
Analysis of Laminated Composites Subjected
to Impact

Sergey Ugrimov(&) , Natalia Smetankina , Oleg Kravchenko ,
and Vladimir Yareshchenko

A. Pidgorny Institute of Mechanical Engineering Problems of the National
Academy of Sciences of Ukraine, 2/10 Pozharskogo Street, Kharkiv 61046,

Ukraine
sugrimov@ipmach.kharkov.ua

Abstract. The paper proposes both theoretical and experimental approaches to
the analysis of laminated composite response to impact loading. For theoretical
modelling of dynamic behavior of a composite, the generalized model is used
that takes into account the spatial character of deformation on near to the impact
point. This model is based on a power series expansion of the displacement
vector component in each layer for the transverse coordinate. The results of
calculations are compared with the data obtained by other researchers for the
case of low-velocity impact, as well as with the experimental data obtained by
ourselves at medium-velocity impacts on composite panels. In the experimental
study, maximum deflections of composite samples during the impact of an
indenter were investigated. A pneumatic gun was used to launch the indenter,
and a crusher was used to register the maximum deflections. An experimental
study of the response of an eleven-layer fiber-glass composite to indenter
impacts at different velocities was performed. For launching, the 600 g indenter
was used. It is established that the calculation results and experimental data are
in good agreement.
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1 Introduction

Thin-walled composite shell structures are widely used in aerospace engineering,
shipbuilding, chemical industry, and automobile industry [1, 2]. They work under
conditions of both stationary and non-stationary force loads. Dynamic loads are
observed in operating modes, and also in some emergency situations. Such loads occur
during various explosions, when an aircraft collides with a bird, when an aircraft tire
fragment hits the composite wing of the aircraft, when the composite cabin of an
electric locomotive is hit by solid objects from the oncoming train, and so on [3–5].
These are practically important tasks that are considered in the design of composite
structural elements in various fields of technology.

Particularly dangerous to thin layered structures is the transverse impact of a rigid
projectile [6, 7]. In composites, such a localized intense load can lead to matrix
destruction, fiber damage, and structure delamination. This is why special attention is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Nechyporuk et al. (Eds.): ICTM 2020, LNNS 188, pp. 234–246, 2021.
https://doi.org/10.1007/978-3-030-66717-7_19

http://orcid.org/0000-0002-0846-4067
http://orcid.org/0000-0001-9528-3741
http://orcid.org/0000-0003-0048-6744
http://orcid.org/0000-0002-8238-2385
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66717-7_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66717-7_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66717-7_19&amp;domain=pdf
https://doi.org/10.1007/978-3-030-66717-7_19


paid to both theoretical and experimental methods of analyzing the stress-strained state
of thin-walled composite structures under impact loading [8].

When solving the problem of impact on layered anisotropic structures, the known
mathematical difficulties associated with an adequate description of the multilayer
structure of composite [9–13] and the need to solve a dynamic problem [10–13], are
aggravated by the presence of a localized load [10], which in general acts on a pre-
viously unknown area. This area must be determined in the process of solving the
problem itself. In addition, the impact in the composite excites a wide range of
oscillations with different frequencies, which imposes additional requirements for the
structural model being applied.

All these problems result in a very limited number of works on the analysis of the
response of laminated composite structures to the impact of elastic bodies [6, 8, 12, 13].
Typically, such problems are solved by numerical methods based on the discretization
of a complex domain and its boundary, such as the finite element method (FEM). There
are very few works devoted to analytical methods for solving such problems, especially
for layered structures having a noncanonical shape. In this case, the immersion method
[14], and the method of R-functions [15] can be used. With this, the behavior of a
multilayer structure is usually described by low-order shell theories, and the process of
impact interaction is described by Hertz’s law or its modifications. Some problems of
modeling the response of a composite to the low-velocity impact were considered in [6,
12, 13, 16]. In [6, 12, 13], refined first-order theories were used to model the behavior
of a composite, which do not take into account the compression and nonlinear nature of
stress distribution over the composite thickness. In [13], the solution was obtained by
an analytical method, and in [6, 16], with the use of the FEM.

Nosier et al. [12] applied a refined discrete-structural theory of layered plates and
investigated six models to describe the loading model. In the first five, the domain of
interaction of the indenters and plates is proposed to be known. As a result, the problem
is reduced to a nonlinear integral equation similar to Tymoshenko’s equation. The
impact force is interpolated by the Legendre and Hermite polynomials. In the sixth one,
based on Hertz’s law, the time dependence of the contact area was taken into account,
which also led to the need to solve a nonlinear integral equation.

Pierson and Vaziri [13] obtained an analytical solution for the problem of analyzing
the response of simply supported composite plates to the low-velocity impact. The
equations of motion for the plates were based on the Whitney and Pagano first-order
theory. Local indentation was taken into account on the basis of Hertz’s law, and the
coefficients that enter into this dependence were determined experimentally. The
solution to the problem was based on the decomposition of displacements into Fourier
series. The domain of integration was divided over time into equal segments, at each of
which the impact force was assumed to be constant.

Tan and Sun [17] proposed a modified Hertz’s law to improved description of
impact on composite targets. The dependence was obtained experimentally in the study
of the response of graphite-epoxy structures subjected to impact.

Choi and Hong [18] presented the results of theoretical and experimental studies of
the response of layered composite plates to the impact. They applied both a high-order
theory and the FEM. The impact force is described by modified Hertz’s law. It is
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established that for a more accurate description of the behavior of composite plates at
impact, it is necessary to apply a high-order theory.

In [10], it was proved that with localized impact loading, in the analysis of stresses
in even thin composites, it is necessary to use high-order theories, and first-order
theories can be used only for the approximate calculation of forces and displacements.

The presence of various assumptions in the models of layered composites, as well
as simplifications in the description of interaction of indenter and composite structure
requires, at the final stage of design of critical structures, conducting an experimental
test of their response to impact. This requires using special equipment, namely launch
devices, as well as equipment for registering deflections and strains. Low-velocity
impact tests are usually performed by simply dropping the impactor onto a target [19,
20]. When studying the response of structures to medium- or high-speed impacts, it is
already necessary to use special acceleration devices [4, 8, 20]. To register the behavior
of structures during impact, high-speed video recording can be used, which allows one
to assess the behavior of the entire structure, a variety of crushers to register the
maximum structural displacement. One of the most common methods of registering
strains is the method of dynamic wide-range strain gauging, which allows registering
the time-dependent change in plane strains at a point [4]. But the rapidity of the
deformation process requires the use of equipment with a high clock frequency. All this
makes it difficult to perform the experiment.

The more detailed review of simulation and experimental study of composite
structures subjected to low-velocity impact can be found, for example, in works Abrate
[8], Patil et al. [19], Cantwell and Morton [20], Panettieri et al. [21].

This paper proposes a theoretical approach to the analysis of the response of a
composite subjected to the impact loading. The approach is based on the hypotheses of
the generalized theory of multilayer structures, which allows one to investigate lami-
nated structures under localized loads.

2 Theoretical Modeling

2.1 Mathematical Model of Laminated Composite

A laminated composite consists of I layers of constant thickness, hi is the thickness of
the i-th layer (Fig. 1).

Fig. 1. Laminated composite. Impact problem.
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The layers are made of orthotropic materials, and hi is the reinforcing angle in the i-
th layer. The reinforcement directions in each layer are assumed to be parallel to the
coordinate axes Ox1, Ox2. It is assumed that the contact between the layers excludes
their delamination and mutual slipping.

The behavior of the layered plate is described by equations of the generalized
theory of multilayer plates [10]. The displacement of a point on the i-th layer is
described by the following kinematic relationships:

uiaðx1; x2; x3; tÞ ¼ ua þ
XKa

k¼1

Xi�1

j¼1

hkj u
j
a k þðx3 � di�1Þkuiak

" #
; ð1Þ

where hkj ¼ ðhjÞk , di ¼
Pi
j¼1

hj, di�1 � x3 � di, i ¼ 1; I; uia ða ¼ 1; 3Þ are the displace-

ments of a point in the i-th layer in the direction of the coordinate axes Oxa; ua; uiak
are the coefficients of expanding displacements into power series, which are functions
of the arguments x1, x2, t; Ka are the maximum powers of the transverse coordinate for
plane (a = 1, 2) and transverse (a = 3) displacements of the i-th layer. The parameters
K1 and K2, which describe the number of retained power series terms for plane dis-
placements, will be the same and equal to K, while the parameter K3, which describes
the number of retained power series terms for transverse displacements, shall be equal
to L. The generalized theory shall be designated by the number of retained terms in
power series (1) for plane and transverse displacements, viz., theory {K, L}.

By varying the number of retained terms in power series (1), it is possible to obtain
two-dimensional approximations of the stress-strained state with different accuracy.
Particular cases of the generalized model are Grigoliuk’s model [22], the refined first-
order theory, which takes into account the influence of the transverse normal and shear
strains in each layers [23], as well as the high-order theory [24].

The strains in each layer are supposed to be small and are described by the linear
relationships. With account of the accepted hypotheses (1), the the strain tensor of a
point in the i-th layer (eiab) take the form

eimm ¼ um;m þ
XK
k¼1

Xi�1

j¼1

hkj u
j
mk;m þðx3 � di�1Þkuimk;m

" #
;

ei33 ¼
XL
‘¼1

‘ðx3 � di�1Þ‘�1ui3‘;

ei12 ¼
1
2

u1;2 þ u2;1 þ
XK
k¼1

Xi�1

j¼1

hkj ðu j
1k;2 þ u j

2k;1Þþ ðx3 � di�1Þkðui1k;2 þ ui2k;1Þ
" # !

;
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eim3 ¼
1
2

XK
k¼1

k ðx3 � di�1Þk�1uimk þ u3;m þ
XL
‘¼1

Xi�1

j¼1

h‘j u
j
3‘;m þðx3 � di�1Þ‘ui3‘;m

" # !
:

ð2Þ

Applying hypotheses (1) yields a displacement field, which is continuous over the
pack thickness, and ensures the continuity of the strains ei11; e

i
22 and the piecewise

continuity of the transverse strain ei33; e
i
m3 (2) over the pack thickness. Therefore,

within the theory being suggested, it is possible in principle to satisfy the conditions of
contact between the layers with a specified accuracy.

The relation between the components of strain tensors and the stresses for the
orthotropic case being considered has the form [10]

ei11
ei22
ei33

0
@

1
A ¼

1
�
Ei
1 �mi21

�
Ei
2 �mi31

�
Ei
3

�mi12
�
Ei
1 1

�
Ei
2 �mi32

�
Ei
3

�mi13
�
Ei
1 �mi23

�
Ei
2 1

�
Ei
3

0
@

1
A �

pi11
pi22
pi33

0
@

1
A;

ei12 ¼ pi12
�
2Gi

12
ei13 ¼ pi13

�
2Gi

13
ei23 ¼ pi23

�
2Gi

23:
;

where Ei
a; m

i
ab are Young’s modulus and Poisson ratios, Gi

12; G
i
13; G

i
23 are shear

moduli, and piab is the stress tensor for the i-th layer.
Forces and moments in the i-th layer are determined by the formulas

Nik
ab ¼ Nik

ba ¼
Zdi
di�1

x3 � di�1ð Þkpiabdx3; a; b ¼ 1; 3; k ¼ 1;K; i ¼ 1; I:

The equations of motion for the forces and moments have the form [10]

XI
i¼1

Lia � Iia1
� �þ q1a ¼ 0;

Ni ka
1a;1 þNi ka

a2;2 � kaN
i ka�1
a3 þ hkai

XI�1

j¼i

Ljþ 1
a � Ijþ 1

a1

h i
� Iiaka þ 1 ¼ 0; ð3Þ

where Li1 ¼ Ni0
11;1 þNi0

12;2; L
i
2 ¼ Ni0

22;2 þNi0
12;1; L

i
3 ¼ Ni0

13;1 þNi0
23;2;

Iiar ¼
qih

r
i

r
ua0;tt þ

XKa

k¼1

Xi�1

j¼1

hkj u
j
ak;tt þ

rhki
kþ r

uiak;tt

" # !
; ka ¼ 1;Ka; i ¼ 1; I; a ¼ 1; 3:

The boundary conditions on the support contour for a simply supported rectangular
plate are given below at x1 = 0, x1 = A,
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XI
i¼1

Ni0
11 ¼ 0; u2 ¼ 0; u3 ¼ 0; Nik1

11 þ hk1i
XI�1

j¼i

Njþ 10
11 ¼ 0; ui2k2 ¼ 0; ui3k3 ¼ 0;

at x2 = 0, x2 = B,

u1 ¼ 0;
XI
i¼1

Ni0
22 ¼ 0; u3 ¼ 0; ui1k1 ¼ 0; Nik2

22 þ hk2i
XI�1

j¼i

Njþ 10
22 ¼ 0; ui3k3 ¼ 0: ð4Þ

Equations of motion (3) can be written in terms of displacements

X � U;tt �K � U ¼ Q; ð5Þ

where U is a vector whose components are the sought for functions U
T ¼ ua; uiaka

� �
,

a ¼ 1; 3; i ¼ 1; I; ka ¼ 1; Ka; K, X are the symmetrical matrixes of stiffness and mass
of order (2K + Ka)I + 3 [10]; Q is a vector whose components are a function of an

external force applied to the external surface of the layered plate Q
T ¼ q1; q2; q3;

�
0; :::; 0Þ.

Equations of motion (5) and boundary conditions (4) are supplemented with zero
initial conditions

ua ¼ uiaka ¼ 0; ua;t ¼ uiaka;t ¼ 0; at t ¼ 0: ð6Þ

Hence, the dynamic behavior of a layered composite is described by the system of
Eqs. (5), as well as boundary conditions (4) and initial conditions (6). The method of
solving the obtained system of equations is based on the expansion of the sought
functions ua; uiaka ða ¼ 1; 3; ka ¼ 1; Ka; i ¼ 1; IÞ and the external load qa into
trigonometric series by functions Bamn(x1, x2) satisfying the boundary conditions.

ua; uiak; qa
� � ¼Xm1

m¼1

Xn1
n¼1

UamnðtÞ; Ui
akmnðtÞ; qamnðtÞ

� �
Bamnðx1; x2Þ;

where m1, n1 is the number of the terms retained in the series.
For a simply supported rectangular plate, function Bamn(x1, x2) has the form

B1mn ¼ cos c sin d; B2mn ¼ sin c cos d; B3mn ¼ sin c sin d; c ¼ m p x1=A; d ¼ n p x2=B:

As a result, the problem on non-stationary deformation of a laminated composite
for each pair of values m and n is reduced to integrating a system of ordinary second-
order differential equations with constant coefficients and zero initial conditions.
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2.2 Impact on a Laminated Composite

Let us investigate the process of non-stationary deformation of a horizontally located
simply supported rectangular layered plate under low-velocity transverse impact
(Fig. 1) [5, 10]. The impact is delivered in the middle of the outer surface of the first
plate layer by a ball of radius R and mass M. At the moment of collision with the plate,
the ball has a velocity V0. The impact force and the area of contact are unknown in
advance and must be determined in the process of solving the problem itself, so it is
necessary to consider the mutual displacement of the plate and the indenter. The system
of equations that describes the behavior of the plate is supplemented by the equations
of motion for the indenter, as well as the condition of joint displacements of indenter
and composite plate.

With this, it is convenient to specify the shape of the area and the nature of load
distribution, and to determine their parameters while solving the problem. There are
several classic models of the load area: a point load area, a rectangular area, and a
circular area [12]. The most realistic picture can be obtained by using a circular area,
especially for isotropic bodies. During impact on orthotropic plates, the load area has
an elliptical character, but as a first approximation, a circular area is allowed to be used,
which gives good results [12]. Therefore, we assume that the area of interaction
between the indenter and the orthotropic plate is a circle of radius r(t).

The character of load distribution over the contact area is unknown. To study it in
the contact area, different mathematical models are used, for example, uniform and
sinusoidal distributions [12]. However, a more accurate model is the ellipsoidal stress
distribution over the contact area [12, 25]. In the study of impact, it will be used to
model the distribution of stresses in the contact area.

Thus, the area of interaction between the indenter and plate is assumed to be a circle
of radius r(t), with the contact pressure being distributed over the contact area
according to the law

q3ðx1; x2; tÞ ¼ P0ðtÞ 1� ðx1 � x10Þ2 þðx2 � x20Þ2
r2

" #0:5
;

q1ðx1; x2; tÞ ¼ q2ðx1; x2; tÞ ¼ 0;

ð7Þ

where x10 and x20 are the coordinates of the ball and plate contact point at the initial
instant of time.

The contact force with account of (7) is.

PðtÞ ¼
ZZ

S
q3dS ¼ ð2=3ÞP0pa

2;

where S is the contact interaction area.
The equation of motion for centre of mass of the indenter and the initial conditions

have the form [10]
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Mz; tt ¼ Mg� P; zð0Þ ¼ 0; z;tð0Þ ¼ V0; ð8Þ

where z = z(t) is the indenter displacement, P is the contact force, and g is the gravity
factor.

The condition of the joint displacement of the indenter and composite plate is

u13ðx10; x20; 0; tÞþ aðtÞ � zðtÞ� 0; ð9Þ

where a(t) is the contact approach of the ball and plate in the contact point.
The indenter and plate come into contact when inequality (13) becomes equality.
Contact approach is found using Hertz’s law a = kP2/3 [10, 12, 13, 26]. The

coefficient k, which depends on materials and shapes of interacting bodies, for a contact
of a ball with an isotropic plate has a rather simple expression obtained by Dinnik [25].
During impact on an orthotropic half-space, a similar expression for the coefficient k is
absent [12]. In practice, the coefficient k is determined from an experiment or formulas
for the isotropic case and averaged mechanical characteristics for the orthotropic half-
space are used, for example ma ¼ ðm12 þ m21Þ=2, Ea ¼ ðE1 þE2Þ=2, where Ea, ma are
the averaged values of Young’s modulus and Poisson’s ratio for the first layer [12].

The radius of the contact area r(t) is computed using the formulas [10, 12]

rðtÞ ¼ ð3=16Þ � PðtÞ � R � ðhþ h1Þ½ �1=3; h1 ¼ 4ð1� m2aÞ
�
Ea; h ¼ 4ð1� m2Þ�E;

where E, m are Young’s modulus and the Poisson ratio for the ball material.
Thus, the non-stationary deformation problem of a laminated composite at impact is

reduced to the integration of a system of equations describing the behavior of the
composite plate (4)–(6), together with the equation of motion for the indenter (8) and
the condition of the joint displacements (9). The method of solving the obtained system
is described in detail in [10].

2.3 Numerical Results

The response of a symmetric ten-layer composite (0°/90°/0°/90°/0°)s to the impact of a
steel ball that has a diameter of 12.7 mm, a mass of 8.5 g and an initial velocity of
3 m/s is considered [13]. The geometric parameters of the composite are A = B =
0.2 m, and dI = 2.69 mm. The properties of the material are E11 = 120 GPa, E22 =
E33 = 7.9 GPa, G12 = G23 = G13 = 5.5 GPa, m12 = m13 = m23 = 0.3, q = 1580 kg/m3.
The coefficient k that is used in Hertz’s law was the same as in [10, 12, 13] for this
problem.

Fig. 2 shows both the change in time for the contact force and deflections under the
point of impact. The solid line shows the analytical solution to the two-dimensional
problem [13], the dots show the solution by the FEM [12, 13], and the dotted line
shows the solution according to the generalized model {7, 6}. The figure shows that in
the time interval being investigated, the rebound is followed by a re-collision, and the
results of calculations according to the proposed theory are in good agreement with the
known solutions.
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In the calculation, the generalized model {7, 6} was used, but for the general
analysis of displacements and the contact force, lower-order models can be used [10].
High-order theories are necessary for a detailed analysis of stresses and strains in
composite layers [10].

3 Experimental Setup and Results

For the experimental research, the test stand of the A. Pidgorny Institute of Mechanical
Engineering Problems of the NAS of Ukraine was used. A pneumatic gun was used for
launching (Fig. 3). This gun consists of a bore with a length of 4,000 mm and a
diameter of 125 mm; a tank filled with compressed air; and a special membrane for
rapid air intake [5].

A system for measuring the velocity of the object being launched is installed at the
muzzle of the bore (Fig. 4). Velocity measurements were performed by registering the
time between the rupture of two wires of diameter 0.3 mm, spaced at a distance of
100 mm from each other. Time measurement was performed using an E 20–10 analog-
to-digital converter.

Fig. 2. Change of the contact force and deflections in time.

Fig. 3. Pneumatic gun. Fig. 4. Speed measurement system.
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A 600 g indenter with a cylinder nose of diameter 20 mm was used for launching.
Its main part is made of polyfoam, which together with two disks plays the role of a
wad. The impactor part of the indenter is made of aluminum; and its weight, radius, and
shape can be chosen depending on the objectives of the study.

Fig. 5 shows the scheme of an experimental setup (1 − gun bore, 2 – indenter, 3 –

composite plate, 4 − crusher, 5 – support frame, 6 − clamping bar, 7 − rubber gaskets,
8 − base plate). A plasticine crusher was installed between the test sample and the base
plate (Fig. 6). The difference between the length of the crusher before and after the test
gives the maximum value of deflection.

The target for testing was fixed in a special box (Fig. 6), perpendicular to the
direction of indenter movement (Fig. 6). The impact was delivered to the center of the
outer surface of the composite plate.

In the experiment, the maximum deflection of a simple-supported flat fiberglass
sample with a plan size of 500 � 500 mm was investigated. The fiberglass plastic
consists of 11 layers: one front layer, two layers of glass-fiber mat, 8 layers of glass-
fiber fabrics. For impregnation, the Crystic 1355 PA resin is used. The orientation of
the layers is longitudinal-transverse. Layer thicknesses are h1 = h2 = hi = 0.6 mm
(i ¼ 4; 11) and h3 = 0.9 mm. Physical and mechanical characteristics of the front
layer are E1

1 ¼ E1
2 ¼ E1

3 ¼ 6:4 GPa, m112 ¼ m113 ¼ m123 ¼ 0:44; G1
12 ¼ G1

13 ¼ G1
23 ¼

2:286 GPa, q1 = 1600 g/cm3; of the glass-fiber mats, E2
1 ¼ E2

2 ¼ E2
3 ¼ 6:4 GPa,

m212 ¼ m213 ¼ m223 ¼ 0:44, G2
12 ¼ G2

13 ¼ G2
23 ¼ 2:286 GPa, q2 = 100 g/cm3, E3

1 ¼ E3
2 ¼

15 GPa, E3
3 ¼ 7:689 GPa, m312 ¼ 0:12, m313 ¼ m323 ¼ 0:41; G3

12 ¼ 2:554 GPa, G3
13 ¼

G3
23 ¼ 2:184 GPa, q3 ¼ 450 g/cm3; of the glass-fiber fabrics, Ei

1 ¼ Ei
2 ¼ 12:1 GPa,

Ei
3 ¼ 6:331 GPa, mi12 ¼ 0:13, mi13 ¼ mi23 ¼ 0:41; Gi

12 ¼ 2:176 GPa, Gi
13 ¼ Gi

23 ¼ 2:06
GPa, qi ¼ 1580 g/cm3.

Deflections of three composite samples upon impact with velocities of 106, 97 and
84 m/s are studied. Table 1 shows the results of numerical and experimental studies of
the maximum deflections of the fiberglass plastic in the middle of its rear side under the
point of impact. The calculation assumes that the area of interaction between the

Fig. 5. Scheme of an experimental setup. Fig. 6. A target and a box for tests.
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indenter and the plate is a circle of the same diameter as the diameter of the impact
cylinder. It can be seen that the results of calculations are in good agreement with the
experimental data, which confirms the efficiency of the proposed method.

4 Conclusions

A theoretical and experimental approach to modeling the response of a laminated
composite to the impact is proposed. To theoretically model the behavior of a com-
posite, equations of the generalized model of layered structures are used, which allows
taking into account the spatial nature of the deformation near the point of impact.

The possibilities of the proposed theoretical approach are shown using examples of
a number of problems of calculating the stress-strained state of laminated composites
with different sets of properties of layers. The probability of the obtained results is
illustrated by their comparison with the calculation data of other authors, obtained
using different two-dimensional theories.

An experimental study of the response of an eleven-layer glass-fiber composite to
the impact by indenter was performed. For launching, the 600 g indenter was used.
A pneumatic gun was used for launching the indenter, and crushers were used to
register the maximum deflections. It is established that the calculation results and the
experimental data are in good agreement.

The theory proposed has a wide field of application and allows for a valid
description of the impact response of layered structures having a practically any
composition of layers and pack thickness.
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