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Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of co-
coured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping
layer is perforated with a series of small holes, and the ratio of the perforation area to the total damping area
is the design variable of the methodology. The multi-objective optimization is converted into a single-objective
problem by an evaluation function which is a liner weigh sum of the two sub-objective functions. The proposed
methodology was carried out to determine the optimal perforation area ratios of two viscoelstic layers with
different perforation distance embedded in two composite plates. Both the optimal perforation area ratios are
approximate to 2.2%. However, the objective value of the plate with greater perforation distance in embedded
viscoelatic layer is much greater.
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1. Introduction

In recent years, co-curing damping materials in
composites has been shown to be successful in greatly
increasing the damping of composite structures[1–7].
Co-curing refers to the process of inserting viscoelastic
materials within composite laminates before the com-
posite is cured, therefore the embedded viscoelastic
materials should undergo the temperature and pres-
sure cycle which is necessary to cure the composite.

Although co-curing damping materials in compos-
ites does not decrease the tensile and compression
stiffness or strength, the presence of the damping layer
decreases the bending stiffness of composite structure
remarkably[8]. It cannot meet the requirement of inte-
grated design of structure. A common technology to
solve this problem is perforating with a series of small
holes in the embedded viscoelastic damping layer as
shown in Fig. 1. During the co-curing, the resin flows
through the damping layer and completely couple the
structure that will enhance the bending stiffness re-
markably. Although the perforating with holes in the
viscoelastic damping layer can enhance the bending
stiffness, it will result in the loss of damping. The
perforation area should be designed neither too big
nor too small. Thus, the optimization of perforation
area is a crucial step for coordination of the contra-
diction between the damping and bending stiffness of
co-cured composite laminates with viscoelastic damp-
ing layer.

In this article, a methodology for the multi-
objective optimization of damping and bending stiff-
ness of co-cured composite laminates is presented.
The optimization is accomplished by converting the
multi-objective problem into a single-objective prob-
lem by construction an evaluation function. The eval-
uation function is a liner weigh sum of the two sub-
objective functions (loss factor and bending stiffness).
The two sub-objective functions are constructed by
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fitting the curves of the loss factor and bending stiff-
ness vs. perforation area ratio respectively, and the
weigh numbers are determined by the margin of each
sub-objective function.

2. Mathematical Model

2.1 Evaluation function

Optimization requires a suitable objective func-
tion which is a function of user specified design
variables[9,10]. The objective function is then mini-
mized or maximized by the optimization algorithm.

For a multi-objective optimization, we can con-
struct a new function called evaluation function
to convert a multi-objective problem into a single-
objective problem for simplification. There are many
ways to construct an evaluation function. One of
the most important methods is liner weighted sum
method, and the evaluation function is given by:

f(X) =

L
∑

i=1

ωifi(X) (1)

where, f(X) is the new objective function; X is the
design variables; Ωi is weigh number for each sub-
objective function fi(X); L is the amount of sub-
objective. Each weigh number ωi should be normal-
ized and non-negative written below:

L
∑

i=1

ωi = 1, ωi ≥ 0(i = 1, 2, · · · , L) (2)

To be mentioned, the magnitude of weigh num-
ber represents importance of each sub-objective, and
the more important the sub-objective, the greater the
weigh number ωi. Commonly, there is significant dif-
ference in the value of each sub-objective due to the
different dimension. This will result in a hard reflec-
tion of the importance of each sub-objective. There-
fore, the each sub-objective function should be
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Fig. 1 Schematic description of co-cured composite lam-
inates with embedded perforated viscoelastic
damping layer

dimensionless. The most common technique is given
by:

fi(X) =
Fi(X)

min
x∈Ω

Fi(X)
(3)

where, Fi(X) is the ith sub-objective function with
dimension, Ω is the feasible zone.

The present optimization study aims at finding an
optimal perforation area for a greater damping with
less loss in bending stiffness of co-cured composite
structure. Thus, there are two sub-objective in the
present study, they are loss factor and bending stiff-
ness. So we can rewrite the Eq. (1) as follows:

f(X) = ω1f1(X) + ω2f2(X) (4)

X =
Ap

At
(5)

where, ω1 and f1(X) are weigh number and sub-
objective function of loss factor respectively; ω2 and
f2(x) are weigh number and sub-objective function of
bending stiffness respectively; the design variables; X
is the ratio of the perforation area to the total area;
Ap is the perforation area; At is the total area.

2.2 Sub-objective function

In this section, the two sub-objective functions will
be built. Robinson and Kosmatka[11] have investi-
gated the damping and bending stiffness of co-cured
composite laminates with different perforation in the
embedded viscoelatic layer. Results show that the
damping and stiffness can be very sensitive to perfo-
ration spacing and size. There is very little change in
the stiffness of the plates for a damping area less than
95%. However for damping areas from 95% to 100%
can be seen a sharp decrease in the stiffness of the
plates. There is very little change in the damping of
the first bending mode for a damping area less than
95%. However for damping areas from 95% to 100% a
sharp increase in the first mode damping can be seen.
It is not difficult to find that the curves of loss factor
and bending stiffness vs. perforation area ratio can
be fitted well by power function:

β(X) = a1X
b1 (6)

B(X) = a2X
b2 (7)

where, β(X) is loss factor; B(X) is bending stiffness;
a1, b1, a2, b2 are coefficients to be determined by
curve fitting method. The two sub-objective functions

should be dimensionless, and it can be performed by
Eq. (3):

f1(X) =
β(X)

minβ(X)
=

β(X)

β1
(8)

f2(X) =
β(X)

minB(X)
=

B(X)

B0
(9)

β1 = β (X = 1), B0 = B (X = 0) (10)

Obviously, when X equals to 1, there is no viscoelas-
tic damping layer. So, β1 indicates the loss factor
of undamped composite structure. When X equals
to 0, there is no perforation in viscoelastic damping
layer. So B0 indicates the bending stiffness of fully
damped composite structure. The value of the first
sub-objective can be explained as the reinforced am-
plitude of damping due to the embedding viscoelas-
tic damping layer, and the second sub-objective can
be explained as the reinforced amplitude of bending
stiffness due to the perforation in the embedded vis-
coelastic damping layer. Thus, the greater the sub-
objective values, the better the design sachem. To in-
crease the fist sub-objective value, we must decrease
the perforation area, however, to increase the second
sub-objective value, we must increase the perforation
area. Thus, the optimization of perforation area is
urgently needed.

By substituting Eqs. (6) and (7) into Eqs. (8) and
(9) respectively, the two sub-objective can be rewrit-
ten as follows:

f1(X) =
a1X

b1

β1
(11)

f2(X) =
a2X

b2

B0
(12)

2.3 Weigh number

The weigh numbers for each sub-objective will be
determined. We all know that the smaller the per-
foration area, the greater the loss factor of co-cured
composite structure. And there is a minimum loss fac-
tor when there is no viscoelastic damping layer and
the perforation area ratio equals to 1. Just the re-
verse, the greater the perforation area is, the greater
the bending stiffness of co-cured composite structure
is. And there is a minimum bending stiffness when
there is no perforation in viscoelastic damping layer
and the perforation area ratio equals to 0. Accord-
ingly, the span of each sub-objective function can be
written as follows:

1 6= f1(X) ≤
β0

β1
(13)

1 6= f2(X) ≤
B1

B0
(14)

According to the definition of margins, the mar-
gins for each sub-objective function can be calculated:

∆f1(X) =
β0/β1 − 1

2
(15)

∆f2(X) =
B1/B2 − 1

2
(16)
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Table 1 The dimension of perforation in embedded viscoelastic layer

Plate Undampe d Fully damped 1 2
S/mm – – 25 50
D/mm – – 2, 3, 4, 5, 6, 8, 12, 16, 24 4, 6, 8, 10, 12, 16, 24, 32, 48

X 1 0 0.00502, 0.0113, 0.0201, 0.0314, 0.0452, 0.0804, 0.181, 0.322, 0.723

The weigh number for each sub-objective function
should meet the normalized and non-negative condi-
tion in Eq. (2) and can be determined as follows:

ω1 =
∆f2(X)

∆f1(X) + ∆f2(X)
=

B1/B2 − 1

β0/β1 + B1/B2 − 2
(17)

ω2 =
∆f1(X)

∆f1(X) + ∆f2(X)
=

β0/β1 − 1

β0/β1 + B1B2 − 2
(18)

The weigh numbers in Eqs. (17) and (18) can keep
each sub-objective in balance in order of magnitude.
When the value span of the sub-objective function
is greater and so as the margin, however, the weigh
number will be decreased.

2.4 Optimization study

Since both the greater the sub-objective value, the
better the design sachem is. By substituting sub-
objective functions Eqs. (11), (12) and weigh num-
bers Eqs. (17), (18) into Eq. (4), then the multi-
optimization problem is reduced to the following max-
imization problem

f(X) =
1

β0/β1 + B1B2 − 2

[ (B1/B2 − 1)α1X
b1

β1
+

(β0/β1 − 1)α2X
B2

B0

]

(19)

The optimization problem solved is expressed as max-
imization of f(X). The better of the design scheme
is, the bigger of the value of the evaluation function
is. To get the maximum value of the evaluation func-
tion f(X), we can derivate the evaluation function
and order the derivation of the evaluation function to
be zero:

f ′(X) = 0 (20)

That is:

1

β0/β1 + B1/B2 − 2

[ (B1/B2 − 1)a1b1X
b1−1

β1
+

(β0/β1 − 1)a2b2X
b2−1

B0

]

= 0 (21)

By solving the Eq. (21), then:

Xb1−b2 = −
(β0/β1 − 1)a2b2β1

(B1/B2 − 1)a1B1B0
(22)

By substituting Eqs. (17) and (18) into the Eqs. (22),
the optimal cab be rewritten as follows:

X = (−ω2a2b2β1/ω1a1b1B0)
1

(b1−b2 (23)

When the value of the ratio of the perforation area to
the total area meet the Eq. (23), we can get the maxi-
mum of the evaluation function f(X). Then, the value

Fig. 2 Schematic description of embedded viscoelastic
damping layer with a series of perforation

of X in Eq. (23) is an optimal ratio of the perforation
area to the total damping area.

3. Results and Discussion

In this section, two co-cured composite lam-
inates were optimized by the proposed model.
Both the dimension of the composite laminates is
200 mm×100 mm (length×width) and the embed vis-
coelastic damping layer perforated a series of small
hole as shown in Fig. 2. The dimensions of the per-
foration are listed in Table 1. The loss factor for
laminated composite structures with integral damp-
ing layers can be calculated by modal strain energy
(MSE) method[12–14], and the nth modal loss factor
is given by:

βn =
(Dv + Dr + Dc

Ut

)

n
(24)

(Dv)n =
(

k
∑

i=1

βvU
i
v

)

n
(25)

(Dr)n =
(

l
∑

i=1

βrU
i
r

)

n
(26)

(Dc)n =
(

m
∑

i=1

βcU
i
c

)

n
(27)

where, βn is the nth modal loss factor of the struc-
ture, Dv is the energy dissipation in the viscoelastic
materials, Dr is the energy dissipation in the resin
in perforation, Dc is the energy dissipation due to
the fiber-reinforced composites, Ut is the total strain
energy in the structure, βv is the loss factor of the
viscoelastic damping material, U i

v is the strain energy
of the ith element for the damping layer, βr is the loss
factor of the in the resin in perforation, U i

r is the strain
energy of the ith element for the resin in perforation,
βc is the loss factor of fiber-reinforced composites, U i

c

is the strain energy of the ith element for fiber re-
inforced composites, k, l and m are respectively the
total elements in the damping layers, the resin in per-
foration and fiber-reinforced laminates.



J. Mater. Sci. Technol., Vol.25 No.5, 2009 711

Table 2 The loss factor and first bending mode frequency of undaped and fully damped struc-
tures and weigh numbers Undamped Fully damped Weigh numbers

Undamped Fully damped Weigh numbers
β1 Frequency/Hz β1 Frequency/Hz ω ω2

0.032 189.4 0.2469 295.2 0.87386 0.02754
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Fig. 3 Loss factor vs. perforation area ratio of plate 1
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Fig. 4 First bending mode frequency vs. perforation
area ratio of plate 1

The carbon fiber reinforced plastic properties con-
sidered here are given as follows: E11=120 GPa,
E22=9 GPa, G12=4.3 GPa, v12=0.29, ρ=1635 kg/m3,
βc=0.0132. The properties of resin flowed in per-
foration are given as: E=3.2 GPa, ρ=1250 kg/m3,
βr=0.06. These factors were provided by Harbin
FRP research institute FRP factory. The proper-
ties of viscoelastic material are given as: E=7.8 MPa,
ρv=1350 kg/m3, Poisson′s ratios v=0.48, βv=0.6.

The damping and bending stiffness properties of
undamped and fully damped composite plates for first
bending mode are listed in Table 2. Then, the weigh
number for each sub-objective can be calculated by
Eqs. (17) and (18), also listed in Table 2.

The modal loss factors and mode frequencies vs
the perforation area ratio for the first bending mode of
vibration are respectively plotted in Figs. 3–6, and so
as the corresponding fitting curves. It is observed that
relationship between the loss factor, bending stiffness
and perforation area ratio is similar to the experi-
mental result in literature [11]. And the fitting curves
agree well with the curves by calculation with a con-
fidence of 0.95. The parameters of fitting curves are
listed in Table 3.

The optimal perforation area ratio X can be cal-
culated by substituting the weigh number of each sub-
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Fig. 5 Loss factor vs. perforation area ratio of plate 2
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Fig. 6 First bending mode frequency vs. perforation
area ratio of plate 2

objective (listed in Table 2) and the coefficients a1,
b1, a2, b2 (listed in Table 3) into the Eq. (23). The
optimal perforation area ratios calculated are listed
in Table 4. It is observed that the optimal perfora-
tion area ratios of two plates are approximate to 2.2%
which is less than 5% suggested by literature [11].

Table 3 The fitting result of the curves of loss fac-
tor and bending stiffness vs. perforation
ratio plate loss factor Bending stiffness

Loss factor Bending stiffness
Plate

a1 b1 a2 b2

1 0.00785 −0.52177 299.4159 0.05598
2 0.02457 −0.36173 293.46203 0.07109

Finally, we can get the objective value, damp-
ing and bending stiffness properties by substituting
the optimal perforation area ratio into the evalua-
tion function Eq. (19) and each sub-objective function
Eqs. (11) and (12), respectively. For the plate 1, the
optimum perforation area ratio is 0.759%, the damp-
ing increased by 3.3 times while the bending stiffness
decreased by 20.5%. For plate 2, the optimum per-
foration area ratio is 3.43%, the damping increased
by 3.5 times while the bending stiffness decreased by
22.9%.
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Table 4 The optimal perforation area ratio and relative optimization results plate optimal
area ratio

Plate Optimal area ratio Objective value Loss factor First bending
X f(X) β natural frequency/Hz

1 0.0221 3.834 0.565 242.98
2 0.0222 6.479 0.1076 222.88

4. Conclusions

A methodology for the multi-objective optimiza-
tion of co-cured composite laminates with embedded
viscoelastic damping layer has been presented. The
optimization is performed by an evaluation function
which is the liner weigh sum of the two sub-objective
functions (loss factor and bending stiffness). The
curves of loss factor and bending stiffness vs. per-
foration area ratio of embedded viscoelastic damping
layer can be well fitted respectively by power func-
tion with a confidence of 0.95. The each sub-objective
function is dimensionless and their weigh number is
determined by their margins to keep the balance of
each sub-objective.

We studied an optimization for two co-cured com-
posite plates with different perforation distance in em-
bedded viscoelatic layer. The results show that both
the optimal perforation area ratios are less than 5%
suggested by literature 11, the method put forward is
validated.
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