To [[Composite laminate models|model a composite laminate]] there are a few options, the most important are the [[Equivalent Single Layer Theories|equivalent single layer]] and the layerwise. Those theories describe kinetically each layer. They can be used for very thick laminate, and useful to compute delamination. They predicts correct inter-laminar stresses and there is no need of shear correction factor. There is a unique displacement field per layer + interlaminar continuity of displacements (and sometimes of transverse stresses). -> very computationally expensive, since the number of degrees of freedom increase proportionally with the number of layers. ([[Secondary articles descriptions#First order Zig-Zag plate Theory|source]]) ## Stiffness ([[Videos descriptions#Composite materials course|video source]]) When pulling on the material, strain is the same for every ply, but stress is not. You need to average it along the whole thickness $$ \left[\begin{array}{c} \overline{\sigma_{xx}} \\ \overline{\sigma_{yy}} \\ \overline{\tau_{xy}} \\ \end{array}\right] = \frac{1}{h}\int_{-h/2}^{h/2} \left[\begin{array}{c} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \\ \end{array}\right] dz \tag{1}$$ $Q$ is the stiffness matrix : $$ \left[\begin{array}{c} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{array}\right] = \left[\begin{array}{c} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \\ \end{array}\right] \left[\begin{array}{c} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{array}\right] \tag{2}$$ Since the strain is the same for every ply, (1) & (2) gives us : $$ \left[\begin{array}{c} \overline{\sigma_{xx}} \\ \overline{\sigma_{yy}} \\ \overline{\tau_{xy}} \\ \end{array}\right] = \frac{1}{h}\int_{-h/2}^{h/2} \left[\begin{array}{c} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \\ \end{array}\right]dz \left[\begin{array}{c} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{array}\right] \tag{3}$$ and we can give a name to the mean matrix of the stiffness : $$ \left[\begin{array}{c} A \\ \end{array}\right] = \frac{1}{h}\int_{-h/2}^{h/2} \left[\begin{array}{c} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \\ \end{array}\right]dz \tag{4}$$ or when the ply are continuous : $$ \left[\begin{array}{c} A \\ \end{array}\right] = \frac{1}{h}\sum_{1}^{n\_ply} \left[\begin{array}{c} Q \end{array}\right]_i *h_i \tag{5}$$ to rotate the stiffness matrix : $$[\overline{Q}]_\theta = [C]_{|\theta}^T \left[\begin{array}{c} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & Q_{33} \\ \end{array}\right] [C]_{|\theta} \tag{4}$$ where $[C]$ is the transformation matrix : $$[C]_{|\theta} = \left[\begin{array}{c} c^2 & s^2 & cs \\ s^2 & c^2 & -cs \\ -2sc & 2sc & (c^2-s^2) \end{array}\right]$$ ## Tsai-Hill criterion $$ F.O.S = \frac{T_x}{\sqrt{\sigma_{xx}^2 - \sigma_{xx}\sigma_{yy} + \frac{T_x^2\sigma_{yy}^2}{T_y^2} + \frac{T_x^2\tau_{xy}^2}{S_{xy}^2}}}$$