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1 An introductory example of potential energy in elastic structures and virtual work

Consider the two bar truss shown below. With the horizontal load F' acting to the right, bar 1 is
in tension, 77 > 0 and bar 2 is in compression, 75 < 0. The displacement of the loaded node has a
horizontal component D, and a vertical component D,. If the truss is made of a linear elastic material
and if the displacements are small compared to the overall size of the truss, then the displacements D,
and D, increase linearly with the force F'. The work of the external force /' increasing in proportion
to its collocated displacement D, is the area under the F' — D, line. This external work is simply.

1
W =_-FD,
2

Since the truss is made from elastic materials and there are no energy dissipation mechanisms involved
(e.g., friction), the external work of pushing the truss node to the right by a displacement D, is
entirely stored within the bars of the truss. Knowing the bar tensions, the elastic modulus of the
truss bars (£; and FEs), their cross section areas (A; and Aj), and their lengths (L; and L), the
stretch of each bar, i.e., the change in length of the bar, is proportional to its tension and its length.

d1 - TlLl/(ElAl) d2 — TQLQ/(EQAQ).

The internal potential energy stored within the truss is the sum of the potential energies in each bar,

1 1
U= -T\dy + =T,)d
5 11+2 92

Since the work of pushing the truss node to the right is entirely stored as potential energy within

the truss.
U=W

1 1 1
§T1d1 + §T2d2 - §F_D;E (1)
This is called the principle of real work.

Given numerical values for F', L, Fy, Ay, Ly, Es, and A, the principle of real work could be used to
compute the displacement D,, collocated with the single applied force, F'.
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Figure 1. A two bar truss loaded first with a horizontal force F' and subsequently with combined
horizontal force F' and vertical force  F. The force I is held constant while the force § F' is added.

Now, with the force F' held constant (and the related bar tensions T} and T5 held constant), suppose
a vertical force 6 F is applied, resulting in additional displacements d D, and 0D,, and additional bar
forces 077 and ¢75. The displacements D, and 0D, are collocated with the applied force dF', and
so the work of 0F increasing proportionally through its collocated displacement 6D, is %(5F 0D,.
This work is stored as potential energy within the bars of the truss with with tensions 67} and 675
proportional and bar stretches, dd; and dd,.

1 1 1

Additionally, as 0F increases, the constant force F' moves through a displacement dD,, and the
constant bar tensions T and T, move through displacements dd; and dds. The work of the constant
force F' moving through displacement 6D, (F' §D,), is called the wvirtual work of the external force.
And the work of the constant bar forces 77 and T, moving through displacement dd; and dds,
(T} 6dy + T3 ddy), is called the wvirtual work of internal forces.

With the total combined forces applied to the truss, the combined external work is
1 1
W = §FD$ + §5F5Dy + FéD,

and the combined internal potential energy is

1 1 1 1
U = §T1d1 + §T2d2 —|— §5T1 (5d1 —|— §5T2 5d2 + T1 5d1 + TQ (5d2
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Setting the external work of the combined forces equal to the internal potential energy of the combined
forces, and substituting (1) and (2) into this equality results in

Ty 6dy + Ty 6dy = F 6D, . (3)

This is called the principle of virtual work, or in this specific example, the principle of virtual dis-
placements.

The principle of virtual displacements states that: For a “real” external force (e.g., F') in equilibrium
with a set of “real” internal forces (e.g., 77 and T5), and a “virtual” external displacement (e.g., §D,)
collocated with the external force (e.g., F') and kinematically compatible with “virtual” internal
displacements (e.g., dd; and ddy) collocated with internal forces (e.g, T} and T5), the external work
of the “real” external force moving through a collocated “virtual” displacement equals the internal
work of the “real” internal forces moving through collocated “virtual” internal displacements.

Given numerical values for 0F, Li, Ey, Ay, Lo, Es, and A, the principle of virtual displacements
could be used to compute the horizontal displacement 0 D, caused by the vertical force, 0 F'. To do so,
one would solve for the bar forces 77 and T, in equilibrium with £, then solve for the bar forces 673
and 075 in equilibrium with 6 F, compute dd; and dds from 077 and 675, and, finally solve equation
(3) for §D,, the horizontal displacement due to the vertical force JF.

e What would be the approach to find the vertical displacement D, due to the horizontal force, F'?
o If ' =0F, how are D, and 0D, related? Are you surprised by this result?
o If F=0F and D, <0, re-draw Figure 1.
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2 Strain Energy in Elastic Solids

Consider an elastic solid object with external forces F' and f in equilibrium with internal stresses o
and 7.

F and f are real external forces in equilibrium, acting at points, or over a portion of a surface
S
9

R and r are real displacements, admissible with respect to the support conditions, collocated
with F' and f,

o are real internal stresses, distributed within the solid volume V', in equilibrium with F & f,

€ are real internal strains, distributed within the solid volume V', compatible with R and r,

2.1 External Work

The work of external forces increasing from 0 to F' and f and pushing through displacements from
0 to R and r is

W:/ORF(R) d}_?,+/s/orf(f) dr dS (4)

where

o the forces F' and f depend on displacements R and r

« R and 7 are dummy variables of integration
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2.2 Internal Strain Energy

Strain energy is a kind of potential energy arising from stress and deformation of elastic solids. In
nonlinear elastic solids, the strain energy of stresses increasing from 0 to o(z,y,z) and working
through strains from 0 to €(x,y, z) is

U:/V/Oea(e)-dedv (5)

where

V' is the volume of the solid

. 0’(6)2{ Opz Oyy Oz Tay Tys Tzz}

® 62{ €xx Cyy €2z Vay Vyz /yzvz}

e € is a dummy variable of integration ... so ...

U = / /ea(é)-dé v
Vv Jo
— /v/o (040 (€)dEyy + 0yy(€)dEyy + 0. (€)dE,, + 04y (€)dey, + 0y (€)dE,, + 0,.(€)dE,,) AV

2.3 The Principle of Real Work

In an elastic solid, the work of external forces, W, is stored entirely as elastic strain energy, U, within
the solid.
U=w (6)

In linear elastic solids:

Stresses o increase linearly with strains e,

c=Fe ... and ... 7=Gvy

Displacements D and rotations © increase linearly with forces F' and moments M,

F=kD ... and ... M =k0O

The work of an external force F' acting through a displacement D on the solid is

1 1 1
=_FD=-kD*=_F"/k
V=3 2 2

The work of an external moment M acting through a rotation © on the solid is

1 1 1
W= -MO = —k0? = - M2
2 2" oM /k
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2.4 Strain energy in slender structural elements

In slender structural elements (bars, beams, or shafts) the internal forces, moments, shears, and
torques can vary along the length of each element; so do the displacements and rotations.

The strain energy of spatially-varying internal forces F'(z) acting through spatially-varying internal
displacements D(z) along a linear elastic prismatic solids is

U= ; [F)- d’izf) iz — ; [F@)D'() (7)

The strain energy of spatially-varying internal moments M (z) acting through spatially-varying in-
ternal rotations O(z) along linear elastic prismatic solids is

U - ; [m)- dcjl;“") iz — ; [ M@)o ) dr (8)

In slender structural elements, the relation between internal forces and moments and internal dis-
placements and rotations depend on the kind of loading.

Axial N,
Bending M,
Shear Vy(x) = G(x)As(x)v)]

Torsion T.(z) = G(z)Jx)d' (x)

)
).

. assuming 0" (x) ~ 0'(z)
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Inserting these expressions into the general expressions for internal strain energy above,

“force” deformation strain energy (U)

Axial | N(x) u'(x) %/le(x)u’(x)dx %/lE]E[;)(j);)dx %/E(x)A(x)(u’(x))de

Bending | M.(z)  o"(z) 1 /le(x)v”(x)dx 1 /l Maf g L /IE(x)I(x)(v”(x))de

E(x)I( 2
Shear | V,(z) vl(x) %/I%(x)vé(x)da: %/l%dx %/IG(x)As(x) (v (z))? dz
Torsion | To(x) fa) L /lTx(x)¢’(x)dx L /l Ldal gy 1 /l G(2)J(2)(¢'(z))2dx

E(z) is Young’s modulus
G(z) 1is the shear modulus

A(x) 1is the cross sectional area of a bar

I(z) is the bending moment of inertia of a beam
A(x)/a is the effective shear area of a beam

J(z) is the torsional moment of inertia of a shaft

N,(x) 1is the axial force within a bar

M, (x) is the bending moment within a beam
Vy(x) is the shear force within a beam
T.(x) is the torque within a shaft

) is the axial displacement along the bar
u'(x) is the axial displacement per unit length, du(z)/dz, the axial strain

v(x) is the transverse bending displacement of the beam
v'(x) is the slope of the displacement of the beam

v”(x) is the rotation per unit length, the curvature, approximately d*v(x)/dx?

vs(x) is the transverse shear displacement of the beam
vl(x) is the transverse shear displacement per unit length, dvg(x)/dx
()

is the torsional rotation (twist) of the shaft
¢'(x) is the torsional rotation per unit length, d¢(z)/dx
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3 Virtual Work in Elastic Solids — The Principle of Virtual Displacements

Now consider a second set of loads, 0F, ¢ f, in equilibrium and applied subsequently to the loads F
and f. The loads 6 F and ¢ f give rise to displacements 6 R and dr collocated with forces ' and f,
and internal stresses do and strains de. In other words, the displacements R and dr are admissible
to the kinematic constraints.

Call 0F and ¢ f a set of any arbitrary “wvirtual” forces in equilibrium.

Call R and ér a set of “virtual” displacements, collocated with forces F' and f, and resulting from
forces 0F and 0 f (and therefore kinematically admissible). The displacements R and ér may also
be called variations of displacements, admissible to the constraints.

Forces F and f are held constant as loads 0F and §f are applied. Stresses o, in equilibrium with
forces F' and f, are therefore also held constant as loads 0 F and 0 f are applied. Forces F' and f do
not increase with displacements d R and dr. Strains de increase as loads F" and 0 f are applied.

-;| “Ju
MR

0 € g+8£> 0 R +0R;

The principle of virtual displacements states that the virtual external work of real external forces (f
and F') moving through collocated admissible virtual displacements (dr and JR) equals the internal
virtual work of real stresses (o) in equilibrium with real forces (f and F') with the virtual strains
(0€) compatible with the virtual displacements (dr and 0 R), integrated over the volume of the solid.

Wi = W
/Va'-éedV _ [Sf-(srds+§ijﬂ-m 9)
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3.1 Work of axial loads and transverse displacements in slender structural elements

In slender solid elements, nonuniform transverse displacements (dv(xz) # 0) induce longitudinal

shortening, de(x).
/ <—¢ de+dSe
/ v +dd
4 v+ oy’

/ dx de

oy v +dy

dx dx

Figure 2. Transverse deformation v’(z) and longitudinal shortening de(x).

A relation between dv and de can be derived from the Pythagorean theorem and is quadratic in dv
and de.

(dx — de)* + (dv)* = (dx)?
2(de)(dr) — (de)* = (dv)?

2
de | Lfde) 1
dx 2 \dzx 2

With additional virtual displacements dv(z) a relation for the incremental virtual shortening dde
may also be derived from the Pythagorean theorem.

(dz — de — dée)? + (dv + dév)* = (dw)?
2(de)(dx) — 2(de)(dde) + 2(dde)(dx) — (de)? — (dde)®* = (dv)* + 2(dv)(dév) + (dov)?
Subtracting 2(de)(dz) — (de)? = (dv)? and dividing by (dz)? leaves
de dde doe (dée ?

_o_ -7 I B — ! / "2
2dx o +2da: d:c) 2(v")(00") + (0v")

Neglecting higher order terms (assuming virtual displacements are infinitesimal), leaves
dée ,
— 5’ 10
R () (o) (10)
The virtual work of a distributed axial compression P(x) (applied externally, for example, by gravita-
tional acceleration) acting through virtual shortening displacements de(z) integrated along a slender
element is, then,

We = /P @dx = /P(x) V'(x) 6v'(z) da (11)

This result can also be obtained by 1ntegrat1ng along the arc-length of the deformed element as is
done in Tedesco, McDougal, and Ross’s textbook, Structural Dynamics: Theory and Applications.
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4 The Principle of Virtual Displacements for Dynamic Loading

The principle of virtual displacements applies to both static and dynamic forces. Elastic forces
k(x)r(x,t) are present in structural systems responding to static or dynamic loads. Forces arising
from dynamic effects only include viscous damping forces c(x)7(x,t) and inertial forces m(x)7(z,t).
Elastic forces, viscous damping forces, and inertial forces can be developed within slender structural
elements in response to axial, bending, shear, and torsional deformations.

real virtual
“force”  deformation internal virtual work (W)

Axial N, (z,t) ou'(x,t) /le(x,t) ou(z,t) dx EA(x) u/(z,t) ou/(z,t) dx
/z WA(x) W (z,t) 0u'(z,t) do
/lpA(a:) i(z,t) du(x,t) do

Bending | M,(z,t)  ov"(z,t) /Mz(a:,t) ' (x,t) dr /El(x) V" (x,t) v (x,t) dx
I
/nal(:v) 0" (x,t) v (x,t) dx
!

pA(z) v(x,t) dv(x,t) do
!

Shear Vy(z,t) ovl(x,t) /Vy(x,t) ovl(z,t) dx GAs(z) vi(z,t) dvi(z,t) dx

/z sAs(x) Ol(x,t) Svl(z,t) do
/lpA(l’) O(x,t) dv(x,t) de

Torsion | T,(z,t) 3¢ (x,t) /lTx(il?,t) 0¢ (x,t) dx GJ(x) ¢'(x,t) 6¢'(x,t) dx
/z oJ(x) ¢ (2,t) 6¢/ (x,t) da
/lpJ(I) o(x,t) d¢(z,t) d

Geometric | P(xz) de(x,t) /lp(x) de(x,t) dx /ZP(x) V'(z,t) 6v'(x,t) dx

In this table:

o The internal virtual work of viscous effects is derived assuming linear viscous stress - strain-rate
relations: o = n,é and 7 = ny%. As will be seen later in the course, the damping properties of
real structural materials are actually more complicated.

» Rotatory inertia effects are neglected in the virtual work of inertial forces in bending beams.
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5 Generalized Coordinates

A dynamic response r(x,t) may be represented as an expansion of products of spatially dependent
quantities and time dependent quantities

t) = Zk: Ur() g (t) (12)

The functions 1y (z) are called shape-functions, and the functions ¢(¢) may be called generalized
coordinates. In order for the above expansion to yield realistic and accurate solutions, the shape
functions must at least satisfy the essential boundary conditions. (The shape functions must be
kinematically-admissible.) Shape functions which also satisfy the natural boundary conditions will
yield more accurate solutions. Also, if the shape functions are dimensionless, the generalized coordi-
nates have the same units as the response, which permits a useful interpretation of the generalized
coordinates. Further, if the shape functions are kinematically admissible, and the expansion (12) for
7 is expressed in terms of ¢, but not ¢, then virtual displacements defined as variations in r(z, t) with
respect to the set of coordinates g (t) are also kinematically admissible

or(e,) = 32 5, 1 00,0 = S se) 000,

J

and the derivatives of r with respect to x and t are
r(z,t) = Ceae(®)(e) (e t) = Spdqe®)n(e) iz, t) = Sp de(t)n(e)
'z t) = Seae(On(x) (2 t) = Tpdevi(e) (2, t) = Ty () (2)
(@, t) = Ypar(Ov(x) (2, t) = Xpdu(Of(x) i (2,t) = Xk du()9] (x)

Internal virtual work can also be expressed in terms of generalized virtual displacements. For example
in the elastic bending of a beam, the work of moments (EIv”(z,t)) moving through virtual rotations
(0v"(z,t) dx) in terms of generalized coordinate displacements g (t) and virtual displacements dg;(¢)
1s

oW = /EI V' (x,t) V" (x,t) da
- /lEfx Zw” 2)8q;(t)
k
- XX //ff(w) ¥)(@) Vi) do
ik

The work of transverse inertial forces (pAv(z,t) dzr) moving through virtual displacements (dv(z,t))
in terms of generalized coordinate accelerations ¢y (t) and virtual displacements dg;(t) is

qk(t) 0g;(t) (13)

oWy = / pA(z) Bz, ) dv(x,t) da
- /lpr Z% )dq;(1)
= ZE};[/[ pA(x) ¥j(x) Pr(z) d:c} i (1) 9g;(t) (14)
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The work of external forces f(x,t) and F(t) moving through collocated virtual displacements dv(x, t)
can be expressed in terms of virtual displacements of generalized coordinates, dq;(t).

We = /lf(:c, ) - du(e,t) de + Y F - 6v(a, 1)
- /lf(:c, £) -3 () Sa5(t) dw+ 3 Fy- 3 (i) da (1)
= X[ 0 vsta) e suse) + 32 [0t a0 (15

The external virtual work of axial compression P(z) moving through virtual end shortening (v'(x, ¢)dv'(x, t) dz)
in terms of generalized coordinate displacements g, (¢) and virtual displacements dg;(t) is

Wy = /P t) ov'(x,t) dx
= /lPx;m (0245 (0) dus(t)
= X |[P@) 4@ vite) d

By setting the internal virtual work equal to the external virtual work, and factoring out the inde-
pendent and arbitrary variations dg;, equations (13), (14), (15), and (16), result in

([M1G(t) + [Kela(t) — [Kcla(t) — £(t) ) - (dq(t)) =0

Noting that each variation ;0q; is be arbitrary, and the set of variations j = 1,2,... must be
independent, not only must the dot product equal zero, but each term within the inner product
must be zero. Therefore, the term on the left of the inner product must evaluate to the zero-vector.
This is an important concept in the principle of virtual work and in the calculus of variations. It’s
application results in the matrix equations of motion,

[M] g(t) + [Kz] q(t) — [Ke] q(t) = f(t)
where the j, k term of the mass matrix is,
My = [ pA@) y(e) ¥i(a) da
the j, k term of the elastic stiffness matrix is,
Kije = [ EI(2) ¥)(2) ¢](a) da
the 7, k term of the geometric stiffness matrix is,
Ko = [ P(x) ¥)(2) vi(x) da

and the j-th element of the forcing vector is the inner product of the forcing with the j-th shape
function,

Gr(t) 9g;(?) (16)

= [ @)y do + By (o)

From the above relations, it is clear that M;; = Mj; (the mass matrix is symmetric), K;; = Kj; (the
stiffness matrices is symmetric), and that [M] and [K] are positive definite, provided that the set of
shape functions are linearly independent.

@®®EG H.P. Gavin March 27, 2024


http://creativecommons.org/licenses/by-nc-nd/4.0/

Virtual Displacements in Structural Dynamics 13

6 Choice of Shape Function
In the set of shape functions described by
25 —1
Y;(z) = sin ( J 5 m:)

1;(0) = 0and ¥'(1) = 0. The figure below shows a set of the first four shape functions (j € (1,2, 3,4))
on the left and the set of the first seven shape functions on the right (j € (1,2,3,4,5,6,7)).

The curves in black show examples of weighted sums of the basis functions.

= @ (W)¥1(2) + ¢2()a(2) + - + g () Yn (2)

in which the “weights” correspond to the time-dependent generalized coordinates ¢;(t). So one may
think of the black curves as snapshots of vibrational shapes taken at various instances in time.

v(x,t)

Note that since all the shape functions satisfy 1;(0) = 0 and ¢/(1) = 0, then so must the weighted
sum of those shape functions.

Note also that the use of a larger set of shape functions permits more complicated vibrational shapes.

] ]

ZY)x) a)

v(x,t)

0.2

0.4 0.6
x/L

q(t)=[-0.020,-7.861,7.258,-2.870]
T T

0.8 1

I
0.2

I I
0.4 0.6
x/L

q(t)=[2.737 ,-1.605 ,3.967 ,1.696 ]

I
0.8 1

0.2

0.4 0.6
x/L

q(t)=[6.217,0.389,-2.074 ,-8.277 ]
T

0.8 1

ZWE a0

V(X,t)

ZYM A0

V(x,t)

DI

v(x,t)

0.2 0.4 0.6 0.8 1
x/L

q(t)=[9.127,-8.107 ,-6.644 ,9.382,1.131,7.799,7.059 ]
T T T

-30

20

I I I I
0.2 0.4 0.6 0.8 1
x/L

q(t)=[-1.567 ,7.177 ,-2.190 ,-0.388 , -6.156 , 7.464 , -2.312]
‘

0.2 0.4 0.6 0.8 1
x/L

q(t)=[4.477,-2.601,-1.960,-4.412,-7.338 ,3.013,7.568]
T T T

@®®EG H.P. Gavin March 27, 2024


http://creativecommons.org/licenses/by-nc-nd/4.0/

14 CEE 541. Structural Dynamics — Duke University — Fall 2020 — H.P. Gavin

It is essential that selected shape functions is kinematically admissible with respect to the essential
boundary conditions (the structural supports). The analytically “correct” shape function is both
kinematically admissible and satisfies equilibrium. Equations of motion resulting from the use of
kinematically admissible shape functions that do not satisfy equilibrium will provide approximate
solutions, which, in many cases are within the errors implied by other fundamental assumptions.

The true equations of motion for a particular system are unique. The principle of virtual displace-
ments provides a means to derive approximate equations of motion. The accuracy of the PVD
approximation depends on the set of shape functions used, [11(z), ..., ¥n(x)].

Since v(x,t) has units of length, if ¢(x) is unitless, then the coordinate ¢(t) must have a unit of
length, and if ¢(x) has units of length, then ¢(¢) is unitless (like a rotation).

7 Examples
7.1 Example 1: a single generalized coordinate, choice of two shape functions

Consider the vibration of a cantilever beam with a point end-mass (assuming that the rotatory inertia
of the end mass is negligible). And consider the choice between two similar shape functions,

-3 HE e ()

The cubic shape function is the static displacement of a cantilever beam with a concentrated tip load,
which would seem like a reasonable guess for the deformed shape in this problem. Note that the
static displacements satisfy equilibrium for a static load; they do not necessarily satisfy equilibrium
for a dynamic load.

The (1-cosine) shape function is a reasonable guess, since it is smooth and satisfies the essential
boundary conditions. But the (1-cosine) does not satisfy internal equilibrium for static or dynamic
loads.

Regardless of the choice of shape function, the internal virtual work is the work of inertial forces
moving through collocated virtual displacements plus the work of internal bending moments moving
through virtual rotations.

Wint = /L mi(z,t) dv(z,t) de+ Mo(L,t) dv(L,t) / EIV"(z,t) 6v"(x,t) dz
— m / 2))de (1) dq(t) + M(H(L))? d(t) Sq(t) + EI / "(@)?) dz q(t) dq(t)

and the work of the external force moving through its collocated virtual rotation is

SWexr = F(t)6u(L,t) = F(t) (L) 5q(t)
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2
ﬁ-- pp——

15

- ]

T

= cubic
=== 1 -cosine

1 1

0.8 1

0.2 0.4 0.6

x/L

= cubic
=== 1 -cosine

1

0.4

1

0.6

0.2 0.8

/L

Figure 3. Two similar shape functions assumed for the displaced shape of a vibrating cantilever
beam with an end mass. Differences are clearer in the curvature 1" (z) (bending moments M (z) =

EIY"(z)) of the system.

The cubic shape function corresponds to the triangular-shaped bending

moment of a cantilever beam with a static end-load. Note that the neither the cubic shape function
nor the 1-cosine shape function are exactly correct for this problem. The true shape function would
depend on the ratio mL/M.
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Setting dWint = 0Wgxr, factoring out the arbitrary virtual coordinate d¢(t), and solving the integrals
gives for each of the candidate shape functions gives, for the cubic shape function,

33 3ET
33 i} 3ET @
(oL + M) () + > ralt) = F(t)
and for the (1-cosine) shape function
3m—8 T El
L+M)q§t)+ ——=q(t) =F(
(T mL+ M) () + 5o alt) = F(1)

with natural frequency for the cubic shape function

3EI/L3
Wy =
33mL /140 + M

and for the (1-cosine) shape function

- 7t BI/(32L3)
“n TN B — 8)ymL/(2n) + M

The shape function giving the lower natural frequency is more accurate.

As shown in the figure below, the cubic shape function gives a slightly more accurate dynamic model
as compared to the (1-cosine) function, by about one percent for mass ratios from 0 to 5, which could
be close to the difference of including or neglecting the rotational inertia of the end-mass.

1.8
=== cubic
17 1 -cOSine
~ 161
=
~
c(/)'\
= 15+
=
Nt
=
Waal
~
c
3

=
w
T

=
N
T

11 L L L L I}
0 1 2 3 4 5

ratio of beam mass to end mass, mL / M

Figure 4. Natural frequencies of a beam with an end mass as a function of the ratio of the beam
mass to the end mass, using two choices for the shape function.
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7.2 Example 2: a single generalized coordinate

17

In this example, the essential boundary conditions are v(t,0) = 0 and ¢'(¢,0) = 0, so any shape
function used in this problem must also satisfy 14(0) = 0 and 9 (0) = 0. In this first example, we

will consider a single (dimensionless) shape function, such as, ¥(z) = (x/L)?, ¥(z) =

(x/L)3, or

) =1 — cos(rx/(2L)). Just to keep this simple for now, we choose ¢)(x) = (x/L)*. Forces and

associated virtual displacements are tabulated below.

.
.

*
*
*
o 'Sv(t,x)
'o' - ' d
‘ﬁ’ -
S -
F@) . 2" o)
V7 L. -
; EL m poue” .—M P

x= x=a x=b x=
Element Real Internal Force Virtual Internal Displacement
Mi(L,t) = Mu(L)i(t) = M() 50(L,t) = $(L)q(t) = dq(t)
c

cifa.t) = et(a)i(t) = e(a/L)q()

ku(b,t) = ki(b)g(t) = k(b/L)*q(t)

ov(a,t) = P(a)dq(t) = (a/L)*dq(t)

ov(b,t) = P(b)oq(t) = (b/L)*dq(t)

7
7 ]
A EIV"(z,t) = EIY"(x)q(t) = EI - 62/L? - q(t) 6v"(z,t) = " (2)dq(t) = 6z/L* - 5¢(1)
ELL m
7 mi(z,t) = my(x)§(t) = m(z/L)* - §(t) dv(w,t) = P(x)dq(t) = (x/L)*q(t)
Real External Force Virtual Displacement
T F@®)
o) F(t) dv(a,t) = P(a)dq(t) = (a/L)*dq(t)
tx
1144144444 Fz 1) Su(x, 1) = b(x)5q(t) = (x/L)*5q(t)

P

I P

V' (z,t)00 (z,t) = 92t /L5 q(t) dq(t)

Equating the work of real internal forces moving through internal virtual displacements, with real
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external forces moving through collocated virtual displacements,
M 6q + cl(a/L)*Y 4 5a+ (/1)) a0+ [ BI(62/19) dw g b0+ [ m((x/L))? dr § og

— F(t)(a/L) 6q + /bL Fla,)(x/L)® dx g + /OL P(92*/L5) dz q 8¢
Evaluating the definite integrals, factoring out the (arbitrary) virtual coordinate dq, specifying that

the distributed dynamic force is uniform with intensity f,, and grouping terms, the equation of
motion for this system is

1 a\® b\° . EI 9 a\® 1L — b
M+ —mL ) (t — ) q(t k|l — 12— — —=P|qt)= =) Ft)+ -———/fo(t
( +6m>Q(>+C<L> q<)+< <L>+ ¥ 5L )Q() (L) O+ =75 L0
Note that this equation of motion is dimensionally homogeneous (as it should be).

The natural frequency of this system is

b\6 EI 9
k(L) +128 - 2P
M + gmL

Wn =

In this equation the term (9Pq(t))/(5L) is moved to the left hand side of the equation, as it is a
function of position ¢(t). The coefficient (9P)/(5L) is called the geometric stiffness of this system.
The negative sign on this term shows that the axial compressive force P is destabilizing for this

system. Under the condition
b\® Bl 9
k| — 12— - —P=0
(L) T L

the natural frequency would go to zero, and the system would buckle. So the critical axial buckling

load for the system is
b\® _EI\ /5L
Po= k() +1275 | (=
(k <L> i L3) ( 9 )

Dynamical responses of complex systems require complex mathematical descriptions. The simple
approximation v(x,t) = (x/L)3q(t) used here could be passable for a simple cantilever beam. But in
this example if the spring stiffness k¥ were much higher than ET/L? the dynamic response at x = b
would have a very small amplitude compared to responses the domains x < b and x > b. This kind
of response is not captured by the approximation ¢(x) = (z/L)3. In fact, the nature of the free
dynamic response in systems such as the one in this example depends on the relative values of the
physical parameters, EI/L3 Mg/L, mg, P/L, k, etc. More complex mathematical models for v(z, t)
are required to describe the dynamic responses of complex systems such as this. The next example
shows an extension in this direction, in which v(z,t) is modeled by the superposition of two shape
functions, and two generalized coordinates.
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7.3 Example 3: the same example with two shape functions and two generalized coordinates

In this example, the displaced shape is expressed as the sum of two (independent and kinematically
admissible) shape functions, 1 (z) and 1y(x)

= () 3G oo 5 7)o

wi(x/L) = (3/2)(x/L)? - (1/2)(x/L)3
wa(x/L) = 8(x/L)3 - 7(x/L)?

wa(x/L)

0.5 -

-0.5 ~ —

shape functions: yq(x/L),

x/L

Generalized coordinates associated with dimensionless shape functions have the same physical di-
mensions as the response variables, which is generally desirable. Shape functions that resemble the
actual dynamic responses correspond to more realistic dynamic models. Actual dynamic responses
must satisfy to essential and natural boundary conditions. So, as a first requirement, shape function
approximations must satisfy the essential boundary conditions. Shape functions that also satisfy
the natural boundary conditions correspond to more realistic models. Mass, and stiffness matrices
derived from sets of linearly independent shape functions are positive definite (assuming the system
has no rigid body modes). Mass and/or stiffness matrices derived from sets of mutually orthogo-
nal shape functions are numerically well conditioned. Because of this, models derived from sets of
mutually orthogonal shape functions are numerically precise over a broader frequency range.

In this example, ¥ () corresponds to the static deflection of a cantilever beam with a point load at
x = L; 1o(x) has an inflection point and a zero-crossing.

The application of the principle of virtual displacements in which the responses are an expansion of
n (admissible and linearly independent) shape functions result in n dimensional matrix equations of
motion. Examples of mass and stiffness matrices for higher dimensional approximations are given in
equations (13), (14), (15), and (16). This problem is slightly more complex as it involves a spring, a
damper, and a concentrated mass.
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Applying the principle of superposition, expressions for the internal and external virtual work corre-
sponding to each of these various components may be taken individually.

Work of the inertial force of the distributed mass of the beam, mv(x,t)dx, moving through virtual
displacements dv(z, t)

Gr(t) 6g;(t)

M=3 % | [m(a) 0(x) vue) do

Work of the inertial force of the point mass of the beam, M#(L,t) moving through virtual displace-
ments dv(L,t)

Wi=33 [ /l Mé(z — L) vy () ¢n() d:)s] Gn(t) 84;(t)

Work of the bending moments distributed along the beam, FIv”(x,t) moving through virtual rota-
tions distributed along the beam §v”(x,t) dx

W= S5 | [ BI) v5e) vl) de]axlt) b0t

Work of the spring force, kv(b,t), moving through virtual displacements duv(b,t)

W=3 % [0z = b) y(2) ale) do au(t) dgs(t)

Work of the damper force, co(a,t), moving through virtual displacements dv(a, t)

SW = ZZ[/césﬂ—a () i) dx} an(t) 5q,(0)

Work of the dynamic point force, F'(t), moving through virtual displacements dv(a,t)

Wy =3 UF (x — a) ;(z) do

dq;(1)

Work of the dynamic distributed Force, f(t) dz, moving through virtual displacements dv(x,t)

W= 3 | [ rtet) v a0

J

Work of the uniform axial force, P, moving through distributed virtual end shortening v'(z, t)0v'(z, t)dx

W= S| [ Pe) v5(0) vh(a) de () by (1)
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Each j, k term within the square brackets corresponds to the j, k term of a mass, damping, or stiffness
matrix. In these derivations, d(z — a) is the Dirac delta function, which has the defining property,

The evaluation of the associated derivatives and integrals can be easily carried out using symbolic
manipulation software like Mathematica, Maple, or Wolfram-a.

: login-teer-12 Sun Sep 02 14:11:35 ~

: maple ## EVALUATE INTEGRALS . ... ..ttt
N7/ Maple 2017 (X86 64 LINUX)

._INI |/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2017

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____ > Waterloo Maple Inc.

| Type ? for help.
## MASS MATRIX TERMS ....... ittt
## INPUT THE SHAPE FUNCTION EQUATIONS ....................

> mll := int(m*pl*pl,x=0..L);
> pl = (3/2)*(x/L)"2 - (1/2)*(x/L)"3; 33mlL
2 3 mil := -——-—-
3 x X 140
pl := —=== - ———-
2 3 > mi12 := int(m*pl*p2,x=0..L);
2L 2L 37 m L
mi2 := - -----—-
> p2 := 8*(x/L)"3 - T*(x/L)"2; 420
3 2
8 x 7 x > m22 := int(m*p2*p2,x=0..L);
o R T — 20m L
3 2 m22 := ------
L L 105
## EVALUATE DERIVITIVES . ...ttt > M11 := eval(M*pl*pl,x=L);
Mi11 := M
> dpl := diff(pil,x); > M12 := eval(M*pl*p2,x=L);
2 M12 := M
3x 3x
dpl := --= - —-—-- > M22 := eval(M*p2*p2,x=L);
2 3 M22 := M
L 2L
> ddpl := diff(dpil,x); ## STIFFNESS MATRIX TERMS ...ttt
3 3 x
ddpl := ---- - -—- > EI11 := int(EI*ddpl*ddpl,x=0..L);
2 3 3 EI
L L EI11 := ———-
3
> dp2 := diff(p2,x); L
2
24 x 14 x > EI12 := int(EI*ddpl*ddp2,x=0..L);
dp2 = ————= - -——- 3 EI
3 2 EI12 := --——-
L L 3
L
> ddp2 := diff(dp2,x);
48 x 14 > EI22 := int(EI*ddp2*ddp2,x=0..L);
ddp2 := —--- - ———- 292 EI
3 2 EI22 := -————-
L L 3
L
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> k11 := eval(k*pl*pl,x=b);
> k11 := simplify(ki11l);
4 2
kb (3L -Db)
S R T —
6
4L
> k12 := eval(k*pl*p2,x=b);
> k12 := simplify(k12);
4
kb (B3L-Db) (8b-71L)
k12 :=
6
2L
> k22 := eval(k*p2*p2,x=b);
> k22 := simplify(k22);
4 2
kb (TL-8hb)
K22 i= —=mmmmmmmmmmmmmee
6
L
## DAMPING MATRIX TERMS ......... ..ottt
> c11 := eval(c*pl*pl,x=a);
> c11 := simplify(cil);
4 2
ca (BL-a
cll = ——————————————-
6
4 L
> ¢c12 := eval(c*pl*p2,x=a);
> c12 := simplify(c12);
4
ca (B3L-a) (8a-71L)
cl2 :=
6
2L
> c22 := eval(c*p2*p2,x=a);
> ¢22 := simplify(c22);
4 2
ca (8a-70L)
C22 = —————————————————
6
L

CEE 541. Structural Dynamics — Duke University — Fall 2020 — H.P. Gavin

## EXTERNAL FORCING TERMS

> F1 :

eval (Fxpl,x=a);

simplify(F1);

F1 :

eval (Fxp2,x=a) ;

simplify(F2);

int (fo*pl,x=b..L);

simplify(£f1);

int (fo*p2,x=b..L);

simplify(£2);

f2 = -

## GEOMETRIC STIFFNESS TERMS ..

> P11

> P12

> P22

int (Pxdpl*dpl,x=0..L);

int (P*dpl*dp2,x=0..L);

int (P*dp2*dp2,x=0..L);

2
Fa (3L -a)
3
2 L
2
Fa (8a-70L)
3
L
4 3 4
fo 3L -4Lb -b)
3
8L
4 3 4
fo(L -7Lb +6b)
3
3L
6 P
P11 := ---
5L
41 P
P12 := --—-
20 L
188 P
P22 := —--—-
15 L
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The resulting equations of motion in terms of generalized coordinates, ¢;(¢) and ¢»(t) are

BmL+M —2mL+M 7 [ @)

—SmL+M  EmL+M || )

» (3L4—a)2 (SL—a)é&l—”) q1(¢)
+ R
L6 ;
BLaEeTh (g 70)2 | [ 6alt)
o |G e g )

L8| senwern g gy || ()

ET 3 3 q1 (t)

+ -
3
L2 13 202 | | ault)
a2 —a — —
pls = ][a® SRRSO [F)
_ _ (17)
L )
uows || g s _pomaet | | £

With the scaling of the dimensionless shape functions, ©;(L) = ¥9(L) = 1, ¢:(t) and ¢o(t) are the
values of v(L, t) corresponding to 4 (x) and ¢9(x). With the dimensionless formulation of the shape
functions, every term in this equation has units of force.

This example is an introduction to methodologies that are invoked later in the course.

For more complex geometries, for example, beams with tapered sections, the derivation can become
very complex, and the analysis is more easily carried out numerically.

The same example, computed with matlab, is:

%% DEFINE NUMERICAL VALUES FOR CONSTANTS

EI = 1eT7; % flexural rigidity N.m"2
k = 1le2; % concentrated stiffness N/m

m = 1e0; % distributed mass kg/m

M = 1lel; % lumped mass kg

c = 0.1; % spring damping rate N/m/s
L = 10; % overall length m

a = 3; % location of damper m

b = 5; % location of spring m

dx = 0.01; % increment of length along the beam
x=[02:dx : L1]1; % x-axis

xa = round(a/dx);

xb = round(b/dx);
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Yy
pl

p2

Do

dp1l
ddp

dp2
ddp

CEE 541. Structural Dynamics — Duke University — Fall 2020 — H.P. Gavin

INPUT THE SHAPE FUNCTION EQUATIONS ....................

EV

1

2

(8/2)*(x/L)."2 = (1/2)*(x/L)."3;

8% (x/L)."3 - 7T*x(x/L)."2;

ALUATE DERIVITIVES ........tinttiiiiiiiininnnennnnn

cdiff (pl)/dx;
cdiff (dpl)/dx;

cdiff (p2)/dx;
cdiff (dp2)/dx;

%% EVALUATE INTEGRALS ...ttt ineieie e ienenanannnns

%% MASS MATRIX TERMS ...ttt

mil
mi2
m22

M11
M12
M22

= trapz(m*pl.*pl)*dx;

trapz (m*pl*p2)*dx;
trapz (m*p2*p2) *dx;

= Mxp1(end)*pl(end);

M*p1(end) *p2(end) ;
M*p2 (end) *p2(end) ;

%% STIFFNESS MATRIX TERMS ........ccuiiniiniiniinininnnnnnnn

EI1
EI1
EI2

ki1
k12
k22

1
2
2

trapz(EI*ddpl.*ddpl) *dx;
= trapz(EI*ddpl.*ddp2)*dx;
trapz (EI*ddp2.*ddp2) *dx;

k*p1(xb)*pl(xb);
k*pl(xb)*p2(xb) ;
k*p2 (xb) *p2 (xb) ;

%% DAMPING MATRIX TERMS . ......ooitininiiiiiiiienennnnn.

cl1
cl2
c22

hh

F1
F2

f1
f2

hh

P11

P12
P22

EX

GE

cxpl(xa)*pl(xa);
c*pl(xa)*p2(xa);
cxp2(xa)*p2(xa) ;

TERNAL FORCING TERMS ..... ..ottt

Fxpl(xa);
Fxp2(xa);

trapz(foxpl(xb:L))*dx;
trapz (foxp2(xb:L))*dx;
OMETRIC STIFFNESS TERMS .........citttiiiiiiineinnn.
trapz (P*dpl.*dpl) *dx;

trapz (P*dpl.*dp2) *dx;
trapz (P*dp2. *dp2) *dx;

@®®E H.P. Gavin March 27, 2024


http://creativecommons.org/licenses/by-nc-nd/4.0/

	An introductory example of potential energy in elastic structures and virtual work
	Strain Energy in Elastic Solids
	External Work
	Internal Strain Energy 
	The Principle of Real Work
	Strain energy in slender structural elements

	Virtual Work in Elastic Solids — The Principle of Virtual Displacements 
	Work of axial loads and transverse displacements in slender structural elements

	The Principle of Virtual Displacements for Dynamic Loading
	Generalized Coordinates
	Choice of Shape Function
	Examples
	Example 1: a single generalized coordinate, choice of two shape functions
	Example 2: a single generalized coordinate
	Example 3: the same example with two shape functions and two generalized coordinates


