 
hitherto a model based on these rheological and kinetics arguments has not been devel-
oped. 

In discussing the rheology of the fiber spinning process it is also necessary to 
remember possible instability effects in high-speed stretching (see section 3.5.7).

There are some other technological processes that are based primarily on the exten-
sion of polymer materials in a rubbery state; that is:

• formation of blown films
• vacuum and/or pressure thermoforming of plates, trays, cups, and analogous 

parts from sheets
• blowing of PET bottles from preform above the glass transition temperature of 

the polymer.
The technology of these processes is based on the same physical phenomena as fiber 

spinning, i.e., rheology of extension and kinetics of crystallization (or solidification for 
glassy materials).71 However, in contrast to fiber spinning, bi-axial extension takes place. 
One invariant of rheological equations of state of rubbery material (as discussed in Chap-
ter 4) supplemented with the kinetics of phase transition can be a base for an engineering 
calculation model for these technological processes.
6.4.3.4 Molding technologies
Molding processes are the major periodic manufacturing operations in the polymer indus-
try. An enormous amount of plastic, rubber, and thermoset parts, ranging from automobile 
bumpers to personal computers, refrigerator housings to bottles and tires, are produced by 
molding processes. The automotive, appliance, computer, beverage, tire, and other indus-
tries are associated with molding. 

Rheology plays a very important role in molding processes. In particular, the shear 
rate and temperature dependence of viscosity determine the resistance to the flow of poly-
mer melts in dies and molds. As the flow rate or output of the process increases, higher 
shear rates and accordingly higher shear stresses are developed and higher forces and 
pressures are required to shape polymer products. The sensitivity of viscosity to variations 
in shear rate, characterized by the shear thinning effect, determines pressure increase 
during the mold filling process. This means that polymer melts exhibiting a lower power-
law index and, therefore, more shear thinning, and show less increase in pressure with an 
increase of flow rate during processing. Therefore, they will have lower energy consump-
tion. On the other hand, polymer melts exhibiting higher temperature sensitivity of viscos-
ity, i.e., the higher activation energy of viscous flow, would cause a faster increase in 
pressures and forces required to carry out molding processes, which take place under fast 
cooling rates. Viscosity, and its shear rate and temperature dependence, determine whether 
a mold is fully filled or not. 

Viscoelasticity of polymer melts has a significant influence on polymer molding and 
the performance of shaped products, especially with respect to a level of frozen-in molec-
ular orientation introduced in them during cavity filling and packing stages and subse-
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quent relaxation processes occurring upon the cooling stage of the molding cycle. In 
particular, polymer melts exhibiting a higher relaxation time would lead to a higher level 
of a frozen-in molecular orientation and residual flow stresses in final products. This 
strongly affects the performance characteristics of final products. Due to these effects, 
product properties become highly anisotropic. Depending on the type of products made, 
the molecular orientation effect may be beneficial or detrimental for product performance. 
For example, in the case of molding optical products, a higher level of molecular orienta-
tion introduces higher anisotropy of refractive index, leading to the deterioration of their 
optical quality. In particular, this effect of the frozen-in orientation is well known in the 
case of injection molding of optical products, such as compact disks, CD, and DVD sub-
strates, and various lenses. A high level of frozen-in birefringence or retardation causes 
distortion of laser light propagation through CD and DVD media, leading to poor quality 
of reproduction of the sound of music and optical pictures. Therefore, very stringent spec-
ifications are established concerning the level of residual optical retardation in these 
molded products. It should also be noted that this optical retardation is strongly affected 
by process parameters during molding, as well as relaxation characteristics, such as the 
relaxation times and their distribution, and optical constants of polymer melts, such as the 
stress-optical and strain-optical coefficients.72 

Plastics molding is an industry of enormous volume and scope. There are many vari-
ations of molding technology.73 These processes include compression, injection, injection-
compression, co-injection, transfer, resin transfer, blow, rotational molding, and thermo-
forming. Here we briefly describe some of these processes with the aim of indicating rhe-
ological relevance to the calculation of flow kinematics and dynamics.
6.4.3.5 Compression molding 
It is one of the oldest techniques of manufacturing rubber, thermoset and plastic products. 
Compression molding dates back to the origin of the rubber industry. For many years, this 
has been a standard technique for molding, but recently it has been replaced to some 
extent by injection molding. By comparison, injection molding offers advantages in mate-
rial handling and ease of automation. However, compression molding retains a distinct 
advantage when processing fiber-reinforced polymers. Moderate flow during compression 
molding helps to avoid high stresses and strains; therefore, reinforcing fibers are not dam-
aged by flow during mold filling. Thus, a high concentration of reinforcing fibers and long 
fibers can be incorporated into composite materials. 

Compression molding involves pressing (squeezing) of deformable material charge 
between two halves of a heated mold to fill and cure material in the mold, and subsequent 
part removal (Fig. 6.4.8). In manufacturing thermoset products, the transformation of 
flowable material into a solid product under elevated mold temperature takes place. Com-
pression molding temperatures range from 140 to 200oC. Mold pressures can vary from 20 
to 700 bars and curing times can vary from 1 min for thin parts to over 1 hour for very 
thick rubber parts. Recently, the development of thermoplastic matrix composites, to pro-
duce strong, lightweight structures, has increased interest in compression molding. In ther-
moplastic matrix composite molding, temperatures as high as 350oC are utilized.

Compression molding is carried out using compression molding presses. Two types 
of presses are used − down-stroking and up-stroking. Molds usually operate using a 
clamping ram or cylinder with clamping capacities ranging from a few tons to several 
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thousand tons. In addition to the clamping capacity, two other characteristics of a press are 
the daylight characterizing maximum platen separation, associated with stroke, and the 
platen size ranging from a few centimeters to several meters. The temperature of platens is 
controlled by built-in heating or cooling elements or by separate heaters.

There are five stages of the compression molding process: 
• material preparation
• prefill heating
• mold filling
• in-mold curing
• part removal. 
Material preparation includes compounding resin with fillers, fibers, and other ingre-

dients or impregnating a reinforcing cloth or fibers with resin. This stage controls the rhe-
ology of material and the bonding between fibers and resin. The prefill heating stage is 
carried out to speed up the molding process. This stage can occur outside or inside the 
mold before the mold is closed and flow begins. Mold filling starts with material flow and 
ends when the mold is full. The effect of flow is critical for the quality and performance of 
the molded product. It controls the orientation of fibers, which has a direct effect on the 
mechanical properties of the part. In processes involving lamination of the long fiber-rein-
forced composites, there is little flow since the initial charges almost completely conform 
to the mold. In the case of a thermoset matrix, some curing may occur during the mold-
filling stage. The in-mold-curing stage follows mold filling. In this stage, the part is cured 
in the mold while the final stage of cure may be completed during post-cure heating after 
part removal. In-mold curing converts the polymer from a liquid to a solid having rigidity 
sufficient for removal from the mold. Part removal and cool-down are the final stages. 
This stage plays an important role in the warpage of the part and residual stress develop-
ment, which arise due to difference in thermal expansion in different portions of the part. 
Temperature distribution and rate of cooling affect these residual stresses.

Fig. 6.4.9 shows a typical curve of variation of plunger force required for mold clos-
ing as a function of time at a constant closing rate during molding of polymers not con-

Figure 6.4.8. Schematic representation of the compression molding process.
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taining fibers. In the first region, 
at time t < tf, corresponding to 
softening of the material, the force 
increases rapidly as the preform is 
squeezed and heated. At tf, the 
polymer in the molten state is 
forced to flow into the cavity and 
fill it. The filling is completed at 
tc, corresponding to the initiation 
of curing. At this stage, compres-
sion of polymer melt occurs to 
compensate for the volume con-
traction due to curing.

To illustrate how the flow 
process can be described during 
compression molding, an ideal-
ized case of squeezing flow of a 
strip or disk blank is considered 

below. A preform in the form of a strip or disk is placed between parallel plates or disks. 
Let us assume that in the case of a strip, fluid is confined between two sides in the 

width direction and the upper plate is moving toward the lower plate at a constant velocity, 
, such that fluid is squeezed and forced to flow to fill the mold in the length 

direction. The fluid is Newtonian and the flow is laminar. The fluid adheres to the surface 
of the plates. The force required to fill the strip mold is 

[6.4.22]

where η is fluid viscosity, l is the filling length, B is the width of mold, and h is the current 
separation of plates. This equation can be used to determine force as a function of the clos-
ing velocity. If the squeezing process takes place under the force, F, being constant, then 
Eq. 6.4.22 is converted to a nonlinear ordinary differential equation for an unknown func-
tion of h(t).

Let us assume that fluid in the form of a disk is confined between two parallel disks. 
The upper disk is moving under a constant velocity of  such that fluid is 
squeezed to fill the disk mold. The force required to fill the disk mold is

[6.4.23]

where R is a radius of the parallel disks. 
This equation is known in the literature as the Stefan equation, indicating how much 

force is required to fill a disk cavity. If the process of filling a disk mold takes place under 
a constant force, F, then Eq. 6.4.23 is transferred to a nonlinear differential equation for an 
unknown function of h(t).

h· dh dt⁄=

F 8ηl3Bh·

h3
-------------------=

h· dh dt⁄=

F 3πηR4h·

8h3
--------------------=

Figure 6.4.9. Schematic representation of the plunger force during 
compression molding at a constant mold closing speed.
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6.4.3.6 Injection molding 
It is one of the most widely employed molding processes. Injection molding is used for the 
processing of thermoplastics, elastomers, thermosets, ceramics, and metals to articles of 
various complexities. The advantages of injection molding are a high production rate, 
large volume manufacturing with little or no finishing operations, minimum scrap, and 
good dimensional tolerances.

Injection molding of thermoplastics includes automatic feeding of pellets into a hop-
per, melting, melt plasticizing, and feeding melt into an injection barrel at a temperature 
above the glass transition temperature, Tg, for amorphous polymers or melting point, Tm, 
for semi-crystalline polymers. The melt is then injected through a delivery system consist-
ing of nozzle, sprue, runner system, and gate or gates into a mold having a temperature 
below Tg or Tm. The melt solidifies in the mold. Then, the mold is opened and the molded 
product is ejected. 

Injection molding of elastomers includes automatic feeding of a preheated or plasti-
cated rubber stock into an injection barrel at a temperature below the vulcanization tem-
perature. Then, rubber is injected through a delivery system into a mold. The mold 
temperature is kept high enough to initiate vulcanization and subsequently vulcanize rub-
ber inside the mold. After the rubber has been vulcanized, the mold is opened and the 
molded part is ejected. 

Injection molding of thermosets and reactive fluids, which are able to form infusible 
crosslinked structures by irreversible chemical reactions, is also carried out using a hot 
mold. Reaction injection molding is characterized by in-mold polymerization from mono-
meric or oligomeric liquid components by a fast polymerization reaction. Thermosets are 
solid or highly viscous materials at ambient temperature. They are frequently highly filled. 

An injection molding 
machine consists of a clamping 
unit containing mold and an injec-
tion unit for feeding, melting, and 
metering thermoplastic material 
(Fig. 6.4.10). The most widely-
used injection units utilize rotat-
ing screws to plasticize material. 
Rotation of the screw causes the 
plasticized material to accumu-
late in front of the screw, which is 
pushed back. The material is 
injected by the forward motion of 

the screw acting as a plunger, which pushes melt into the mold. The mold serves two func-
tions: it imparts shape to the melt and cools the injection-molded part. The mold consists 
of cavities and cores and a base in which they are located (Fig. 6.4.11). The mold contains 
one or more cavities with stationary and moving mold halves. In many cases, molds may 
have multiple cavities. The latter is dictated by process economics. 

The connection between runner and cavity is called a gate. In mold-making, the gate 
design is important. The size and the location of the gate are critical. The gate should 
allow the melt to fill the cavity and deliver additional melt to prevent shrinkage caused by 

Figure 6.4.10. Schematic representation of the injection molding 
machine.
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cooling. The material in the gate 
should freeze at an appropriate 
time during the molding cycle. 
Premature freezing will cause an 
undesirable phenomenon called 
underpacking, leading to exces-
sive shrinkage and sink marks. 
The mold also requires cooling 
and/or heating system and venting 
to remove air during the cavity 
filling and rapid and uniform 
cooling. Venting is usually 
achieved by arranging small gaps 
in the parting line, which permit 

air to escape quickly. In some 
cases, forced removal of air is carried out by using vacuum venting. Mold cooling or heat-
ing is achieved by placing a number of channels in both halves of the mold through which 
cooling or heating liquid flows to remove heat from the melt or to add heat to the melt. 
Mold heating is also done by placing electric cartridge heaters in mold halves. 

The injection molding cycle can be divided into three stages. These include cavity 
filling, packing (holding), and cooling. The three stages of the molding cycle can be easily 
seen from Fig. 6.4.12, indicating schematically the pressure variation with time. In the fill-
ing stage, the pressure rises as the melt propagates into the cavity. This stage is followed 
by the packing stage where a rapid increase (typically within 0.1 s) of pressure to its max-
imum is observed. Then, the cooling stage takes place at which pressure slowly decays. 

Molding variables such as 
injection speed, melt and mold 
temperatures, packing or holding 
pressure, and length of the pack-
ing stage have a strong influence 
on pressure development and 
properties of moldings. Frozen-in 
molecular orientation, residual 
stresses, polymer degradation, 
shrinkage, warpage, and weld line 
strength are influenced by process 
variables. In injection molding of 
semi-crystalline polymers, the 
molding variables strongly affect 
crystallinity and microstructure 
development in moldings, which 
influence their performance char-
acteristics. 

Figure 6.4.12. Schematic representation of the pressure-time curve 
during filing, packing and cooling stages of injection molding.

Figure 6.4.11. Schematic representation of a cold-runner, two-plate 
injection mold.
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A simple isothermal analysis of the mold-filling process in cavities of simple geome-
tries such as tubular and strip mold cavity is outlined below.

Consider a straight tubular mold of radius, R, and length, L. Melt is the Newtonian 
fluid that is injected at constant pressure or constant rate into the mold. The melt pro-
gresses along the mold until it reaches its end. We need to calculate the melt front position 
and the instantaneous flow rate when constant pressure is imposed at the mold entrance or 
pressure as a function of time when a constant velocity is imposed during the molding pro-
cess. The fluid is incompressible and isothermal under a fully-developed flow. If constant 
pressure is imposed at the entrance of the tubular cavity, the penetration depth is 

[6.4.24]

where t is the filling time. It is seen that the penetration depth z(t) is proportional to the 
radius R.

When a constant velocity is imposed during the cavity filling process, the pressure 
required to fill mold is

[6.4.25]

The pressure required to fill a tubular mold cavity is reciprocally proportional to its 
radius to the power of six.

For filling a strip cavity of thickness, h, under a constant injection pressure, p0, the 
penetration depth is

[6.4.26]

The penetration depth z(t) is linearly proportional to the value of h.
For filling a strip cavity at a constant flow rate, the pressure variation with the filling 

time is

[6.4.27]

The pressure varies linearly with the filling time and strongly depends on the width, B, 
and the cavity thickness, h, being reciprocally proportional to the width to the power of 
two and to the thickness to the power of four.

The process of calculation of filling patterns occurring in real molding processes is 
more complicated than simple geometries and flow of Newtonian fluid under isothermal 
conditions discussed here. Molding processes are more complicated because of the two- 
and three-dimensional flow of non-Newtonian viscoelastic fluid under non-isothermal 
conditions with solidification, crystallization, crosslinking occurring during processes. 
Various software is proposed for the calculation of flow in molding processes based on 
rheological properties of materials and designs of machines and molds.
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The movement of material during mold filling can be so intensive that high deforma-
tions result in liquid-to-solid-like transition (see section 3.6.3). This problem is treated 
sometimes from the point of view of the stability of the stream. The theoretical analysis 
includes constitutive equations.74 
6.4.3.7 Injection-compression molding
The injection-compression molding technique has been developed to utilize the advan-
tages of both molding techniques. This technique utilizes the conventional injection mold-
ing machine and a compression attachment. At first, the polymer melt is injected in order 
to partially fill the mold, which is partially open. Then, the compression stage is intro-
duced which leads to the final closing of the mold by squeezing the flow of the melt. This 
compression stage is introduced to replace the packing stage of conventional injection 
molding. Since the pressure developed during the compression stage is significantly lower 
than that in the packing stage of conventional injection molding, injection-compression 
molding introduces lower residual stresses, lower molecular orientation and birefringence, 
less and more even shrinkage, and better dimensional tolerances. At the same time, this 
process maintains high output, good process control, and automation inherent to conven-
tional injection molding. The process is especially useful for molding thin parts that 
require high quality and accuracy. However, the process requires careful timing of injec-
tion clamp position and force. Injection-compression molding is presently employed in 
making optical disks (DVD and CD) where requirements for dimensional tolerances and 
optical retardation are very stringent. In the production of the optical disks, this process is 
called coining. In comparison with injection molding, there are few little experimental and 
theoretical studies in the literature on injection-compression molding. 
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460 Applications of Rheology

QUESTIONS FOR CHAPTER 6
QUESTION 6−1
Compare sensitivity of different rheological methods to variation of molecular mass.
QUESTION 6−2
Explain why the MFI of polymer used for film extrusion must be higher than in tube 
extrusion (see Fig. 6.2.3).
QUESTION 6−3
Is it possible to vary the elasticity of melt without changing the average molecular mass of 
polymer?
QUESTION 6−4
Explain the advantage of synthetic lubricants in comparison with mineral oil-based lubri-
cants.
QUESTION 6−5
Derive Eq. 6.4.5. As an intermediate result, obtain an equation for a radial velocity distri-
bution.
QUESTION 6−6
How does the velocity profile during flow in a tube change during the transfer from New-
tonian to a power-law type liquid? Make a comparison by analyzing the ratio of maximum 
to the average velocity.
QUESTION 6−7
Prove Eq. 6.4.6 for the Bingham liquid. Explain the necessary conditions required for the 
movement of the Bingham viscoplastic media through a tube. 
QUESTION 6−8
Eq. 6.4.5a is convenient for solving engineering problems of the flow of non-Newtonian 
liquids through channels with non-circular cross-sections. Can a similar equation be for-
mulated for viscoplastic liquids? Explain your answer.
QUESTION 6−9
Why does elasticity appear before gelation during polymer curing, i.e., the formation of a 
three-dimensional chemical network?
QUESTION 6−10
Describe what happens if an end of the pumping screw of an extruder is blocked? What 
pressure will be developed?

Answers can be found in a special section entitled Solutions.



NOTATION

A intensity of dissipation (in a flow)
A area of an ellipse in a dynamic experiment
A constant in some equations 
A(n) the Rivlin-Erickson tensor of the n-th order
a thermal diffusivity
a dimensionless amplitude in the theory of vibration viscometry
a arbitrary coefficient, constant in different equations
a, b semi-axes of an ellipse
a length of a side of a triangle
aT temperature shift factor
a1, a2, a3 components of the acceleration vector
aij components of the gradient of velocity tensor (i = 1, 2, 3 and j = 1, 2, 3)
B bulk modulus of elasticity (compressibility)
B* complex bulk modulus of elasticity
B magnetic flux density
B(n) the White-Metzner tensor of the n-th order
B width (of a slit channel)
B constant in some equations
b baric coefficient of viscosity
b power factor in a molecular model
b arbitrary coefficient, constant in different equations
C electrical capacitance (in a model representation)
C step in a discrete relaxation spectrum
C (with different indexes) coefficients in different equations
Cij the Cauchy-Green tensor (i = 1, 2, 3 and j = 1, 2, 3)

the Finger tensor (i = 1, 2, 3 and j = 1, 2, 3)
CI, inv the first invariant of the Cauchy-Green tensor

the first invariant of the Finger tensor
the Jaumann tensor derivative

c concentration (in volume units)
c* critical concentration (in liquid-crystal solutions)
c, cp heat (thermal) capacity
c arbitrary coefficient
D diameter (of a tube, capillary)
Dij components of the deformation rate tensor (i = 1, 2, 3 and j = 1, 2, 3)
D2 the second invariant of the deformation rate tensor

Cij
1–

CI inv,
1–

Ck
∇
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DR draw ratio
dij components of a small deformation tensor (i = 1,2, 3 and j = 1, 2, 3)
d1, d2, d3 principal values of a small deformation tensor

deviatoric part of the dij tensor
ds surface area based average diameter
E functional of errors (in fitting experimental data)
E number of entanglements per chain
E1, E2, E3 invariants of a tensor of large deformations
E measure of large non-linear deformations
E Young’s (elastic) modulus
E0 instantaneous modulus
E* complex dynamic modulus (in extension)
E' real part of complex modulus (storage modulus)
E" imaginary part of complex modulus (loss modulus)

equilibrium modulus
plateau modulus

Eijmn components of elastic modulus for an anisotropic material
Ea activation energy
E strength of an electrical field
F kernel function in different models of mixing
F force
Fx, Fy components of forces acting along coordinate axes
F* limiting (critical) value of force
F0 constant force; initial force
FY strength of the material
Fsp force acting on a spring in model representation
Fpist force acting on a piston in model representation
F1, F2, F3 components of force vector
Fn normal force
Fσ tangential force
f coefficient of friction
f frequency of oscillation (in Hz)
f0 local coefficient of friction
fE engineering stress
fM neo-Hookean engineering stress
f(x) arbitrary function of argument x
G shear modulus
G constants in the theories of large deformations (with different indices)
G weight output
Ge elastic (rubbery) modulus
Gi, Gn partial shear modulus in a discrete relaxation spectrum

plateau shear modulus
Gr relaxation modulus 

equilibrium shear modulus
the final value of shear modulus in curing

dij
dev( )

E∞
EN

0

GN
0

G∞
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G0 instantaneous shear modulus
G(θ) relaxation time spectrum (measured in shear)
G* complex dynamic modulus (in shear)
G' real component of complex shear modulus (storage shear modulus)
G" imaginary component of complex shear modulus (loss shear modulus)
G'exp, G"exp experimental values of G' and G", respectively
G'cal, G"cal calculated values of G' and G", respectively
g gravitational constant

the measured value of a function in a regularization method 
gij components of tensor of relative displacements (i = 1, 2, 3 and j = 1, 2, 3)
H distance; height; sagging
H heat of transition
h distance, gap, height
h(lnθ) (with different indices) logarithmic relaxation spectrum
I moment of inertia 
[I] concentration of an initiator
Is coupled moment of inertia
I1, I2, I3 invariants of the stress tensor
IE the sum of the non-linear measures of deformations, E 
Iopt intensity of light transmission 
J compliance; viscoelastic compliance
Jc creep compliance
J0 instantaneous compliance
Je equilibrium shear compliance
Js steady state compliance

initial (linear) value of compliance
J* complex compliance (in shear)
J' real part of complex compliance
J" imaginary part of complex compliance
J(λ) retardation time spectrum
Ji partial compliance
J electrical current
K empirical parameters (with different indices)
K kernel in an integral equation used in a regularization method
K shape factor, geometrical factor, or form factor
Kcr the Von Mises criterion of plasticity
KH the Huggins constant
KM the Martin constant
KK the Kraemer constant
k kinetic rate constant (with different indices) 
k the Boltzmann constant
k temperature coefficient of viscosity
k coefficient in different equations (with different indices)
k parameter in the theory of oscillations 
k(lnλ) logarithmic retardation spectrum

gi
σ

Js
0
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k ratio of radii
ku factor in the theory of vibration viscometry
kω coefficient of resistance in vibrations
La,b rate of formation of junctions in a network model
L length 
L parameter in the theory of torsion oscillations
l current length
l coefficients in different equations (with different indices)
l0 initial length
lf length of a sample after elongational flow
M or MM molecular mass

number-, weight-, z- and (z+1)- molecular masses, respectively
the weight-averaged molecular mass of a blend
viscometric-averaged molecular mass 

M0 molecular mass of a monomer unit
Mc critical molecular mass (for entanglement formation)
Me molecular mass of chain segment between entanglements
M number of elements in the model
MFI melt flow index
m, me reduced values of molecular mass
mk entrance correction factor
m mass
m memory function
m arbitrary index
m exponent in different empirical equations
m0 reduced mass
ms doubled, coupled mass
N number of elements in model or in a polymer chain
N rotational speed of the screw
N1 first normal stress function

first normal stress growth function
the first normal stress decay function

N1,c permanent component in the first normal stress function in oscillations
N1, osc amplitude of oscillations of the first normal stress function in periodic

 deformation
N2 second normal stress function
Nc intensity of nuclei formation
n1, n2, n3 components of the normal to a surface
n ordinary number in different sequences
n exponent in different empirical equations
n refraction index

limiting value of refraction index
P, p pressure at the entrance to a channel; current pressure
Pk pressure drop responsible for kinetic energy losses; pressure drop 

 responsible for end-correction

Mn Mw Mz Mz 1+, , ,
Mw bl,
Mη

N1
+

N1
-

n∞
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Pv part of the pressure drop responsible for the resistance of a channel
p amplitude ratio (in linear displacement or in torsion)
pmax maximum pressure developed in a single-screw extruder
Q volume output
Q electrical charge
Q0 initial charge of the capacitor in a model representation

equilibrium charge of the capacitor in a model representation
q distributed load
q parameter of a molecular model
R universal gas constant
R radius
Ri, Ro inner and outer radii of cylinders, respectively

average radius
R0 initial radius of a sample in a squeezing plastometer
R electrical resistance (in a model representation)
Rm real (active) part of mechanical impedance
r (current) radius; radial coordinate
r0 initial radius
rY radius of a plasticity zone in the flow of a viscoplastic liquid
S surface area in different equations: rectangular in dynamic measurements,
  under a relaxation curve and in other cases
SR swell ratio
s distance between two points
s scaling factor
T torque
T* limiting value of torque
T intensity of shear stresses
T absolute temperature (in K)
T period of oscillation

dimensionless induction period (in curing) 
Tdef characteristic time of deformation
Tent life-time of entanglements
T0 reference temperature 
Tg glass transition temperature
Tm phase transition temperature, melting point

equilibrium phase transition temperature
t, t' current and past time, respectively
t* critical time (in different applications)
t* gel-time
tm-g time of micro-gelation
tinh inherent time scale of material
tobs characteristic time of observation
tsw characteristic time of switching
tn non-isothermal induction period (in curing)
U voltage

Q∞

R

T̂

Tm
0
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U0 initial voltage
U0 velocity of the movement of meniscus 

steady velocity (in different cases)
u displacements of elements of a molecular model (with different indices)
u current velocity
u1, u2, u3 components of the displacement vector
u0 speed of a jet flight
V average deviation in a regularization method
V, V0 velocity; initial velocity
Vs slip velocity

velocity of a steady movement
Vmax maximum velocity in the velocity distributions

, Vav average velocity
V, V0 volume; initial volume
V* volume after deformation
Vell volume of an ellipsoid (after deformation)
Vsph volume of a sphere
v1, v2, v3 components of the velocity vector 
W work; work per cycle in a dynamic loading; stored elastic energy;

 the intensity of energy dissipation
Wsh energy responsible for shape changes
W (with different indices) elastic potential (in non-linear models and theories
  of elasticity)
W distance between the neighboring flights of screw
wij components of the vorticity tensor (i = 1, 2, 3 and j = 1, 2, 3)
w weight fraction in mixture
X* complex amplitude of displacement 
X displacement in a model representation
Xm imaginary (reactive) part of mechanical impedance
X0 initial displacement in a model representation 
X0 initial value of an arbitrary parameter X
Xsp displacement of a spring in a model representation
Xpist displacement of a piston in a model representation
X arbitrary parameter

the equilibrium value of an arbitrary parameter X
X1, X2, X3 components of the body force
x1, x2, x3 the Cartesian coordinate axes
x variable in various equations
x0A, x0B amplitudes of displacement of plates A and B, respectively

maximum (resonance) amplitude of displacement of plate B
Y arbitrary variable
Y* complex mechanical impedance
y coordinate axis
y variable in some calculations
y0 insertion depth in a viscometry 

U∞

V∞

V

X∞

x0 B,
max
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Z rigidity of spring
z coordinate axis
z0 distance equal to reciprocal of attenuation
Greek letters
α arbitrary angle; the angle in a cone-plate viscometer
α (with different indexes) arbitrary factors in different equations
α degree of crystallinity
α coefficient of thermal expansion
α phase angle
β angle in a cone-plate viscometer device
β angle of contact formed by meniscus
β constant (coefficient) in different equations; scaling factor
β degree of conversion
β* degree of conversion at the gel-point
Γ parameter in the theory of wave propagation
Γ dimensionless shear rate
γ shear deformation
γ dimensionless viscosity in the theory of vibration viscometry
γr recoil shear strain or elastic (recoverable) deformation

the critical value of elastic deformation (for the onset of instability in the 
flow)
γf irreversible shear deformation (in the flow)
γm shear deformation corresponding to maximum stress

deformation rate (in a simple shear)
deformation rate at the channel wall (in a simple shear)
constant shear rate; initial shear rate; average shear rate
apparent average shear rate (in the flow with slip)
quasi-Newtonian shear rate
the shear rate at the slit wall
the average shear rate in a slit
maximum shear rate (in viscometer)
critical shear rate (at the spurt point)

Δ change (of something)
Δ measure of the rate of damping in oscillations (logarithmic decrement of
  damping)
Δ clearance between coaxial cylinders
δ loss angle (in periodic oscillations)
δ wall thickness of cylinder
δ angle between plate and conical surface in viscometer
δ clearance
δ attenuation
δij the Kroneker Delta (unit tensor)
ε ratio of stresses in a rotational viscometer
ε relative change of distance (strain in tensile extension)
ε deformation (of any type)

γr*

γ·
γ·R
γ·0
γ·0

*

γ·N
γ·H

γ·0
H

γ·m
γ·s



468 Notation

ε0 initial deformation; constant deformation (in relaxation); amplitude of
  deformation (in periodic oscillation) 
εr,0 characteristic recoverable deformation − empirical parameter (in extension)
εM, sp; εK; εM, pist deformation of model elements in a model representation
εV relative change of volume (volume deformation)
εij components of a tensor of large deformations (i = 1, 2, 3 and j = 1, 2, 3)

deviatoric components of the deformation tensor
ε1, ε2, ε3 principal values of the ij-tensor
ε* engineering measure of deformation
εH the Hencky measure of deformation
εinf residual deformation (in creep)
εr tensile recoil (recoverable deformations stored in extension)

critical elastic deformation in extension (at the moment of rupture)
deformation rate (in extension)

ζ constant in a kinetic equation
η viscosity; apparent (non-Newtonian) viscosity
η0 initial (Newtonian) viscosity; viscosity of a solution
η0 viscosity at zero pressure

upper (high-shear rate) Newtonian viscosity
ηs solvent viscosity
ηM, ηK viscosities of elements in a model representation
η* complex dynamic viscosity
η' real part of complex dynamic viscosity
η" imaginary part of complex dynamic viscosity

viscosity of an anisotropic liquid measured in direction parallel to shear
viscosity of an anisotropic liquid measured in direction orthogonal to shear
biaxial stress growth coefficient 

[η] intrinsic viscosity
ηp constant “plastic” viscosity

limiting viscosity at high shear rates
dimensionless viscosity
average viscosity (in viscometer)

θ angular coordinate
θ angle in different expressions
θij components of the tensor of rotation (turn) (i = 1, 2, 3 and j = 1, 2, 3)
θ characteristic time of process (with different indices); relaxation time in 

 discrete spectrum
θc, θd constants characteristic times in a tube model
θmax, θmin maximum and minimum relaxation times in a spectrum
θK the Kohlrausch relaxation time

complex amplitude of twisting
θ0 amplitude of twisting

complex amplitude of twisting for body B
θ0A angular amplitude of twisting of body A 
κ coefficient of the thermal conductivity

ε'ij

εr
*

ε·

η∞

η||
η⊥
ηB

+

η∞
η̂
η
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λ retardation time
λ retardation time in a discrete spectrum (with different indices)
λmax, λmin maximum and minimum values of retardation time in a discrete spectrum
λ wavelength
λ dimensionless frequency in the theory of vibration viscometry
λ extension ratio
λ heat transfer coefficient
λ regularization parameter 
λ1, λ2, λ3 extension ratios along the principal axes
λ coefficient of friction (of hydrodynamic resistance)
λR coefficient of friction (of hydrodynamic resistance) expressed via radius
μ Poisson’s ratio (coefficient)
ν empirical parameter
ξ function characterizing non-linear effects
ρ density
ρ0 density at the reference temperature T0 
ρs density of a solid body moving in liquid
ρl density of liquid
Σ sum
σ various stresses; shear stress
σ surface tension
σ0 initial stress; constant stress (in creep); amplitude of stress (in periodic
  oscillation) 
σA shear stress at the capillary wall 
σE, 0 characteristic stress (empirical parameter) in extension
σE normal (tensile) stress
σY yield stress
σR shear stress at the tube wall of capillary; maximum shear stress on surface
σij components of stress tensor in the Cartesian coordinates (i = 1, 2, 3 and 

 j = 1, 2, 3)
deviatoric components of the stress tensor

σij components of stress tensor in polar coordinates (i = θ, r, z and j = θ, r, z)
σmax maximum stress; limit of shear stress
σ1, σ2, σ3 principal stresses
σ1, max, σ2, max, σ3,maxmaximum shear stresses (invariants, expressed in shear stresses)
σi, σo stresses at the inner and outer surfaces of coaxial cylinders, respectively

, σav average shear stress
σα stress at a surface in a cone-plate viscometer
σθ circumferential stress
σz longitudinal stress
σres residual stress (in relaxation)
σE, ext, σE, compr  normal stresses in extension and compression, respectively
σ* characteristic shear stress
σ*, stress limits of elasticity (critical stress for transition to plastic deformation
  in solids)

σ'i j

σ

σE
*
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σH shear rate at the slit wall
σs critical stress (spurt stress)
σ+ shear growth stress function
σ- shear stress decay function

tensile growth stress function
critical stress (at the moment of rupture)

ϕ angle in the theory of break of solids
ϕ angle of inclination in some instruments
ϕ relaxation function
ϕ concentration (in volume parts)
ϕ* critical concentration

correction factor
Ψ1 the first normal stress coefficient
Ψ2 the second normal stress coefficient
Ψ1, 0 initial (“linear”) value of the first normal stress coefficient
Ψ0 permanent component of the first normal stress coefficient in oscillation
Ψ' real part of the complex first normal stress coefficient in oscillation
Ψ'' imaginary part of the complex first normal stress coefficient in oscillation
ψ creep function
Ω angle of twisting 
Ω rotational speed
Ωi, Ωo rotational speed of inner and outer cylinders, respectively
ω angular velocity; frequency
ω0 own (resonance) frequency
ωmax, ωmin upper and lower boundaries of frequency window in the measurement of
 dynamic modulus

De the Deborah number
Mn the Mason number
Re the Reynolds number
ReR the Reynolds number expressed via the radius
Rec the critical Reynolds number in rotational flows
We the Weber number
Wi the Weissenberg number
Vectors
A acceleration vector
F force
r radius-vector
n normal to the surface
u displacement vector
v velocity vector
X body force

σE
+

σE
*

χ



SOLUTIONS

CHAPTER 1 
PROBLEM 1-1
What is the equilibrium state of a liquid and a solid in the absence of stresses?

Answer
There is a single equilibrium state for solid, determined by the absence of stresses. For liq-
uid, any state in the absence of flow is equilibrium. The equilibrium state of liquid exists 
for any shape of the specimen. 
PROBLEM 1-2
What are the possible limits of Poisson’s ratio, μ? Can its value exceed 0.5? Can it be neg-
ative?

Answer
Poisson’s ratio cannot exceed 0.5, because if it was so, hydrostatic pressure would lead to 
an increase in volume (see Eq. 1.2.18). This is physically impossible. Negative values of μ
do not contradict fundamental laws. The value μ < 0 means that in uniaxial extension the 
lateral size of a specimen increases. For real materials, this case is possibly realized for 
foams. 
PROBLEM 1-3
What are the pressure and the shear stresses in the stress state created by the following 
normal stresses: σ11 = 0; σ22 = -σ0 and σ33 = 0? What are shear stresses in this case?

Answer
Pressure 

(or the spherical part of the stress tensor) equals zero. Shear stresses, σ, acting on the plane 
inclined by an angle α are calculated as:

Comment
This type of stress field leads to deformations known as “pure shear”.

p 1
3
--- σij

i 1=

3

–=

σ 1
2
--- σ11 σ22–( ) 2αsin σ0 2αsin= =
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PROBLEM 1-4
Calculate stresses acting in a thread being suspended by its end and stretched by its own 
weight. 

Answer
The normal (extensional) stress appears due to the gravitational force. The maximum 
stress, σmax, acts on the cross-section of suspension. This stress equals to σmax = ρgL 
(where ρ is the density, g is the gravitational acceleration constant, and L is the length of 
the specimen). So, σmax increases as the sample becomes longer and there is a length of the 
thread at which σmax exceeds the strength of a sample, σ*.

Comment
This limiting length, corresponding to σ*, can be treated as a measure of the strength of a 
material. Such a measure is used in engineering practice for characterizing the strength of 
fibers which is expressed as “breaking length”.
PROBLEM 1-5
Analyze the situation where a horizontal long flexible engineering element (fiber, bar, 
etc.) is loaded along its length by a distributed force, q (i.e., force, normal to the bar, per 
the unit of a length).

Answer
Let the length of a bar be L and the sagging height be y. A reasonable assumption to make 
is that y << L. The balance equation (the sum of torques around the point of suspension is 
zero) is:

where F is the normal force stretching a bar and x is the distance from a suspension point. 
Then the sagging is expressed as y = qx2/2F and the maximal sagging, H, is H = qL2/2F.

Normal stress, σE, in a bar is σE = F/S, where S is the cross-section of the bar. Then 
the final relationship between stress in a bar and its sagging, H, is: σE = qSL2/2H. The last 
equation shows that the decrease in H can be reached by an increase in stress, and H can-
not be too small because stress is limited by the strength of the material. 
PROBLEM 1-6
In section 1.3.1 the difference between the gradient of velocity and the rate of deformation 
is explained. What is the situation with these values for a uniaxial extension?

Answer
The uniaxial extension is a special and unique case in which the rate of deformation coin-
cides with the gradient of velocity.
PROBLEM 1-7
Calculate the stresses in a hemispherical cup loaded by its own weight. Such a case is met 
in many engineering designs, for example, in a spherical roof covering a large area of a 
stadium or a warehouse.

Answer
The current radius of a hemisphere is expressed as r = Rsinα, where r is its radius and the 
angle α is taken from a horizontal plane. Let the density of material be ρ and its (uniform) 
thickness be δ. It is evident that δ << R (such objects are called “membranes”). Then the 

Fy qxx
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analysis of the balance of acting forces gives the following resulting equation for the nor-
mal stress acting along the surface of a spherical membrane: 

where g is the gravitational acceleration.
The stresses on the supporting ring (at r = R) must balance the total weight of a hemi-

sphere. Therefore, the maximum value of the principal stress, σmax, is σmax = -ρgR.
PROBLEM 1-8 
Let a liquid be placed between two coaxial cylinders with radii Ro (outer) and Ri (inner). 
The gap between cylinders Δ = Ro − Ri is small in comparison with the cylinder radii. Let 
the outer cylinder rotate with an angular velocity, Ω. Then the assembly of both cylinders 
begins to rotate with the same angular velocity, ω. What are the shear rates and gradients 
of velocity in these two cases?

Answer
The rate of shear in both cases is the same and equals ΩR0/Δ. According to Eq.1.3.5, gra-
dient of velocity in the first case is the same as the rate of shear and in the second case and 
it equals ω + ΩR0/Δ). The first member in this sum reflects quasi-solid rotation, and the 
second term is the shear rate.
PROBLEM 1-9
A cylindrical thread of length l0 is fixed at one end and stretched at the other end. What 
must be the time dependence of velocity, v(t), of stretching sufficient to maintain a con-
stant deformation rate,  = const?

Answer
Deformation rate is dl/ldt (but not dl/l0dt!). Then  =dl/ldt = const if  and 

i.e., velocity must increase exponentially. 
PROBLEM 1-10
Advance your arguments proving a possibility of neglecting shear stresses in a thin-wall 
cylinder as in Example in section 1.1.4.

Answer
This can be proven by analysis of the second line in Eq. 1.1.2. The second and the third 
items equal zero because a cylinder is symmetrical along coordinates θ and z. There are no 
changes in stresses along with these coordinates. Then, the equation can be approximately 
written as:

The value Δr is small (because it is the width of a wall) and therefore the left side can be 
small (and neglected) only if Δσθr and σθr are also small. Shear stresses on a surface are 

σE ρgR 1 r R⁄( )2– 1–
r R⁄( )2
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absent (equal to zero). They cannot strongly vary across the wall and therefore they are 
close to zero and can be neglected.

CHAPTER 2 
PROBLEM 2-1
For Maxwellian liquid with a relaxation time θ, what is the residual stress (in comparison 
with the initial stress σ0), if the process of stress relaxation continues for a duration of time 

?
Answer

For Maxwellian liquid σ(t) = σ0exp(-t/θ). Therefore, for t = 2θ the ratio 
 i.e., the residual stress % of the initial stress value.

PROBLEM 2-2
For a solid material with rheological properties described by the Kelvin-Voigt model, with 
a retardation time λ, what is the time necessary to reach 95% of its equilibrium (limiting) 
value?

Answer
The creep process is described by the equation , where   is the limit-
ing deformation. Then the value ε/  = 0.95 is reached at . 
PROBLEM 2-3
Viscoelastic properties of the liquid are described by two relaxation modes: the first with 
modulus G1 and a relaxation time θ1 = 1 s and the second with modulus G2 and a relax-
ation time θ2 = 100 s. Describe the evolution of stress in time. How do relaxation curves 
look if a linear time scale and a logarithmic stress scale are used?

Answer
Stress diminishes approximately according to an exponential curve from the initial value 
of G1 + G2 and after  s it will reach the plateau having a value of G2. Then at  s 
a new relaxation process becomes visible, and stress practically diminishes according to 
an exponential curve but with different curvature.

In log(stress) versus time coordinates the relaxation process is presented by two lin-
ear branches with different slopes corresponding to two values of relaxation times with a 
short transient zone. 

Additional question
What is the value of equilibrium stress in this case?

Answer
Equilibrium stresses are absent because the material under discussion is liquid. 
PROBLEM 2-4
Explain why the value θK, entering the Kohlrausch function, Eq. 2.1.6 is not a relaxation 
time. How do you find relaxation times for this relaxation function?

Answer
Relaxation time, by definition, is a value entering an exponential relaxation function. So, 
θK is a relaxation time if an exponent n in the Kohlrausch function equals 1. In other cases, 
this function reflects the existence of a continuous relaxation spectrum, E(θ), found by 
means of Eq. 2.2.8. The equation for calculating G(θ) is: 

t 2θ=

σ σ0⁄ e 2– 0.135≈= equals 13.5≈

ε ε∞ 1 e t– λ⁄–( )= ε∞
ε∞ t 3λ≈

t 3≈ t 10≈
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where (0) is the instantaneous modulus (see Eq. 2.2.4). The function G(θ), i.e., a relax-
ation spectrum, can be found from the last equation and written in an analytical form, 
using standard mathematical transformations. However, this solution is rather cumber-
some and will not be cited here.
PROBLEM 2-5
Analyze the evolution of deformations in the following loading history: stress σ0 was 
applied at the time t = 0; then additional stress σ1 was added at the time t1 and finally at the 
time t* both stresses were taken away. The material is a linear viscoelastic solid.

Answer
The evolution of deformations (creep and recovery) is described by means of the Boltz-
mann-Volterra superposition principle. 

In the time range 0 − t0 deformations follow function of time: γ = σ0ψ(t). 
Then in the time range t0 − t*, γ = σ0ψ(t) + σ1ψ(t − t1); and after unloading at t = t* 

deformations diminish and the complete deformation is calculated as γ = σ0ψ (t) + σ1ψ(t −
t1) − [σ0 + σ1] (t − t*).

Additional question
What will be the final deformation at ?

Answer
At large time values t >> t1 and t >> t*. Therefore both differences,  σ0ψ(t) − σ0ψ(t − t*) 
and σ1ψ(t − t1) − σ1ψ(t − t*) are approaching zero, no residual deformation is expected, 
and the elastic recovery will be complete.
PROBLEM 2-6
What is the shape of the frequency dependencies of the components of dynamic modulus 
for a Maxwellian liquid?

Answer
Formal mathematical analysis of the functions (ω) and (ω) shows that the real 

part of dynamic modulus, , increases from zero to G along with the growth of fre-
quency and the loss modulus, , equals zero at very small and very high frequencies and 
passes through the maximum at (ωθ) = 1. 

Comment
This result demonstrates that at a high-frequency limit, Maxwellian liquid behaves in 

a solid-like manner. In the low-frequency limits, such material is a typical liquid, and tran-
sition takes place at ω = θ-1.
PROBLEM 2-7
An experimental relaxation curve was approximated with the sum of three exponential 
functions with the following parameters:

G1 = 2*103 Pa, θ1 = 100 s; G2 = 104 Pa, θ2 = 20 s; G3 = 105 Pa, θ3 = 6 s. 
What is the viscosity of this liquid?
Answer

According to Eq. 2.5.12, viscosity is the sum of relaxation modes calculated (for a discrete 
spectrum) as: . Thus η = 1 MPa s
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PROBLEM 2-8
Eq. 2.3.11 and its solution show that the Burgers model describes the behavior of a mate-
rial with two relaxation times. The same behavior is represented by two parallel Maxwell 
elements with their relaxation times θ1 = η1/G1 and θ2 = η2/G2 where η1 and G1 are the 
viscosity and elastic modulus of the first and η2 and G2 of the second Maxwell elements 
joined in parallel. Calculate the values of the constants of the Burgers model expressed via 
constants of the two Maxwell elements.

Answer
First of all, it is necessary to prove that both models indeed describe the same type of rhe-
ological behavior. To do this, the relationship between stresses and deformations for the 
model consisting of two parallel Maxwell elements ought to be formulated.

This is achieved by the following procedure: the rheological behavior of each paral-
lel element is given by the equations:  and 

 where indices 1 and 2 show the values related to both branches 
of a model. Then bearing in mind that σ = σ1 + σ2 and excluding both components σ1 and 
σ2, we come to the final rheological equation of state which is equivalent to Eq. 2.3.11.

A comparison of the coefficients of rheological equations of both models (the Burg-
ers and the two-branch Maxwell) leads to the following relationships among the parame-
ters of the models:

Comment 
From this solution, it is seen that the presence of two relaxation times leads to the appear-
ance of a single retardation time, and its value is

PROBLEM 2-9
Is it possible to measure dynamic modulus using non-harmonic periodic oscillations? 
How this is done?

Answer
It is possible to do it by decomposition of non-harmonic input and output waves by Fou-
rier series expansions. Then, by comparison of the harmonics of the same frequencies, it is 
possible to calculate components of the dynamic modulus in an ordinary manner for dif-
ferent frequencies.
PROBLEM 2-10
In measuring a relaxation curve, it is assumed that the initial deformation is set instanta-
neously. In fact, it is impossible, and a transient period always exists. Estimate the role of 
this period for a single-relaxation mode (“Maxwellian”) liquid. 
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Answer
Stress relaxation after an instantaneous set of deformation is expressed as 

, where σ0 is the initial stress, γ0 is the constant deforma-
tion and G is elastic modulus.

If deformation is developed with a constant deformation rate until deformation γ0 is 
reached, the evolution of stresses before relaxation can be written as (see Eq. 2.4.13) 

At t0 = γ0/  deformation ceases and relaxation begins. Real stress evolution, σreal(t) 
in a relaxation range which can be described based on the Boltzmann-Volterra superposi-
tion principle, and the time dependence of stress is given by:

The difference between σreal and σinst is evident. Estimations depend on the ratio of 
constants. In the range of measurements, t >> t0 and for a quick setting of necessary defor-
mation γ0, . The correctness of this approximation is determined by the con-
dition t0 << θ.
PROBLEM 2-11
Application of the theory of large deformations to a linear viscoelastic body leads to the 
following equation for the time evolution of the first normal stress difference, (t), at a 
constant shear rate,  = const:

  (Can you prove this equation?)

Calculate the function (t) for an arbitrary relaxation spectrum, G(θ). 
Answer

Substitute a relaxation spectrum instead of a relaxation function (t) and change the order 
of integration. This leads to the following formula:

 

The limiting value of N1(t) for steady flow is:

 

(compare with Eq. 2.5.14)
Additional question 1
Find the (t) dependence for stress relaxation after a sudden cessation of steady 

flow. Compare the rates of relaxation of shear and normal stresses.
Answer 1
Relaxation of normal stresses is described by
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Relaxation of shear stresses after sudden cessation of steady flow is described by the 
formula (see Eq. 2.4.16):

 

The comparison of both functions related to their steady-state values:  and 
 (where the values σs and N1,s are shear and normal stress values at steady-

state flow before the start of relaxation) depends on the comparison of the functions  
and . It is evident that the second expression is always larger than the 
first one because  (avoid the trivial case of t = 0). Therefore, the growth 
and relaxation of normal stresses always proceed slower than shear stresses.

Additional question 2
For a single-mode viscoelastic liquid with relaxation time, θ, calculate the relative residual 
shear and normal stresses after relaxation continuing for time 4θ.

Answer 2
Residual shear stress is found as  (1.85%), while relative residual normal 
stresses equal  (9.27%), i.e., residual normal stresses are five times larger 
than shear stresses.
PROBLEM 2-12
Explain the procedure of transition from a discrete to a continuous relaxation spectrum 
(from Eq. 2.6.6 to Eqs. 2.6.7 and 2.2.8).

Answer
According to a spring-and-dashpot model, a discrete relaxation spectrum is written as a 
sum of delta-functions:

where C is a constant and θp are relaxation times. The distribution of relaxation times is 
expressed as: . The transition from a discrete to a continuous spectrum is 
based on the change of a discrete argument p with a continuous one. According to the last 
relationship  and for a continuous spectrum: , where k 
is a constant. The function  is a continuous relaxation spectrum.

Comment
If a logarithmic time-scale is used, the argument would be lnθ, then a logarithmic 

relaxation spectrum, h(lnθ) is h = θF(θ) = kθ−1/2.
PROBLEM 2-13
Let a small solid dead-weight of mass m be attached to a rod at its end and the rod fixed at 
the other end. Some initial displacement from the equilibrium position of the weight 
(deforming the rod) was created by an applied longitudinal force, and then the force was 
ceased. 
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Analyze the movement of the weight after the force is ceased. Is it possible to find 
the components of the dynamic modulus of a rod material following the movement of a 
weight?

Comment 
A rod can be of different lengths and cross-sections. Not specifying the sizes and the geo-
metrical form of a rod, the latter is characterized by the value of a “form-factor” k.

Answer
The movement of a dead-weight (approximated as a “point”) is described by Newton's 
second law, which can be written as

where x is the displacement of the weight. The value E* is the complex modulus. Using 
E* instead of standard Young’s modulus, it is assumed that the material of a rod is visco-
elastic. 

As the first approximation let E* be the elastic modulus E, i.e., the material of a rod 
is ideally elastic. In this case, the solution of the dynamic equation is well known. It is a 
periodic harmonic oscillation with frequency . Measuring the frequency 
of oscillations, ω, it is easy to calculate modulus.

If the material is viscoelastic, it is supposed that oscillation will be damping and the 
solution of the equation for x is searched as , where x0 is the amplitude of 
oscillations, the first exponential factor represents periodic oscillations, and the second 
factor represents the effect of damping, which is characterized quantitatively by the value 
Δ. The substitution of this function into the dynamic equation and representing E* as 

 leads to two equations (separate for real and imaginary components):

 and  

These equations give the final expression for calculating the components of dynamic 
modulus:

 and  

Measuring the frequency of oscillations and the rate of damping, it is possible to cal-
culate  and  (see section 5.7 for a more detailed discussion).

Comment
Here, the geometry of movement is immaterial. It can be linear movement or rotation. In 
the latter case, mass in this equation is replaced by a moment of inertia and x is the angular 
twist.

CHAPTER 3 
PROBLEM 3-1
Can viscosity be negative? Explain the answer.

Answer
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Viscosity cannot be negative. If it were so, it would mean that the application of force in 
one direction leads to movement in the opposite direction. Also, heat would transform into 
mechanical energy and this contradicts the second law of thermodynamics.
PROBLEM 3-2
In measuring the viscous properties of the polymer solution, it appeared that the experi-
mental data in the experimental range of shear rates can be fitted with the power-law equa-
tion (Eq. 3.3.4). Analyze the possibility of extrapolating this equation to the range of very 
high shear rates.

Answer
The power-law equation predicts that apparent viscosity at very high shear rates decreases 
to zero. It is physically impossible. The viscosity of a solution cannot be less than the vis-
cosity of a solvent. Extrapolation of experimental data to the range of high shear rates is 
incorrect.

Additional question
Which kind of rheological behavior at high shear rates is expected in this case?

Answer
The following possibilities exist:

• apparent viscosity will reach its lowest (Newtonian) limiting value, slightly 
exceeding the viscosity value of a solvent

• instability of flow will appear due to inertial turbulence or the transition of a vis-
coelastic solution into the forced rubbery-like state; in both cases viscosity esti-
mations becomes incorrect. 

PROBLEM 3-3
What is the difference in stress relaxation of viscous liquids and viscoplastic materials?

Answer
Relaxation of stresses in liquids continues up to zero, whereas relaxation in viscoplastic 
materials stops at the level of the yield stress because at lower stresses viscoplastic materi-
als behave in a solid-like manner. 
PROBLEM 3-4
Can we expect that the values of the yield stress, σY, found by treating a set of experimen-
tal data by means of Eqs. 3.3.7 to 3.3.9, are the same?

Answer
The general answer is “no”, because any of these equations gives nothing more than the 
best fit of experimental data, and the constants of different empirical equations are not 
required to be the same. In this sense, the values of σY found by fitting experimental data 
by any empirical approximation are not “true” yield stress but fitting constants only (com-
pare with the example in section 3.3.3). 
PROBLEM 3-5 
Calculate shear stresses in the flow of liquid through a straight tube if the flow is created 
by the pressure gradient Δp/L (L is the length of a tube).

Answer
Let us consider a force equilibrium of a cylindrical liquid element of the current radius, r. 
The pressure gradient is balanced by shear stresses acting on the surface of this element. 



Chapter 3 481

The balance is formulated as  or, changing dp/dl for Δp/L, the following 
final formula can be written: . 

Maximum shear stress acts at the wall of the tube and equals: . The 
following equation for the radial distribution of shear stresses is valid: . 
This distribution is linear.

Additional question
Are the results valid for Newtonian liquid only?

Answer 
No, this is a general result, because in proving the linear radial distribution of shear 
stresses no assumption about Newtonian flow was used. So, the result is valid for any liq-
uid with properties described by an arbitrary rheological equation.
PROBLEM 3-6 
Calculate the radial distribution of shear rates and flow velocity of Newtonian liquid (hav-
ing viscosity η) through a straight tube with radius R.

Answer
The answer is based on the stress distribution obtained in Problem 3-5. For Newtonian liq-
uid, shear rate is proportional to the shear stress. So, according to Newton’s law, it is pos-
sible to write: 

 Maximum shear rate acts at the wall, where it equals . Evidently, the 
last formula is nothing more than Newton’s law, written for the points at a tube wall.

Velocity distribution is found by integration of the  function:

where C is the constant of integration, found from the following boundary condition: 
 at the wall (at r = R). The latter is the hypothesis of sticking (absence of slip at a 

solid boundary). Then, after formal rearrangements, the following equation for u(r) is 
obtained: 

Additional question 1
Calculate the volume output, Q, for the flow of Newtonian liquid.

Answer 1
Volume output is found as:

The last expression is known as the Poiseuille equation.
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Additional question 2
Express maximum shear rate, , via volume output.

Answer 2
This value can be written as

Then, the direct comparison of this formula with the equation for Q gives: 
.

Additional question 3
Is the last expression valid for a liquid with arbitrary rheological properties?

Answer 3 
No, for a Newtonian liquid only, because this equation was obtained based on Newton’s 
law relating shear rate and shear stress. 
PROBLEM 3-7
Calculate the velocity profile in the flow of a power-law type liquid through a straight tube 
with a round cross-section. The radius of a tube is R.

Answer
In the solution of Problem 3-5, it was proven that the radial distribution of shear stress is 
expressed as σ(r)/σR = r/R, where r is the current radius and σR is the shear stress at the 
tube wall. The flow curve of a power-law type liquid is written as  (see Eq. 
3.3.4), or . Then, the radial distribution of shear rate is presented as: 

The last step in the solution is the integration of this equation along the radius 
because . Therefore

with the evident boundary condition: u = 0 at r = R (the concept of liquid sticking to the 
wall or absence of slip at the wall). After simple rearrangements the following final equa-
tion is obtained:

This equation shows that for a power-law type liquid with an arbitrary value of the 
exponent n (not equal to 1), the velocity profile appears non-parabolic, unlike for Newto-
nian liquid. 

If to introduce the expression  (see Problem 3-5), the dependence of 
velocity profile on pressure gradient is obtained.
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Comment
The u is a nonlinear function of P (if ), unlike for Newtonian liquid.

Additional question
Calculate the volume output, Q, as a function of P for a power-law type liquid. 

Answer
Volume output is calculated from

and the final equation is obtained after substituting the formula for σR by P.
PROBLEM 3-8
An experimenter obtained two pairs of data: at 1 = 1*10-3 s-1 σ1 = 100 Pa and at 2 = 
1*10-2 s-1 σ2 = 600 Pa.

Assuming that the flow curve is described by a power-law type equation, find the 
constants of this equation for a liquid under study.

Answer
The constants are found as the solution of the system of two equations:

 

By dividing left- and right-hand-side terms, the following equation for n is obtained: 
log600 − log100 = n. Then, . Then k is found from any of the equations: 

.
Additional question

How does one find the constants of the power-law type equation if an experimenter 
obtained three or four pairs of experimental points?

Answer
This can be done by the least-mean-square-root procedure. In order to linearize the prob-
lem, it is preferable to present experimental points using the log-log coordinates. 
PROBLEM 3-9
Analyze flow of a viscoplastic (“Bingham-type”) liquid through a straight tube of radius, 
R. Find radial stress and velocity distributions and calculate volume output as a function 
of the pressure gradient.

Answer
Rheological properties of the liquid are described by Eq. 3.3.7, which includes two char-
acteristic rheological constants: yield stress σY and plastic viscosity ηp. 

Stress distribution does not depend on the type of rheological properties of liquid and 
is linear (see Problem 3-5). However, flow is possible at σ > σY. This stress is reached at 
the radius . In the central zone of the tube, at r < rY, there is no flow 
and the central core is moving as a solid, while the layer near the wall is flowing in a 
shear-like mode. Direct calculations based on Eq. 3.3.7 give the equation for a velocity 
profile:
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which is valid at r > rY. At r < rY velocity is constant and equals to u(rY).
Volume output is found by integration of the function u(r) along the radius:

Direct calculations lead to the following final result:

 

This solution is known as the Buckingham-Reiner equation.
At σY = 0, the expressions for u(r) and Q(P) transform to the equations obtained for a 

Newtonian liquid.
PROBLEM 3-10
A ball with a radius R is falling in a Newtonian liquid having viscosity η. After some tran-
sient period, the velocity of the ball movement becomes constant. Find the velocity of 
steady movement, .

Answer
A ball falls under the action of gravitational force and this force is balanced by viscous 
resistance. The balance equation is written as

where ρs is the density of ball, ρl is the density of the liquid, g is the gravitational acceler-
ation at free falling. The right-hand side of this equality is the Stokes equation taken from 
a textbook on fluid dynamics. The velocity of steady movement is calculated as

Comment
The last equation can be used for the determination of viscosity in an apparatus where 
velocity  is measured (see section 5.5 for more details). In this case, viscosity is calcu-
lated as

PROBLEM 3-11
An experimenter measured the viscous properties of the material at different shear rates 
and obtained a flow curve. What can he say concerning the viscous properties of this 
material in the uniaxial extension? Explain the answer.
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Answer
Generally speaking, nothing. Only if the material under investigation is Newtonian liquid 
is it possible to say that uniaxial elongation viscosity obeys the Trouton law (Eq. 3.1.6). In 
all other cases, shearing experiments give no information concerning the behavior of a 
material in extension. The extension is principally a different type of deformation than 
shearing. The connection between the two cases is provided by a general (three-dimen-
sional) equation of state. However, shear experiments do not give sufficient ground for the 
construction of such an equation; experiments in extension mode need to be performed. 
Then, the generalization of different types of experiments will give shear properties, on 
one hand, and extensional properties, on the other hand. 

However, if a general rheological model is known beforehand (from a priori model 
arguments or previous experimental data), then shear experiments, possibly with experi-
mental data of another type, will give the necessary values of the model parameters. The 
latter can be used for predicting the rheological behavior of the material in deformation 
modes of any type.
PROBLEM 3-12
Prove the validity of Eq. 3.1.7 − the dependence between normal stress and deformation 
rate for a Newtonian liquid in two-dimensional (biaxial) extension.

Answer
This problem is a two-dimensional analogue of the Trouton viscosity. It is necessary to 
compare deviatoric stress and deformation rate tensors for the deformation mode under 
discussion.

The deviatoric the stress tensor for a two-dimensional extension is calculated as

where  (compare with Eq. 1.1.17). The deformation rate tensor is deviatoric 
and it is written as

 

Then, based on the generalized Newton law and comparing the deviatoric stress tensor and 
the deformation rate tensor, it is seen that . 

The biaxial elongational viscosity ηB equals 6η (Eq. 3.1.7).
PROBLEM 3-13
Normal stresses in shear appear as a second-order effect. However, at high shear rates, 
they exceed shear stresses. Estimate the condition when it becomes possible.

Answer
The following relationship (based on Eq. 3.4.4) can be written as a possible approxima-
tion: 
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where the ratio (Ψ0/η0) can be treated as a characteristic relaxation time and . 
The product ( ) is the dimensionless Weissenberg number, Wi. So, (N1/σ) > 1 at such 
high shear rates where Wi > 1.
PROBLEM 3-14
Can normal stresses appear in the shear flow of suspension of solid particles? Explain the 
answer.

Answer
If solid particles are anisotropic, some equilibrium distribution of orientation exists in a 
steady-state. Shear flow destroys this distribution and three-dimensional forces intending 
to restore the equilibrium state appear. This is the reason for the appearance of normal 
stresses in simple shear.

Additional question
Estimate the characteristic time (“relaxation time”), θ, of this process.

Answer
The driving force of this process is the Brownian motion of particles. Then it is possible to 
construct the following time-dimensional criterion of this process:

where k is the Boltzmann constant, T is the absolute temperature, and D is the characteris-
tic dimension of particles.
PROBLEM 3-15
An experiment was carried out in shear at the constant shear rate,  = const, and the curve 
similar to shown in Fig. 3.5.1 or Fig. 3.5.2 was obtained. Can the ratio σ(t)/  be treated as 
the evolution of viscosity of liquid? Explain the answer.

Answer
No, because viscosity is the ratio of stress to the irreversible part of the deformation rate. 
In the experimental data under discussion, transient deformation is a combination of elas-
tic (reversible) and plastic (irreversible) components. In order to find apparent viscosity, it 
is necessary to separate the deformation rate into parts and viscosity can be calculated 
using the irreversible part of deformation rate only after this procedure is done. Without 
doing so, false conclusions might be reached that at  (where ) viscosity is 
close to zero and then increases along the σ(t) curve.

Comment
The same arguments are true for normal stresses applied in extension: only the irreversible 
(plastic) part of the total deformation rate can be used for calculating elongational viscos-
ity, as discussed in section 3.7.
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PROBLEM 3-16
A liquid layer is intensively sheared at shear rate  = 1*102 s-1. A liquid is Newtonian and 
its viscosity η = 500 Pa*s. Shearing continued for 10 s. Temperature dependence of vis-
cosity is neglected; density is assumed to be 1 g/cm3 and heat capacity is 0.5 J/(g*K). 

What temperature rise is expected?
Answer

Shearing continued for a short time. It can be assumed that flow proceeds under adiabatic 
conditions and the heat removal is negligible. It means that the whole heat dissipation 
leads to an increase in temperature. The work of deformation, W, is calculated as 

 J/cm2 and it leads to the temperature rise equal to 100K.
Additional question

If shearing proceeds for a longer time, what physical phenomena must be taken into con-
sideration and what final thermal effect of shearing can be expected?

Answer
The following physical phenomena become important in prolonged shearing accompanied 
by intensive heat production:

• decrease of viscosity due to temperature growth and suppression of intensive heat 
production

• increase of heat removal due to heat exchange with surroundings due to increase 
of temperature gradient and therefore decrease of temperature of a flowing liq-
uid.

Two possibilities can be realized;
• thermal stabilization at some temperature level at which heat production equals 

heat removal
• uncontrolled increase in temperature with unpredictable consequences (the so-

called “thermal explosion”).
PROBLEM 3-17
Analyze the Mooney equation (3.3.27) for the concentration dependence of viscosity for 
limiting case and, in particular, calculate the intrinsic viscosity of dilute suspensions.

Answer
The Mooney equation is written as

Then, at very low concentration ( ) the factor ( / *) << 1 and the exponent mem-
ber can be decomposed into the power series. Conserving the first member of the series 
and neglecting the higher members, the Einstein equation is obtained: . 
Then, according to the definition of the intrinsic viscosity: 

i.e., the intrinsic viscosity of a suspension of solid spheres always equals 2.5.
In the high concentration range, at  viscosity is increasing unlimitedly. It 

means that * is the limit of filling, and flow at higher degrees of filling is not possible.
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PROBLEM 3-18
Newtonian viscosity of a polymer sample with molecular mass M1 = 3*105 is η1 = 5*105

Pa*s. There is also another polymer of the same chemical structure with molecular mass 
M2 = 4*104. How can one decrease the viscosity of a polymer by 10 times?

Answer
It can be done by blending two fractions of a polymer sample. Shares of different molecu-
lar mass components are determined based on the following arguments. Let viscosity of 
blend be (as expected) ηbl = 5*104 Pa*s. Then, (see Eq. 3.3.15):

  or  

Then . Such material can be prepared by adding a low-molecular-mass 
fraction, w2, to the high-molecular-mass component calculated from the following rela-
tionship:  or 1.5*105 = 3*105(1 − w2) + 4*104w2. The last 
equality gives , i.e., mixing of both shares in approximately equal fractions 
decreases viscosity by 10 times.
PROBLEM 3-19
Experiments show that an electrical charge appears on the surface of a polymer stream 
leaving a capillary in an unstable or spurt regime. Explain the origin of the charge.

Answer
The appearance of an electrical charge can be treated as the consequence of a slip of mate-
rial along the wall in unsteady or spurt movement. In this case an electrical charge appears 
as a result of surface friction of dielectric material (polymer) at the wall. 

CHAPTER 4 
PROBLEM 4-1
Values of Young’s modulus, E, and the bulk modulus of compressibility, B, are measured. 
Find shear modulus for a Hookean solid.

Answer
Beginning with Eq. 4.2.1, after rearrangements, the following equation is obtained: 

Additional question
Show that for an incompressible material the last equation transfers to the relationship 
between extensional and shear modulus known for rubber-like materials.

Answer
The limit of the right-hand part of the last equation at B >> E equals E/3. So, G = E/3.
PROBLEM 4-2
A bar is placed between two rigid walls. Its temperature is 20oC. Then the bar is heated to 
200oC. What are the stresses that appear in the bar?
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-------------- 
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Answer
During heating, material extends but the walls prevent its extension, leading to the cre-
ation of compressive stresses, σ. Let the linear coefficient of thermal expansion be α, the 
material behaves as Hookean body with Young’s modulus, E. Then stresses are calculated 
as 

where ΔT is the temperature increase.
Additional question

Using standard values of parameters for steel, estimate the level of stresses. Ordinary val-
ues of the parameters of material are: α = 1.2*10-5 K-1, E = 2.1*105 MPa. It was assumed 
that ΔT = 180K. Then direct calculation gives  MPa.

Comment
It is worth mentioning that this value is close to the strength limit of the material, which is 
about 500-600 MPa. Thermal stresses can lead to rupture of material even with moderate 
temperature increase.
PROBLEM 4-3
Analyze the stress field in torsion of a cylindrical shaft caused by torque, T. This occurs in 
transmitting torque in a gearbox.

Answer
Let the radius of a shaft be R. Then the moment of forces balance equation is formulated 
as

where r is the current radius and σ is the radius dependent shear stress.
The equation for shear deformations is written as

where G is the shear modulus, and the angle  is the twist angle depending on the posi-
tion along the shaft, x, but not on radius.

Shear stress is a linear function of radius and its maximum value, σR, is reached on 
the shaft surface. The combination of both equations gives:

 

After excluding the value d /dx from both equations, one comes to the expression for the 
radial distribution of shear stresses: 
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The maximum shear stress is:

 and 

PROBLEM 4-4
Compare the stress state in torsion of a solid cylindrical bar of radius Ro and a tube with 
the same outer radius and the inner radius equal Ri. What is the increase of the maximum 
shear stress produced by a decrease in cross-section of bar caused by changing the solid 
cross-section to a tube?

Answer
The radial stress distribution in a bar under torsion was calculated in Problem 4-3. It is:

. For a solid bar, torque is 

where σmax is a shear stress at the outer surface of the bar. For tube: 

where . At the same torque

It means that at Ri = Ro/2, the increase of the maximum shear stress is only 2.5%. 
Comment

These calculations demonstrate that it is reasonable to save materials in construction ele-
ments working in torsion by using tubes instead of solid bars. 
PROBLEM 4-5
Calculate the principal stresses and maximum shear stress, if torque, T, and the stretching 
force, F, act simultaneously on the shaft of radius R.

Answer
Maximum shear stress was calculated in Problem 4-3 and it equals to

Normal stresses at all sections are the same and equal σE = F/πR2. Based on the 
equations derived in Chapter 1 for a plane stress state, it is possible to find the following 
expressions for two principal (normal) stresses:

 Maximum shear stress, σmax, is:
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Additional question
Are these results valid for shafts made out of rubber?

Answer
No, because the expression for shear stress adopted from the solution of Problem 4-3 is 
based on Hooke’s law, which is not valid for rubbers.
PROBLEM 4-6
A shaft is twisted with a torque T, as in Problem 4-3. However, the torque is high enough 
to produce stresses exceeding the yield stress, σY, of material. Describe the stress situation 
along the radius of a shaft.

Answer
Yielding conditions are achieved in the outer layers of a shaft where stresses are maxi-
mum. The central part of a shaft works as an elastic body. Stress distribution in an elastic 
part of the material is linear. The yield stress is reached at some radius rY. It means that at r 
> rY stress is constant and equals σY.

The balance equation is:

The first integral term gives the moment of forces in the inner (elastic) part of a shaft, 
at r < rY, where σ(r) = σY(r/rY). The second integral term presents the moment of forces in 
the outer (plastic) zone, at r > rY, and R is the radius of the shaft.

After the integration the following solution of the equation for rY is found:

If rY = R, i.e., the yielding condition is reached at the outer radius of shaft, T = 
πR3σY/2 (compare with a solution for σR in Problem 4-3).

Additional question
What will be the deformations after unloading the shaft?

Answer
The central (elastic) part of the shaft, at , will go back to its initial state, while the 
outer part of the shaft (at r > rY) will store plastic deformation.
PROBLEM 4-7 
Prove that at small deformation, Hooke’s law is the limit of the rubber elasticity equation.

Answer
The rubber elasticity equation is written as:

The elongation ratio, λ, is 
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where l0 is the initial length of the specimen, l is the current length, and Δ is the displace-
ment of the specimen length. In the limit of small deformations Δ << l0.

After substitution and neglecting the terms of the order lower than Δ3, it is possible 
to make the following rearrangements:

The last expression is Hooke’s law. Young’s modulus equals 3G, where G is the rubber 
elasticity modulus.
PROBLEM 4-8
A rubber-like strip is stretched by the applied force F = 0.2N. The area of the cross-section 
of the strip is S = 1 mm2. The elastic modulus, E, was measured at small deformations and 
it equals 3*105 Pa. What is the elongation of strip? What would be the estimated elonga-
tion if one would use Hooke’s law for calculations?

Answer
The initial normal stress σ = F/S = 2*105 Pa. The estimated elongation is εH = σE/E = 0.67 
or 67%. However, for the calculation of elongation of a rubber-like material, it is neces-
sary to use Eq. 4.4.17. Then, the solution of this equation gives the answer: λ = 2.2, or εrub-

ber = 120%. The difference between εH and εrubber is evident.
Additional question 1

Why does the coefficient 1/3 appear in this equation?
Answer 1

This is because the equation of rubber elasticity includes shear modulus but not Young's 
modulus and they are related by coefficient 3 for an incompressible material.

Additional question 2
Why was Eq. 4.4.17 used for calculations but not Eq. 4.4.16?

Answer 2 
The stress was known for the initial cross-section and it is not real stress increasing along 
with elongation of the strip.
PROBLEM 4-9
According to Hooke’s law, the use of compression instead of extension leads to the sym-
metrical change of normal stresses. Is it the same for a rubbery material with rheological 
properties characterized by Eq.4.4.17?

Answer
No. The stress-deformation curve for a rubbery material is not symmetrical with respect to 
the zero point. For example, in extension at λ = 2, engineering stress σE,ext equals

and in compression at λ = −2
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Additional question
Can the last result be treated as proof of the anisotropy of material, i.e., the existence of 
different values of elastic modulus in extension and compression, as is known for some 
other engineering materials, for example, concrete?

Answer
No. The rheological properties of the material are characterized by the same constant, G, 
in extension, as well as in compression. However, asymmetry of the stress-deformation 
curve is the consequence of the special rheological equation describing the behavior of 
rubbery materials.
PROBLEM 4-10
How are time effects taken into account in the formulation of the constitutive equation for 
large deformations, e.g., Eqs. 4.4.7 or 4.4.20?

Answer
Time effects are not taken into account in these equations at all. These relationships 
describe equilibrium states of material under stress, assuming that the reaction of material 
on stress application is instantaneous, quite as is assumed in Hooke’s law. 
PROBLEM 4-11
A cylindrical rod of radius R was studied in uniaxial extension. It was found that it can 
work below the critical force F*. Then, this rod was used as a shaft working at torsion 
deformation mode. What is the limiting value of the torque, T*, that can be applied to the 
shaft?

Answer
The basic relationship between limiting normal stress in extension, , and shear stress in 
torsion σ* is established by the criteria of strength. The general form of this criterion is 

, where the constant k depends on the choice of the most reliable theory of 
strength (see Eqs. 4.5.1 and 4.5.7). Assuming the constant k = 0.5, and using the expres-
sions for σE = F/πR2 in extension and σmax = 2T/πR3 in torsion, it is easy to obtain the fol-
lowing relationship between F* and T*: T* = F*R/4.

CHAPTER 5
PROBLEM 5-1 
Melt flow index, MFI, was measured using a capillary with the following dimensions: 
diameter  mm, length L = 8.0 mm. The diameter of the barrel was D = 9.5 mm. 
Density of melt was ρ = 0.8 g/cm3. Let the weight of a load be G = 2.16 kg. Estimate the 
shear stress attained in this experiment and calculate the apparent viscosity if a measured 
value of MFI was 2 g/10min. 

Answer
Shear stress is estimated from Eq. 5.2.26. End correction is unknown and we assume the 
reasonable value mK = 2 (the Couette correction plus elastic component). It gives shear 
stress of σR = 1.57x104 Pa.

σE compr, G 2– 1
22
-----– 

  2.25G,  i.e., σE ext, σE compr,≠–= =

σE
*

σ* kσE
*=

d 2.16=



494 Solutions

Newtonian shear rate is calculated as . For MFI = 2 g/10 min, 
Q=4.16x10-3 cm3/s, and Newtonian shear rate is calculated as s-1. 
Then apparent viscosity (Newtonian liquid) is  Pa*s. 

Comment
There is only one experimental point. Therefore, it is impossible to introduce a correction 
for non-Newtonian flow and the value of η must be treated as a rough estimation. 

Additional question
Give a general formula for calculation of apparent viscosity for some arbitrary weight of a 
load, G, and melt flow index, MFI.

Answer
Calculating σR and  as written above for given geometrical parameters of instrument, 
one obtains  σR = 727.5G and  = 1.834MFI/ρ. It gives , where G is 
expressed in Newtons, MFI in g/10 min, and ρ in g/cm3.
PROBLEM 5-2 
How does one calculate the shear rate at a wall for liquid with viscous properties described 
by a power-law type equation?

Answer
For a liquid of a power-law type, a relationship between shear stress and shear rate is writ-
ten as in Eq. 3.3.4. Then dlogσ/dlog  = n-1 and according to Eq. 5.2.18 

. The application of this equation simplifies practical calculations.
Comment

For Newtonian liquid n = 1 and 
PROBLEM 5-3 
Experimental study of the tube flow of suspension gave the following results: 

for tube I: D1 = 2 cm, L1 = 20 cm, output G1 = 42 g/min under pressure P = 4 bar;
for tube II: D2 = 4 cm, L1 = 40 cm, output G2 = 294 g/min (pressure P = 4 bar).
Density of suspension was ρ = 1.4 g/cm3.

Explain the results and estimate the rheological parameters of the material.
Answer

Shear stress, σR, in both cases is the same and equals 104 Pa.
Apparent shear rates are: for tube I:  = 0.637 s-1; for tube II:  = 0.557 s-1. The 

same stress produces different apparent shear rates depending on the tube diameter. It can 
be explained by wall slip. Let the wall slip velocity be Vs. Then the equation for flow rate 
is as follows: 

This equation includes two unknown constants: Vs and η. Solving an equation for these 
two parameters using two experimental points, the following values are obtained: Vs = 
0.04 cm/s and η = 2.24x104 Pa*s.
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PROBLEM 5-4
Calculate the velocity profile in the flow of Newtonian liquid through an annulus pro-
duced by two coaxial cylinders of length, L. Flow is induced by a pressure difference, P, at 
the ends of the annulus. The radii of inner and outer cylinders are Ri and Ro, respectively.

Answer
The balance equation for a cylindrical elementary volume is written as

The integral of this equation is

where constants A and B are determined by means of boundary conditions. These condi-
tions are: u = 0 at r = Ri and at r = Ro. The substitution gives the final formula for u(r)

Additional question
How does one obtain the form-factor for this type of annular flow?

Answer
The form-factor can be obtained by calculating the integral

where the function u(r) is taken from the previous equation. Direct integration leads to the 
expression for the form-factor included in the table of section 5.2.1.
PROBLEM 5-5
For a rotational viscometer of a coaxial cylinders type, what should be the diameter of an 
inner cylinder if the diameter of an outer cylinder is 40 mm and the acceptable inhomoge-
neity of the stress field is 5%?

Answer
According to Eqs. 5.7.37 and 5.7.38 this degree of homogeneity of the stress field corre-
sponds to the ratio of diameters above 0.975. Then the diameter of the inner cylinder must 
be no less than 39 mm.
PROBLEM 5-6
In section 5.7.3, a portable viscometer was described that measures viscosity via time of 
the turn of a light cylinder from the initial position by a constant angle, the initial deforma-
tion is set by twisting of a torsion spring. What is the relationship between measured time 
and viscosity?
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Answer
Since the turning cylinder is light, its moment of inertia is negligible. Torque appears as a 
result of viscous resistance. It is expressed by Eq. 5.3.16. Then an equilibrium equation is:

 

where the form factor is (according to Eq. 5.3.16) K = 4πHR2, Z is rigidity of a torsion, η
is viscosity, and ϕ is the angle of rotation. Initial condition is: at t = 0, ϕ = ϕ0. The solution 
of this equation is: , where . If t* is the time interval from the 
beginning of the experiment (at a certain angle ϕ*), then the following relationship is 
valid:

The left-hand side of this relationship is constant (due to the peculiarity of the measuring 
scheme) and therefore η = kt*, where k is constant.
PROBLEM 5-7
In the principal scheme of measuring viscoelastic properties of material spring is used 
(Fig. 5.7.1) that is not ideal elastic but viscoelastic (has some losses in deformation). How 
do you calculate the viscoelastic properties of the material under investigation?

Answer
Viscoelasticity of spring means that value Z in Eq. 5.7.4 must be replaced by complex 
rigidity Z* = Z'+ iZ". Then Eq. 5.7.4 must be written as

The same formal rearrangements as were done for Eq. 5.7.4, i.e., separating it into real and 
imaginary parts gives the following expressions for the components of dynamic modulus:

The values Z' and Z" are found by calibrating a measuring device.
PROBLEM 5-8
In section 5.7.2, the condition of uniform deformation of the sample in oscillation was for-
mulated as h << δ. Analyze this condition for inelastic viscous liquid.

Answer
According to definitions given in section 5.7.2, this condition is the same as (kh) << 1 
because k = δ-1. The value of k is defined as . G* = G' + iG", and for inelastic 
liquid G' = 0, G" = ηω, k is expressed as k = . Then the real part of k equals 
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. Then finally, the condition of the uniformity of deformation in a gap is 
, which is the depth of propagation.

PROBLEM 5-9
Prove that Eq. 5.7.39 is valid for materials exhibiting low losses.

Answer
Eq. 5.7.38 gives the following expression for :  = f0/KG". Then Eq. 5.7.35 
leads to the following equation for the half-height of a resonance peak, /2:

where G" = η'ω.
The last relationship is rearranged into a fourth-order equation for frequencies, ω, 

corresponding to the half-height of the resonance curve:

where constant a is given by:

If a low loss material is considered (G"/G' << 1), it means that a/ω0 << 1. The solu-
tion of this equation for ω and calculation of the difference  (where ω1 and ω2 are 
frequencies at the half-height of a resonance curve) gives

The difference  is presented as  = 2(Δω)ω0 and this presentation is 
approximately correct for resonance because in this case, it is possible to change ω1 and 
ω2 for ω0 and

Then the expression for Δω is 

Finally, because a/ω0 << 1, the resulting equation is , which is equivalent to 
Eq. 5.7.39.
PROBLEM 5-10
The value of maximum displacement X0B appears in a solution of Eq. 5.7.41 of an equilib-
rium Eq. 5.7.40, but this value does not appear in Eq. 5.7.44 and other equations for G' and 
G". Explain why?
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Answer
The values of G' and G" are the inherent characteristics of the material, which (for the lin-
ear viscoelastic domain) must not depend on the amplitude of deformation, i.e., on X0B. 
The basic theory of damped oscillations is developed for the linear region of viscoelastic 
materials.
PROBLEM 5-11
Prove that Eqs. 5.7.5 and 5.7.6 give Eqs. 5.7.53 and 5.7.54 for inelastic liquid.

Answer
For inelastic liquid G' = 0. It means that in Eq. 5.7.5 pcosα = 1. Then, excluding either α
or p in Eq. 5.7.6, one obtains Eq. 5.7.53 or Eq. 5.7.54, respectively. 
PROBLEM 5-12
In section 5.7.6 deformations of the sample were treated as damping oscillations. Is it a 
unique case of damping deformations? Explain the answer.

Answer
Not necessary. Eq. 5.7.40 is the second-order differential equation with constant coeffi-
cients. It can be re-written as

From the theory of equations of such type, it is known that the solution is a sum of 
two exponents (but not damping oscillating function), if

Additional question
In which case does the deformation of inelastic liquid become aperiodic but not oscillat-
ing?

Answer
For inelastic liquid, G'=0 and η' = η. Then the last inequality gives: 

 or 

PROBLEM 5-13
Eq. 5.3.49 is valid as an approximation only. What should be the exact solution?

Answer
The expression in the square brackets in Eq. 5.3.48 is rearranged in the following manner:

 Therefore the exact solution of Eq. 5.3.48 should be
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It means that an approximate solution, Eq. 5.3.49 is valid only if N1 >> N2. 

CHAPTER 6
PROBLEM 6−1
Compare sensitivity of different rheological methods to the estimation of molecular mass.

Answer
Let two samples of the polymer have a two-fold difference in molecular mass, i.e., M1/M2
= 2. The ordinary values of exponents in the power-type dependencies of intrinsic viscos-
ity, initial Newtonian viscosity, and coefficient of normal stresses are 0.7, 3.5, and 7.0, 
respectively. Then, the ratio of their intrinsic viscosities is [η]1/[η]2 = , the ratio 
of initial viscosities is  η0.1/η0.2 =  and the ratio of coefficients of normal stresses 
is  Ψ0,1/Ψ0,2 = 27 = 128. 

Indices 1 and 2 in the above equations relate to samples with molecular masses M1
and M2.
PROBLEM 6−2
Explain why the MFI of polymer used for film extrusion must be higher than in tube 
extrusion (see Fig. 6.2.3).

Answer
Calibrating channels in a film-forming die of an extruder have much a smaller cross-sec-
tion than in tube extrusion. Then in order to maintain the necessary output at the same 
pressure created by a screw, viscosity must be lower (i.e., MFI must be higher) for a 
smaller cross-section corresponding to a thin-film in comparison with a tube.
PROBLEM 6−3
Is it possible to vary the elasticity of melt without changing the average molecular mass of 
polymer?

Answer
Yes. It can be done by varying molecular-weight distribution while maintaining the aver-
age molecular mass of the polymer.
PROBLEM 6−4
Explain the advantage of synthetic lubricants in comparison with mineral oil-based lubri-
cants.

Answer
Natural (mineral) oils contain crystallizable components which form a solid phase upon 
cooling. Therefore, in a low-temperature range, a solid-like structure appears in lubricant 
and its strength depends on the rate of cooling and the storage time. It makes starting char-
acteristics of an engine worse. A synthetic lubricant oil of the equivalent viscosity does 
not contain such components due to its permanent and controlled composition. 
PROBLEM 6−5
Derive Eq. 6.4.5. As an intermediate result, obtain an equation for a radial velocity distri-
bution.

20.7 1.75≈
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Answer
Eq. 6.4.5 can be obtained beginning with a basic definition of power-law type liquid: 

 (see section 3.3; pay attention that m = 1/n). In section 5.2, it was shown (Eq. 
5.2.18) that shear rate at a wall is expressed as: 

For power-law liquid  can be written as: 

Shear stress . The substitution of these expressions for  and σ into a defi-
nition of power-law type liquid results, after some evident rearrangements, in Eq. 6.4.5.

The velocity profile is also obtained from a basic definition of power-law type liquid 
having a linear distribution of stresses along a radius regardless of liquid type: 

Eq. 6.4.5 is easily obtained from the last equation by calculation of the integral: 

It directly leads to Eq. 6.4.5.
PROBLEM 6−6
How does the velocity profile during flow in a tube change during the transfer from a 
Newtonian to a power-law type liquid? Make a comparison by analyzing the ratio of max-
imum to the average velocity.

Answer 
Maximum velocity, Vmax, is calculated from the velocity profile, as found in Problem 6−5 
at r = 0. It equals: 

Average velocity, , is defined as  = Q/πR2. According to Eq. 6.4.5
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For Newtonian liquid m = 1 and (Vmax/ ) = 2. With increasing m, the velocity pro-
file becomes more and more flat, approaching plug-like flow.
PROBLEM 6−7
Prove Eq. 6.4.6 for a Bingham liquid. Explain the necessary conditions required for the 
movement of Bingham viscoplastic media through a tube. 

Answer
Bingham-type viscoplastic media can move through a channel only if shear stress at a wall 
exceeds the yield stress:  σR > σY, where as usual σR = pR/2L.

Shear flow is realized in the stress range σ > σY. It corresponds to the near-wall ring 
zone at r > rY = 2LσY/p. At r < rY, i.e., around the central axis of the channel,  and 
consequently u = const, i.e., velocity profile in the central part of the flux (around the 
channel axis) is flat and material in this zone moves in a solid-like manner as a plug.

Calculations are based on the definition of Bingham media (Eq. 3.3.9) written in the 
following form:

 

Then, the velocity profile is found by its integration:   

substituting the expression for  from a rheological definition of Bingham media and 
assuring that the radial distribution of shear stresses is always linear. Finally, it leads to the 
following velocity distribution along a radius:

This equation is valid in the range rY < r < R.
As was mentioned above, the velocity at r < rY is constant, uY. It can be found from 

the last distribution by substituting r = rY = 2LσY/P. The final expression for uY is 

Additional question
Prove Eq. 6.4.6.

Answer
It can be done by calculating the sum:

where the expressions for u(r) and uY are in the above equations.
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PROBLEM 6−8
Eq. 6.4.5a is convenient for solving engineering problems of the flow of non-Newtonian 
liquids through channels with non-circular cross-sections. Can a similar equation be for-
mulated for viscoplastic liquids? Explain your answer.

Answer
No. Eqs 6.4.6 and 6.4.7 show that Q-vs.-p dependence in the flow of viscoplastic media is 
more complicated and pressure enters various terms of these equations. Therefore, it is not 
possible to introduce a single geometrical factor for non-circular cross-sections.

Additional question
How do you calculate Q(p) dependence for viscoplastic media moving through tubes of 
non-circular cross-section?

Answer
As a general rule, an analytical solution is not possible, and it appears necessary to apply 
computational methods for engineering calculations.
PROBLEM 6−9
Why does elasticity appear before gelation during polymer curing, i.e., the formation of a 
three-dimensional chemical network?

Answer
In the process of curing:

• long flexible macromolecules are produced which, first, have their own inherent 
relaxation properties, and, second, can form temporary entanglements with vis-
coelastic interaction 

• inhomogeneity of curing results in the formation of micro-gel particles before 
gelation of the system as a whole; these particles also contribute to the viscoelas-
ticity of the medium.

PROBLEM 6−10
Describe what happens if the end of a pumping screw of an extruder is blocked? What 
pressure will be developed?

Answer
An extruder will work “for itself” providing the circulation of liquid inside a channel. 
Rotation of the screw will create a pressure at its end which is calculated from Eq. 6.4.8 at 

. In this limiting case, maximum pressure equals . Q 0= pmax AN B⁄( )1 m⁄=
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A
absolute measurement 287
acceleration of nucleation 202
activation energy 98, 155, 407
adhesion contact 220
adhesive strength 220
adsorption 303
aging 434
amorphous polymer 453
amplitude 376
angular velocity 316, 318, 321, 323
anisotropic 257

elastic material 259
liquids 146
viscosity 147

anisotropy 146, 197
annealing 277
annular viscometer 324
antithixotropic effect 194
antithixotropy 193
apparent 

shear stress 216
viscosity 113, 122, 133, 136-137, 144, 207,
 293, 325, 327, 419

Arrhenius equation 98
asphalts 411-412
Avrami kinetic equation 200

B
backpressure 444
Bauschinger effect 277
bell type cylinders 326
bentonite 139-140

-in-water suspension 419
Bernoulli’s law 2
biaxial 

compression 275
elongation 362
extension 275, 360-361
stress growth coefficient 230
viscosity 361

bi-conical viscometer 322
Bingham 420

equation 153

viscoplastic medium 153, 210
biological 

fluids 415
materials 5

birefringence 213, 218-219, 289, 384, 387,
 389-391, 456

amplitude 387
method 362

bitumen 411
Blasius rule 207-208
block copolymer 97
body lotion 193, 414
Boltzmann-Volterra 

equation 64
principle 63
superposition principle 64

bound rubber 170
boundary 

conditions 69, 198, 446
problem 5, 20, 436

Brabender Plasticorder 336
branched polymer 97
branching 229, 409
bread production 412
Brewster 386
Brownian movement 82, 85
bubble inflation 361

rheometer 361
Buckingham-Reiner equation 439
bulk modulus 253, 488
Burgers model 61-62
butyl rubber 107, 183

C
calendering 445
calibration 288
capacity model 218
capillary 

flow 217, 303
instruments 305
number 149
tube viscometer 300, 305, 307, 313, 327
viscometry 289, 295, 304, 306
wall 291

INDEX
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carbon 
black 111, 113-114, 140, 143
nanotube 165

Carreau-Yasuda equation 151
Casson 

equation 153, 414
model 410

Cauchy rule 12
Cauchy-Green tensor 29, 30, 33, 116, 118, 261,
 264-265, 268
ceramics 5
chain 

between two neighboring junction 156
deformation 81
relaxation 173
rigidity 100, 156
segment 86, 156
slip 189
structure 407

channel surface adsorption 303
chemical kinetics 425
chemistry 4
chemorheology 422
choice of a coordinate system 15
Clausius-Clapeyron equation 198, 205
clay 1

dispersion 418
cloud point 393
cluster boundaries 280
clutch damper 420
coagulated structure 140
coal 5
coaxial cylinders 181, 202, 316-317, 325-326,
 328-329, 345, 393

technique 340
coefficient of 

first difference 185
friction 207

distribution 86
normal stress 184
sliding 86
viscosity 301

cohesive joint 316
coining 456
colloid 

gel 181
system 5

complex 
compliance 53

dynamic viscosity 53, 113, 114, 166, 168, 176
liquid 204
modulus 364
shear 

compliance 53
modulus 53

viscosity 166
compliance 408

tensor 258
compression 13, 275

molding 450, 452
process 451

computer-aided 
calculations 79
methods 78

concentrated 
entanglements 85
polymer solution 88
solution 89, 156, 186
suspension 164, 417

concentration range 186
concrete 1, 5
cone-and-plate 

assembly 339
rheometer 320-332, 339
technique 338

cone-cone type viscometer 320
conformational 

change 181
transition 202

conical surfaces 320
conjugated stresses 12
conservation of 

energy 437
mass 437
momentum 437

constant 
strain 289
stress 289
torque 316

viscometers 333
viscosity 318

constitutive 
equation 45, 69, 87, 117, 123, 134, 266, 435
model 121

continuous 
movement 81
spectrum 77

continuum mechanics 9
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controlled flow rate 311
convective constraint release 121
convergent channel 358
conversion 430, 434

degree 424
cooling rate 410
coordinate invariance 436
correction for a slip at a wall 302
cosmetic 414
cosmetics 5
Couette 

correction 297
flow 209, 212

coupled mass 366
Cox-Merz rule 113, 166
creams 414
creep 46, 48-49, 52, 71, 104, 316, 329

 compliance 49
experiment 48
function 49-50, 68-69, 104

critical 
concentration 161

threshold 417
deformation regime 394
molecular mass 155
point 177
shear stress 214, 216, 218
time 105

Cross equation 73, 151, 442
cross-channel flow 211
crosslinking 156
crossover 

frequency 91, 100
point 300

crystal defect 277
crystalline 

content 200
phase 200

crystallization 198, 200-202, 232
temperature 198

cup viscometers 309
curing 422, 431

kinetics 432
system 429
D

damping 
function 118, 173-174
oscillations 370, 379

dashpot 57

Deborah number 211-212, 231-232, 234, 236,
 299, 438
Debye 138

criterion 186
decrement of damping 371
deformability 360
deformation 9, 21, 24, 28-29, 32, 45-46, 48, 67,
 388, 394, 425

amplitude 112
behavior 264
field 275
history 64-65
mode 52, 76, 202, 366
rate 30, 85, 106, 139, 224, 327, 346, 430, 435,
 438
rate tensor 152, 230, 437
state 66, 262
tensor 23, 27, 30, 122, 254, 256, 258, 268
prehistory 65
-enhanced concentration fluctuation 205
-induced anisotropy 148
-induced phase transition 277

delay time 48
delta function 51
demixing 205
determinism 436
deviator 16
deviatoric component 20
die 

entrance 219
swell 187

dilatancy 196, 271, 279
dilute solution 157, 186
dimensionless 

form 158
gap 211

director 146-147
discrete 

mode 79
relaxation mode 78

disentanglement 85
disk viscometer 323-324
disperse phase 162
displacement 24

indicator 307
tensor 25

distance 21
between crosslinks 156
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Doppler 
effect 395
velocimetry 216

double 
refraction 289
reptation 89

dough 412
drag 

flow 439, 442
reduction 208

droplet viscosity 149
dynamic 

compliance 54, 71
equilibrium 134
function 59, 70-72
measurement 55
method 289
modulus 54, 71, 77, 98, 110, 364, 368-369,
 427
reaction 9
regime 54
storage modulus 100
viscosity 113

dynamometer 326
dynamo-optic Maxwell effect 391
dynamo-optimeter 392

E
Einstein 4, 162

 equation 162
elastic 

behavior 48
deformation 121, 178, 182, 187, 189, 315-316
effect 116
energy 85, 119, 186-187, 218, 267
fluid 210-211
instability 210-211
liquid 182, 202, 210-211, 224, 251
modulus 80, 82, 85, 103, 112, 281, 420, 426,
 430
potential 252, 259, 264-265, 267

function 116, 121, 252, 268
properties 74, 121
recoil 46, 48, 65, 73, 81, 178-179, 181
recovery 149
region 227
solid 274
spring rigidity 87
-to-plastic transition 272

elasticity 85, 185, 208, 299, 407, 426
limit 271

elastomers 259
elasto-plastic domain 282
elastoviscometers 330
electrical field strength 421
electrical valve 420
electromagnetic excitation 381
electro-rheological 

effect 420
liquids 336, 420
materials 419

electro-sensitive suspension 420
ellipsoid 26
elongation 29-30, 230, 271

viscosity 146
elongational 

flow 222, 359
rheometry 359
viscosity 136, 150, 222-224, 230, 356,
 358-359

empirical constants 268
emulsion 55, 112, 148, 197, 414
end correction 299
energetic criterion 274
energy dissipation 84, 207
engineering stress 263-264
Engler viscometer 310
entanglement 84, 86-87, 138, 156

point 86
entrance correction 296-297
entrance correction factor 297
EPDM 113-114, 153, 175-176
epoxy 

resin 427
silicone 432

equation 3
equations of state 45
equibiaxial 

elongation 230
stretching 230

equidistant distribution 79
equilibrium 

compliance 87
conditions 269
modulus 49, 68-69

Euler 
equality 52
theorem 52



Index 507

Euler’s law 2
expandability 404
experimental 

scale 76
techniques 381
window 76

exponential equation 47
extension 13, 29, 49

ratio 29, 265
-induced crystallization 198

extensional 
properties 357
viscosity 134

extinction angle 385
extrudate 212

swell 187
extruder 66, 443
extrusion 65, 214

process 445
rheometer 313
F

fading memory 48, 64, 66
failure 272
falling 

cylinder viscometers 353
sphere 348-349, 352

viscometers 352
Feigenbaum fractal chaotic structures 221
fiber 150
field-induced structure anisotropy 149
filler 174

concentration 143
surface area 176
-filler 

interaction 171
network 172

film 13, 449
Finger 

measure 119
tensor 30, 33, 36, 116, 264-265

first 47
normal stress difference 184, 186
-order 

kinetic equation 47
kinetics 433

fitting function 76
flexibility 434
flexible-chain 

linear polymer 394

polymer 121, 216
Flory-Huggins concept 205
flow 4

curve 150, 177
direction 214
lines 394
rate 220
region 227
resistance 209
velocity 287

fluid dynamics 45
fluidity 394
food 

industry 412
product 5, 412-413

force 9-10
decay 47
equilibrium 304
transducer 356

form-factor 318, 323, 366, 379
Fourier 

integral 52
transform 71

fracture 272
Fredholm integral equation 79, 94
free 

bending oscillation 382
draining 

chain 85-86
coil 80

free-radical polymerization 423
frequency 377

domain 101
friction 

coefficient 86
law 86

front-factor 370
frozen-in molecular orientation 449, 454
functional of errors 78

G
gas 

capillary viscometer 308
viscometer 307-309

gelation 427
process 434
temperature 410

gel-point 426, 430
gel-time 427
geological formation 5
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geometrical 
analysis 26
condition 54
non-linearity 110

geometry 
factor 318
of flow 288

glaciers 5
glass 5

transition temperature 430-431, 453
viscometers 310

glassy 
state 388-389

deformation 101
zone 101

Gleissle mirror relations 114
gloss 213
Goettfert instrument 338
Goodrich plastometer 345
gradient banding 203
gravitation force 303
grease 5, 190, 411
guarding cylinder 326

H
Hagen-Poiseuille law 207-208, 292-293
hardening 215
harmonic 

function 52
law 52, 362
oscillation 52, 70
perturbations 379

heat 
dissipation 429
emission 395
explosion 327
flux 395, 437

Helfand and Fredrickson model 205
Hencky 

deformation 357
measure of deformations 30
strain 29

hereditary integrals 64
Hershel-Bulkley 

approximation 442
equation 153
liquid 154
viscoplastic medium 440

heterogeneous 
microstructure 389

structure 280
Hoeppler 

consistometer 348
viscometer 352

hole-pressure method 341
Hooke’s law 2, 45, 58, 66, 253, 256-257, 260,
 262, 271
Hookean 

elastic material 254
 material 253
solid 57, 69, 123, 488

Huggins 
constant 158
equation 158

Humboldt penetrometer 348
hydraulic drive 313
hydrodynamic

effect 172
problem 344

hydrogen bonding 161
hydrostatic 

pressure 16-18, 133, 198, 254, 272
change 262

hysteresis 
curve 204
loop 111, 204, 216
I

ideal Hookean body 259
imaginary part 53
impedance 367

measurement 381
incomplete curing 433
incompressible 

material 256
medium 262

indentor 288, 347
induced anisotropy 148
induction period 200, 430
industrial polydisperse polymer 92
inelastic 

deformation 278-279
fluid 209

inertial 
instability 206
turbulence 206

infinite shear rate 137
infinitesimal 27

deformation 23, 26-27
volume 25
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infinitesimally thin layer 364
inhomogeneities 280
inhomogeneity 364
inhomogeneous deformation 364
initial stress 48
injection 

molding 453
cycle 454

pressure 455
-compression molding 456

in-mold polymerization 453
instability 218, 233
instantaneous 

compliance 49, 68-69
elastic modulus 73
modulus 73

integral transform 77
intensity of shear stress 273
interaction 158
interchain slip 85
interface interaction 164
interference picture 384
intermolecular 

entanglement 88
network 85

interaction 84, 92
internal friction 133
inter-particle interaction 418-419
intramolecular interaction 83
intrinsic viscosity 138, 157, 406
invariants 14, 26, 116
ionic polymerization 423-424
irreversible 

chemical reaction 453
deformation 278

isotactic polypropylene 200-201
isothermal crystallization 202
isotropic 257

polymer 148
J

jamming 163
cluster 280

junction 
lifetime 181
points 139
K

K-BKZ model 117
Kelvin 196

Kelvin-Voigt 
model 51, 59-62
solid 62
viscoelastic liquid 57

Kernel approximation 77
kinetic 

correction 296
effect 198
energy 296
equation 433
factor 426

kinetics of crystallization 200
kinetorheology 422
Kohlrausch function 48
Kraemer 

constant 158
equation 158

Kronecker delta 11, 29
Kronig-Kramer equation 72
Kuhn-Guth-James-Mark potential 264, 269

L
Lamé constants 254
laminar 206
laminar flow 304
Laplace 

integral 75
 transform 75

large 
amplitude oscillatory shear 114, 167

method 111
deformation 23, 260

law of equality 12
lecithin 194
Leonov model 119-120
lifetime 156, 430

of entanglements 139
light 

depolarization 389
engine oils 410
scattering 393

limiting 
extension stress 276
state 274-275
stress 224, 279
viscosity 137

linear 
anisotropic solid 257
approximation 365
elastic 
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material 258
potential 264

polymerization 422-423
relaxation 49

modulus 172
superposition 63-64
theory 110
viscoelastic 

behavior 49, 83, 178
domain 179
regime 173
region 168

viscoelasticity 142
-to-non-linear transition 112

linearization 79, 266
liquid 

crystal 146-147, 230
polymer 336

droplet 
deformation 149
in extension 360

-like 251
-to-rubber transition 215
-to-rubbery state transition 85
-to-solid transition 438

Lissajous figure 55
local action 436
Lodge equation 74, 185-186
long-chain branching 89, 407
longitudinal wave 374
loss 

angle 56
compliance 56
modulus 165, 172, 370, 415
tangent 59, 426

low torque viscometer 335
lubricant 5, 411
lubricated 

planar stagnation flow 361
squeezing flow 362

lubricating 
film layer 359
layer 219

Luders lines 275
lyotropic 160

M
machining 66
macromolecular 

chain 80-81, 201, 434

coil 84
dynamics 78
entanglements 86
movement 83

magnetic field 150
magneto-rheological 

effect 421
materials 419

Margules equation 318
Mark-Kuhn-Houwink equation 157
Maron and Pierce 

empirical model 169
equation 168

Marrucci model 121
Martin 

constant 158
equation 158

Mason number 421
master curve 96, 99, 108-109, 173, 298, 388,
 394
material 

in shear 72
objectivity 436

mathematical image 76, 77
matrix 10
maximum 

shear stress 272, 275
stress 18
volume concentration 169

Maxwell 47
effect 392
fluid 62, 119
model 51, 59-62

Maxwellian 
element 84
viscoelastic liquid 57

mechanical 
impedance 368
work 201

mechanics of continuum 4
mechano-chemical effect 446
melamine-formaldehyde resin 428
melt 84, 88-89, 138, 155, 165, 298, 408

elasticity 406
flow 

index 306-307, 408
rate 306

fracture 218
spinning process 232
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melting point 453
memory 

effect 66
function 65, 87

meniscus movement 304
metallocene polypropylene 165
metals 5
methylmethacrylate 424
micellar colloid 212
micelles 194
microrheology 4
micro-segregation 428
mineral 

dispersions 5
oils 409

mixing 419
rules 92

modeling 403, 436
modulus 

of elasticity 315
tensor 258

mold cavity 455
molding 449
molecular 

chain 100, 405
interaction 83
mass 155-156, 405-407, 409

distribution 406, 409
model 77
motion 88
movement 76, 80, 88
orientation 456
structure 179
value 409
weight 180

distribution 178, 180, 300
mass distribution 90, 180

molten state 156
moment of force 12
momentum conservation 20
monodisperse polymer 102, 137, 176, 224
mono-spherical viscometer 325
monotonous viscosity growth 161
Mooney 120

equation 162
method 302
viscometer 337

Mooney-Rivlin 
function 117

potential 265
morphological effect 198
mud 5
Mullins effect 278
multiaxial elongation 230
multi-mode Maxwell model 121
multi-valued flow curves 217

N
narrow gap 202
Navier-Stokes equation 134
neck formation 105, 274
necking 105
nematic liquid crystal 146-147
neo-Hookean material 263
network of entanglements 156
Newton 

hypothesis 133
law 45, 66
second law 19

Newtonian 
behavior 107
flow 230
fluid 292, 455

behavior 112
liquid 57, 69, 123, 133-135, 137, 176-177,
 185, 291, 299, 318, 343-344, 395, 440-441
viscosity 73-74, 89, 91, 103, 107, 120, 139,
 141, 185

limit 151
Newton-Stokes 

hypothesis 291
law 2, 290, 293
liquid 133

NMR imaging 395
no slip hypothesis 302
non-draining 

chain 83
coil 83

model 83
non-exponential law 47
non-Hookean 2

 behavior 103
non-linear 

behavior domain 179
creep 104
effect 103
elasticity 269
material 123
relaxation 106
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rheological model 205
viscoelastic 

behavior 122, 187, 413
properties 113

non-Newtonian 2
behavior 107, 136-139, 147, 166, 176-177,
 191, 350

degree of 151
flow 103, 144, 155, 184, 394

curve 406
properties 413

inelastic liquid 124
liquid 151, 208, 293, 319, 323, 325, 347, 395,
 441
region 417
viscosity 103, 107

normal 
force 9, 12
stress 9-10, 13, 70, 75, 182-183, 273, 393

distribution 339
variation 406

nuclei
density 201
formation 201
 size 202
O

oil-based products 409
oligomer curing 426
one-dimensional deformation 253
operator equation 62
orientation 10, 11, 149, 202, 232

movement 147
oscillation 

cycle 56
loops 217
regime 394
amplitude 112
birefringence 387
shear deformation 111, 120
stress 387

Ostwald-De Waele equation 152
Ostwald-Fenske viscometer 310
outer cylinder 317
outlet instability 219
overshoot 188

P
packing 162
paints 1, 5

parallel 
cylinders with shifted axes 380
discs 181

with shifted axes 380
plates 362

parasitic friction 329
parsimonious model 78
partial

compliance 50
relaxation 65

particle size distribution 407, 420
paving 411
penetrometer 346
periodic 

defects 215
oscillation 52, 54, 419

pharmaceutical materials 414
pharmaceuticals 1, 5
phase 

angle 363, 377, 387, 390
inversion 201
separation 198, 232, 425

temperature 199
transformation 424
transition 161, 197, 203-204, 425

point 197
temperature 197-198, 202

phenomenological form 267
phenyl group 388
phenylmethylsiloxane oligomer 432
photoelasticity 384
physical 

effect 15
junction 156
meaning 79
methods 383
reality 3

physics 4
pipeline 150, 209
planar stagnation 361
plane stress state 13, 391
plastic 235

behavior 145
deformation 178, 221, 271, 277, 279

plasticating extruder 444
plasticity 140, 143-145, 251, 272, 278, 345

limit 271
plasticization 100
plastics 5
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plastometers 341
plate-and-plate technique 339
plateau modulus 54, 91-92
Pochettino viscometers 345
Poisson’s ratio 30-31, 253-254, 257
polar coordinate system 21
polarization 

force 421
method 393
-optical 

method 393
technique 384

polyamide-6 200
polybutadiene 98-99, 108, 137, 215, 219,
 393-394, 405
polycarbonate 388-389
polycondensation 423
polydimethylsiloxane 108, 405
polydisperse 

polymer 92-94, 138, 177, 203, 216, 303
systems 200

polydispersity 90, 177, 298
polyethylene 91, 108, 144, 180, 213, 300, 405

low-density 139
melt 187

polyethyleneglycol 405
polyisobutylene 100, 106, 108, 111, 115, 141,
 148, 158-159, 189, 297, 387, 405

melt 387
polyisoprene 180
polymer 

adhesion 395
chain 80, 407
degradation 454
flow 394
melt 5, 115, 180, 203, 220, 313, 355, 361, 391,
 408
 molding 449
solution 157, 391
-filler interaction 171
-polymer transformation 434

polymeric chain 80
polymerization 199, 424, 425

reaction 453
polymethylmethacrylate 108, 149, 405
polyoxymethylene 201
poly-p-benzamide 147
polyphosphazenes 216
polypropylene 165, 201, 229

polystyrene 92-93, 108, 149, 159, 199, 275,
 298, 388, 394, 405, 407

melt 168
polysulfone 425, 434
polyvinylacetate 405, 434
polyvinylalcohol 434
post-flow effect 202
power 

drive 312
law 79, 154
equation 151, 154
model 124

Poynting effect 32, 196, 270
preform 452
pressure 

correction 301
gradient 219-220
losses 300
oscillation 217

principal 
deformation 26
stress 12-14, 154, 391

principle of material indifference 35
printing inks 5
pseudo-Newtonian region 144
pseudo-plasticity 144
pulps 5
pure shear 33

Q
quasi-equilibrium compliance 390
quasi-linear mode 70
quasi-Newtonian 296

shear rate 297
quasi-solid structure 280
quasi-solidification 215
Quemada equation 162, 169

R
Rabinovitsch-Weissenberg 

equation 294, 323, 441
formula 302

random 
entanglement 85

network 386
rate of deformation tensor 34
Rayleigh instability 233
reaction injection molding 453
recoil strain 178
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recoverable 
deformation 181, 390
strain 178-179

reduced mass 366
Redwood viscometer 310
reference temperature 96
refractive index 383-384
regularization 

method 79-80
parameter 80

reinforced plastics 5
reinforcing filler 426
relative measurement 287
relaxation 46, 52, 69, 71, 289, 329

behavior 88, 173
curve 48, 75
function 49, 68, 77, 80
mechanism 98
mode 75-77, 79
modulus 49, 96, 174
phenomenon 49, 80
process 47-48, 100
rate 195
spectrum 49, 72-80, 83, 92-93, 97, 102,
 106-107, 122
state 99
time 47-48, 50, 59-60, 76, 79-80, 83, 86,
 88-89, 96, 106, 108, 156, 211, 300, 360

distribution 79
spectrum 50

transition 426
-retardation behavior 61

reptation model 88-89
residual stress 47
resistance force 149
resonance 

amplitude 376
frequency 369, 377
oscillations 369

retardation 46, 65
angle 70
spectrum 78, 82
time 59, 60, 62, 81-82

spectrum 50
retarded deformation 81
reversible change 278
Reynolds 196

instability 206
number 187, 206-207, 210-12, 325, 328, 404

rheogoniometers 330
rheokinetic 

curve 425, 433
effects 425
equation 433
measurement 422
method 426
nature 440
studies 431, 434

rheokinetics 422
rheological 

analysis 409
behavior 145, 172, 279
effects 403
equation 45, 61

of state 69, 107, 115, 124, 134-136, 435-436
experiment 438
method 407
model 435
percolation threshold 169
properties 408

rheology 1, 4-5, 9
rheometry 287, 314
rheo-optical 

device 308
instrument 392
method 390, 393

rheo-optics 383
rheopexy 191, 193, 196
rigid-chain polymers 216
rigidity 434
ring-and-bead model 80
Rivlin-Ericksen tensor 36, 436
Roberts-Weissenberg rheogoniometer 339
rod-like polymer 160
rolling sphere 351
roofing 411
rotating 

coaxial cylinders 340
coil model 84

rotation 
constant frequency 314
frequency 356

rotational 
equilibrium 12
flow 202, 211
instrument 317, 328, 334, 381-382
rheometer 327, 331
rheometry 314, 316, 320



Index 515

speed 314, 331
viscometer 320, 329, 332, 335, 393, 395
viscometry 327

Rouse 
model 89
relaxation time 88

rubber 5, 100, 156, 181, 198, 259
elasticity theory 261
process analyzer 114
-filler interaction 170, 172

rubbery 
behavior 97
 character 227
deformation 315
elasticity 97, 179, 180, 264
material 145
modulus 179, 406
state 386, 388

rupture 224-225, 446
Rusk viscometer 353

S
sagging fiber 18
sandwich shear flow plastometer 342
Saybolt viscometer 309
SBR 153
scaling 

concept 428-429
factor 93, 428

screwless extruder 182
sealants 1, 5
second normal stress 

coefficient 183
difference 184

secondary flow 209-210
second-order 

effect 184
kinetics 433

SEM image 171
sharkskin 212, 214

effect 212-214
type 213

sharp corners 219
shear 13, 49

band 203-204
banding 203-204, 281

phenomenon 280
compliance 49, 74, 179
deformation 70, 73, 178, 186, 266, 366
field 84

 flow 136, 206, 395
experiment 341

modulus 253, 264, 488
plastometer 342, 343
rate 67, 73, 106, 137, 144, 177, 179, 232, 296,
 315, 323, 419, 430
strain 372
strength 315
stress 10, 17, 70, 73, 121, 149, 179, 183, 188,
 219, 263, 268, 273, 276, 290, 335, 390, 438

amplitude 387
relaxation 123

thickening 196, 279-280, 419
thinning 166
viscosity 133, 136
wave 372

shear-induced 
anisotropy 148
effect 205
fractionation 200
phase separation 205
transition 202

shearing 195, 196, 200, 425
kinetic effect 429

shear-thinning 280
liquid 301

sheet 
elongation 361
inflation 361

shock absorber 56
short-range dynamic motion 166
shrinkage 454
side group content 407
silica 

filler 172
surface area 171, 173

simple shear 31-32
single 259

-constant model 259
sinusoidal oscillatory shear 393
siphon effect 231, 358
sliding 138, 140, 181
slip 214, 419

along the wall surface 395
effect 302
velocity 302

slippage 303
regime 220

slipping surface 164



516 Index

slip-spring model 205
slit die 390
small-amplitude 

harmonic deformation 123
oscillatory shear 165

small-angle light scattering 150
small-scale molecular motion 101
Snell’s law 384
soils 5
solid 251
solid-like 251

behavior 61, 164
mode 438
state 427
structure 418

solidification 404
sound insulator 56
space scale 2
sphere 26
spherical 

droplet 149
stress tensor 17
surfaces 324, 381
tensor 16
viscometer 325

spherulite 277
spinning 447
spring 57

viscometers 333
-and-bead model 80, 83

spurt 138, 394
stress 215

squeezing flow 361
instrument 361
plastometers 343

stable knot 85
star-shaped SBR 169
static experiment 52
stationary 

flow 290
regime 104

statistical theory of rubber elasticity 269
steady 

flow 106, 183
regime 136
shear flow 68, 71, 195
state compliance 73, 91, 180
state flow 70, 107

Stefan equation 452

stick-slip 
behavior 315
phenomenon 217
regime 216

Stokes formula 349
storage 

compliance 56
modulus 56, 99, 100, 111-112, 142, 164-165,
 175

stored 
elastic energy 75, 186
energy 252

strain 23
amplitude 167, 172
hardening 229-230
rate 287

strengthening 277
stress 9

amplitude 387
deformation distribution 69
difference 184
distribution 11, 205
field 11
function 223
hardening 277
invariant 252
relaxation 47

behavior 172
state 11-12
tensor 10-11, 13-14, 17, 21, 26, 134, 154, 182,
 252, 254, 257-258, 276, 389, 437

component 183
/deformation ratio 110
-deformation 

function 252
relationship 55, 69

-induced crystallization 232
-optical 

coefficient 388, 391
law 386
rule 389, 391

structural 
transformation 395
viscosity 144

structure 277
destruction 278
parameter 122
restoration 278
transformation 278



Index 517

strukturviscosität 144
substantial derivative 35
sudden deformation 67
super-extrusion 218
superimposable relaxation modulus 173
supermolecular structure 76, 97
superposition 95, 102, 404

method 97
of energy storage 277
principle 63, 65-67, 72

supramolecular 
polyacrylonitrile solution 141
structure 202

surface 
defect 213-214
rupture 213
tension 149, 303

forces 304
waves 233

suspension 161-162, 418
swell ratio 187
swelling effect 445
switching device 420

T
tangential 

component 10
force 12

Taylor 
cells 209
number 210-211

Taylor-Couette 
cells 210
instability 209, 212

technological characteristics 408
telescopic 

flow 347
shear 345

telescoping 
flow 346
shear 346

temperature 
correction 300
shift factor 98

tensile 
recoil 225
strength 271
stress 9, 213, 357

tensor 10
theoretical prediction 276

thermal 
degradation 431
effect 395

thermodynamic 
effect 198
equilibrium state 119
factor 205
idea 119

thermodynamics 119, 197
thermotropic 160
theta-solvent 84
thickening 404

effect 419
thin-film flowing viscometer 334
thinning 404
thixotropic 194-195

behavior 192
effect 192, 278
material 204
phenomena 194, 278
structure 195

thixotropy 191-193, 204, 277-278, 413, 417,
 419
threshold concentration 418
Tikhonov regularization 79
time 

domain 429
of deformation 139

time-concentration superposition 101
time-dependent effect 251, 277
time-scale 195

of observation 251
time-temperature superposition 95

method 101
Toms effect 207-209, 404, 426
toothpaste 414
torque 287, 314

control 334
transducer 330

torsion 
oscillations 366, 378
pendulums 383

torsional 
oscillation 366
shafts 326

transient 
banding 204
behavior 122, 188, 195
deformation 
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range 189
regime 136, 189

mode 67
regime 289

transition 
point 226
zone 100-101

transportation 419
transverse apparent viscosity 148
Tresca-Saint-Venant criterion 272
tribological effect 216
Trouton 

equation 223
law 134, 136, 223, 354, 448
viscosity 134, 230

T-T-T diagram of curing 431
tube 

model 88, 205
renewal time 88

tubeless siphon 231
instrument 358

turbulent 206
flow 304
U

Ubbelohde viscometer 310
ultimate 

elongation 271
recoil 178

function 179
ultrahigh molecular weight polyethylene 355
uniaxial 

elongation 30, 357
extension 17, 31, 123, 134, 222-223, 253,
 255, 265-266, 275, 355-356, 359, 407

unrecoverable deformation 235
unsteady 

flow 212
regime 104
V

vector 10, 34
velocimetry 394-395
velocity 34

gradient 35
profile 203, 216, 296, 394

vibrating-reed method 382
vibration viscometry 374
vibrational method 289
video microscopy 213

Virk asymptote 208
viscoelastic 277

behavior 71-72, 96, 105, 174
compliance 49
curve 96
effect 57, 106
entanglements 87
filament 360
fluid 60, 119, 204
function 77
interaction 87
material 54, 65, 69, 137
model 81
plateau 85
properties 54-55, 76, 98, 118, 316
region 227
solid 60

viscoelasticity 48, 73, 80, 103, 110, 300, 417
viscometers-calorimeters 395
viscometry 287
viscoplastic 

behavior 421
flow 140
liquid 144, 154, 190
material 146
medium 420

viscoplasticity 278
viscosity 69, 113, 133, 141, 203, 405, 407, 427

bifurcation 419
change 426
growth 426
measurement 150, 328

viscous 235
dissipation 172
flow 48, 395
friction 395
layer 203
properties 124

volume change 49
volumetric flow rate 300, 308
Von Mises criterion 154
vorticity 25

tensor 34
W

Wagner model 117, 119
wall 

effect 349
instability 220
slip 216, 438



Index 519

warpage 454
wave propagation 372
wax content 410
Weissenberg 181

effect 181-182, 270, 322, 327, 338-339, 404
number 206, 212, 221, 225, 299
Rheogoniometer 330

weld line 454
wetting 426
White-Metzner tensor 36, 436
Williams plastometer 345
Williams-Landel-Ferry equation 98, 99
wire insulation 213
worm-like 

micellar system 203
micelle 204
Y

yield 
point 235, 335
stress 140, 142-143, 147, 151, 153, 191, 196,
 230, 235, 271, 278, 410- 411, 413-414, 416,
 418-420

yielding 144, 417
yogurt 1
Young’s modulus 2, 123, 202, 253-254, 257,
 263, 488

Z
zero moment 73
zero-shear-rate 137, 151

viscosity 156
Zimm-Crothers viscometer 335
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