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A B S T R A C T   

Passive damping plays an important role in the vibration mitigation of aeronautic structures. In 
contrast to active systems, passive damping systems do not require any energy supply. Thus, their 
readiness is independent, which reduces the failure probability compared to active systems. 
Constrained Layer Damping (CLD) has become an established treatment for damping bending 
vibrations. Unlike other passive systems such as shock-mounts, CLD can be compactly integrated 
into an existing structure as an add-on solution. However, the design scope is limited by mass 
constraints and the optimal design for maximum damping must be found by optimization. For this 
purpose, a novel optimization approach is presented. The layer widths of the core and face layers 
of a CLD structure are treated as design parameters. Compared to the strategy of placing CLD 
patches on vibration antinodes, the proposed approach provides up to 52 % higher damping. The 
optimal design of a generic beam structure is determined considering different modes, viscoelastic 
material stiffnesses and ambient temperatures. Furthermore, the simulated damping is experi-
mentally verified for a shape-optimized beam. The analyses show that the optimal design depends 
significantly on the viscoelastic material stiffness and is therefore temperature dependent. As a 
consequence, a generalized design guideline for CLD treatments cannot be derived.   

1. Introduction 

Passive vibration damping plays a key role in the design of lightweight structures, especially in aeronautics and in the design of 
aircraft components [1,2]. An advantage over active systems is that passive systems do not require a proof of failure probability or a 
wired connection to an energy source, which usually results in an unwanted mass gain. The aircraft design process is dominated by 
stringent aeroelastic and fatigue requirements. Vibrations caused by gusts or flight maneuver can impair the controllability of an 
aircraft and define the sizing loads for the design process. Moreover, vibrations arising from operating engines or from the turbulent 
boundary layer are transmitted to the fuselage as structure-borne sound. The resulting sound radiation from the fuselage skin con-
tributes to the noise and further reduces the acoustic comfort of the passengers. Reducing structural vibration by integrated damping 
mechanisms would therefore be beneficial for load alleviation and a silent cabin. However, damping is usually not considered in the 
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initial design phase of aeronautic structures. 
The integration of passive damping mechanisms can be realized by using viscoelastic materials. Due to their chemical composition, 

such materials exhibit a high damping capacity. This characteristic makes viscoelastic materials attractive for structural vibration 
damping in engineering applications [1]. The mechanical properties of viscoelastic materials are highly frequency- and 
temperature-dependent [2–8]. However, this dependence can be described mathematically by appropriate models. The most prom-
inent examples to represent the frequency dependence are the Generalized Maxwell-Modell (GMM) [7], the 
Golla-Hughes-McTavish-Modell [9], the model of fractional derivatives [10] and the Anelastic Displacement Fields model [11]. 
Additionally, the temperature dependence is typically modelled by the Williams-Landel-Ferry (WLF) equation [5]. A comprehensive 
review of research on these topics is given in [12,13]. 

An efficient way to incorporate viscoelastic materials for damping of flexural vibration was originally proposed by Kerwin [14]. 
Kerwin analyzed a three-layer composite structure with a compliant viscoelastic core. This configuration, known as Constrained Layer 
Damping (CLD), provides considerable damping, due to forced shear strain in the viscoelastic layer. Several analytical CLD models 
have been developed to determine the fundamental dynamic behavior under various boundary conditions [15–18]. With the 
increasing application of the finite element method (FEM), the appropriate FE modelling of CLD treatments became highly relevant 
and has been studied in particular by Moreira et al. and Araújo et al. [19–23]. Nowadays, the current research still deals with the 
analytical modelling of CLD treatments with an emphasis on complex structures and smart materials. Recent work includes the 
integration of material and geometric nonlinearities, magnetorheological elastomers and strain-dependent effects, as proposed by Li 
et al. [24–27]. 

The availability of analytical and numerical modelling approaches has motivated several authors to increase the damping efficiency 
of CLD treatments within an optimization framework. In this context, various geometrical or material-related quantities have been 
considered as design variables with additional constraints regarding mass gain or mechanical properties. The spectrum of design 
variables encompasses  

• the thicknesses of core and face layer [28],  
• the position and length of CLD patches [29,30],  
• the position and shape of a CLD treatment [31],  
• the cut position for segmenting fully covered CLD treatments [32],  
• the elastic ply orientation angles and thicknesses of different laminated layers [33] and  
• the amount and the material type of laminated layers [34]. 

A special class of structural optimization is the topology optimization [35]. In topology optimization, each finite element acts as a 
design variable and its material contribution to the mechanical system is determined based on calculated sensitivities. A pattern of 
elements is obtained that corresponds to the optimal design for achieving a maximum or minimum objective value. This technique has 
been applied to viscoelastic damping design in the last decade [36–39]. Latest advances encompass the work of Zhang et al. who 
introduced a hierarchical optimization algorithm for minimizing the sound power radiation of plates with CLD material [40]. 
Moreover, Fotsing et al. proposed a generalized rule of thumb for placing damping material at the antinodes of a mode shape [41]. 
Other studies have focused on placing damping treatment at locations with the highest modal strain energy [37,42,43]. 

However, a review of the state of the art reveals some knowledge gaps which are addressed in this paper:  

I. One design parameter that has not been previously considered for damping optimization of CLD treatments, is the width of the core 
and face layers. Gröhlich et al. [44] showed that the damping of CLD beams is significantly affected by different widths of the 
layers. This approach is adopted here and formulated as an optimization problem with multiple widths.  

II. It is well known that temperature has a significant impact on the mechanical properties of viscoelastic materials. However, the 
influence of temperature on the optimal design of CLD treatments has not yet been considered in damping optimization. Therefore, 
by applying the proposed optimization approach together with a fully characterized viscoelastic material, it is analyzed whether 
the optimal design of a CLD treatment is temperature-dependent. 

The content of the paper is organized as follows: Chapter 1 provides an introduction and literature review of CLD treatments. The 
fundamentals of frequency- and temperature-dependent viscoelastic material modeling and corresponding analysis methods are 
exemplified in Chapter 2. Chapter 3 presents the new approach for shape optimization of CLD beams regarding maximum damping. 
The basic structure of the algorithm is introduced and the application is demonstrated by an example with two design variables. In 
Chapter 4, the optimization approach is analyzed with respect to the trade-off between numerical cost and accuracy of the results and 
compared to common placement strategies from the literature. Chapter 5 covers the application of the optimization approach to a CLD 
beam with a core layer consisting of a fully characterized bromobutyl rubber blend. The influence of temperature on the optimal design 
is analyzed and the result of a shape-optimized structure is experimentally validated. In Chapter 6, the key points of this paper are 
summarized and the main conclusions are drawn. 

2. Theoretical background of viscoelastic damping 

In this section, the fundamentals of viscoelastic damping are briefly discussed. The basic equations for modeling the frequency and 
temperature dependence are presented. Subsequently, an appropriate analysis method to evaluate systems with frequency-dependent 
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properties is explained. 

2.1. Viscoelastic material modeling 

Viscoelastic materials exhibit frequency and temperature-dependent behavior. Considering harmonic steady-state excitation, the 
linear viscoelastic properties can be expressed in terms of a complex modulus E∗

E∗(ω, T) = E
′

(ω,T) + iE′′(ω,T), (1)  

where ω is the angular frequency, T the temperature and i the imaginary unit. The elastic part is indicated by the storage modulus E′ , 
while the loss modulus E′′ describes the dissipative part. The key parameter for assessing the damping capability of a linear viscoelastic 
material is the ratio of the loss and storage moduli, denoted as material loss factor tan(δ)

tan(δ(ω,T)) =
E′′(ω,T)
E′
(ω, T)

. (2) 

In this paper, the GMM is used to model the frequency dependence. In this case, the storage and loss moduli are defined as a Prony 
series consisting of several relaxation times τi and elastic moduli Ei obtained from curve fitting of measured data 

E′

(ω) = E∞ +
∑n

i=1
Ei

ω2τ2
i

1 + ω2τ2
i
, (3)  

E′′(ω) =
∑n

i=1
Ei

ωτi

1 + ω2τ2
i
. (4) 

In eq. (3), the long-term modulus E∞ corresponds to the elastic behavior under quasi-static deformation (ω→0). It should be 
emphasized that a complex shear modulus G∗ is often used in the literature to represent the material properties. Under the assumption 
of isotropy and using the Poisson’s ratio ν, the following relationship prevails 

E∗ = 2G∗(1+ ν). (5) 

Due to the chemical composition of viscoelastic materials such as elastomers, an analogy exists between the frequency and tem-
perature dependence. The mechanical behavior at low frequencies is similar to that at high temperatures and vice versa. This phe-
nomenon, known as time-temperature superposition, allows for shifting the frequency-dependent material curves and thus determine 
the material properties at arbitrary temperatures. For rheological simple materials, the shift along the frequency axis can be performed 
by a horizontal shift factor aT, which results from the WLF equation [5] 

log(aT) =
− C1 ⋅ ΔT
C2 + ΔT

, (6)  

where the parameters C1 and C2 are fitting parameters and ΔT is the difference between the actual and the reference temperatures (ΔT 
= T − Tref). For instance, the loss modulus at a reference temperature Tref and at a reference frequency fref is the same as at any 
temperature T and at a frequency f = aT ⋅ fref . If the elastomer is filled with carbon black, the Payne effect [3,4] occurs, which is 
included in the time-temperature analogy by an additional vertical shift. The vertical shift is considered as an Arrhenius-like activation 
process and the corresponding shift factor bT can be calculated from the apparent activation energy EA, the universal gas constant R 
and Euler’s number e [45] 

bT ≈ e−
EA

R⋅ΔT . (7) 

Finally, the material properties at any temperature and frequency can be determined by incorporating both shift factors 

E
′

(f ,T)→bT,E′ ⋅ E
′ (

aT ⋅ fref ,Tref
)

E′′(f , T)→bT,E′′ ⋅ E′′
(
aT ⋅ fref ,Tref

)
. (8) 

It should be noted that the activation energies for storage and loss modulus may be different. For more detailed information on the 
chemical background and the application of the shift process, the interested reader is referred to [46]. 

2.2. Analysis method 

The eigenvalue problem of a system which is composed of elements with frequency-dependent viscoelastic properties is of 
nonlinear nature [47] 

[
K∗

(
λ∗r
)
− λ∗

2

r M
]
ϕ∗

r = 0, (9)  
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Fig. 1. Algorithm of the iterative eigenvalue solver.  
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where M denotes the mass matrix, K∗ the complex stiffness matrix, λ∗r the complex eigenvalue of mode r and ϕ∗
r the corresponding 

complex eigenvector. The complex nature of the stiffness matrix is due to the complex viscoelastic properties propagating through the 
FE formulation. More information on the composition of the complex stiffness matrix can be found in [46]. It should be noted that the 
complex eigenvalue resulting from a viscoelastically damped system has to be interpreted differently than the eigenvalue of a viscously 
damped vibration. For viscoelastic damping the eigenvalue is defined as [47] 

λ∗
2

r = ω2
r (1+ iηr). (10) 

Basically, the real part contains the information about the eigenfrequency ωr, while the damping in terms of the modal loss factor ηr 
is obtained by the ratio of imaginary and real part 

ηr =
Im

(
λ∗

2

r

)

Re
(

λ∗2

r

). (11) 

It is worth to emphasize the difference between the modal loss factor and the material loss factor. While the modal loss factor ηr 
denotes the damping of the mode of a system and is thus a system property, the material loss factor tan(δ) indicates the material 
damping capacity which is independent of the properties of the system where this material is applied. Furthermore, for weakly damped 
systems, an analogy exists to the viscous damping ratio Dr by 2Dr ≈ ηr. This relationship will be used later to compare the numerical 
and experimental results. 

From eq. (9) and (10) it can be concluded that the eigenvalue problem is not directly solvable due to the frequency-dependent 
stiffness matrix. However, this difficulty can be circumvented by using appropriate analysis methods. Some of these methods are 
reported and reviewed by Vasques et al. [12] and compared by Rouleau et al. [47]. In the following section, we will apply an iterative 
eigenvalue solver (IES) whose constitutive algorithm is based on the regula falsi method and has already been part of studies in [46,48]. 
Fig. 1 shows the basic procedure of the IES. 

At first, two initial frequencies are defined (I). For each of these frequencies, the viscoelastic material properties are determined 
(IIa), the complex stiffness matrix is generated (IIb) and the linear complex eigenvalue problem is solved (IIc). Afterwards, the cor-
responding eigenfrequencies are computed and the absolute error δr between the initial frequency and the eigenfrequency is calculated 
(IId). The results are transferred to the regula falsi method, where an optimized frequency is estimated (III). In step (IV), the previous 
steps (IIa) – (IId) are repeated for the optimized frequency. If the stop criterion (threshold ε) does not apply, the parameters are 
changed as described for step (V). Otherwise, the eigenvalue and eigenvector are found and the modal loss factor can be computed by 
eq. (11). 

3. A new approach for shape optimization of CLD beams 

This section deals with the theory of the chosen optimization technique and introduces the corresponding algorithm. For a better 
overview, the algorithm is divided into two parts: the design loop and the mass constraint handling. An illustrative example is given at 
the end of this section. 

3.1. Formulation of the structural optimization problem 

The objective of the optimization approach is to maximize the damping of a vibrating CLD beam by finding the optimal width 
distribution of the core and face layers with respect to predefined mass and geometrical constraints. The FE mesh of the host structure 
is kept constant during the optimization with a fixed number of elements in the longitudinal and transverse directions. Additionally, a 
symmetry axis is assumed along the longitudinal axis. Starting from the symmetry axis, finite elements of the viscoelastic core and the 
metallic face layer are simultaneously added to the left and to the right of the symmetry axis, while each element group in longitudinal 
direction defines a potential design variable xj. For instance, a value of xj = 0 means that no CLD material is added and a value of xj = 2 
adds two CLD elements left and right of the symmetry axis. An advantage of this approach is that several elements can be combined as 
one design variable, thus reducing the computational effort. Moreover, symmetry effects of the vibration modes can be used to further 
simplify the problem. An example of this procedure will be shown later in Section 3.5. The general optimization problem can be 
expressed as a minimization problem 

Fig. 2. Basic flowchart of the optimization algorithm.  
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Minimize : − η(x)
xj ∈ N0

Subject to : mCLD(x) − mbound ≤ 0
xmin ≤ xj ≤ xmax, for j = 1, ..., n

(12)  

where mCLD is the actual mass of the system, mbound is the permitted mass, x is the vector of n design variables xj and xmin and xmax are 
geometrical limits. Due to the discrete FE mesh, the design variables can only be zero or positive integer numbers. 

3.2. Basic structure of the optimization algorithm 

Fig. 2 shows the basic structure of the applied algorithm. In general, the presented method can be divided into two parts: The design 
loop and the mass constraint handling. The algorithm starts with the initial design variables xs and the corresponding objective 
function value ηs. As a first step, this data set is utilized in the design loop to find improved design variables ximp. The improved data set 
is passed to the mass constraint handling, which checks for mass constraint violations and eventually modifies the improved data set. 
Afterwards, the optimal design variables xopt are available and the results are checked for convergence. 

The evaluation of the objective function η(x) triggers two subprocesses. First, the FE mesh is regenerated according to the design 
variable vector. Then, the corresponding eigenvalue problem is solved. When considering frequency-dependent viscoelastic proper-
ties, the IES shown in Fig. 1 is applied. Due to the geometrical modifications, mode switches may occur during the optimization. This 
means, for example, that a bending mode and a torsion mode change the order of appearance. In order to track the mode of interest, it is 
recommended to compare the resulting mode shapes of the eigenvalue analysis to a reference mode shape. The Modal Assurance 
Criterion (MAC) is an appropriate tool for this purpose [49]. 

3.3. Design Loop 

The key part of the algorithm is the design loop shown in Fig. 3. The principle of the design loop is based on the Gauss-Seidel 
method. For each step in the for-loop, a copy x̃ of the initial design vector is created. It is then checked whether increasing the jth 

design variable violates the associated maximum geometric limit. If not, the change is accepted and the modified design variables are 

Fig. 3. Flowchart of the design loop algorithm.  
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evaluated in the objective function, resulting in a temporary value of the modal loss factor ̃η. In case the change yields an improvement 
of the objective function value, both values are stored in the corresponding vectors ximp and ηimp for later use. If no improvement is 
achieved, or if an increase of a design variable violates the upper geometric limit, it is checked whether a reduction of the design 
variable value is feasible. If this is true and if the modified design yields an improvement, the changes are accepted and saved. If either 
of these conditions is false, the changes are discarded and the initial values are adopted. At the end of the loop, the vector ximp contains 
all individual geometric modifications, while the vector ηimp contains the associated modal loss factors. It should be noted that the part 
in Fig. 3 denoted as evaluate changes actually means the analysis of the FE model with the current design vector. This is the compu-
tationally intensive part of the optimization. 

3.4. Mass constraint handling 

Five different scenarios can occur during the mass constraint handling. The corresponding flowchart is shown in Fig. 4 and the 
scenarios are described below. The mass constraint function is denoted as c(x).  

1. Constraint is not violated 

If the mass constraint is not violated, it is still necessary to check whether the simultaneous application of all single improvements 
leads to an improvement of the modal loss factor. If it does, the geometric changes are accepted. If not, scenario 1 applies. Within 
this scenario, the improvements of the single modifications are ranked according to their impact on the modal loss factor and the 

Fig. 4. Flowchart of the mass constraint handling.  
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modifications are reset sequentially, starting with the worst improvement. This loop is stopped when an improvement of the 
objective function value is achieved.  

2. Constraint is violated and the value of at least one design variable is reduced 

If the mass constraint is violated, it is checked if the value of any of the improved design variables is lower compared to the initial 
step. This would mean that elements are removed and the mass condition is inevitably satisfied. In this case, the corresponding 
design variable is accepted and all other improvements are discarded (ximp→xremove). If the above-mentioned condition applies to 
more than one design variable, all of these design variables are temporarily accepted. However, the simultaneous adoption of 
multiple design variables may cause the modal loss factor to decrease and needs to be verified. If an improvement is confirmed, the 
adoption is valid. Otherwise, only the modification providing the best improvement of the modal loss factor is adopted.  

3. Constraint is violated and no value of any design variable is reduced 

If the improved design vector does not result in an elimination of any elements, the design changes are ranked according to their 
improvement of the modal loss factor (ximp→xrank). Afterwards, the increase of each design variable is reset, starting with the worst. 
This procedure is repeated until the mass condition is satisfied (xrank→xreset). If the resulting configuration is an improvement over 
the initial state, the design variables are accepted.  

4. Constraint is violated, removal of individual design variables did not yield an improvement 

Scenario 4 works as follows: A reduction technique is applied based on the ranked design variable vector xrank. For this purpose, 
only the design variable leading to the best improvement is kept and the others are discarded and return to the initial state of the 
loop. Then the worst design variable xw, which corresponds to the design variable providing the least improvement, is treated as a 
free parameter, while the other design variables are fixed. As a consequence, the mass constraint condition is transformed into a 
single variable function (c(x)→c(xw)) and the worst design variable is systematically reduced by 

xw,k+1 = xw,k − 1 (13)   

until the mass condition is satisfied. In eq. (13), k indicates the kth step within the reduction method. The new design vector is 
evaluated and it is checked whether an improvement is achieved. If not, the second worst design variable is selected as a free 
parameter and the reduction method is applied again. The same applies if a design variable exceeds the lower bound in the course of 

Fig. 5. Initial design of the CLD beam and definition of the inner and outer layers. The white layer corresponds to the viscoelastic core layer, while 
the face layer is colored in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.). 

Table 1 
Properties of the CLD layers.   

Density  
(kg/m3) 

Storage modulus  
(GPa) 

Poisson’s ratio  
(-) 

Material loss factor  
(-) 

Thickness  
(mm) 

Base layer 2660 70 0.33 0.005 8 
Core layer 1114 0.1 0.499 0.4 2 
Face layer 2660 70 0.33 0.005 5  
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the reduction method. This procedure is repeated until the (n-1)th worst design variable or until an improved modal loss factor is 
obtained. Finally, the improved values are adopted as optimal parameters.  

5. Constraint is violated and reduction method does not yield a feasible improvement 

If the constraint is violated and the reduction method does not lead to a feasible improvement, the initial values are adopted as 
optimal values and the algorithm is terminated. 

3.5. Illustrative example 

An example with two design variables is presented in the following to demonstrate the application of the optimization approach to 
a free-free vibrating CLD beam structure. MSC Nastran is used as the FE solver and the algorithm introduced in the previous section is 
implemented in MATLAB. For the purpose of this example, the objective is to maximize the modal loss factor of the first bending mode. 
Additionally, a constraint is defined, limiting the coverage of the CLD material to 50 % of the top surface of the beam. Since the first 
bending mode is symmetric with respect to the bending axis, the symmetry is used to reduce the number of design variables and thus 
the numerical effort. As a result, two design variables x1 and x2 represent the width of the inner and outer layers, respectively. As 
illustrated in Fig. 5, both segments have the same size. The structure is regularly meshed by 80 CHEXA solid elements in the longi-
tudinal direction (400 mm) and 40 elements in the transverse direction (40 mm) with one element per layer in the thickness direction. 
It follows that x1 contains element sections 1-20 and 61-80 and x2 contains element sections 21-60. Perfect bonding is assumed, which 
means that the geometrical influence of the adhesive layer as well as bonding failure is neglected and elements of adjacent layers share 
the same nodes. 

The properties of the composite structure are listed in Table 1. In this example, the properties of the viscoelastic layer are kept 
constant. This assumption differs from real material behavior, but is considered as acceptable for the demonstration of the algorithm. 
Furthermore, the analyses in this paper are performed under the assumption of small vibrations. As a consequence, the expected strains 
and displacements are small, so that amplitude-dependent effects of the applied materials are negligible. It should also be noted that 
core and face layer elements are always added or removed together and do not overlap the base layer. 

The initial design vector is xs = [ 8 0 ]
T. Due to the line of symmetry in the longitudinal direction, the design variables correspond 

to a width of 16 mm for the outer layer and 0 mm for the inner layer. Fig. 6 (a) shows the iteration path with the corresponding 
convergence diagram (b). The optimization ends after 17 iterations with an optimal design vector of xopt = [ 4 16 ]

T and a modal loss 

Fig. 6. (a) Iteration path from start point to maximum and (b) corresponding convergence diagram.  

Fig. 7. Top: Optimal design of the first bending mode from top view. Black color indicates added core and face layers. Bottom: Mode shape of the 
first bending mode. 
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Fig. 8. Optimal design resulting from the optimization with (a) four and (b) eight variables.  
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factor of ηopt = 0.1336. The optimal widths are 8 mm for the outer layer and 32 mm for the inner layer, as illustrated in Fig. 7. 
It can be seen in Fig. 6 (a) that the optimal solution conforms with the solution of the contour plot. Moreover, the allowed mass 

increase is fully utilized. The reason for the resulting CLD shape can be explained as follows: Shear deformation is crucial to activate the 
damping properties of the viscoelastic material. In the case of the first bending mode, the highest shear strain occurs at the outer edges 
of the viscoelastic layer and is termed as the edge effect by Lepoittevin and Kress [32]. High shear deformation is achieved by a flexible 
viscoelastic layer. However, if the shear stiffness of the viscoelastic layer is too flexible, the corresponding strain energy is much lower 
than the strain energy of the base and face layers. As a consequence, only a small portion of the strain energy can be dissipated through 
the viscoelastic material, resulting in poor damping. On the other hand, if the layer is too stiff, the opposite effect occurs. As the shear 
stiffness increases, the shear deformation of the viscoelastic layer decreases and the corresponding strain energy is low compared to the 
strain energy of the elastic layers. 

In order to achieve high damping performance, it is therefore necessary to find a compromise between high shear strain and 
adequate shear stiffness. As presented in [46], the shear stiffness of the viscoelastic layer depends on the length, width and thickness of 
the layer as well as on the shear storage modulus of the viscoelastic material. Accordingly, the shear stiffness can be enhanced by 
increasing the material stiffness (storage modulus) or by increasing the width and length of the layer, but also by decreasing the 
thickness of the layer. In the present example, the viscoelastic material stiffness appears to be relatively high, so that the effect on the 
shear stiffness is compensated by slender core and face layers at the outer edges of the beam. Later, in Section 5.1, it will be 
demonstrated that the optimal design changes with the viscoelastic material stiffness. 

4. Characteristics of the optimization approach 

This chapter discusses some characteristics and the performance of the optimization approach. The influence of the number and 
distribution of design variables on the optimized design and on the modal loss factor is analyzed. The meshed beam structure from 
Section 3.5 serves as the basis for the analyses. Unless otherwise specified, the material properties, geometric dimensions and as-
sumptions given in Section 3.5 are adopted. A performance comparison with other CLD placement strategies is presented at the end of 
this section. 

4.1. Influence of the number of design variables on optimization results 

In Section 3.5, the optimization was performed with two design variables to maximize the damping of the first bending mode. In the 
following, it is analyzed if increasing the number of design variables improves the optimization results. Finally, it is examined whether 

Table 2 
Optimization results for different numbers of design variables.  

Variables  
(-) 

Modal loss factor  
(-) 

Increase  
(%) 

Obj. function calls  
(-) 

Optimal design 
vector  
(-) 

2 0.1336 - 62 [4 16] 
4 0.1394 4.34 121 [1 8 13 18] 
8 0.1405 5.17 221 [0 3 6 9 12 15 17 18]  

Fig. 9. Modal bending deflection of (a) the second and (b) the third bending mode. Red markers indicate the position of the design variable (DV) 
separation. In this context, (a) shows the DV separation of approach (1), while (b) shows the DV separation of approach (2). 
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the increased numerical effort is justified. For this purpose, the beam is divided into four and eight equally spaced sections that are 
symmetrically positioned around the symmetry axis. This means that in the case of four design variables, each design variable contains 
10 element sections. Since the path of the optimization depends strongly on the initial values, the starting position is always the 
uncovered beam (xs = 0). The optimized designs are presented in Fig. 8 (a) and (b) and the corresponding modal loss factors and the 
number of objective function calls are listed in Table 2. 

From Fig. 8 it can be seen that in both cases an elliptical shape for the optimal design emerges as the number of design variables is 
increased. The result can be easily compared to Fig. 7, which shows the result with only two design variables. Most of the CLD material 
is added at locations of maximum bending moment (center of the beam), where the modal strain energy of the host structure is also 
maximum. This is consistent with the approach of Kumar and Singh [42,43], who added single CLD patches at locations of highest 
modal strain energy. However, the computational cost increases significantly. Doubling the number of design variables roughly 
doubles the number of objective function calls. On the other hand, the modal loss factor increases only slightly. Compared to two 
design variables, eight variables cause a relative damping increase of 5.17 %. A compromise might be to start with a small number of 
variables and continue the optimization with an increased number when convergence is achieved. Alternatively, shape interpolation 
can be a useful tool to keep the numerical effort low while still approaching an optimal design. 

4.2. Influence of the design variable distribution on optimization results 

Another question is the applicability of the previous method to higher modes. Basically, the first bending mode shape of the beam in 
free-free boundary conditions is similar to a half-sine. However, the mode shapes of higher modes become more intricate. In this case, 
it also seems necessary to increase the number of design variables and to rethink their distribution on the FE structure. This task is 
addressed in this section. For the second and third bending mode, three different distribution approaches for the design variables are 
analyzed:  

(1) Separation at vibration nodes and antinodes  
(2) Distribution on vibration nodes and antinodes  
(3) Distribution according to equal element size (as shown in Section 3.5) 

In this regard, Fig. 9 shows the bending deflection of the uncovered beam for the second and third modes as a function of the grid 
points in the longitudinal direction. It should be noted that the second bending mode is point symmetric with respect to the center 
point, while the third mode is mirror-symmetric. In this context, Table 3 and Table 4 list the element sections that belong to the 
corresponding design variables for the three different distribution approaches. 

Table 3 
Design variable definition and modal loss factor for the second bending mode.  

Approach 
Included element sections (-) 

Modal loss factor (-) 
DV1 DV2 DV3 DV4 

(1) 1-10 + 71-80 11-25 + 56-70 26-55 - 0.1144 
(2) 1-5 + 76-80 6-16 + 65-75 17-34 + 47-64 35-46 0.1136 
(3) 1-10 + 71-80 11-20 + 61-70 21-30 + 51-60 31-50 0.1150  

Table 4 
Design variable definition and modal loss factor for the third bending mode.  

Approach Included element sections (-) Modal loss factor (-) 
DV1 DV2 DV3 DV4 

(1) 1-7 + 74-80 8-18 + 63-73 19-28 + 53-62 29-52 0.0811 
(2) 1-11 + 70-80 12-23 + 58-69 24-34 + 47-57 35-46 0.0862 
(3) 1-10 + 71-80 11-20 + 61-70 21-30 + 51-60 31-50 0.0845  

Fig. 10. Optimal design of (a) the second and (b) third bending mode from top view with the corresponding mode shapes.  
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As shown in Table 3, the highest modal loss factor for the second bending mode can be achieved when the distribution approach (3) 
with xopt = [7 10 10 13]T is applied. In contrast, the distribution approach (2) with xopt = [11 9 15 1]T is the most promising for the 
third bending mode. The corresponding final designs are shown in Fig. 10. 

The optimal design for the second bending mode also suggests an elliptical shape. The highest shear strain in the viscoelastic layer 
occurs at the free ends and in the center. While the layer width is small at the outer edges, it increases towards the center. In contrast, 
the optimal design for the third bending mode exhibits slimmest layers at the antinodes. In particular, the design at the central antinode 
is remarkable because an extremely thin section appears. However, this section is not redundant - removing it reduces the modal loss 
factor relatively by 2.44 %. Instead, the core and face layers are wider at the free ends and between the antinodes. It should be noted 
that the width at the outer edges increases for higher modes. This is due to the fact that the mode shape becomes more intricate, which 
also increases the strain energy in the elastic layers. To ensure a high ratio of modal strain energies, the shear stiffness of the visco-
elastic layer must be enhanced. This is achieved by adding CLD material at the location of maximum shear deformation. 

4.3. Comparison to other CLD placement approaches 

To demonstrate the effectiveness of the proposed optimization approach, a comparative study with other placement strategies is 
performed under the same mass conditions (50 % surface coverage). One approach is to cover the full length of the beam with half the 
width of the CLD layers. The other two strategies include placing CLD patches at vibration nodes, as e.g. performed in [41], and at 
positions of highest modal strain energy, following the ideas proposed in [42,43]. Maximum modal strain energy is typically located at 
antinodes. Fig. 11 compares the modal loss factors of the first three bending modes, resulting from the four approaches. The proposed 
optimization approach provides the highest damping for all modes. It is particularly superior (e.g. up to 52 % to the MSE approach) to 
the mode shape-based placement strategies. 

Fig. 11. Modal loss factor of first three bending modes resulting from different placement strategies: The proposed multiple width approach (MW), 
uniform half-width placement (HW), placement of CLD patches at maximum modal strain energy (MSE) positions and at vibration nodes (VN). 

Fig. 12. (a) Shear storage modulus and (b) loss factor of BIIR at -20◦C and 20◦C.  
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5. Application of the optimization approach under real conditions 

In this chapter, the application of the proposed optimization approach is demonstrated by means of a CLD beam with a real 
viscoelastic material. The damping material is a bromobutyl rubber blend (BIIR), which has been used in previous studies [46,50,51]. 
The frequency- and temperature-dependent material behavior is fully characterized by Prony, WLF and Arrhenius parameters, as 
shown in Tables A.1 and A.2 in the Appendix. Two different temperatures (T1 = -20◦C and T2 = 20◦C) are chosen for the design 
optimization. These temperatures are representative of the airframe temperature of a large transport aircraft during a flight. The upper 
thermal boundary represents the temperatures on the ground. The lower thermal boundary considers the ambient temperature at flight 
altitude with some frictional heating from the boundary layer around the airframe when flying at transonic speed. Fig. 12 shows the 
storage modulus and the material loss factor as a function of frequency for both temperatures. 

As depicted in Fig. 12, both storage modulus and loss factor vary considerably with frequency and temperature. The material 
stiffness is low at low frequencies and also at high temperatures. In contrast, the loss factor has a maximum at low frequency for -20◦C 
and at high frequency for 20◦C. The region of significant stiffness change and highest loss factor is typically referred to as the glass 
transition region of the elastomer material. 

In particular, the storage modulus is a key parameter for achieving the highest damping. However, there is no rule of thumb for a 
rough estimation of a suitable scale for the storage modulus, since it depends strongly on the dimensions of the composite structure and 
its mode shapes. As shown by Gröhlich et al. [46], an inappropriate viscoelastic storage modulus can be compensated by geometric 
adaption of the CLD layers. In contrast, the material loss factor can be understood as a proportional factor for tuning the damping of a 
vibrating system: high loss factors lead to high vibration damping. 

5.1. Design dependence on storage modulus 

Since material loss factor and storage modulus are coupled parameters in real elastomeric materials and change simultaneously 
with temperature and frequency, it is difficult to clearly distinguish the dominant parameter. Therefore, in order to distinguish be-
tween the impacts of both material parameters, the influence of a storage modulus variation on the optimized design is considered in 
this section. For this purpose, the storage modulus of the viscoelastic material is expressed as a constant value of E′

= 0.01 GPa and E′

= 0.1 GPa, respectively. As shown in Fig. 12, it is possible to have a modulus variation by a factor of 10 in the considered temperature 
range. The other properties remain as in Table 1. For the first and second bending modes, the element distribution approach (3) of 
Section 4.2 is applied and for the third mode, the element distribution approach (2) is taken. The final designs, called configuration A 
for E′

= 0.1 GPa and configuration B for E′

= 0.01 GPa, are presented and compared in Table 5. 
Comparing the first modes, the design for the lower storage modulus (configuration B) is inverted. The elliptical shape changes to 

an hourglass-like shape, where most of the CLD material is added at the free end of the beam and less material is added at the location 
of maximum bending moment and maximum modal strain energy, respectively. This observation can be physically explained with the 
same explanation given in Section 3.5. Due to the lower viscoelastic material stiffness, the decrease in the shear stiffness of the layer is 

Table 5 
Comparison of optimal designs and modal loss factors for different storage moduli.  

Mode Config. Optimal design 
Modal loss factor (-) 

E′

= 0.1 GPa E′

= 0.01 GPa 

1. 

A 0.1394 0.0566 

B 0.0802 0.0816 

2. 

A 0.1150 0.0295 

B 0.0733 0.0371 

3. 

A 0.0868 0.0202 

B 0.0622 0.0205  

Table 6 
Design variable distribution for the third bending mode.  

DV1 DV2 DV3 DV4 

1-5 + 76-80 6-11 + 70-75 12-17 + 64-69 18-23 + 58-63 
DV5 DV6 DV7 DV8 

24-28 + 53-57 29-34 + 47-52 35-37 + 44-46 38-43  
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compensated by wider layer sections at the locations of maximum shear strain. The same applies to the second and third modes. 
Compared to configuration A, the sections of maximum shear deformation are widened, while the section corresponding to the an-
tinodes is thinned. The central element disappeared completely for the third mode. Instead, two thin rods appear on top of the outer 
antinodes, forcing the adjacent wider damping patches into shear strain. 

An important observation can be made by looking at the modal loss factor. CLD designs are less efficient when the viscoelastic 
storage modulus differs from the value that has been assumed for the design optimization. For instance, using design 1B instead of 1A 
for a viscoelastic storage modulus of 0.1 GPa, results in 42.5 % less damping. On the other hand, using design 1A instead of 1B for a 
storage modulus of 0.01 GPa, the modal loss factor is also 30.6 % less. An exception can be observed for the third mode. Here, the 
inappropriate design (configuration 3A) provides almost the same damping for E′

= 0.01 GPa as the appropriate design (configuration 
3B). The analysis shows that the final design of a CLD treatment is not only mode-dependent, but also strongly dependent on the 
prevailing viscoelastic storage modulus. 

5.2. Thermal influence on optimal design 

In this section, the material properties presented in Fig. 12 are applied to the viscoelastic material. An optimization is performed for 
the two temperatures mentioned above. For this purpose, the IES has to be implemented in the process chain. Additionally, the number 
of design variables is set to eight. This means that for the first and second bending mode (distribution approach (3)), each design 
variable contains ten elements (e.g. DV1: 1-5 + 76-80). The distribution for the third bending mode follows approach (2) with a 
distribution scheme shown in Table 6. 

The results of the optimization runs are presented in Table 7. Configuration C corresponds to a layout temperature of -20◦C, while 
configuration D corresponds to a temperature of 20◦C. It can be seen that the designs for both configurations are almost opposite. This 
is especially true for the first and second modes. For example, the optimal design of the first mode changed from a rolling pin shape to a 
dumbbell shape at a higher temperature. 

Table 7 
Comparison of optimal designs and modal loss factors at different temperatures.  

Mode Config. Optimal design 
Modal loss factor (-) 

T = -20◦C T = 20◦C 

1. 

C 0.2122 0.0720 

D 0.0972 0.1572 

2. 

C 0.2128 0.0641 

D 0.1051 0.1080 

3. 

C 0.1892 0.0563 

D 0.0970 0.0792  

Fig. 13. Material loss factors at eigenfrequencies of first three bending modes (BM) at (a) -20◦C and (b) 20◦C. It should be noted that the horizontal 
axis is plotted in linear scale. 
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Fig. 14. (a) Experimental setup of the impact test and (b) process chain of experimental modal analysis.  

Fig. 15. Bode plot of Sensor 2 for the undamped and damped beam.  
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The modal loss factor values underscore the observations made in Section 5.1: The design optimized for a specific temperature 
provides significantly less damping performance when operated at a different temperature. Looking at Fig. 13, it is evident that this 
effect is not primarily caused by different material loss factors, prevailing at the corresponding eigenfrequencies. At -20◦C (a), the 
material loss factor of the second and third bending modes (BM) of configuration C is lower than that of configuration D. However, the 
modal loss factor for these modes is significantly higher for configuration C. The same applies to the second bending mode at 20◦C (b). 
Although the material loss factor is higher for configuration C, the damping performance of configuration D is superior. 

From these observations, it can be concluded that the changes in storage modulus have a greater impact on the vibration damping 
than the material loss factor. In fact, a higher material loss factor will not compensate for an inappropriate design. 

As a consequence, it is not sufficient to tune only the eigenfrequencies of a vibrating CLD system with respect to the glass transition 
region of a viscoelastic material. Instead, more effort must be invested to establish an appropriate shear stiffness of the additional CLD 
layers. This objective is difficult to accomplish when the operating temperatures are far apart from each other. In the considered case, it 
is advantageous to design wide layers at antinodes and slim layers at nodes or free ends for low temperature. The opposite applies for 
high temperatures. 

However, it is important to emphasize that the optimal design is sensitive to other system and structural parameters, such as layer 
thicknesses or boundary conditions. Any modification will affect the resulting structural behavior and requires a detailed analysis of 
the optimal design. As a consequence, a general, temperature-dependent design guideline cannot be derived. 

5.3. Experimental validation 

In order to validate the numerical results obtained in the previous sections, an experiment was performed under laboratory con-
ditions. In this context, the optimal design configuration 1D (see Table 7) was selected for validation and the corresponding parts of the 
host structure, core and face layers were manufactured accordingly. The metallic layers are made of aluminum with thicknesses and 
material properties as shown in Table 1. The elastomer layer was cut out from a vulcanized bromobutyl rubber mat. Since rolling of the 
elastomer compound prior to vulcanization is not a high-precision manufacturing technique, the thickness of the elastomeric strip is 
slightly inhomogeneous, varying from 1.85 mm at one end to 2 mm at the other end. After assembling the sandwich by conglutinating 
the layers with Loctite 480, the total thickness of the CLD beam differs between 15.08 mm and 15.18 mm. This means that the adhesive 
contributes about 0.2 mm to the total thickness of the CLD laminate. While the influence of the adhesive is neglected, the thickness of 
the viscoelastic layer is assumed to be constant and is set to 1.9 mm in the numerical simulation. 

Fig. 14 shows the modal test setup. The measurement is performed at an ambient temperature of 20◦C. The composite beam is 
suspended at one end and two acceleration sensors are attached to the other end. Similar tests have been performed on previous 
samples using a scanning laser-vibrometer. Therefore, the mode shapes and their sequence are generally known. Bending and torsion 
modes occur in the considered frequency bandwidth between 0 and 1500 Hz. Consequently, at least two response sensors are required 
to distinguish between bending and torsion modes. The structure is excited by an automated modal hammer and the force and ac-
celeration time data are acquired. The driving point is chosen to be the back side of the position of sensor 1. In a next step, the time data 
are processed by a rectangular window for the force channel and an exponential window for the response channels. A Fast Fourier 
Transformation is applied and the corresponding power spectral densities are determined. The frequency response functions (FRFs) are 
calculated and averaged for multiple impacts (10 in total). Finally, the PolyMAX algorithm of the Siemens Testlab software is used to 
identify the eigenfrequencies, modal damping ratios and mode shapes from the FRFs. The PolyMAX algorithm is a multi-degree-of- 
freedom frequency domain identification method that is based on the least-squares principle and explained in [52]. The common 
procedure and the mathematical methods for signal processing and experimental modal analysis are well documented in [53]. 

Fig. 15 shows a Bode plot of the host structure (undamped beam) compared to the CLD configuration. It is evident that the 
additional CLD layers significantly attenuate the resonance peaks. The damping effect can also be seen in the wider resonance peaks 
and flatter slopes of the phase response when passing through a resonance. Due to the changes in mass and stiffness, the sequence of the 
third bending (3. BM) and torsion (1. TM) modes has changed compared to the undamped beam. Furthermore, tiny peaks appear that 
correspond to the transverse bending modes. These modes are barely visible because the structure is weakly excited in the transverse 
direction and the sensor measured little response due to the transverse sensitivity (i.e. crosstalk) of the acceleration sensors used. 

The comparison of eigenfrequencies and damping ratios between simulation and experimental data can be found in Table 8. It is 
remarkable that the eigenfrequencies correlate with considerable accuracy (Δf < 1 %). In opposite, the simulated damping ratios 
deviate slightly from the identified damping. The simulated damping is always underestimated. The deviation of the damping has 
several reasons. On the one hand, the damping ratio is known to be a very sensitive parameter in modal identification and strongly 

Table 8 
Comparison of simulation and experimental data of the bending modes.  

Mode Modal parameter Simulation Experiment Deviation (%) 

1. bending mode Eigenfrequency (Hz) 291.4 289.2 0.76 
Damping (%) 7.92 8.51 -6.93 

2. bending mode 
Eigenfrequency (Hz) 719.9 719.1 0.11 
Damping (%) 3.90 4.11 -5.11 

3. bending mode 
Eigenfrequency (Hz) 1377 1376 0.07 
Damping (%) 2.99 3.13 -4.47  
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depends on the evaluation bandwidth and the excitation level of a mode shape (i.e. modal participation). On the other hand, the 
PolyMAX algorithm fits the synthetic FRF based on the linear viscous damping model. As a consequence, the frequency dependence of 
the viscoelastic material damping is not considered, leading to an erroneous identification that reflects the best possible viscous 
damping fit to a structure with frequency-dependent hysteretic damping. However, the state of the art does not provide a feasible 
identification method for viscoelastic damping. In addition, similar damping and even larger deviations are reported by Kim et al. [37] 
and Leibowitz and Lifshitz [54]. Under these circumstances, a damping deviation of 6.93 % and less is acceptable and the numerical 
prediction is considered valid. 

The experimental validation has proven that the simulated system behavior can be reproduced in reality. Considering that the 
simulation is based on a rather complex, frequency- and temperature-dependent viscoelastic material model, it is also remarkable that 
the modal parameters resulting from both numerical and experimental analysis are in good agreement. 

6. Conclusion 

A novel approach for shape optimization of CLD beams was presented and applied to viscoelastic damping maximization in an FE 
environment. Considering a mass constraint, a modified Gauss-Seidel method was employed to sequentially determine multiple widths 
of the viscoelastic core and the elastic face layer. A comparison of the modal loss factors with those obtained from other placement 
strategies demonstrated the efficiency of the proposed approach. Additionally, the influence of storage modulus and ambient tem-
perature on the optimal damping design for the first three bending modes was examined. The results evidenced the temperature- 
sensitivity, which led to opposite optimal CLD designs for the considered temperatures. Finally, a modal impact test was performed 
to experimentally validate the expected damping of an optimal CLD design at room temperature. 

The following conclusions can be drawn from the results of the present study:  

I. The most important finding is that the width of the core and face layer is a feasible design parameter for damping optimization 
of CLD beams.  

II. An additional damping improvement can be achieved by dividing the width into several sections along the longitudinal axis of a 
beam-like structure. At the same time, summarizing individual element sections as design variables and the use of symmetry 
properties of considered mode shapes, reduce the numerical effort of the presented optimization approach.  

III. The optimal design of a CLD treatment is temperature-dependent, whereas the temperature sensitivity is mostly driven by 
changes in the storage modulus and not by changes in the loss factor of the viscoelastic material. Therefore, it is not recom-
mended to design a CLD treatment with the sole objective of shifting a particular eigenfrequency towards the glass transition 
region of the viscoelastic material.  

IV. The design of a CLD treatment is optimal only for the considered design temperature and can be less efficient at off-design 
temperatures.  

V. A generalized guideline for optimal CLD design cannot be derived. Rather, since the damping performance of CLD treatments 
depends significantly on the mode shape as well as on the geometrical, material and environmental properties, each CLD 
treatment should be individually designed to achieve the most efficient damping performance. 

The present study lays the foundation for future work. Possible improvements of the present approach encompass the inclusion of 
additional design parameters such as the layer thicknesses of the core and face layers and the adaptation to plate-like structures. 
Experimental analyses will be performed in the low temperature region to further verify the temperature dependence of optimal CLD 
designs. 
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Table A.1 
Model parameters of the Generalized Maxwell-Model of the elastomer compound. Here, the letter e corresponds to an exponential basis of 10, so that 
e.g. 3.162e+03 is equal to 3.162 ⋅ 103.   

Index i 
Parameter 1 2 3 4 5 6 7 

τi (s) 1.000e+04 3.162e+03 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 
Gi (Pa) 4.045e+04 4.276e+04 5.985e+04 7.428e+04 5.995e+04 7.379e+04 7.967e+04  

8 9 10 11 12 13 14 

τi (s) 3.162e+00 1.000e+00 3.162e-01 1.000e-01 3.162e-02 1.000e-02 3.162e-03 
Gi (Pa) 8.387e+04 1.049e+05 1.250e+05 1.614e+05 2.278e+05 3.341e+05 5.495e+05  

15 16 17 18 19 20 21 

τi (s) 1.000e-03 3.162e-04 1.000e-04 3.162e-05 1.000e-05 3.162e-06 1.000e-06 
Gi (Pa) 1.002e+06 1.962e+06 3.824e+06 7.580e+06 1.526e+07 2.651e+07 4.224e+07  

22 23 24 25 26 27 inf 

τi (s) 3.162e-07 1.000e-07 3.162e-08 1.000e-08 3.162e-09 1.000e-09 - 
Gi (Pa) 5.911e+07 6.895e+07 9.909e+07 1.610e+08 1.164e+02 2.538e-01 7.473e+05  

Table A.2 
WLF and Arrhenius parameters of the elastomer compound for horizontal and vertical shifting.  

C1 (-) C2 (K) Tref (K) bT,E′ (J/mol) bT,E′ (J/mol) 

7.26 166.25 293.15 2010 2010  

M. Gröhlich et al.                                                                                                                                                                                                      

http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0001
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0002
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0003
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0004
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0005
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0005
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0006
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0007
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0008
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0009
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0010
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0011
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0012
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0012
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0013
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0013
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0014
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0015
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0016
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0017
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0018
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0019
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0020
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0021
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0021
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0022
http://refhub.elsevier.com/S0022-460X(23)00152-9/sbref0022


Journal of Sound and Vibration 555 (2023) 117703

20

[23] A.L. Araújo, C.M.M. Soares, C.A.M. Soares, Finite element model for hybrid active-passive damping analysis of anisotropic laminated sandwich structures, 
J. Sandw. Struct. Mater. 12 (4) (2010) 397–419. 

[24] H. Li, Z. Wang, H. Lv, Z. Zhou, Q. Han, J. Liu, Z. Qin, Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer 
damping treatment, Thin Wall. Struct. 157 (2020), 107000. 

[25] H. Li, Z. Li, B. Safaei, W. Rong, W. Wang, Z. Qin, J. Xiong, Nonlinear vibration analysis of fiber metal laminated plates with multiple viscoelastic layers, Thin 
Wall Struct. 168 (2021), 108297. 

[26] H. Li, W. Wang, Q. Wang, Q. Han, J. Liu, Z. Qin, J. Xiong, X. Wang, Static and dynamic performances of sandwich plates with magnetorheological elastomer 
core: theoretical and experimental studies, J. Sandw. Struct. Mater. 24 (3) (2022) 1556–1579. 

[27] H. Li, X. Wang, J. Sun, S.K. Ha, Z. Guan, Theoretical and experimental investigations on active vibration control of the MRE multifunctional grille composite 
sandwich plates, Comp. Struct. 295 (2022), 115783. 

[28] J.M. Lifshitz, M. Leibowitz, Optimal sandwich beam design for maximum viscoelastic damping, Int. J. Solids Struct. 23 (7) (1987) 1027–1034. 
[29] J.-.L. Marcelin, P. Trompette, A. Smati, Optimal constrained layer damping with partial coverage, Finite Elem. Anal. Des. 12 (3) (1992) 273–280. 
[30] J.-.L. Marcelin, S. Shakhesi, F. Pourroy, Optimal constrained layer damping of beams: experimental and numerical studies, Shock Vib. 2 (6) (1995) 445–450. 
[31] M. Alvelid, Optimal position and shape of applied damping material, J. Sound Vib. 310 (4) (2008) 947–965. 
[32] G. Lepoittevin, G. Kress, Optimization of segmented constrained layer damping with mathematical programming using strain energy analysis and modal data, 

Mater. Des. 31 (1) (2010) 14–24. 
[33] A.L. Araújo, P. Martins, C.M.M. Soares, C.A.M. Soares, J. Herskovits, Damping optimization of viscoelastic laminated sandwich composite structures, Struct. 

Multidiscip. Optim. 39 (6) (2009) 569–579. 
[34] J.F.A. Madeira, A.L. Araújo, C.M.M. Soares, C.A.M. Soares, A.J.M. Ferreira, Multiobjective design of viscoelastic laminated composite sandwich panels, Compos. 

Part B-Eng. 77 (2015) 391–401. 
[35] M.P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer, Berlin, 2004. 
[36] Z. Ling, X. Ronglu, W. Yi, A. El-Sabbagh, Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach, 

Shock Vib 18 (1–2) (2011) 221–244. 
[37] S.Y. Kim, C.K. Mechefske, I.Y. Kim, Optimal damping layout in a shell structure using topology optimization, J. Sound Vib. 332 (12) (2013) 2873–2883. 
[38] W. Zheng, Y. Lei, S. Li, Q. Huang, Topology optimization of passive constrained layer damping with partial coverage on plate, Shock Vib. 20 (2) (2013) 

199–211. 
[39] Z. Fang, L. Zheng, Topology optimization for minimizing the resonant response of plates with constrained layer damping treatment, Shock Vib. 2015 (2015), 

376854. 
[40] D. Zhang, T. Qi, L. Zheng, A hierarchical optimization strategy for position and thickness optimization of constrained layer damping/plate to minimize sound 

radiation power, Adv. Mech. Eng. 10 (10) (2018) 1–15. 
[41] E.R. Fotsing, M. Sola, A. Ross, E. Ruiz, Lightweight damping of composite sandwich beams: experimental analysis, J. Comp. Mater. 47 (12) (2013) 1501–1511. 
[42] N. Kumar, S.P. Singh, Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer, Compos. Struct. 92 (2) (2010) 

233–243. 
[43] N. Kumar, S.P. Singh, Vibration control of curved panel using smart damping, Mech. Sys. Signal Pr. 30 (2012) 232–247. 
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