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ABSTRACT
The research work presented in this paper aims to optimise the dynamic response
of a carbon-epoxy plate by including into the laminate one frequency-dependent
interleaved viscoelastic layer. To keep an acceptable bending stiffness, some holes
are created in the viscoelastic layer, thus facilitating the resin through layer pene-
tration during the co-curing manufacturing process. Plates including (or not) one
perforated (or non-perforated) viscoelastic layer are manufactured and investigated
experimentally and numerically. First, static and dynamic tests are performed on
sandwich coupons to characterise the stiffness and damping properties of the plates
in a given frequency range. Resulting mechanical properties are then used to set-up
a finite element model and simulate the plate dynamic response. In parallel, fre-
quency response measurements are carried out on the manufactured plates, then
successfully confronted to the numerical results. Finally, a design of experiments is
built based on a limited number on numerical simulations to find the configuration
of bridges that maximises the damping while keeping a stiffness higher than half the
stiffness of the equivalent undamped plate.
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1. Introduction

Recent research on materials has focused on adding new functionalities to composite
structures, mixing for example composite and viscoelastic materials. As a result, such
multifunctional composites are nowadays used for specific purposes like damping or
reducing acoustic emissions, which were not initially the aim of those materials.5

One of the first experimental works on constrained viscoelastic composite laminates
was performed in 1959 by Ungar et al. [1], who characterized the influence of several
parameters like damping factor, thickness and number of viscoelastic layers constrained
between aluminum plates. It was shown that adding damping functionalities always
affects the stiffness properties of the composite. Indeed, as demonstrated by Liao et10

al.[2], inserting a viscoelastic layer into the laminate may cause both delamination and
important loss of bending stiffness. One solution to overcome this problem consisted
in perforating the viscoelastic layer(s), allowing matrix polymer to get through the
resulting holes during the curing process.

Using the vacuum assisted resin transfer molding process, Robinson and Kosmatka15

[3] manufactured similar sandwich plates with the objective to control the damping to
stiffness ratio. The authors observed that maintaining a contact between the rubber
and the laminate equal or higher than 95% multiplies by up to 14 times the loss factor
but, at the same time, decreases the bending stiffness by up to 60%. Moreover, keeping
a contact surface equal to 95%, a decrease of the hole size and distance between holes20

allows to increase the plate rigidity. In the same way, Pan and Zhang [4] worked on 5
composite laminate plates, all with an embedded NBR rubber layer but with different
hole sizes. They demonstrated that when the rubber perforated area exceeds 7% of the
plate surface, the bending stiffness becomes similar to the undamped plate but the loss
factor remains small.25

In another paper [5], the same authors measured both the loss factor and Young
modulus of the plate using dynamic mechanical thermal analysis (DMTA). Applying a
1 Hz constant excitation, they observed that damping factor increases with temperature
from -60 ◦C to -7 ◦C, then decreases from -7 ◦C to 100 ◦C, the maximum value occurring
during the viscous state. Moreover, the Young modulus was shown to decrease slowly30

in glassy state, faster in viscous state and slowly again in elastomeric state.
More recently, Hujare and Sahasrabudhe [6] also showed that inserting viscoelastic

materials in a 3D sandwich beam structure allows to increase the damping factor. They
compared different viscoelastic materials in medium frequency range and found that
nitrile, SBR, urethane and butyl materials better damp vibrations of such beam than35

PMMA, polyethylene, and polypropylene.
Several authors like Moreira and Rodrigues [7], Vasques and Cardoso [8] reviewed the

different theories and approaches to model the dynamic response of such damped sand-
wich plates. 3D solid models were compared to less time consuming 2D shell models and
different approaches to account for the damping of such structures were confronted. Sar-40

avanos and Chamis [9] worked on modeling composite and metallic laminates damped
with interlaminar viscoelastic layers. Using the so-called discrete layer laminate damping
theory, they compared different arrangements for composite and aluminum constraining
materials. They showed that composite-based sandwiches with strong anisotropy vari-
ations have potentially higher damping properties than geometrically equivalent ones45

based on aluminum skins. Wan et al. [10] used the transfer matrix method to assess
modal and damping characteristics of a multilayered constrained plate. Varying both
the number and the thickness of the viscoelastic layers as well as their arrangement,
they demonstrated that multilayer structures achieve better damping when the number
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of viscoelastic layers increases but, beyond a certain number of layers, the loss factor50

does not vary significantly anymore. In addition, symmetrical structures were shown to
offer a better loss factor than non symmetric ones.

More recently, Xu et al. [11] presented a multi-objective optimisation of composite
laminates including viscoelastic layers. Using layer-wise finite element method, they
maximised the modal damping while minimising at the same time the structural mass.55

Frequency-dependent viscoelastic material properties were considered in their study. As
a first step, they investigated a symmetrically hybrid composite laminated plate with
two interleaved viscoelastic layers inserted in different positions. They observed that
these latter offer better damping properties when inserted at mid-plane.

Finally, Zhai et al. [12] used the Navier solution based on first-order shear deformation60

theory with the objective to maximise the damping level by varying the plate aspect
ratio as well as the ratio between composite and viscoelastic layer thicknesses. They
found that a square plate offers the highest loss factor and when the ratio between the
plate dimensions and thickness increases, the loss factor decreases.

Some analytical developments were performed to analyse the behaviour of composite65

beams and plates with soft core layer. Berthelot [13] modelled beams and plates using
first order shear deformation theory (FSDT). However, when the stiffness of the core
differs sensitively from the skins, the accuracy of such approach is not sufficient and
layer-wise or Zig-Zag theories seem to be more suitable. Carrera [14] and more recently
Hu et al. [15] reviewed theories for beams and plates from basic theories as classical70

laminate theory to more complex as Zig-Zag and layer-wise theory. Koutsawa and Daya
[16] used layer-wise theory to model a glass beam including a polyvinylbutane (PVB)
layer and more recently Schulze et al. [17] compared FSDT and layer-wise theories with
different materials properties and different skin to core thickness ratios. They found that
although FSDT and layer-wise theory results converge for certain skin to core stiffness75

ratios, the layer-wise theory keeps the more accurate in all cases. The same conclusion
was obtained by Naumenko et Eremeyev [18] for a photovoltaic plate considered as a
composite structure with a soft core. One can also build a model, derived from the
asymptotic expansion approach, to describe the overall plate behavior, and accounting
for the stiffness constrast between the core and the skins [19].80

Most of the above research works are based on either experimental, analytical or
numerical approach but very few published works include both experimental and nu-
merical analyses. In the present study, static and dynamic experimental analyses of
carbon-epoxy plates that include (or not) a perforated (or non perforated) viscoelas-
tic layer are carried out and compared with finite element simulations. In a first step,85

the static and dynamic mechanical properties of the plate constitutive materials are
measured and used to set-up the finite element models. A special attention is paid on
measuring and modelling accurately the variation of both the shear modulus and the
loss factor with the excitation frequency. In a second step, the finite element models are
validated by comparing the dynamic response of damped and undamped plates post-90

processed from the simulations to experimental results. In a third step, not only the
influence of the viscoelastic film but also the influence of the bridges created between the
upper and lower carbon-epoxy skins on the plate accelerance are investigated. Finally,
the numerical models are used to set a design of experiments, which allows to find the
best location and size of the resin bridges that maximises the damping of the plates95

while keeping an acceptable bending stiffness.
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2. Experimental procedure

2.1. Plate particulars

As shown in Fig.1, 140 mm x 85 mm plate specimens were manufactured, keeping the
same layup for the laminate but inserting, or not, a 1mm-thick viscoelastic DYAD layer100

at mid-thickness. For some specimens, this layer was perforated before laying-up with
9 holes equally distributed over its surface. Resulting stacking sequences are presented
in Tab.1 for carbon-epoxy and carbon-epoxy-DYAD specimens.

85 mm

140 mm

35 mm

21.25 mm

∅	10	mm

5 to 6 mm

Figure 1. Specimen dimensions

Table 1. Stacking sequences

Set o f plates Stacking sequence Theoretical thickness
[mm]

Set 1 - Carbon-epoxy [0, 902, 0]S 5
Set 2 - Carbon-epoxy with DYAD [0, 902, 0, DYAD601]S 6

Set 3 - Carbon-epoxy with perforated DYAD [0, 902, 0, DYAD601]S 6

As the prepreg carbon is manually applied in several layers, some imperfections oc-
cur regarding the thickness of the manufactured plates so length, width and thickness105

are accurately measured with a 10−2mm precision tool. As highlighted in Fig.2 for a
carbon-epoxy plate, both the measured dimensions and thickness distribution are then
registered for each plate assuming a piecewise constant thickness and used as input for
the numerical model.

4.5 mm

4.85 mm

4.85 mm

4.7 mm

5 mm

5 mm 5 mm

5.05 mm

4.7 mm

84.7 mm 84.3 mm

138 mm

140 mm

Figure 2. Carbon epoxy sample dimensions
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2.2. Material specification110

Prepreg carbon-epoxy (with and without viscoelastic layer) lay-ups are first built with
two fiber orientations (0◦, 90◦) when draping the different plies. During the manufac-
turing process, the extraction of air bubbles is performed every four plies then co-curing
is processed during 3 hours at 120◦C. All the plates are manufactured using HexPly®
UD pre-preg carbon-epoxy M79/35%/UD6000/CHS.115

Three different sets of plates are manufactured inserting (or not) one 1mm-thick layer
of DYAD 601® SoundcoatTM viscoelastic material inside the laminate and creating (or
not) some holes in the viscoelastic film before laying-up:

• The first set of plates is made using only carbon-epoxy plies. Resulting plates are
expected to have the highest stiffness but, at the same time, the lowest damping120

characteristics.
• In the second set of plates, the carbone-epoxy laminate includes one constrained

viscoelastic layer. It is expected to have the highest loss factor but at the same
time the lowest bending stiffness.
• In the third set, the laminate includes one viscoelastic layer but 9 holes (diameter125

= 10mm) have been cut in the film. During co-curing, the resin is supposed to
flow through the holes, creating 9 ”bridges” between the upper and lower carbon-
epoxy skins. Note that the holes, which spatial distribution is shown in Fig. 1,
represent 6% of the plate surface.

Elastic properties of carbon-epoxy plies listed in Tab.2 are retrieved from reference130

[20]. Then, some of these values will be slightly modified in order to match with the
three-points bending tests performed by the authors, as will be explained later. The
density is extracted from sample weight measurements and the loss factor is adjusted
by confronting forced response tests with finite element simulations.

Table 2. Carbon-epoxy properties (the 3 axes are defined in Fig.3)
E11

[MPa]
E22=E33

[MPa]
G12=G13

[MPa]
G23

[MPa] ν12=ν13 ν23
ρ

[T/mm3] tan δ

100000 8110 4650 5000 0.3 0.4 1.4E-9 0.018

2

1

3
Carbon
Fiber

Figure 3. Properties directions

The DYAD static properties, i.e. its density ρ, shear modulus G and bulk modulus135

B are extracted from the manufacturer’s data. As the deformations of the viscoelastic
layer is expected to remain small, a Neo-Hookean visco-hyperelastic behavior law is
considered for the numerical simulations, which parameters are presented in Table 3.

Table 3. DYAD601
Properties
C10=G/2

[MPa]
ρ

[T/mm3]
0.2 1.3E-9

The material is assumed here to be incompressible. In this case, the strain energy
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per unit of reference volume U is related to the first deviatoric strain invariant by the140

following expression:

U = C10(I1 − 3) (1)

In the relation above, I1 is the trace of the right Cauchy Green deformation tensor:

I1 = λ2
1 + λ2

2 + λ2
3 (2)

Where λi are the principal stretches.

2.3. Three-point bending measurement bench

As aforementioned, in order to adjust the mechanical characteristics of both the carbon-145

epoxy laminate and carbon-epoxy-DYAD sandwich for the simulations, three-points
bending quasi-static tests are performed on an InstronTM 5566A bench (Fig.4(a)). For
the three samples tested for each set of plates, a vertical displacement varying from 0
to 0.6 mm is applied at mid-span and the resulting resistant vertical force is measured.

2.4. Dynamic measurement analysis bench150

It is well known that both the stiffness and damping factor of a viscoelastic rubber-like
material may vary significantly with the frequency of the excitation (Snowdon [21]).
That is why Dynamical Mechanical Analysis (DMA) tests are performed on 4 DYAD601
coupons at different temperatures. Figure 4(b) shows the MetravibTM DMA bench used
for this measurements. The related parameters are the following ones:155

• Dynamic deflection amplitude: 0.175 mm
• 1 to 100 Hz frequency range with 20 logarithmic steps
• Temperatures tested : 24◦C, 18◦C, 14◦C

(a) Three-points bending bench (b) Metravib DMA Bench

Figure 4.
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Shear deformation is dynamically applied to the coupons and the complex shear mod-
ulus and damping loss factor are measured at three different temperatures. Then, the160

WLF method developed by Williams et al. [22] and Ferry [23] is applied to extrapolate
the measurements up to 2000 Hz. The frequency evolutions of the storage modulus G′
and loss modulus G′′ are plotted in Figure 5. It may be observed that both G′ and G′′

seem to reach a maximum value (around 1.4 GPa) at 2000 Hz.

500 1000 1500 20000

0.5

1

1.5

·107

Frequency (Hz)

G
’(P

a)

Average
(a) Shear storage modulus

500 1000 1500 20000

0.5

1

1.5

·107

Frequency (Hz)
G

”(
Pa

)

Average
(b) Shear loss modulus

Figure 5. Frequency evolution of shear storage and loss modulii

2.5. Dynamic forced response bench165

An instrumented test bench is set-up to measure the frequency response of the different
manufactured plates when they are subjected to a sinusoidal excitation. Recommenda-
tions found in the book of Ewins [24] are followed to choose and position the different
components of the bench such as the exciter, the transducer, the force sensor, the ac-
celerometer, etc. As represented in Fig.6, the plates are suspended to a rigid frame using170

nylon threads. In order to excite the first bending mode of the plate, a shaker fixed to
a rigid structure and controlled by a frequency generator is used to apply a sinusoidal
displacement at the plate center. The acceleration is then measured at the same location
using a PCB sensor (353 B17) bounded on the other side of the plate.

To measure the load applied by the shaker, a PCB force sensor (208 C02) is inserted175

between the shaker and the plate. A 60mm-long rod with a 4mm diameter is used to
connect the shaker to the plate center. An overview of the bench is shown in Fig. 6.
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Force 
sensor

Connecting 
Rod

Shaker

Nylon 
threads

Plate

Figure 6. Forced response analysis bench

3. Numerical modelling

For the three different sets of plates, static and forced dynamic response finite element
analyses are then performed using the commercial code ABAQUS. By applying a given180

static or dynamic load at the center of the plates, the mechanical responses in term of
static deflection or acceleration are post-processed.

3.1. Finite element models

As the first set is concerned, carbon-epoxy plates are meshed using 4-nodes reduced
integrated shell (S4R) elements based on Koiter-Sanders formulation [25]. For the sec-185

ond and third sets of plates, carbon-epoxy skins are also meshed using S4R elements
but 8-nodes hybrid reduced integrated solids (C3D8RH) elements are chosen for the
viscoelastic layer (see Fig.7). As the shell nodes are coincident with the nodes of the
outer faces of the solid mesh, it is assumed that carbon-epoxy skins are perfectly bonded
to the DYAD layer. The resin bridges created through the viscoelastic layer of the third190

set plates are explicitly modelled using C3D8RH solid elements and mechanical charac-
teristics of the epoxy resin listed in Tab.4 are assigned to the corresponding elements.
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Figure 7. Finite elements used for carbon-epoxy-DYAD sandwich plate modelling

Table 4. Epoxy mechanical properties
Elastic Modulus

[MPa] ν
ρ

[T/mm3] tan δ

2400 0.38 1.11E-9 0.018

3.2. Loading and boundary conditions

The loading conditions are slightly different in the static and dynamic experimental
tests: in the three-points bending tests, the load is distributed over a 0.75mm-width195

band located at mid-span of the plate while for the frequency response analyses, the
sinusoidal load exerted by the shaker is distributed over a small squared surface located
at the plate center.

To simulate both the static and dynamic response tests, only a quarter of the plate
is modelled and symmetry conditions are applied on the nodes located in the two sym-200

metry planes.
In the static test, the plate is assumed to be simply supported near two opposite

edges and the corresponding symmetrical finite element model is presented in Fig. 8. In
order to represent the test loading conditions, three different static forces are distributed
over a 0.75mm-width band located at mid-plate (see Fig.8).205

Simply
supported

uz=0
Symmetry Condition

uy=rx=rz=0

Symmetry Condition
ux=ry=rz=0

Static Load

Figure 8. Boundary and loading conditions for numerical static analysis

Regarding the frequency response analyses, the plates are supposed to be completely
free. As aforementioned, only a quarter plate is modelled and symmetry boundary
conditions are applied to the relevant nodes. In order to represent one quarter of the rod
and sensor mass that is captured by the force sensor, lumped masses (8.5 grams) are
distributed on some nodes located at the plate center. Then, a uniform pressure with a210

sinusoidal time-dependence is applied over a 16mm2 centered squared surface, i.e. the
surface that has been actually loaded during the dynamic tests.
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3.3. Direct solution approach

Numerical frequency response analyses are performed for the three different sets of plates
using ABAQUS software. With the objective to account for the frequency dependent215

properties of the viscoelastic material, the direct solution approach is considered for the
numerical solution as suggested by Vasques [8] and used by Myklestad [26], Snowdon
[21] and Beth [27]. In such approach, the following matrix equation is solved varying
the frequency f between 500 Hz and 1400 or 1700 Hz with a frequency step of 5 Hz to
observe mainly the response related to the first bending mode of the plates:220

[
<(D(ω)) =(D(ω))
=(D(ω)) −<(D(ω))

]{
<[u(ω)]
=[u(ω)]

}
=
{
<[F (ω)]
−=[F (ω)]

}
(3)

Where u(ω) is the unknown complex displacement vector, F (ω) is the complex applied
sinusoidal load. <(D(ω)) and =(D(ω)) are respectively the real and imaginary parts of
the so-called dynamic stiffness matrix D(ω), defined as:

<(D) = K − ω2M =(D) = −Ctanδ(ω) (4)

Where K is the stiffness matrix, ω = 2πf is the circular frequency, M is the structural
mass matrix and Ctanδ(ω) is the stiffness proportional structural damping matrix. It may225

be expressed as:

Ctanδ(ω) = tanδ(ω) ∗K (5)

Where tanδ(ω) is the loss factor which characterises the structural damping of the
material.

In parallel, thanks to the test bench presented in subsection 2.5, forced response
measurements are performed between 500 to 1700 Hz for the first set of plates and230

between 500 to 1400 Hz for the second and third sets.
To compare numerical and experimental results, the acceleration at the plate center

is post-processed and the accelerance is determined at each circular frequency as:

A(ω) =
∣∣∣∣ a(ω)
F (ω)

∣∣∣∣ ; a(ω) = −ω2u(ω) (6)

Where a(ω) is the acceleration post-processed at the plate center (at the position of
the accelerometer) and F (ω) is the magnitude of the applied sinusoidal force. The gain235

of accelerance may then be calculated as:

GdB = 20.Log10

(∣∣∣∣ a(ω)
F (ω)

∣∣∣∣) (7)
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3.4. Mesh size sensitivity analysis

Element size varying from 0.66 mm to 4 mm for quadrilateral (square) elements and
varying from 0.66 x 0.17 mm to 4 x 1 mm for hexahedral (cubic) elements are considered
in the numerical mesh sensitivity analysis. The plate static stiffness and the gain of240

accelerance obtained for the different mesh sizes are compared in Tab. 5 and Fig.9
respectively.

It may be observed that both the stiffness and the dynamic response are not sensitive
to the considered mesh sizes. In fact, even the coarser mesh is fine enough for effectively
capturing the bending deformation of the plate as well as the shear deformation of the245

core layer. In order to have at least 4 elements through the viscoelastic layer thickness
while keeping a correct element shape factor, quadrilateral element sizing 0.75 mm and
hexahedral element sizing 0.75 x 0.25 mm are finally selected.

Table 5. Mesh Sizes
Mesh size

[mm]
K

[N/mm]
0.66 x 0.17 405
0.75 x 0.25 405
1.32 x 0.33 405

4 x 1 405

600 800 1000 1200 1400

10

20

30

Frequency (Hz)

A
cc

el
er

an
ce

(d
B)

0.66x0.17 mm 0.75x0.25 mm 1.32x0.33 mm 4x1 mm

Figure 9. Comparison of accelerance frequency evolution obtained from several mesh element sizes

4. Results and discussions

4.1. Comparison of numerical and experimental results250

In-plane dimensions and thicknesses of the manufactured plates presented in subsection
2.1 are set to the finite element model in order to reproduce the exact geometry of each
plate sample, i.e by taking into account the slight variations of the thickness over the
plate surface. Once the numerical models for static and dynamic analyses have been set-
up, experimental results are used to validate/adjust both the carbon-epoxy and DYAD255

properties to be used in further numerical simulations.
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4.1.1. Fitting of carbon-epoxy laminate properties
In a first step, three-points bending quasi-static tests are performed on three 5mm-thick
carbon-epoxy plates. In order to adjust the material characteristics of the laminate, the
numerical simulation of the 3-point bending test is run and confronted to experimental260

results, as illustrated in Fig.10. It is worth mentioning that the experimental curve
plotted in this figure has been obtained by averaging the curves retrieved from the
tests performed on three different specimens. Maximum and minimum measured values
are highlighted with error bars. It appears that good fitting is obtained by setting
the elastic modulus E11 to 90 000 MPa for the simulations of carbon-epoxy plates.265

Additional simulations were realised varying the elastic modulii E22 and E33 but these
parameters did not affect the results significantly. Such small sensitivity is due to the
lay-up which includes the same number of 0 and 90◦plies. The stiffness of the skins in
tension and compression is the same along direction 1 (fiber direction in 0◦ply) and
direction 2 (fiber direction in 90◦ply).270

0 0.1 0.2 0.30

100

200

300

Displacement (mm)

Fo
rc

e
(N

)

Avg. experimental
E11=90 000 MPa

Figure 10. Three-points bending tests of carbon-epoxy plates: comparison of experimental and numerical
results - Numerical results are shown with 4 while experimental ones are shown with continuous line

In the same way, the loss factor of UD carbon-epoxy material to be used in finite
element models is fitted by comparing the plate dynamic response extracted from the
measurements with numerical simulations, for which the loss factor has been varied from
0.01 to 0.02. Thus, numerical direct frequency response simulations are run considering
each sample separately and resulting accelerance vs frequency curves are confronted in275

Fig.11 to experimental measures. In addition, peak values extracted from the experi-
mental and numerical curves are compared in Tab.6.

It is found that whatever the tested plate, a loss factor of 0.018 leads to the best
correlation between numerical and experimental responses. The discrepancies related to
resonant frequencies does not exceed 1.3% and the corresponding levels of accelerance280

differ by less than 10%.
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Figure 11. Frequency evolution of the accelerance at the plate centre - Comparison of experimental and
numerical results for the 3 manufactured carbon-epoxy plates

Table 6. Summary of the results obtained from experimental test and
finite element simulation on Carbon epoxy samples

Plate Peak Amplitude [dB] Natural Frequency [Hz]
Num. Exp. Discrepancy Num. Exp. Discrepancy

P1 57 55 3.5% 1539 1520 1.3%
P2 57 55 3.5% 1480 1480 0%
P3 57 51 10% 1495 1490 0.4%

4.1.2. Fully damped sandwich model validation
In a second step, similar bending tests and numerical simulations are carried out for
carbon-epoxy laminated plates including a viscoelastic layer. As for carbon-epoxy plates
with S4R elements, the parameters required to define the visco-hyperelastic behaviour285

law related to C3D8RH solid elements are set based on Tab.3 and Fig.5.
As the stiffness of the resulting sandwich is concerned, Fig.12(a) clearly shows that

using carbon-epoxy elastic modulus E11 = 90 000 MPa combined with DYAD601 static
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characteristics provided by the manufacturer allows to obtain a good correlation.
The dynamic behaviour of the sandwich plates is also addressed with the objective to290

confirm the use of DYAD601 frequency dependant viscoelastic properties extracted from
DMA tests. At each frequency step, when setting the stiffness matrix K, the complex
shear modulus G∗ is recalculated using the following expressions:

ωR(G∗) = G′′

G
(8)

ωI(G∗) = 1−
(
G′

G

)
(9)

Where G′′ is the loss shear modulus, G′ is the storage shear modulus and G is the
static shear modulus295

Numerical direct frequency response analysis is thus performed on the second set
of plates and resulting accelerance vs frequency curve is compared in Fig.12(b) to the
experimental one. As for carbon-epoxy plates, remarkable values extracted from these
curves are presented in Tab.7, where it can be noted that the discrepancies between
numerical and experimental values do not exceed 0.8%. The higher difference observed300

at the antiresonance is probably due to the contribution of the swinging rigid body
mode at 0.9 Hz (remember that the plate is suspended to the frame with nylon threads),
which is not captured by the simulation where free-free boundary conditions have been
assumed.

Despite the discrepancy observed at the antiresonance, it is reasonable to say that305

the numerical model allows to reproduce in a satisfactory manner the experimental
measurements.
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Avg. Experimental
E11 = 90000 MPa

(a) Three-point bending tests on carbon-epoxy
plates including a viscoelastic layer - Numerical
results are shown with ◦ and the average of expe-
rimental ones is represented by the continuous line.
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viscoelastic layer

Figure 12. Numerical vs experimental results for carbon-epoxy plates including a viscoelastic layer
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Table 7. Summary of the results obtained from experimental
tests and finite element simulation of carbon-epoxy plates includ-
ing a viscoelastic layer

Peak Amplitude [dB] Natural Frequency [Hz]
Num. Exp. Discrepancy Num. Exp. Discrepancy
31.9 31.8 0.4% 1089 1092 0.8%

4.1.3. Confrontation of the ”bridged” sandwich model to experimental results
Three-points bending tests are also performed on three plates of the third set, for which
the carbon-epoxy laminate includes 9 bridges of resin between upper and lower skins310

(see Fig.1). On the numerical side, the bending stiffness appears to be far higher than
the one extracted from the measurements. The question then arises as to whether some
of the holes created in the viscoelastic film are not completely filled by the resin during
the co-curing phase, leading to a lower surface of bridges compared to the expected one.
Therefore, several cutouts are performed on the manufactured ”bridged” sandwiches315

followed by a progressive sanding to analyse the section passing through the greatest
diameter of the bridges.

Figure 13 shows two different bridge sections and highlights two main defects. On
the left side, it is observed that the maximal diameter of the bridges is close to 8.5 mm,
while 10 mm circular holes have been initially created. This defect, observed in almost320

all the bridges, is probably due to the fact that the DYAD601 layer is compressed during
the co-curing process, which seems to reduce the diameter of holes when the resin flows
inside. On the right side, a lack of epoxy is also observed: it seems that the volume
of resin included in the prepreg is not sufficient to entirely fill the holes made in the
viscoelastic layer.325

(a) Defect of bridge shape and size (b) Defect of bridge filling

Figure 13. Micro-analysis of resin bridges

In order to investigate the number and location of holes which may have been actually
filled, different bridge configurations incorporating 9, 5, 4 and 3 bridges (see Fig.14) are
simulated considering the fitted material characteristics. In Fig.15(a) which compares
the resulting force vs displacement curves, the experimental data corresponds to the
average of the bending test results performed on three specimens and the error bars330

correspond to minimum and maximum measured values. This figure clearly shows that
the bridges located near the plate corners bring more stiffness than the ones located
near the centre. Moreover, comparing the slope of the different curves, one may notice
that additional stiffness is much more important when the location of the bridges is
changed (e.g. going from the 4-bridges configuration to the 5-bridges one), than when335
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the bridge number is changed (e.g. going from 5 to 9 bridges). In other words, the
location of the bridges seems to influence much more the stiffness that the number of
bridges. Fig.15(a) also shows that the curve related to the 4-bridges configuration is the
one that correlates better with the experimental curve. That is why this configuration
will be further considered to simulate the frequency response of the third set of plates.340

9 Bridges 5 Bridges

4 Bridges 3 Bridges

: Bridge  : Hole

Figure 14. Holes and bridges location

A direct frequency response analysis is finally performed on a ”bridged” sandwich,
considering only 4 bridges to reproduce the bending stiffness of the manufactured plates.
Numerical and experimental accelerances are compared in Fig.15(b) and Tab.8. How-
ever, we are aware that the agreement obtained between the 4-bridges numerical model
and experiments does not mean that the tested plates have actually four bridges com-345

pletely filled with resin and the others without resin. Further study should be carried
out to identify, thanks to an inverse approach, the number of bridges with resin and their
diameter. But we lack of experimental results such as mode shapes to perform such kind
of study. In addition, it is not desirable to use a process which leads to manufacturing
uncertainties. This is why, in the following, it will be assumed that the manufacturing350

process will be improved in order to obtain plates with bridges of the desired diameter
that are completely filled with resin.
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Figure 15. Numerical vs experimental results for carbon-epoxy plates including one viscoelastic layer and
bridges - Numerical results are shown with ◦,4,D,� and experimental ones are shown with continuous lines

Table 8. ”Bridged” sandwich plate: comparison of first natural
frequency and peak amplitude

Peak Amplitude [dB] Natural Frequency [Hz]
Num. Exp. Discrepancy Num. Exp. Discrepancy
34.2 33.7 1.5% 1150 1182 2.4%

4.2. Influence of the viscoelastic layer

In this section, static and dynamic responses extracted from the measurements made on
the three different sets of plates are compared. In Fig.16(a), one observe that including355

a non perforated constrained viscoelastic layer decreases the structure bending stiffness
by 65% compared to an undamped carbon-epoxy plate (see Tab.9). However, creating
bridges between the upper and lower skins allows to reduce the stiffness loss to 54%.
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(b) Forced response test

Figure 16. Comparison of test results for the three types of plates
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Table 9. Comparison of resulting bending stiffness
Carbon Epoxy Carbon Epoxy Carbon-Epoxy

with DYAD with perforated DYAD plates
K : Stiffness [N/mm] 387 508 1111

Stiffness loss 65% 54% /

When comparing in Fig.16(b) the experimental forced responses of the different sets
of plates, it is observed that resonance frequencies, accelerance peak levels and damping360

values are very sensitive to both the presence of the viscoelastic layer and inclusion of
bridges. More precisely, Tab.10 shows that inserting into the carbon-epoxy laminate a
viscoelastic film allows to decrease by around 23 dB the accelerance peak level compared
to the undamped plate. On the other side, creating bridges between lower and upper
skins allows to decrease the accelerance peak level by around 20 dB. Tab.10 also shows365

that the first natural frequency of the plate is shifted from around 1500 Hz to 1092
Hz (28% lower) for the full viscoelastic sandwich and to 1182 Hz (22% lower) for the
”bridged” one.

Table 10. Summary of forced response results

Plates set Peak Amplitude
[dB]

Natural Frequency
[Hz] dBCE- dB

Carbon-epoxy plate 53 1500 /
Damped plate 31.8 1092 21.2

”Bridged” damped plate 33.7 1182 19.3

5. Sensitive analysis of bridges on stiffness and damping

5.1. Influence of bridge location and size: analysis of a ”bridged”370

sandwich beam

A sensitivity analysis is performed on a ”quasi-2D” simply supported beam to investigate
to which extent the bridge location and size affect its static and dynamic behaviour.
The beam has 2 bridges, symmetrically located. Four different locations defined in Tab.
11 are considered as well as four different bridge volume fractions, i.e the percentage of375

beam volume occupied by the bridge, varying from 0.75% (0.5mm3) to 6% (4.2mm3)
with two intermediate values.

Table 11. Bridge locations
Position n◦ 1 2 3 4

Distance from beam extremity [mm] 20.7 36.4 52.2 67.9

The beam dimensions and sandwich lay-up are as follows :

• Beam length: 140 mm
• Beam thickness: 6 mm380

• Beam width: 1 mm
• Lay-up: [0,90,90,0,DYAD601]s
• Carbon-epoxy skin thickness: 2.5 mm
• DYAD601 layer thickness: 1 mm

The beam is assumed to be supported at 5 mm from its extremities and loaded at385

mid-span.
The stiffness ratio K/KCE is calculated from a 2D FE model under plane stress as-

sumption for the 16 configurations (combining 4 locations with 4 volume fractions). Re-
sulting values are compared in Fig. 17(a) and Tab.12. K is the stiffness of the ”bridged”
damped beam and KCE the stiffness of the undamped carbon-epoxy beam.390

18



Similarly, the attenuation ratios A/Avisco are compared in Fig.17(b) and Tab.13.
Here, Avisco is the attenuation of the fully damped beam (without bridge). A and
Avisco are calculated as:

A(ω) = 20Log10

(
acarbon(ω)
F (ω)

)
− 20Log10

(
aconf (ω)
F (ω)

)
Avisco(ω) = 20Log10

(
acarbon(ω)
F (ω)

)
− 20Log10

(
avisco(ω)
F (ω)

) (10)

Where acarbon(ω), aconf (ω), avisco(ω) are the acceleration amplitudes post-processed
at the center of the carbon-epoxy, ”bridged” damped and fully damped carbon-epoxy395

beams respectively and F (ω) is the amplitude of the applied force. The ratio K/KCE
varies from 0.15 (fully damped beam) to 1 (undamped beam). The ratio A/Avisco varies
from 0 (undamped beam) to 1 (fully damped beam). Reducing the level of a ”bridged”
beam dynamic response comes to maximise this ratio.
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(a) Evolution of K/KCE
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(b) Evolution of A/Avisco

Figure 17. Simply supported beam: sensitivity to bridge location and bridge volume fraction

Table 12. Values obtained for K/KCE
Volume fraction (%)Bridge

position 0.75 1.5 3 6
1 0.15 0.32 0.40 0.47
2 0.15 0.28 0.35 0.42
3 0.15 0.15 0.24 0.27
4 0.15 0.15 0.15 0.16

Table 13. Values obtained for
A/Avisco

Volume fraction (%)Bridge
position 0.75 1.5 3 6

1 1 0.84 0.72 0.63
2 1 0.90 0.81 0.74
3 1 1 0.99 0.98
4 1 1 1 1

The following observations may be done:400

• Whatever the location of the bridge, a beam with a small bridge volume fraction
(0.75%) behaves like a fully damped beam (see the grey first column in Tabs.12
and 13).
• Whatever the volume fraction, a bridge located close to the beam centre (position

4 - yellow bars) leads also to a behaviour similar to the one of a fully damped405

beam (see the grey last row in Tabs. 12 and 13).
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• The influence of the bridge on both the bending stiffness and damping is as ex-
pected more important when the volume fraction increases.
• When the bridge gets closer to the support, the loss of stiffness is smaller (see

Fig. 17(a)) and the loss of damping larger (see Fig.17(b)).410

The last point may be easily justified by analysing in Fig.18 the spatial evolution
of the elastomer transverse shear deformation, post-processed for the different bridge
configurations. It appears that γxz increases when the bridge comes close to the support.
However, the presence of the bridge tends to limit this evolution, and is more pronounced
as the bridge is closer to the support.415

This first sensitivity analysis carried out on a ”quasi-2D” beam clearly shows that the
main challenge consists in finding the best compromise between damping and stiffness.
In other words, optimising a damped composite plate that includes resin bridges comes
to find the best spatial distribution and size of the bridges to maximise the damping
while keeping a reasonable bending stiffness.420
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Figure 18. Spatial evolution of DYAD601’s transverse shear strain for different bridge locations

Let us now consider a 500 x 250mm carbon-epoxy plate including a DYAD601 layer.
In the parametric study presented below, from 0 to 9 holes with different diameters are
supposed to be entirely filled by the resin during the co-curing process. The numerical
model that has been validated in previous section is used to simulate a certain number
of configurations with the objective to build a design of experiments.425

5.2. Influence of bridge location and size: analysis of a ”bridged”
sandwich plate

The dimensions of the ”bridged” sandwich plates considered as well as the position of
the holes are depicted in Fig.19. The plate particulars are the following ones:

• Dimensions: 500 x 250 x 6 mm430

• DYAD601 layer thickness: 1 mm
• Skins carbon-epoxy thickness: 2.5 mm
• Lay-up: [0,90,90,0,DYAD601]S
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Figure 19. Plate dimensions and bridges location

The dynamic response of the free-free plate is investigated in a frequency range that
includes its first four natural frequencies. A sinusoidal force is applied perpendicularly435

to the plate and its location is chosen so as to excite properly the mode shapes depicted
in Fig. 20. The first four natural frequencies calculated for both the undamped and fully
damped plates are listed in Tab.14 .

Table 14. First four natural frequencies of the plates
Mode 1

[Hz]
Mode 2

[Hz]
Mode 3

[Hz]
Mode 4

[Hz]
Undamped plate 91 150 238 413

Fully damped plate 84 144 219 349

(a) 1st Mode - Torsion (b) 2nd Mode - Bending

(c) 3rd Mode - Torsion (d) 4th Mode - Bending

Figure 20. First four natural mode shapes

Some authors used the modal damping as the parameter to maximise in order to
define a cost function [28][29][30]. We inspired from this articles in order to build a cost440

function able to capture the damping related to the first 4 natural modes.
Maximising the damping while keeping a reasonable bending stiffness may be done

by defining the following optimisation function:

• A cost function Fc is defined so as to maximise the modal damping related to the
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first four modes:445

Fc =
4∑
i=1

ηi − ηCEi
ηviscoi − ηCEi

(11)

Where ηi, ηCEi, ηviscoi are the modal damping values of the ith mode of
”bridged”, undamped and fully damped plates respectively. The −3dB bandwidth
method is considered to extract the damping value at each natural frequency.
• The optimisation is performed under the constraint that the stiffness of the

”bridged” sandwich plate must be higher of equal to half of the undamped carbon-450

epoxy plate.

5.3. Set-up of a design of experiments

The approach to find the optimal configuration is based on the construction of a design
of experiments (DOE) [31] which is an efficient approach for computational savings. The
parameters of a DOE are called ”factors” and the results are called ”responses”. Based455

on a limited number of finite element simulations (128 in our case), the DOE aims to
determine the contribution (the weight) of each factor, individually, on the response.
A second order polynomial function is thus built, its predictive nature is checked and
finally the function is used to approximate the response considering all the possible
configurations.460

As the plate includes between 0 and 9 bridges with 4 different diameters and different
bridge locations, 2048 different configurations should be analysed to identify the opti-
mum one. Based on numerical simulations, such analysis would require 2700 CPU-hours
on a 16 core / 3.2 GHz computer together with around 1000 hours to post-process the
results. The use of a DOE allows to significantly decrease the optimisation process.465

The 128 configurations simulated numerically are chosen to respect the orthogonality
of the DOE, which allows to vary the different factors simultaneously while defining
independently the influence of each factor on the response. A second order polynomial
form based on linear and quadratic factors as well as interactions between them is built
to estimate the response. As the bridge diameter is the only parameter that can take470

more than 2 different values, it is also the only one related to a quadratic term. The
polynomial form may thus be written as:

y = β0 +
k∑
i=1

βixi +
k∑
i<j

βijxixj + β11x
2
1 (12)

• y is the response,
• β0 is a constant,
• βi are the coefficients of the linear factors,475

• βii are the coefficients of the quadratic factors,
• βij are the coefficient of the interactions,
• xi (A→K) , x2

1 (AA) and xij (AB →JK) are the linear, quadratic and interaction
factors (see Tab.15 below for the factors names).

The factors considered in the optimisation of the ”bridged” sandwich plate together480

with their possible values are presented in Tab.15.
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Table 15. DOE Factors
Factor Parameter Values

A Bridge diameter 30 mm, 51 mm, 66 mm, 76 mm
B bridge n◦1 Full (1) or Empty (0)
C bridge n◦2 Full (1) or Empty (0)
D bridge n◦3 Full (1) or Empty (0)
E bridge n◦4 Full (1) or Empty (0)
F bridge n◦5 Full (1) or Empty (0)
G bridge n◦6 Full (1) or Empty (0)
H bridge n◦7 Full (1) or Empty (0)
J bridge n◦8 Full (1) or Empty (0)
K bridge n◦9 Full (1) or Empty (0)

The plate static deflection, modal damping values, and cost function are investigated
as DOE responses. This means that six polynomial functions will be built, one for the
static deflection, one for the cost function and four for modal damping values related
to the first four natural modes. The optimisation process may thus be split into the485

following steps:

• Plate deflection, modal damping values as well as cost function are post-processed
from the finite element simulations carried out on the 128 chosen configurations.
• A least-square linear regression is then realised on each response and resulting

second order polynomial functions are set.490

• A chart showing the polynomial vs residual values is plotted to check both the
maximum gap between numerical and polynomial results and the randomness of
the error distribution.
• A normalised effect Pareto chart is plotted to analyse the contribution of each

factor and discard those having a non-significant impact on the response.495

• Once the non significant factors have been eliminated, the predictive capacity
of the new polynomial form is calculated for each response in order to check its
ability to predict the remaining 2048 - 128 = 1920 configurations.
• The configuration which maximises the cost function while complying with the

stiffness constraint is identified.500

5.4. Influence of the DOE factors on the plate stiffness

First of all, the deflection of a simply supported plate loaded by a transverse force is
investigated. The supports are located at 5 mm from the small edges of the plate and
a unit load is applied at its center. Starting from the deflections retrieved from the 128
numerical simulations, a DOE is set-up using Minitab software.505

Fig.21 shows the polynomial vs residual value chart. Residual value represents the
discrepancy between the deflection predicted by the polynomial function and the one
retrieved from the numerical simulation. The gap, determined as the ratio of the residual
value to the associated polynomial one, does not exceed 15% whatever the point depicted
on this graph. This result also means that the predictive polynomial form can be used510

in place of the numerical model if the design tolerance is higher than 15%.
The chart displayed in Fig.21 may also be used to check the randomness of the residual

values. Here, it appears clearly that the distribution is pseudo-randomised around the
0-axis and may be considered as acceptable.

The Pareto normalised effect chart displayed in Fig.22 aims to measure the influence515

of both the factors and their interactions over the response. It is obtained in the following
way. The probability of each factor to be retained without having a real effect on the
response is calculated. Then, to distinguish significant from non significant factors,
the commonly used threshold value of 5% is considered. This means that when the
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aforementioned probability is less than 5%, the factor is considered to be non-significant.520

Based on the DOE used in this study, the threshold value of 5% is obtained for a
normalised effect of 2 (highlighted by the red line in Fig. 22). The significant factors are
thus the ones having a normalised effect higher than 2.

Figure 21. Residual value vs polynomial values

Figure 22. Pareto normalised effect

The Pareto chart shows that the quadratic factor does not contribute significantly to
the plate deflection. On contrary, linear factors appear to have the highest probability525

to be significant, even if the influence of factors B, D and J, which correspond to bridges
1, 3 and 8 (surrounded by the red line in Fig. 23) is less. From a mechanical point of
view, this may be explained by the fact that the transverse shear strain at mid-span is
small, as already demonstrated for the simply supported ”quasi-2D” beam. The bridges
located at mid-span have a small effect on the elastomer transverse shear strain and, as530

a consequence, do not affect significantly the bending response of the plate.
A first estimation of the capacity of the polynomial to predict the plate deflection

is realised taking in account all the factors. Then, two additional estimations are per-
formed, the first one keeping only the significant factors and the second one keeping only
the linear factors. The R2 is the criterion commonly used to measure the capacity of the535
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polynomial function to predict the response. However, this criterion is clearly question-
able because adding new terms to the polynomial always improves the R2 value, even
though such improvement may be coincidental. To overcome this problem, two other
criteria may be considered. The first one is the so-called R2 adjusted criterion, which
takes into account the number of retained factors. As removing less probable factors540

usually improves the R2 adjusted, a second criterion called R2 expected is calculated by
eliminating each measurement from the data, one by one, then by recalculating the re-
gression coefficients without the discarded measurement. In fact, the R2 expected value
measures the capacity of the polynomial form to predict the response considering new
observations. Tab.16 gives the value of the R2 expected for the three aforementioned545

estimations.
Table 16. Capacity of the polynomial function to predict the
static deflection

All factors Significant factors Linear factors
R2 expected 88% 92% 77%

Tab.16 clearly shows that the model prediction capacity is higher when only the
significant factors including the interaction terms are considered. As the number of
factors is less, the risk of error due to non significant factors is decreased. Finally, the
best polynomial function obtained for the prediction of the ”bridged” damped plate550

deflection is the following one:

wmax = 369.51− 0.7222 ∗ A− 6.59 ∗B − 23.94 ∗ C − 12.88 ∗D − 19.56 ∗ E − 51.97 ∗ F
−50.38 ∗G− 18.75 ∗H + 5.75 ∗ J − 21.75 ∗K − 0.270 ∗ AJ + 10.38 ∗ CD + 17.81 ∗ CE

+21.06 ∗ CF − 31.69 ∗ CH − 23.62 ∗ CK + 20.81 ∗ EG− 27.31 ∗ EH − 27.00 ∗ EK
+21.81 ∗ FH + 20.38 ∗GK + 20.75 ∗HK

(13)

A thorough analysis of Eq.13 allows to better understand the interactions between
the different bridges. Each linear factor (each bridge) is associated with a negative
coefficient, which means, as expected, that every bridge contributes to decrease the
deflection, i.e. to increase the plate stiffness.555

It is also observed that interactions between 2 neighbouring bridges are associated
with positive coefficients, meaning that the deflection is less decreased compared to what
would be obtained by adding the influence of the bridges taken one by one. This may
be explained physically as follows. A bridge modifies the shear behaviour of the mid-
layer within a certain area. When two bridges are in close proximity, their respective560

area of influence overlap and, as a consequence, their stiffening effect are less than
additive.On contrary, interaction coefficients related to distant bridges are negative,
showing the favourable effect of distant bridges over the plate stiffness. Physically, the
stiffening effect of distant bridges is more efficient because the overlap of stiffened areas
is smaller or even null. Fig.23 illustrates the interactions between neighbouring and565

distant bridges.
Finally, it is worth noting that among the 128 numerical simulations used to set the

DOE, only 43 led to a stiffness higher than half the stiffness of the carbon-epoxy plate.

25



K ↘

K ↘

K ↘

K ↘

K ↘

K ↘

K ↗

K ↗
K ↗

K ↗

Figure 23. Location of non significant bridges and interactions between neighbouring and distant bridges

5.5. Influence of the DOE factors on the plate damping

In a second part, modal damping values calculated for the first 4 modes are considered570

and new DOE are built. As for the plate deflection, Pareto and polynomial vs residual
value charts are analysed and a polynomial function is derived to predict the modal
damping values. For each mode, the capacity of prediction characterised by the R2

expected value is given in Tab.17.
The coefficients of the resulting polynomial functions are listed in Tab.18. It may be575

observed that interactions between neighbouring and distant bridges are not significant.
Only the interactions involving the bridge diameter and the bridges themselves have an
influence on the plate damping. As expected, linear and interaction coefficients are all
negative, which means that every bridge contributes to reduce the modal damping.

In Fig.24, the bridges having any or few influence on the modal damping values580

are highlighted. To explain this physically, let us choose a configuration involving 2
neighbouring bridges, one located in the plate diagonal and one located at mid-width.
Fig. 25 presents the transverse shear strain distribution post-processed in the viscoelastic
layer when the plate is excited at the first 4 natural frequencies. The location of the
bridges is flagged by the red circles. It is then interesting to compare the right hand585

side of the plate (without bridge) with the left hand side (with 2 bridges).

Table 17. Capacity of the polynomial forms to predict
the modal damping values

Mode 1 Mode 2 Mode 3 Mode 4
R2 expected 96% 96% 97% 93%

Table 18. Coefficients of the 4 polynomial forms derived to predict modal damping values
Factor A B C D E F G H J K

Mode 1 -2.45 -0.69 -1.04 -3.87 -0.83 -0.31 -0.53 -0.72 -4.73 -1.66
Mode 2 -5.49 0 -4.63 0 -5.9 -5.9 -6.42 -6.23 0 -6.2
Mode 3 -5.23 -0.18 -6.34 0 -7.71 0 -0.44 -7.66 0 -6.51
Mode 4 -8.3 -22.68 -3.73 -0.61 -9.22 -0.07 -4.11 -11.37 -18.6 -0.76
Factor AA AB AC AD AE AF AG AH AJ AK

Mode 1 0.578 0 -1.29 -2.36 -1.58 0 0 -1.48 -2.6 -1.16
Mode 2 1.28 0 -2.04 0 -1.49 -1.45 -1.14 -1.7 0 -1.51
Mode 3 1.5 -1 -4 -0.73 -3.4 0 0 -3.3 -0.95 -3.7
Mode 4 3 -6.48 0 0 0 -3.54 0 0 -11.46 -3.23
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(a) 1st Mode (b) 2nd Mode

(c) 3rd Mode (d) 4th Mode

Figure 24. Non significant bridges location regarding the modal damping

It appears clearly that the bridges affect locally the elastomer shear deformation.
When a bridge is located in a zone of small deformation, its influence on modal damp-
ing remains small. In other words, a bridge located in an area where the elastomer
is subjected to small shear deformation (blue areas in Fig. 25) corresponds to a non590

significant factor.

(a) 1st Mode (b) 2nd Mode

(c) 3rd Mode (d) 4th Mode

Figure 25. Shear strain for the first 4 studied modes

5.6. Identification of the optimal configuration

Once the polynomial functions able to predict both the plate deflection and modal
damping values have been derived, the cost function is studied as the response of the
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DOE. The same approach is adopted and a polynomial model is derived from finite595

element results to predict the cost function. Related coefficients are also listed in Tab.
18. Keeping only the significant factors allows to obtain a prediction capacity of 97%.
The quality of the prediction is also illustrated by the residual vs polynomial value chart
displayed in Fig.26. Resulting gaps between polynomial and numerical values do not
exceed 8%. It is worth to note that we could have used the values given by the modal600

damping predictive polynomials to estimate the cost function but doing this would have
accumulate prediction uncertainties and lead to a worse prediction.

Figure 26. DOE for the cost function: residual vs polynomial values

To identify the optimal bridge configuration, the predictive polynomial model is then
used to calculate the cost function value related to the 2048 configurations. In the same
way, the predictive model of the plate deflection (Eq.13) is run to identify the configu-605

rations that satisfy the stiffness constrain. Considering that for the plate deflection the
maximum gap between predicted and explicitly calculated results is equal to 15%, the
stiffness ratio to be raised for satisfying the constrain becomes 50% × 1, 15 = 57.5%.
The 257 configurations that satisfy this criterion are surrounded by a red line in the
Fig.27. It is also observed on this figure that the cost function values calculated for610

57.5% stiffness ratio configurations vary between 1.7 and 3, which demonstrates the
high sensitivity of the modal damping even for configurations with the same stiffness
ratio.

Among the 257 configurations satisfying the stiffness criterion, the one with the high-
est cost function value is considered as the optimal configuration and is flagged by a615

red circle in Fig.27. It includes 6 bridges with a diameter of 30 mm and is displayed
in Fig.28. Its cost function value and stiffness ratio are given in Tab.19, together with
those obtained from numerical simulations. A discrepancy of 4% is observed between
predicted and numerical results for the plate deflection and 2% for the cost function
value, which confirms the accuracy of the DOE’s prediction.620
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Figure 27. Analysis of the 2048 configurations: cost function vs stiffness ratio

Table 19. Optimal configuration
Cost function Stiffness ratio

Predicted 3.2 59.2%
Simulated 3.16 61%

3.3 % of bridges

	 	30	mm

Figure 28. ”Bridged” damped plate optimal configuration

As Fig.28 bears out, the optimal configuration does not contain any bridge at mid-
span. This result was expected regarding the plate stiffness as it has been demonstrated
for a beam that a bridge located at mid-span has a small influence on both the stiffness
and the damping. However, such result was not so obvious regarding the modal damping
associated with the first 4 natural mode shapes. Note that the volume of bridge of this625

configuration represents 3.3% of the optimal plate volume, which is in accordance with
the results obtained by Robinson et al. (fraction ≤ 5%) [3] and Pan et al. (fraction
≤ 7%) [4].

Let us now consider the second configuration flagged by a red circle in Fig.27.
This so-called minimal configuration has the same stiffness ratio than the optimal one630

(K/KCE = 59.2%) but the lowest cost function value (FC = 2.2.). In Fig.29, its dy-
namic response is compared to the optimal one in frequency ranges that include the first
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4 natural frequencies. It is observed that the plate stiffness being the same, an optimised
position of the bridges allows to decrease the level of accelerance at the resonance by
up to 7 dB. It is thus concluded that the bridge volume fraction alone is not a relevant635

basis of comparison as the location of the bridges is also a of crucial importance in the
process of optimisation.
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Figure 29. Comparison of the dynamic responses of bridged plate optimal and minimal configurations

6. Conclusion

In this study, static and dynamic bending responses of small carbon-epoxy plates in-
cluding one frequency-dependent interleaved viscoelastic layer have been investigated640

both experimentally and numerically.
Different types of plates have been manufactured and tested and the main findings

of this experimental work may be summarised as follows:

• Inserting a 1mm thick rubber-like film into the laminate has allowed to attenuate
by around 21 dB the plate response amplitude at the resonance but, at the same645

time, its bending stiffness has been reduced by 65%.
• To mitigate the loss of stiffness, holes have been cut in the viscoelastic layer so

as to facilitate the resin through layer penetration during the co-curing process.
Resulting bridges created between the carbon-epoxy skins have allowed to limit
the loss of bending stiffness to 54% while attenuating by around 19 dB the response650

peak amplitude.
• It has been observed that the shape of the created bridges was not as expected.

In particular, a micro-graphic analysis has shown that a manual carbon-epoxy
prepreg lay-up does not allow for a satisfactory filling of the holes.

In parallel to this experimental work, finite element models have been developed to655

simulate the static and dynamic responses of the manufactured plates. While the upper
and lower carbon-epoxy skins have been represented by 2D shell elements, the rubber-
like layer has been meshed using 3D solid elements and a visco-hyper-elastic behaviour
law has been defined. Based on DMA tests performed on the elastomer constituting the
viscoelastic layer, frequency dependent shear modulus and damping loss factors have660

been considered in the simulation of the damped plate forced response.
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Finite element models of increasing complexity have thus been set-up and systemati-
cally confronted to experimental tests. It has been demonstrated that numerical simula-
tion is able to capture quite accurately the dynamic response of the ”bridged” damped
plates, given that some uncertainties exist regarding material properties, assembly of665

the viscoelastic layer with composite skins and fill rate of the holes.
Numerical simulation have then been advantageously used to investigate the influence

of the position and volume fraction of one bridge on both the static deflection and
dynamic response of a ”quasi-2D” simply supported beam. It has been shown that when
the bridge comes near a support where the shear deformation of the viscoelastic layer is670

maximum, the plate bending stiffness increases but, at the same time, the damping is
reduced. The main challenge thus consists in finding a good/best compromise between
stiffness and damping.

The last part of this work is devoted to the optimisation of a ”bridged” damped plate.
Based on a limited number of numerical simulations, a design of experiments has been675

developed to optimise the number, the location and the diameter of the bridges with the
objective to maximise the modal damping for the 4 first natural modes while keeping a
plate stiffness at least equal to half the stiffness of the undamped carbon-epoxy plate.
Polynomial functions have been derived to predict both the static plate deflection and
a cost function based on the modal damping values related to the first 4 modes. The680

quality of prediction of these polynomial forms has been checked and all possible bridge
configurations have been analysed to find the optimal one.
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