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Abstract

A re®ned laminated plate theory and three-dimensional ®nite element based on ®rst-order zig-zag sublaminate approximations

has been developed. The in-plane displacement ®elds in each sublaminate are assumed to be piecewise linear functions and vary in a

zig-zag fashion through-the-thickness of the sublaminate. The zig-zag functions are evaluated by enforcing the continuity of

transverse shear stresses at layer interfaces. This in-plane displacement ®eld assumption accounts for discrete layer e�ects without

increasing the number of degrees of freedom as the number of layers is increased. The transverse displacement ®eld is assumed to

vary linearly through-the-thickness. The transverse normal strain predictions are improved by assuming a constant variation of

transverse normal stress in each sublaminate. In the computational model, each ®nite element represents one sublaminate. The ®nite

element is developed with the topology of an eight-noded brick, allowing the thickness of the plate to be discretized into several

elements, or sublaminates, where each sublaminate can contain more than one physical layer. Each node has ®ve engineering degrees

of freedom, three translations and two rotations. Thus, this element can be conveniently implemented into general purpose ®nite

element codes. The element sti�ness coe�cients are integrated exactly, yet the element exhibits no shear locking due to the use of an

interdependent interpolation scheme and consistent shear strain ®elds. Numerical performance of the current element is investigated

for a composite armored vehicle panel and a sandwich panel. These tests demonstrate that the element is very accurate and

robust. Ó 2000 Published by Elsevier Science Ltd.
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1. Introduction

Fiber reinforced laminated composites are often used
in structural members due to better sti�ness-to-weight
and strength-to-weight ratios than those of conventional
monolithic materials. Common characteristics of lami-
nated composites are that the material properties are
orthotropic in the laminate plane, the ratio of transverse
shear modulus to in-plane modulus is low and layers are
laminated through-the-thickness. Therefore, unlike ho-
mogeneous isotropic materials, the behavior of lami-
nated composites is unique and complicated at both the
global and the local levels. The early laminated com-
posites were applied to thin structures and were designed
to withstand mainly in-plane tension loads. But recently
they are also employed for primary load-carrying
structural members in automobile front aprons, bridge
frames, submarine hulls and aircraft because of ad-
vances in their manufacturing techniques. Such recent

applications of composite materials involve the use of
thick-section laminates and/or sandwich construction
that contains a thick core between face sheets. Such
structures are typically designed to withstand complex
mechanical loading states and harsh environmental
conditions.

Many plate theories have been developed on the basis
of various kinematic assumptions to predict the re-
sponse of laminates more accurately. Comprehensive
reviews of the literature on the development of modern
plate theories have recently been carried out by several
authors [1±6]. Plate theories are usually classi®ed by the
form of their assumed displacement ®elds. Such models
can roughly be divided into three categories: equivalent
single layer theories, layerwise theories, and zig-zag in-
plane displacement theories. In the equivalent single
layer approach, the material properties of all the layers
are `smeared', and the laminate is modeled as an
equivalent single anisotropic layer. The most popular of
these theories is the ®rst-order shear deformation theory
(FSDT) [7], which assumes that a line originally straight
and normal to the reference surface remains straight
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during deformation but not necessarily perpendicular to
the reference surface. This theory yields good predic-
tions of overall laminate behavior (e.g., de¯ections,
natural frequencies, and buckling loads) and in-plane
stresses provided the plate is thin and the material
properties of adjacent layers do not di�er signi®cantly.
However, FSDT does not account for warpage of the
cross section, which may be signi®cant in laminated
composites. In order to reduce the inaccuracies of the
FSDT, higher-order shear deformation theories (HSDT)
were proposed (e.g., [8±10]). In these models, it is
assumed that the displacements are of higher-order
polynomial form and are C1 continuous through-the-
thickness. These assumptions permit nonlinear variations
of displacements, strains and stresses through-the-
thickness, and thus warpage of the cross section. How-
ever, even though they often can predict well the gross
behavior of thin and some moderately thick laminates,
all equivalent single layer theories have a common
shortcoming. They are unable to account for the
sometimes severe discontinuities in transverse shear
strains that occur at interfaces between two adjacent
layers with drastically di�erent sti�ness properties. In
these cases, the local deformations and stresses, and
sometimes even the overall laminate response, are not
well predicted.

In an e�ort to overcome the shortcomings of the
equivalent single layer approach, discrete-layer (or lay-
erwise) theories have been proposed (e.g., [11±14]).
These theories are based on a unique displacement ®eld
for each layer and enforce interlaminar continuity of
displacements and sometimes of transverse stresses, as
well. These theories predict excellent global and local
distributions of in-plane and out-of-plane displacements
and stresses. The major shortcoming in these theories is
their large computational expense, for as the number of
layers increases, the number of degrees of freedom
increases proportionally.

A new class of laminate theory, called here the ®rst-
order zig-zag theory (FZZT), was developed by DiSci-
uva in the mid 1980s [15,16]. In this theory, in-plane
displacements in a laminate are assumed to be piecewise
(layerwise) linear and continuous through-the-thickness,
yet the total number of degrees of freedom is only ®ve
(not dependent on the number of layers). This is ac-
complished by analytically satisfying the transverse
shear stress continuity conditions at each interface in the
laminate. This theory was shown to be very accurate for
many cases, especially symmetric laminates. On the ba-
sis of the concept introduced in [15,16], DiSciuva as well
as other researchers made signi®cant improvements to
the FZZT [17±23]. The primary improvement was
achieved by superimposing a piecewise linear variation
of in-plane displacements on a continuous cubic func-
tion of the transverse coordinate [17,18,21±23], creating
a displacement ®eld that can better account for the

warping that occurs during bending of unsymmetric
laminates. These latter theories, denoted here as higher-
order zig-zag theories (HZZT), also satisfy the homo-
geneous shear traction boundary conditions at the top
and bottom surfaces of the laminate in order to main-
tain the number of degrees of freedom at ®ve. This class
of theories appears to have an ideal combination of
accuracy and e�ciency, making them well-suited for use
in computational simulations. However, these theories
have the unfortunate shortcoming that the transverse
de¯ection degree of freedom w0 is required to be C1

continuous, so that Hermitian-type interpolation of w0

must be used within the ®nite element models [15,17].
Thus, additional rotational degrees of freedom (gradi-
ents of w0) are present in the ®nite element models,
making it inconvenient, if not impossible, to implement
the ®nite element models based on these theories into
commercial ®nite element software packages that allow
only six degrees of freedom ± three translations and
three rotations.

Averill proposed a generalized form of the ®rst-order
zig-zag theory [20] and a generalized form of the higher-
order zig-zag theory [21] for beams to alleviate the re-
quirement of C1 continuity on the transverse de¯ection.
A new variable was introduced along with an associated
constraint condition which was enforced by employing
an interdependent (anisoparametric) element interpola-
tion scheme and the penalty method. On the basis of the
theories, C0 two-noded elements were developed. These
elements were shown to be simple, robust and accurate
for application to thick and thin laminated beams.
However, these models still contained one additional
rotational degree of freedom, and it was found that for
very thick and complex laminates, more re®nement
through-the-thickness was needed.

Yip and Averill developed a model for laminated
beams [22] and plates [23] that combined the bene®ts of
the discrete-layerwise and higher-order zig-zag theories.
This model allows the laminate to be subdivided into a
number of sublaminates, with each sublaminate con-
taining several, even many, physical layers. Within each
sublaminate, very accurate higher-order zig-zag kine-
matics are assumed in which degrees of freedom de-
scribe displacements, rotations, and transverse shear
stresses (tractions or interlaminar stresses) at the top
and bottom surfaces of the sublaminate. Each ®nite
element represents one sublaminate, and, if cast in the
form of a four-noded quadrilateral (for beams) or an
eight-noded brick (for plates), re®nement of a model by
through-thickness discretization can be achieved with-
out the use of any special constraints. When only one
sublaminate is used through the entire thickness of the
laminate, nodal degrees of freedom are three transla-
tions and two rotations. However, when multiple ele-
ments (sublaminates) are needed to model a laminate,
additional shear stress degrees of freedom are present,
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making the element unsuitable for implementation into
many of the current commercial ®nite element codes.

In this paper, a re®ned plate theory based on subla-
minate linear zig-zag kinematics and a new 3-D ®nite
element based on that theory are developed. The new C0

element contains eight nodes of which each has only ®ve
engineering degrees of freedom ± three translations and
two rotations. The element is shown to be accurate,
simple to use, and compatible with the requirements of
commercial ®nite element codes.

2. Formulation of the theory

In this plate theory, a laminate will be modeled as M
sublaminates, and each sublaminate is assumed to
consist of Nm perfectly bonded layers which have in-
dependent thickness and independent sti�ness proper-
ties. The total number of layers, N, in the laminate is
given by

N �
XM

m�1

Nm: �1�

The global Z-axis is taken perpendicular to the in-plane
X ; Y coordinate axes and has its origin at the bottom of
the laminate, while z is a local sublaminate coordinate in
the direction of Z with its origin at the bottom of the
sublaminate (see Fig. 1). In the following derivation all
expressions are related to the mth sublaminate in order
to facilitate the development of a computationally con-
venient ®nite element model. All indices indicating the
sublaminate number are omitted for brevity.

The constitutive relations for a three-dimensional
stress state in the kth layer of the mth sublaminate can
be written as

r�k�xx

r�k�yy

r�k�zz

r�k�yz

r�k�zx

r�k�xy

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;

�

C�k�11 C�k�12 C�k�13 0 0 C�k�16

C�k�12 C�k�22 C�k�23 0 0 C�k�26

C�k�13 C�k�23 C�k�33 0 0 C�k�36

0 0 0 C�k�44 C�k�45 0

0 0 0 C�k�45 C�k�55 0

C�k�16 C�k�26 C�k�36 0 0 C�k�66

266666666664

377777777775

e�k�xx

e�k�yy

e�k�zz

c�k�yz

c�k�zx

c�k�xy

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
: �2�

For most practical laminated composites, the 13 coe�-
cients of the material sti�ness matrix are obtained from
nine independent material constants and a transforma-
tion law.

The sublaminate displacement ®elds are initially
assumed in the following form:

u�k�x �x; y; z; t� � ub � zwx �
Xkÿ1

i�1

�zÿ zi�ni;

u�k�y �x; y; z; t� � vb � zwy �
Xkÿ1

i�1

�zÿ zi�gi;

u�k�z �x; y; z; t� � wb 1
�
ÿ z

h

�
� wt

z
h

� �
;

�3�

where h is the thickness of the sublaminate, ub and vb are
the axial displacements in x and y directions, respec-
tively, at z� 0, wx and wy the rotations of the normal at
z� 0, and wb and wt are the transverse de¯ections of the
bottom and top surfaces, respectively, of the mth su-
blaminate. Thus, it is assumed that u�k�x and u�k�y vary in a
piecewise linear fashion through-the-thickness of a su-
blaminate and u�k�z varies linearly through-the-thickness.
The parameters ni and gi in Eq. (3) are eliminated by
enforcing the continuity of shear stress at each interface
[15,16]. The shear stress continuity condition at the kth
interface can be expressed as

r�k�yz � r�k�1�
yz ; r�k�zx � r�k�1�

zx : �4�
Assuming that in®nitesimal strain theory holds, the
form of the assumed displacement ®elds in Eq. (3) is
such that the in-plane displacements u�k�x and u�k�y con-
tribute only constant (i.e., no variation in z) terms to the
transverse shear stresses, r�k�yz and r�k�xz . For consistency,
then, the transverse displacement u�k�z should also con-
tribute only constant terms to these stress components.
In order to achieve this consistency, terms in the trans-
verse shear strain expressions that involve the transverse
displacement variables are evaluated at the mid-plane of
the sublaminate, thereby taking a thickness-averaged

Fig. 1. Schematic representation of sublaminate and layer divisions in

the laminated plate theory.
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value of these terms. This approach is equivalent to ig-
noring the e�ect of transverse normal strain on the
transverse shear strains, a very good assumption for
most laminates. Thus, the transverse shear strains in the
kth layer are

c�k�zx � wx �
Xkÿ1

i�1

ni �
1

2

owb

ox

�
� owt

ox

�
;

c�k�yz � wy �
Xkÿ1

i�1

gi �
1

2

owb

oy

�
� owt

oy

�
:

�5�

Using Eqs. (2), (4), (5), ni and gi are then found to be

ni � ci wy

�
� 1

2

owb

oy

�
� owt

oy

��
� di wx

�
� 1

2

owb

ox

�
� owt

ox

��
;

gi � ai wy

�
� 1

2

owb

oy

�
� owt

oy

��
� bi wx

�
� 1

2

owb

ox

�
� owt

ox

��
;

�6�

where

ai � âi 1

 
�
Xiÿ1

j�1

aj

!
� b̂i

Xiÿ1

j�1

cj; bi � b̂i 1

 
�
Xiÿ1

j�1

dj

!
� âi

Xiÿ1

j�1

bj;

ci � ĉi 1

 
�
Xiÿ1

j�1

aj

!
� d̂i

Xiÿ1

j�1

cj; di � d̂i 1

 
�
Xiÿ1

j�1

dj

!
� ĉi

Xiÿ1

j�1

bj;

�7�

âk � 1

Dk�1

C�k�1�
55 C�k�44

�
ÿ C�k�1�

45 C�k�45

�
ÿ 1;

b̂k � 1

Dk�1

C�k�1�
55 C�k�45

�
ÿ C�k�1�

45 C�k�55

�
;

ĉk � 1

Dk�1

C�k�1�
44 C�k�45

�
ÿ C�k�1�

45 C�k�44

�
;

d̂k � 1

Dk�1

C�k�1�
44 C�k�55

�
ÿ C�k�1�

45 C�k�45

�
ÿ 1;

Dk�1 � C�k�1�
44 C�k�1�

55 ÿ C�k�1�
45

� �2

:

�8�

From Eqs. (6)±(8) it can be seen that ni and gi depend on
the ratios of shear properties between adjacent layers
and the shear deformation in each sublaminate. If either
of these quantities is small, then discrete-layer e�ects will
also be small.

The rotational variables wx and wy in the displace-
ment ®elds are now eliminated by introducing the vari-
ables ut and vt, the in-plane translations at the top
surface of the sublaminate [22,23], in order to expedite
the development of versatile ®nite element models.
Thus, rather than describing the in-plane displacement
®eld by a translation and rotation at one point, it can
more conveniently be described here by the translation
at two points.

The displacement ®elds must be further manipulated
in order to develop a C0 ®nite element. Because the
derivatives of transverse de¯ections, owb=ox; owt=ox;
owb=oy and owt=oy appear in the displacement ®eld, their
second derivatives will be present in the strain energy
functional. C1 continuity of wb and wt is thus required. It
is desirable to alleviate such a requirement by introduc-
ing new rotational degrees of freedom as follows

owb

ox
� ÿhyb;

owt

ox
� ÿhyt;

owb

oy
� hxb;

owt

oy
� hxt:

�9�

These relationships will be constrained in the strain
energy via the penalty method. Therefore, the displace-
ment ®elds can be written as follows:

u�k�x � �uabU
�k�
ab ; u�k�y � �uabW

�k�
ab ;

u�k�z � wbXb; a � 1; . . . ; 4; b � 1; 2;
�10�

where the index b is used to denote the top and bottom
of the sublaminate with 1: bottom and 2: top, and,
U�k�ab ;W

�k�
ab and Xb are shape functions in the thickness

direction. Unless noted otherwise, summation on
repeated indices is implied. The variables uab are

�u1b � ub; �u2b � vb; �u3b � hxb; �u4b � hyb: �11�
Thus, the strains are obtained from Eq. (10) as

e�k�xx � �uab;xU
�k�
ab ; e�k�yy � �uab;yW

�k�
ab ; e�k�zz � wbXb;z;

c�k�yz � �uabW
�k�
ab;z � wb;yXbjz�h=2;

c�k�xz � �uabU
�k�
ab;z � wb;xXbjz�h=2;

c�k�xy � �uab;yU
�k�
ab � �uab;xW

�k�
ab ;

a � 1; . . . ; 4; b � 1; 2;

�12�

where tensor notations are employed and a comma in
the subscript implies partial di�erentiation. In Eq. (12),
the contributions of the transverse de¯ection to the
transverse shear strains c�k�yz , and c�k�xz are evaluated at the
middle of the sublaminate to ensure constant shear
stresses through-the-thickness of a sublaminate (as dis-
cussed previously).

The transverse normal strain is constant in a subla-
minate. This assumption may give rise to substantial
errors in composites that have a soft core or layer.
Consider a composite composed of three layers, one of
which is very compliant. When the composite is under
loading as shown in Fig. 2(a), the uniform transverse
normal strain distribution through-the-thickness is pre-
dicted from Eq. (12) as in Fig. 2(b). However, the actual
distribution is not uniform. Thus, it is desirable to im-
prove the distribution of the transverse normal strain
through-the-thickness. The improvement can be
achieved by instead assuming a constant transverse
normal stress, rzz, through-the-thickness of a sublami-
nate. rzz can be determined using Reissner's mixed
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variational principle [24]. From Eq. (2), the transverse
normal strain is obtained as

�e�k�zz � ÿ
C�k�13

C�k�33

e�k�xx ÿ
C�k�23

C�k�33

e�k�yy ÿ
C�k�36

C�k�33

c�k�xy �
1

C�k�33

rzz: �13�

rzz is then determined analytically from the following
relation:

0 �
XN

k�1

Z zk

zkÿ1

�e�k�zz

�
ÿ wt ÿ wb

h

�
dz: �14�

The constant transverse normal stress rzz is found to be

rzz � oub

ox
�P1 � S6� � out

ox
�P2 ÿ S6� � ovb

ox
�P3 � S7�

� ovt

ox
�ÿP3 � S8� � ohyb

ox
�P4 � S9�

� ohyt

ox
�P4 � S9� � ohxb

ox
�P5 � S10�

� ohxt

ox
�P5 � S10� � oub

oy
�Q1 � S1�

� out

oy
�ÿQ1 � S2� � ovb

oy
�Q2 � S3�

� ovt

oy
�Q3 ÿ S3� � ohyb

oy
�Q4 � S4�

� ohyt

oy
�Q4 � S4� � ohxb

oy
�Q5 � S5�

� ohxt

oy
�Q5 � S5� � wb�ÿT1� � wt�T1�; �15�

where the coe�cients are de®ned in Appendix A. The
newly de®ned transverse normal strain can now be
written as

e�k�zz � �uab;xk
�k�
xab � �uab;yk

�k�
yab � wbvb;

a � 1; . . . ; 4; b � 1; 2; �16�
where the functions k�k�xab, kyab and vb are de®ned in the
Appendix A.

The equations of motion, the essential and natural
boundary conditions, as well as the displacement-based

®nite element model can be developed from Hamilton's
principle. Again, attention will be limited to a single
sublaminate. The energy functional is modi®ed here to
include the imposition of the constraints (9) via the
penalty method. Hamilton's principle for the mth
sublaminate can be de®ned as follows:

d
Z t1

t0

fU ÿ K ÿ W � Pgdt � 0: �17�

U is the internal strain energy

U �
XNm

k�1

Z
Vk

1

2
r�k�xx e�k�xx

h
� r�k�yy e�k�yy � r�k�zz e�k�zz � r�k�yz c�k�yz

� r�k�zx c�k�zx � r�k�xy c�k�xy

i
dVk; �18�

where Vk is the volume of the kth layer. K is the kinetic
energy

K �
XNm

k�1

Z
Vk

1

2
q�k� _u�k�

2

x

�
� _u�k�

2

y � _u�k�
2

z

�
dVk; �19�

where q�k� is the density of the kth layer and a super-
posed dot indicates di�erentiation with respect to time.
W is the work of external forces

W �
Z

X
waPa dX�

Z
C

tiui dC; �20�
Pa � concentrated forces; ti � rijnj;

a � 1; 2; i � 1; 2:

P is the penalty constraint

P � c
2

Z
X

X2

b�1

u3b

�("
ÿ owb

oy

�2

� u4b

�
� owb

ox

�2
)#

dX; �21�

where c is the penalty parameter. As c is assigned suc-
cessively larger values, the constraints of Eq. (9) are
satis®ed more exactly in the least squares sense. In the
internal strain energy expression, Eq. (18), the transverse

Fig. 2. (a) A composite under transverse tension load and (b) the corresponding transverse strain distribution through the thickness.
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normal stress terms require special attention. The con-
stant transverse normal stress leads to an asymmetric
sti�ness matrix. Thus, rzz from the constitutive equa-
tions, Eq. (2), instead of the constant transverse normal
stress, should be employed. Substituting Eqs. (10), (12),
(16), (18)±(21) into Eq. (17), taking the variation of
Eq. (17), and integrating by parts, Eq. (17) can be re-
written as

Z t1

t0

Z
X

d�uab

( 24 ÿ oNxab

ox
ÿ oNyab

oy
ÿ oNzab

ox
ÿ oQzab

oy

� Qyab � Qxab ÿ oRxyab

oy
ÿ oRyxab

ox
ÿ c �uab

�
ÿ owb

oy

�
d3a

ÿ c �uab

�
� owb

ox

�
d4a � o2�urp

ot2
Iu
abrp �

o2�urp

ot2
Iv
abrp

)

� dwb Rzb

(
ÿ oRyb

oy
ÿ oRxb

ox
ÿ Pb ÿ c

o�u3b

oy

 
ÿ o2wb

oy2

!

� c
o�u4b

ox

 
ÿ o2wb

ox2

!
� o2wp

ot2
Iw
bp

)!
dX

�
I

s

d�uab Nxabnx

��
� Nyabny � Nzabnx � Qzabny

� Rxyabny � Ryxabnx

	� dwb Rybny

�

� Rxbnx � cny �u3b

�
ÿ owb

oy

�
ÿ cnx �u4b

�
� owb

ox

���
ds

�
Z

s

XNm

k�1

Z zk

zkÿ1

r�k�1j njd�uabU
�k�
ab

�

� r�k�2j njd�uabW
�k�
ab

�
dzds

35dt� 0

�a; r � 1; . . . ; 4; b; p � 1; 2�; �22�

where Nxab; Nyab; Nzab; Qzab; Qyab; Qxab; Rxyab; Ryxab;
Rzb; Ryb; Rxb are the sublaminate stress resultants
shown in the Appendix A, nx; ny the directional co-
sines, Iu

abrp; Iv
abrp; Iw

bp, the plate inertias de®ned in the
Appendix A, and dab is the Kronecker delta. Consid-
ering that variations of the generalized displacement
degrees of freedom are independent for t0 < t < t1 and
zero for t � t0; t1, the equations of motions are derived
as

d�uab :
oNxab

ox
� oNyab

oy
� oNzab

ox
� oQzab

oy

ÿ Qyab ÿ Qxab � oRxyab

oy
� oRyxab

ox

� c �uab

�
ÿ owb

oy

�
d3a � c �uab

�
� owb

ox

�
d4a

� o2�urp

ot2
Iu
abrp �

o2�urp

ot2
Iv
abrp;

dwb :
oRyb

oy
� oRxb

ox
ÿ Rzb � Pb � c

o�u3b

oy

 
ÿ o2wb

oy2

!

ÿ c
o�u4b

ox

 
� o2wb

ox2

!
� o2wp

ot2
Iw
bp:

�23�
The corresponding boundary conditions are

Essential BC Natural BC

�uab : �Nxabnx � Nyabny � Nzabnx � Qzabny

� Rxyabny � Ryxabnx�

�
XNm

k�1

Z zk

zkÿ1

r�k�1j njU
�k�
ab

�
� r�k�2j njW

�k�
ab

�
dz;

wb : Rybny � Rxbnx � cny �u3b

�
ÿ owb

oy

�
ÿ cnx �u4b

�
� owb

ox

�
:

�24�

3. Finite element formulation

Since the primary variables are functions of x, y and t
only in Eq. (22), we need to consider only two-dimen-
sional shape functions for the ®nite element model. The
most obvious element to be developed would be a simple
four-noded plate element with 10 degrees of freedom per
node (®ve bottom surface d.o.f + ®ve top surface d.o.f).
However, such an element would not fall within the
constraints of having three translational and three ro-
tational degrees of freedom per node. (Most available
commercial codes do not allow more than six d.o.f per
node.) Even more importantly, a major advantage of the
present formulation would be lost if a traditional four-
noded element were developed. Because the degrees of
freedom represent quantities at the surfaces of a subla-
minate (this was not by chance), it is most reasonable to
develop the ®nite element model in the form of an eight-
noded element with ®ve degrees of freedom per node
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(see Fig. 3). Such elements are classi®ed here as
``regenerated,'' in contrast to the popular ``degenerated''
shell elements obtained by imposing constraints on solid
elements. This approach has been used with great suc-
cess [22,23], and has the very important advantage of
allowing discretization in both in-plane and through-
thickness directions without the need for any special
multi-point constraints. Elements are assembled in the
standard way. Therefore, the element can be used to
predict the global response of a laminate using only one
(or a small number) of elements through-the-thickness,
and local e�ects such as interlaminar stresses can be
captured by re®ning the mesh in the thickness direction
near the interface(s) of interest. The capability of dis-
cretization in the through-thickness direction also en-
ables one to simulate the separation of laminated
composites due to delamination.

In-plane displacement and rotational degrees of
freedom are approximated by the bilinear Lagrange
interpolation functions:

�u1b �
X4

i�1

ubiPi; �u2b �
X4

i�1

vbiPi;

�u3b �
X4

i�1

hxbiPi; �u4b �
X4

i�1

hybiPi;

�25�

where

Pi � 1

4
�1� nin��1� gig� �26�

and n; g are the element natural (local) coordinates. For
transverse de¯ection degrees of freedom, an interde-
pendent interpolation concept similar to that developed
by Tessler and Hughes [25] is utilized (see [23] for
details) as follows:

w �
X4

i�1

�Piwi � Nxihxi � Nyihyi�; �27�

where Nxi and Nyi depend on Ni�4 and the projections of
each edge onto x and y axes:

Nx1 � ÿ 1

8
�y12N5 ÿ y41N8�;

Ny1 � 1

8
�x12N5 ÿ x41N8�;

Nx2 � ÿ 1

8
�y23N6 ÿ y12N5�;

Ny2 � 1

8
�x23N6 ÿ x12N5�;

Nx3 � ÿ 1

8
�y34N7 ÿ y23N6�;

Ny3 � 1

8
�x34N7 ÿ x23N6�;

Nx4 � ÿ 1

8
�y41N8 ÿ y34N7�;

Ny4 � 1

8
�x41N8 ÿ x34N7�;

�28�

where

N5 � 1

2
�1ÿ n2��1ÿ g�;

N6 � 1

2
�1ÿ g2��1� n�;

N7 � 1

2
�1ÿ n2��1� g�;

N8 � 1

2
�1ÿ g2��1ÿ n�;

xij � xi ÿ xj; yij � yi ÿ yj:

�29�

The interdependent interpolation scheme alleviates
the shear locking problem but does not eliminate it to-
tally. The element developed using this scheme still locks
in the very thin regime. Prathap and Somashekar found
that the source of the shear locking phenomenon comes
from inconsistency of the transverse shear strain ®elds
with respect to the in-plane coordinates, x and y [23,26].
Thus, in order to prevent the shear locking phenome-
non, we need to make the transverse shear strain ®elds
®eld consistent. This is performed using the approach
presented in [26] (see also [23]).

Even with the choice of ®eld-consistent transverse shear
strain ®elds, the element still locks if edge-consistency of
transverse shear strains on any common inter-element
edge is not met, especially for general quadrilateral
elements. It is crucial to ensure matching of the tan-
gential shear strain on any common inter-element edge.
Mismatch of tangential shear strain will give rise to
spurious constraints on the edges when the shape of
elements are general quadrilaterals. This stems from the
fact that when the ®eld consistent covariant transverse
shear strain is mapped back into global cartesian coor-
dinates from the covariant frame, jacobian transforma-
tions of two adjoining elements at their own integration

Fig. 3. Element topology and nodal degrees of freedom.
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points will rede®ne this consistency, and cause a
mismatch of tangential shear strain at the common edge.
Thus, the choice of sampling points of the jacobian
transformations plays a very important role in edge
consistency of tangential shear strain at the common
edge. Prathap and Somashekar [26] showed that the
consistency of tangential shear strain along a common
edge between two elements is maintained by trans-
forming ®eld consistent shear strains in the covariant
frame into global cartesian ®elds at each node of the
element instead of at Gauss integration points. In this
way, edge consistency in the ®eld consistent covariant
penalty constraint ®elds can be treated as well. The
consistent de®nitions of the shear strain ®elds and the
penalty constraint will eliminate locking problems due
to spurious constraints and an exact numerical integra-
tion rule can be used to evaluate all components of the
shear strain energy.

4. Numerical results

The accuracy of the proposed laminated plate theory
and the appropriateness of the ®nite element model were
assessed by simulating the response of two di�erent
simply supported laminated plates subjected to a
transverse double sinusoidal loading as shown in Fig. 4.
The elasticity solution of Burton and Noor [27] and the
predictions based on the ®rst-order shear deformation
theory (FSDT) [7] were used to provide comparison
with the current plate results (FZZ3D). For a given lo-
cation in the plane of the plate, explicit expressions for
the through-thickness variation of stresses are provided
by the present model. In the plane of the plate, stresses
were evaluated at the centroid of each element, where
stress is super-convergent [28]. The bending stresses
presented in the forthcoming discussion were evaluated
at the center of the element that is nearest to the center

of the plate. The transverse de¯ections are obtained at
the top surface of the center of the plate where load is
applied. The in-plane displacements are obtained at the
edges of the plate where x� 0 and y � a=2 (for ub dis-
placement) or y� 0 and x � a=2 (for mb displacement),
and a is the length of each side of the plate. Due to the
symmetry of the panels, only a quarter of the plate was
modeled in each case. A uniform mesh of 8� 8 elements
was utilized in the plane of a quarter of the plate, and
the through-thickness discretization was varied to assess
the utility of the present models. A length-to-thickness
aspect ratio of four was chosen in the present examples
in order to highlight the ability of the present model to
obtain accurate results for very thick laminates via
through-thickness re®nement of the mesh.

4.1. Example 1: CAV panel

The ®rst example is a panel similar to the US Army
TACOM's Composite Armored Vehicle (CAV). Mate-
rial properties used in the analysis are given in Table 1.
The laminate consists of 55 layers and is 4.3 cm (1.7 in.)
thick. The laminate can be divided into three sections, as
described below:
· Inner shell: Four plies of S-2 Glass/Phenolic fabric

with stacking sequence {�902=02�} (ply thickness�
2.54 ´ 10ÿ4 m (0.01 in.)). Thirty-seven plies of
S-2 Glass/8553-40 Epoxy tows with stacking se-
quence f�0=90�; �45=ÿ 45=0=90�4; �45=0=45�; �90=0=
ÿ45=45�4g (ply thickness� 5.334 ´ 10ÿ4 m (0.021 in.)).

· Armor core: One layer of EPDM rubber (ply thick-
ness� 1.778 ´ 10ÿ3 m (0.0625 in.)) and one layer of
ceramic tile with inserts (ply thickness� 1.778 ´ 10ÿ2

m (0.7 in.)).
· Outer shell: Twelve plies of S-2 Glass/8553-40 Epoxy

fabric with stacking sequence �0=90=45=ÿ 45=0=90�s
(ply thickness� 2.54 ´ 10ÿ4 m (0.01 in.)).
To allow comparison of predictions of the current

model with the elasticity solution, all layers are oriented
at either 90° or 0° from the reference axis by replacing
all 45° plies with 90° plies and )45° plies with 0° plies.
Two types of through-thickness re®nement were used in
the analyses: (1) a single sublaminate, and (2) three su-
blaminates with a sublaminate for the inner shell, a su-
blaminate for the rubber layer, and a sublaminate for
the ceramic tile layer and the outer shell.

The in¯uence of aspect ratios on transverse de¯ection
is shown in Fig. 5. Eight di�erent aspect ratios were
considered to check a wide range of plate bending be-
havior (a=h� 4, 8, 10, 20, 30, 50, 100, 500, and 1000).
When one sublaminate was used, the error in predicted
de¯ection was about 15% for the case a=h � 4. The use
of three sublaminates resulted in more accurate predic-
tions, with an error of less than 1%. It was observed that
the prediction of transverse de¯ection converges rapidly

Fig. 4. Simply supported laminated composite plate subjected to si-

nusoidal loading.
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to the exact solution as more sublaminates are used. In
Fig. 6, the variation of in-plane displacement, ux,
through-the-thickness of the laminate is plotted at x� 0
and y � a=2 for an aspect ratio of four. The exact dis-
tribution of in-plane displacement is approximately

linear within each layer, and globally piece-wise linear
and of zig-zag pattern due to the di�erence in the shear
moduli of adjacent layers. It is shown that the current
model containing only one sublaminate captures the
trends of the distribution of displacement very well,

Fig. 5. Variation of normalized center de¯ection versus plate aspect

ratio at the center of the plate (CAV panel).

Fig. 6. In-plane displacement, u, versus normalized thickness coordi-

nate (CAV panel, a=h � 4).

Fig. 7. Normalized bending stress, rxx, versus normalized thickness

coordinate at the center of the plate (CAV panel, a=h � 4).

Table 1

Material properties for TACOM's composite armored vehicle (CAV) panel

S-2 Glass/Phenolic Fabric S-2 Glass/8553-40 Tow S-2 Glass/8553-40 Fabric EPDM Rubber Ceramic

E11 (GPa) 20.7 42.7 20.7 0.021 34.5

E22 (GPa) 20.7 6.9 20.7 0.021 34.5

E33 (GPa) 8.27 6.9 7.58 0.021 0.86

m12 0.13 0.29 0.13 0.45 0.15

m23 0.18 0.37 0.18 0.45 0.15

m13 0.18 0.29 0.18 0.45 0.15

G12 (GPa) 6.9 2.07 6.9 0.0069 17.24

G23 (GPa) 3.17 2.07 2.69 0.0069 0.059

G13 (GPa) 3.17 2.07 2.69 0.0069 0.059

Fig. 8. Normalized in-plane shear stress, rxy , versus normalized

thickness coordinate at x; y � 0, (CAV panel, a=h � 4).
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while FSDT is unable to simulate such behavior. The
bending stress distribution through-the-thickness is il-
lustrated in Fig. 7. The stress was evaluated at the Gauss
point nearest to the center of the plate. It can be ob-
served that the prediction of in-plane normal stress by
the current model agrees well with the elasticity solution.
The prediction of in-plane shear stress is shown in
Fig. 8. There is signi®cant error in the armor core re-
gion, but predictions of the current model are very good
in other regions of the laminate. The distribution of
transverse shear stress, rxz, through-the-thickness is
shown in Fig. 9. As assumed, this component of stress is
constant in each sublaminate. It is shown that the use of
multiple sublaminates allows the current model to cap-
ture the trends of the through-thickness distribution of
shear stress, but point-wise accuracy is not achieved.

The prediction of transverse normal strain, ezz, is shown
in Fig. 10. When three sublaminates are used, the dis-
tribution of transverse strain is nearly indistinguishable
from the elasticity solution. In Fig. 11, transverse

Fig. 9. Normalized transverse shear stress, rxz, versus normalized

thickness coordinate at x� 0, y � 2=a (CAV panel, a=h � 4).

Fig. 10. Transverse normal strain, ezz, versus normalized thickness

coordinate at the center of the plate (CAV panel, a=h � 4).

Fig. 11. Normalized transverse normal stress, rzz, versus normalized

thickness coordinate at the center of the plate (CAV panel,

a=h � 4).

Table 2

Material properties for sandwich composite plate

Material 1 Material 2 Material 3 Core

E11 (GPa) 6.9 224.8 172.4 0.345

E22 (GPa) 172.4 69.0 6.9 1.034

E33 (GPa) 6.9 69.0 6.9 0.345

m12 0.01 0.10 0.25 0.01

m23 0.25 0.25 0.25 0.15

m13 0.25 0.10 0.25 0.15

G12 (GPa) 3.45 56.6 3.45 0.15

G23 (GPa) 3.45 3.45 1.38 0.29

G13 (GPa) 1.38 56.6 3.45 0.15

Table 3

Lamination scheme for sandwich panel

Layer no. Material Relative thickness

1 1 0.010

2 2 0.025

3 3 0.015

4 1 0.020

5 3 0.030

6 Core 0.800

7 3 0.030

8 1 0.020

9 3 0.015

10 2 0.025

11 1 0.010
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normal stress, rzz, versus normalized thickness coordi-
nate at the center of the plate is illustrated. As assumed,
the model captures about the average value of the exact
distribution in a sublaminate.

4.2. Example 2: Sandwich panel

The second example is a sandwich panel which con-
sists of a thick core between two sets of ®ve face sheets.
The material properties used in the analysis are listed in
Table 2, and the lamination scheme is de®ned in Table 3.
The core occupies 80% of the thickness of the plate,
while each set of face sheets contains ®ve layers and
occupies 10% of the total thickness. Two types of
through-thickness discretization were used in the ana-

lyses: (1) a single sublaminate, (2) three sublaminates
with equal thickness.

In Fig. 12, the predicted through-thickness distribu-
tions of in-plane displacement are illustrated. All pre-
dictions were very accurate in the upper and lower face
sheet regions, but there were signi®cant errors in the
core region when only one sublaminate was used. These
errors were due to the very large transverse shear strains
and transverse squashing in the core of this thick
sandwich plate. The nonlinear variation of in-plane
displacement in this region could not be captured ac-
curately by a single sublaminate in the core region. For
thinner plates (i.e., a=h greater than about 10), the in-
plane displacements through-the-thickness are predicted
satisfactorily using a single sublaminate through the

Fig. 13. Normalized bending stress, rxx, in face sheets versus nor-

malized thickness coordinate (Sandwich plate, a=h � 4).

Fig. 14. Normalized in-plane shear stress in the face sheets, rxy , versus

normalized thickness coordinate at x; y � 0, (CAV panel, a=h � 4).
Fig. 12. In-plane displacement, u, versus normalized thickness coor-

dinate (Sandwich panel, a=h � 4).

Fig. 15. Normalized transverse shear stress, rxz, versus normalized

thickness coordinate at x� 0, y � 2=i (Sandwich panel, a=h � 4).
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entire thickness of the laminate. To assess the bending
stress, rxx, more clearly, the stress distribution in the
upper face sheet region is enlarged and shown in Fig. 13.
It can be observed that the current ®nite element model
using only one sublaminate predicts the stress distribu-
tion in the face sheets fairly accurately, and even greater
accuracy is achieved with three sublaminates. In Fig. 14,
in-plane shear stress in the face sheets are predicted. It is
shown in Fig. 15 that the average transverse shear stress
is captured well by the current model. Fig. 16 depicts the
distribution of transverse normal strain, ezz, through-
the-thickness of the laminate. When three sublaminates
were employed, the strain distribution through-the-
thickness is predicted relatively well, capturing the trend
in the core region. Predictions of transverse normal
stress, rzz, versus normalized thickness coordinate at the

center of the plate are shown in Fig. 17. The model
predicts about the average value of the exact distribu-
tion in a sublaminate, and captures the distribution
trends as more elements are used through-the-thickness.

5. Conclusions

An improved ®rst-order zig-zag theory and an asso-
ciated ®nite element model were presented. The model
allows the representation of a laminate as an assemblage
of sublaminates in order to increase the model re®nement
through-the-thickness, when needed. Within each su-
blaminate, an accurate ®rst-order zig-zag sublaminate
kinematic approximation is made which minimizes the
need for multiple sublaminates for many problems of
practical interest yet easily accommodates through-
thickness re®nement for predicting local variations of
stress and deformation. The ®nite element model is `re-
generated' in the form of an eight-noded three-dimen-
sional element with ®ve degrees of freedom (three
translations and two rotations) per node. Thus, it is
suitable for implementation into commercial ®nite ele-
ment codes. Numerical results demonstrate that the
current model is accurate, e�cient, and robust for anal-
ysis of a wide variety of thick or thin laminated plates.
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Appendix A

A.1. Shape functions

The rotational variables wx and wy are eliminated
in favor of the translational variables ut and vt, the
in-plane translations at the top surface of the subla-
minate. In that process the following variables are
obtained:

A � h�
XNm

i�1

�hÿ zi�di; B �
XNm

i�1

�hÿ zi�ci;

C �
XNm

i�1

�hÿ zi�bi; D � h�
XNm

i�1

�hÿ zi�ai;

�D � A � Dÿ B � C;

�A:1�

where h is the thickness of mth sublaminate, and
ai; bi; ci; di are de®ned in Eq. (7).

Fig. 16. Transverse normal strain, �zz, versus normalized thickness

coordinate at the center of the plate (Sandwich panel, a=h � 4).

Fig. 17. Normalized transverse normal stress, rzz, versus normalized

thickness coordinate at the center of the plate (Sandwich panel,

a=h � 4).
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a1 � D
�D
; a2 � ÿ B

�D
;

a3 � fB � C ÿ D � �Aÿ h�g
2�D

; a4 � ÿB � h
2;

b1 � ÿ
C
�D
; b2 �

A
�D
; b3 � ÿ

C � h
2�D

;

b4 �
fB � C ÿ A � �Dÿ h�g

2�D

�A:2�

�A1 � a1 � b1

Xkÿ1

i�1

ci � a1

Xkÿ1

i�1

di;

�A2 � b1

Xkÿ1

i�1

cizi � a1

Xkÿ1

i�1

dizi;

�B1 � a2 � b2

Xkÿ1

i�1

ci � a2

Xkÿ1

i�1

di;

�B2 � b2

Xkÿ1

i�1

cizi � a2

Xkÿ1

i�1

dizi;

�C1 � a3 � b3

Xkÿ1

i�1

ci � a3

�
� 1

2

�Xkÿ1

i�1

di;

�C2 � b3

Xkÿ1

i�1

cizi � a3

�
� 1

2

�Xkÿ1

i�1

dizi;

�D1 � a4 � b4

�
� 1

2

�Xkÿ1

i�1

ci � a4

Xkÿ1

i�1

di;

�D2 � b4

�
� 1

2

�Xkÿ1

i�1

cizi � a4

Xkÿ1

i�1

dizi;

Â1 � b1 � b1

Xkÿ1

i�1

ai � a1

Xkÿ1

i�1

bi;

Â2 � b1

Xkÿ1

i�1

aizi � a1

Xkÿ1

i�1

bizi;

B̂1 � b2 � b2

Xkÿ1

i�1

ai � a2

Xkÿ1

i�1

bi;

B̂2 � b2

Xkÿ1

i�1

aizi � a2

Xkÿ1

i�1

bizi;

Ĉ1 � b3 � b3

Xkÿ1

i�1

ai � a3

�
� 1

2

�Xkÿ1

i�1

bi;

Ĉ2 � b3

Xkÿ1

i�1

aizi � a3

�
� 1

2

�Xkÿ1

i�1

bizi;

D̂1 � b4 � b4

�
� 1

2

�Xkÿ1

i�1

ai � a4

Xkÿ1

i�1

bi;

D̂2 � b4

�
� 1

2

�Xkÿ1

i�1

aizi � a4

Xkÿ1

i�1

bizi:

�A:3�

The shape functions for u�k�x are

U�k�11 � ÿ �A1z� 1� �A2; U�k�12 � �A1zÿ �A2;

U�k�21 � ÿ �B1z� �B2; U�k�22 � �B1zÿ �B2; �A:4�
U�k�31 � U�k�32 � �D1zÿ �D2;

U�k�41 � U�k�42 � ÿ �C1z� �C2:

The shape functions for u�k�y are

W�k�11 � ÿ Â1z� Â2; W�k�12 � Â1zÿ Â2;

W�k�21 � ÿB̂1z� B̂2 � 1; W�k�22 � B̂1zÿ B̂2;

W�k�31 � W�k�32 � D̂1zÿ D̂2;

W�k�41 � W�k�42 � ÿĈ1z� Ĉ2:

�A:5�

The shape functions for u�k�z are

X1 � 1ÿ z
h
; X2 � z

h
: �A:6�

The shape functions associated with ezz based on a
constant transverse normal stress assumption are

k�k�x11 � �E1z� �E2; k�k�x12 � �F1z� �F2;

k�k�x21 � �G1z� �G2; k�k�x22 � �H1z� �H2;

k�k�x31 � k�k�x32 � �I1z� �I2; k�k�x41 � k�k�x42 � �J1z� �J2;

k�k�y11 � Ê1z� Ê2; k�k�y12 � F̂1z� F̂2; �A:7�

k�k�y21 � Ĝ1z� Ĝ2; k�k�y22 � Ĥ1z� Ĥ2;

k�k�y31 � k�k�y32 � Î1z� Î2; k�k�y41 � k�k�y42 � Ĵ1z� Ĵ2;

v1 � ÿK1; v2 � K1;

where coe�cients associated with the shape functions
are

�E1 � C�k�13

C�k�33

�A1 � C�k�36

C�k�33

Â1;

�E2 � ÿC�k�13

C�k�33

� �A2 � 1� ÿ C�k�36

C�k�33

Â2 � P1 � S6

C�k�33

;

�F1 � ÿC�k�13

C�k�33

�A1 ÿ C�k�36

C�k�33

Â1;

�F2 � C�k�13

C�k�33

�A2 � C�k�36

C�k�33

Â2 � P2 ÿ S6

C�k�33

;

�G1 � C�k�13

C�k�33

�B1 � C�k�36

C�k�33

B̂1;

�G2 � ÿC�k�13

C�k�33

�B2 ÿ C�k�36

C�k�33

�B̂2 � 1� � P3 � S7

C�k�33

;
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�H1 � ÿC�k�13

C�k�33

�B1 ÿ C�k�36

C�k�33

B̂1;

�H2 � C�k�13

C�k�33

�B2 � C�k�36

C�k�33

B̂2 �ÿP3 � S8

C�k�33

;

�I1 � C�k�13

C�k�33

�C1 � C�k�36

C�k�33

Ĉ1;

�I2 � ÿC�k�13

C�k�33

�C2 ÿ C�k�36

C�k�33

Ĉ2 � P4 � S9

C�k�33

;

�J1 � ÿC�k�13

C�k�33

�D1 ÿ C�k�36

C�k�33

D̂1;

�J2 � C�k�13

C�k�33

�D2 � C�k�36

C�k�33

D̂2 � P5 � S10

C�k�33

;

Ê1 � C�k�23

C�k�33

Â1 � C�k�36

C�k�33

�A1;

Ê2 � ÿC�k�23

C�k�33

Â2 ÿ C�k�36

C�k�33

� �A2 � 1� � Q1 � S1

C�k�33

;

F̂1 � ÿC�k�23

C�k�33

Â1 ÿ C�k�36

C�k�33

�A1;

F̂2 � C�k�23

C�k�33

Â2 � C�k�36

C�k�33

�A2 �ÿQ1 � S2

C�k�33

;

Ĝ1 � C�k�23

C�k�33

B̂1 � C�k�36

C�k�33

�B1;

Ĝ2 � ÿC�k�23

C�k�33

�B̂2 � 1� ÿ C�k�36

C�k�33

�B2 � Q2 � S3

C�k�33

;

Ĥ1 � ÿC�k�23

C�k�33

B̂1 ÿ C�k�36

C�k�33

�B1;

Ĥ2 � C�k�23

C�k�33

B̂2 � C�k�36

C�k�33

�B2 � Q3 ÿ S3

C�k�33

;

Î1 � C�k�23

C�k�33

Ĉ1 � C�k�36

C�k�33

�C1;

Î2 � ÿC�k�23

C�k�33

Ĉ2 ÿ C�k�36

C�k�33

�C2 � Q4 � S4

C�k�33

;

Ĵ1 � ÿC�k�23

C�k�33

D̂1 ÿ C�k�36

C�k�33

�D1;

Ĵ2 � C�k�23

C�k�33

D̂2 � C�k�36

C�k�33

�D2 � Q5 � S5

C�k�33

;

K1 � T1

C�k�33

:
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P1 � C�k�13

(
ÿ

�A1

2
�zk � zkÿ1� � �1� �A2�

)
;

P2 � C�k�13

�A1

2
�zk

(
� zkÿ1� ÿ �A2

)
;

P3 � C�k�13

(
ÿ

�B1

2
�zk � zkÿ1� � �B2�

)
;

P4 � C�k�13

(
ÿ

�C1

2
�zk � zkÿ1� � �C2

)
;

P5 � C�k�13

�D1

2
�zk

(
� zkÿ1� ÿ �D2�

)
;

Q1 � C�k�23

(
ÿ Â1

2
�zk � zkÿ1� � Â2

)
;

Q2 � C�k�23

(
ÿ B̂1

2
�zk � zkÿ1� � B̂2 � 1

)
;

Q3 � C�k�23

B̂1

2
�zk

(
� zkÿ1� ÿ B̂2

)
;

Q4 � C�k�23

(
ÿ Ĉ1

2
�zk � zkÿ1� � Ĉ2

)
;

Q5 � C�k�23

D̂1

2
�zk

(
� zkÿ1� ÿ D̂2

)
;

S1 � C�k�36

(
ÿ

�A1

2
�zk � zkÿ1� � �1� �A2�

)
;

S2 � C�k�36

�A1

2
�zk

(
� zkÿ1� ÿ �A2

)
;

S3 � C�k�36

(
ÿ

�B1

2
�zk � zkÿ1� � �B2

)
;

S4 � C�k�36

(
ÿ

�C1

2
�zk � zkÿ1� � �C2

)
;

S5 � C�k�36

�D1

2
�zk

(
� zkÿ1� ÿ �D2

)
;

S6 � C�k�36

(
ÿ Â1

2
�zk � zkÿ1� � Â2

)
;

S7 � C�k�23

(
ÿ B̂1

2
�zk � zkÿ1� � B̂2 � 1

)
;

S8 � C�k�36

B̂1

2
�zk

(
� zkÿ1� ÿ B̂2

)
;

S9 � C�k�23

(
ÿ Ĉ1

2
�zk � zkÿ1� � Ĉ2�

)
;

S10 � C�k�23

D̂1

2
�zk

(
� zkÿ1� ÿ D̂2

)
;

T1 � C�k�33

h
:
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A.2. Plate inertias

Iu
abrp �

XNm

k�1

Z zk

zkÿ1

q�k�U�k�ab U�k�rp dz;

Iv
abrp �

XNm

k�1

Z zk

zkÿ1

q�k�W�k�ab W�k�rp dz;

Iw
pbrp �

XNm

k�1

Z zk

zkÿ1

q�k�XbXp dz;

a; r � 1; . . . ; 4; b; p � 1; 2:

�A:10�

A.3. Stress resultants

Nxab �
XNm

k�1

Z zk

zkÿ1

r�k�xx U�k�ab dz; Nyab �
XNm

k�1

Z zk

zkÿ1

r�k�yy W�k�ab dz;

Nzab �
XNm

k�1

Z zk

zkÿ1

r�k�zz k�k�xab dz; Qzab �
XNm

k�1

Z zk

zkÿ1

r�k�zz k�k�yab dz;

Rzb �
XNm

k�1

Z zk

zkÿ1

r�k�zz vb dz; Qyab �
XNm

k�1

Z zk

zkÿ1

s�k�yz W�k�ab;z dz;

Ryb �
XNm

k�1

Z zk

zkÿ1

s�k�yz
�Mb dz; Qxab �

XNm

k�1

Z zk

zkÿ1

s�k�xz U�k�ab;z dz;

Rxb �
XNm

k�1

Z zk

zkÿ1

s�k�xz
�Mb dz; Rxyab �

XNm

k�1

Z zk

zkÿ1

s�k�xy U�k�ab dz;

Ryxab �
XNm

k�1

Z zk

zkÿ1

s�k�xy W�k�ab dz:

�A:11�
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