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Historical review of Zig-Zag theories
for multilayered plates and shells

Erasmo Carrera
Department of Aeronautics and Aerospace Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy; carrera@polito.it

This paper gives a historical review of the theories that have been developed for the analysis
of multilayered structures. Attention has been restricted to the so-called Zig-Zag theories,
which describe a piecewise continuous displacement field in the plate thickness direction and
fulfill interlaminar continuityof transverse stresses at each layer interface. Basically, plate and
shell geometries are addressed, even though beams are also considered in some cases. Models
in which the number of displacement variables is kept independent of the number of constitu-
tive layers are discussed to the greatest extent. Attention has been restricted to those plate and
shell theories which are based on the so-called method of hypotheses or axiomatic approach in
which assumptions are introduced for displacements and/or transverse stresses. Mostly, the
work published in the English language is reviewed. However, an account of a few articles
originally written in Russian is also given. The historical review conducted has led to the fol-
lowing main conclusions. 1! Lekhnitskii ~1935! was the first to propose a Zig-Zag theory,
which was obtained by solving an elasticity problem involving a layered beam. 2! Two other
different and independent Zig-Zag theories have been singled out. One was developed by Am-
bartsumian~1958!, who extended the well-known Reissner-Mindlin theory to layered, aniso-
tropic plates and shells; the other approach was introduced by Reissner~1984!, who proposed
a variational theorem that permits both displacements and transverse stress assumptions. 3! On
the basis of historical considerations, which are detailed in the paper, it is proposed to refer to
these three theories by using the following three names: Lekhnitskii Multilayered Theory,
~LMT !, Ambartsumian Multilayered Theory~AMT !, and Reissner Multilayered Theory
~RMT!. As far as subsequent contributions to these three theories are concerned, it can be re-
marked that: 4! LMT although very promising, has almost been ignored in the open literature.
5! Dozens of papers have instead been presented which consist of direct applications or par-
ticular cases of the original AMT. The contents of the original works have very often been
ignored, not recognized, or not mentioned in the large number of articles that were published
in journals written in the English language. Such historical unfairness is detailed in Section
3.2. 6! RMT seems to be the most natural and powerful method to analyze multilayered struc-
tures. Compared to other theories, the RMT approach has allowed from the beginning devel-
opment of models which retain the fundamental effect related to transverse normal stresses
and strains. This review article cites 138 references.@DOI: 10.1115/1.1557614#

1 INTRODUCTION

Two-dimensional~2D! modeling of multilayered plates and
shells requires appropriate theories. The discontinuity of
physical/mechanical properties in the thickness direction
makes inadequate those theories which were originally de-
veloped for one-layered structures, eg, the Cauchy-Poisson-
Kirchhoff-Love thin plate/shell theory @1–4#, or the
Reissner-Mindlin theory~Reissner@5# and Mindlin @6#!, as
well as higher order models such as the one by Hildebrand,
Reissner, and Thomas@7#. These theories are, in fact, not

able to reproduce piecewise continuous displacement
transverse stress fields in the thickness direction, which
experienced by multilayered structures@8#. In @9#, these two

effects have been summarized by the acronymCz
0-

requirements; that is, displacements and transverse stre

must beC0-continuous functions in thez-thickness direction.
A qualitative comparison of displacement and stress field
a single-layered and a multi-layered structure is shown
Fig. 1. This picture clearly shows that theories designed
single-layered structures are not suitable to analyze multi
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ered ones. The piecewise form of transverse stress and
placement fields are often described in the open literatur
Zig-Zag~ZZ! andInterlaminar Continuity~IC!, respectively.
The theories which describe these two effects are referre
asZig-Zag theoriesin the present study.

A number of refinements of classical models, as well
theories developed for multilayered structures, have b
proposed in the literature over the last four decades. Axio
atic and asymptotic approaches, along with other continu
based ones, have been used to build 2D theories in
cases of equivalent single layer~ESL! and layer-wise~LW!
variable description. Following Reddy@10#, it is intended
that the number of displacement variables is kept indep
dent of the number of constitutive layers in the ESL mode
while the same variables are independent in each layer
LW models. Koiter in@11# states, ‘‘A refinement of Love’s
first approximation theory is indeed meaningless, in gene
unless the effects of transverse shear and normal stresse
taken into account at the same time.’’ Koiter’s Recomme
dation~KR! should be taken into account in the developm
of Zig-Zag theories.

For a complete review of several approaches, comp
tional techniques and numerical assessment, readers a
ferred to the many survey articles available on multilaye
beams, plates, and shells. Among these, recommende
views are the articles by Ambartsumian@12,13#, Grigolyuk
and Kogan @14#, Librescu and Reddy@15#, Leissa @16#,
Grigolyuk and Kulikov@17#, Kapania and Raciti@18#, Kapa-
nia @19#, Noor and Burton@20,21#, Jemlelita@22#, Vasiliev
and Lur’e@23#, Reddy and Robbins@24#, Noor, Burton, and
Bert @25#, Lur’e and Shumova@26#, Grigorenko@27#, Grig-
orenko and Vasilenko@28#, Altenbach@29#, Carrera@30#, as
well as the books by Lekhnitskii@31#, Ambartsumian@32–
34#, Librescu@35#, and Reddy@10#.

Although these review works are excellent, in the autho
opinion there still exists a need for a historical review w
the aim of giving clear answers to the following question

1! Who first presented a zig-zag theory for a multilayer
structure?
ral
ver-
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2! How many different and independent ESL zig-zag the
ries have been proposed in the open literature?

3! Who first proposed the theories in question 2?
4! Are the original works recognized and mentioned c

rectly in the subsequent articles?
5! What are the main differences among the available z

zag approaches to multilayered structures?

A response to these five points would be extremely usefu
the analysts of layered structures. It will give an insight in
the early and, at the same time, very interesting ideas
methods, such as those by Lekhnitskii@36#, that could be
extended and applied to further problems. Furthermore, a
is in any historical note, the author aims to establish a sor
historical justice, permitting to ‘‘give to Caesar what belon
to Caesar and to God what belongs to God.’’

The already mentioned works@12–35# show that a large
number of different techniques, methods, and ideas h
been applied to analyze multilayered structures. The at
tion of the present article has been focused on those zig
theories which fall into the two following categories:

I ! The method of hypotheses is referred to and distri
tions of displacement and stress fields in the thickn
direction of the plate/shell are introduced in an axio
atic sense.

II ! With the exception of the approaches proposed by
issner~Section 4! only those ZZ theories that have bee
developed in the framework of ESLM are discussed
this review.

Those analyses, such as the very interesting papers@37–46#
which are based on an asymptotic approach have not b
discussed in the present paper. A few examples of other
proaches not discussed herein follows. Savin and Kho
@47# obtained multilayered shell equations by averaging
equations over the thickness coordinate. The concept
uniform stress-strain state has been used by Khoroshun@48#.
Full mixed methods were applied in@49–53#. Of certain rel-
evance are the many developments made in the framew
of LWM. Among these, the articles@54–61# are mentioned
herein. For a complete and detailed review of the seve
topics and contributions, readers are referred to the o
views given in@10,12–35#.

This paper, therefore, gives a historical review of ava
ableZig-Zagtheories in the context of questions 1–5, taki
into account the limitations mentioned in pointsI and II .

The answer to question 1 is provided in Section 2, wh
shows that Lekhnitskii@36# was the first to propose a Zig
Zag theory that described theCz

0-requirements.
As far as questions 2 and 3 are concerned, the author

recognized that apart from the method by Lekhnitskii@36#,
two other independent and different theories have been
posed in the literature in the second half of last century. T
first of these was given by Ambartsumian in the artic
@62,63# while the technique of building a second type
theory was traced later to Reissner@64#. The three ap-
proaches are discussed in Sections 2–4, along with a
details and literature. Based on historical reasons, which

be-
Fig. 1 Cz
0-requirements. Comparison of transverse stress field

tween a single-layered structure and a three-layered structure
/ on 01/21/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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detailed in the respective sections, it has been propose
refer to these three different and independent contributi
by the following names:

• Lekhnitskii Multilayered Theory~LMT !
• Ambartsumian Multilayered Theory~AMT !
• Reissner Multilayered Theory~RMT!

Concerning question 4, it will be pointed out that th
original contribution by Lekhnitskii has been almost tota
ignored in the subsequent literature~exception has to be
made for the work by Ren@65,66#; see next section!. The
plate/shell theory developed by Ambartsumian has rece
differing attentions in the West and in the East. The Russ
literature has recognized the Ambartsumian theory and
proved it for its application to other problems, including t
treatment of KR. On the other hand, the Western literatu
with the exception made in a few works that appeared in
early 1970s, has not properly recognized Ambartsumia
works. This story has been detailed in Section 3.2. It appe
that contributions made by Lekhnitskii and Ambartsumi
have not received proper recognition. Probably becaus
World War II and the subsequent Cold War, these works h
had little impact outside the Soviet Union.

As far as question 5 is concerned, discussion of the th
approaches is given in Section 5. Among the three
proaches discussed, the RMT theory has proved to be
the most versatile to describe completely theCz

0-
requirements and the most suitable for computatio
studies.

Concerning notation, the author has tried as much as
sible to use those symbols that were quoted in the orig
articles. Such a choice would permit the readers to comp
the formulas reported herein directly with those origina
given. In any case, due to the large amounts of algebra a
with the significant numbers of described theories, symb
used in a certain section refer only to that section. In th
cases in which a given symbol is not defined in a giv
section, its definition has been provided on a earlier sect
The present paper refers to beam, plate, and shell struct
Formulas related to the discussed theories do not cons
both flat and curved geometries. For the sake of brevity,
geometry is referred to in some cases, while doubly cur
geometry has been considered in others.

2 LEKHNITSKII MULTILAYERED THEORY

To the best of the author’s knowledge, Lekhnitskii should
considered the first contributor to the theory of multilayer
structures. In@36#, in fact, Lekhnitskii proposed a splendi
method able to describe the Zig-Zag effect~for both in-plane
and through the thickness displacements! and interlaminar
continuous transverse stresses. To prove this point, Fig
which is taken from the pioneering work of Lekhnitskii@36#,
shows an interlaminar continuous transverse shear s
field (t1 andt2 are shear stresses in layers 1 and 2, resp
tively! with discontinuous derivatives at the layer interfac
In other words,Cz

0-requirements of Fig. 1 were entirely ac
counted for by Lekhnitskii@36#.
: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2
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The author believes it is relevant and of interest to qu
the original derivations made by Lekhnitskii. It can, in fac
prove to be difficult to obtain the original article by Lekh
nitskii which has not been translated into English. Furth
more, the theory proposed by Lekhnitskii is very interestin
and the method used could represent a starting point for
ture developments. The following detailed derivation
therefore taken directly from the original paper by Lek
nitskii, written in Russian. Few changes of notations we
made. A more brief treatment can be found in the Engl
translation of the book by Lekhnitskii@31# ~Section 18 of
Chapter III, p 74!.

Let us consider a cantilever beam bent by a forceP and a
momentM and made up ofNl isotropic layers~see Fig. 3!; x
and z are the longitudinal and thickness directions, resp
tively. l and H are the length and thickness of the bea
respectively.c is the beam width andy is the related coor-
dinate. Subscriptk is used to denote variables and para
eters related to thek-th layer. The layers are counted startin
from the bottom.sk is the layer thickness andhk is the dis-
tance of a layer interface from thex-axis.sxx

k , szz
k , sxz

k , uk,
and vk are the stress and displacement components of
k-th layer. Ek, nk, and Gk are the Young’s modulus, Pois
son’s ratio, and shear modulus of thek-th layer, respectively.

The problem considered is anx2z plane stress problem
It can therefore be formulated in terms of a stress functionwk

defined in thek-th layer on the domainx,z. Stresses can be
calculated usingwk according to the following well-known
relations:

sxx5
]2w

]z2 , szz5
]2w

]x2 , sxz52
]2w

]x]z
(1)

Compatibility of strains can be written in terms the stre
function according to the following compatibility equation

Fig. 2 Cz
0-form of a transverse shear stress in a two-layered st

ture. The interface and neutral axis are shown. The upper and lo
layers are made of low and high stiffness materials, respectiv
This graph was taken from the original work@36#.
016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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]4wk

]x4 1
]4wk

]x2]z2 1
]4wk

]z4 50 (2)

At this stage, the fundamentalaxiomaticassumption of the
Lekhnitskii’s theory is made, ie, a form for the stress fun
tion is assumed:

wk~x,z!5
ak

6
z31

bk

2
z21xS Ak

3
z31

Bk

2
z21CkzD (3)

A different choice for the stress function would lead to d
ferent results. According to Eq.~1! the chosen form is able to
describe:
• Longitudinal stressessxx , which are linear in the thick-

nessz direction as well as in the longitudinal direction x

sxx
k 5akz1bk1x~2Akz1Bk! (4)

• Thickness stressesszz, which are zero in eachx,z posi-
tions

szz
k 50 (5)

• Transverse shear stresssxz , which is parabolic inz and
independent of the longitudinal coordinatex

sxz
k 52Akz

22Bkz2Ck (6)

The 53Nl unknown-constantsak ,bk ,Ak ,Bk , andCk must
be determined according to the relations given in itemsI –V
which follow:

I ! Displacements are related to stresses by means o
strain-stress relations written for the constitutive eq
tion of the k-th layer ~eg, Hooke’s Law written in
terms of compliances!:

]uk

]x
5

1

E k sxx
k 2

n k

E 2
k szz

k

]wk

52
nk

sk 1
1

sk (7)
c-

if-

,

f the
ua-

]z Ek xx Ek zz

]uk

]z
1

]wk

]x
5

1

Gk sxy
k

II ! Compatibility conditions for displacements at the inte
faces areZig-Zag effects,

uk215uk, wk215wk, k52,Nl (8)

III ! Homogeneous conditionsat the bottom/top surface fo
the transverse stresses,

syy
1 5syy

Nl50, sxy
1 5sxy

Nl50 at z50,H (9)

IV! Interlaminar equilibriumfor the transverse stresses

syy
k215syy

k , sxy
k215sxy

k , k52,Nl (10)

V! Equivalence or equilibrium conditions between appli
loads (M ,P) and stresses

c(
1

Nl E
hk21

hk
szzdz50,

c(
1

Nl E
hk21

hk
sxxzdz5

M2Px

H
,

c(
1

Nl E
hk21

hk
sxzdz52

P

H
(11)

First Eqs.~7! are integrated in thex and z directions. The
following expressions for the displacementsuk and wk are
obtained:

uk5
Ak

Ek x2z1
Bk

2Ek x21~aky1bk!
x

Ek

1S nk

Ek 2
1

GkD S Ak

Ek z31
Bk

2
z2D2aky1bk

(12)

Fig. 3 Geometry and notations of Lekhnitskii’s cantilever, multilayered beam
oaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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wk52
Ak

3Ek x32
ak

2Ek x21F2
nk

Ek ~Akz
21Bkz!

2
Ck

Gk 1akGx2
nk

Ek S ak

2
z21bkzD1gk

ak , bk , andgk are the three integration constants. By usi
II – IV, and after some lengthy algebraic manipulations,
following relations are obtained,

ak

Ek 5
ak21

Ek21 ,
Ak

Ek 5
Ak21

Ek21

Ak

Ek hk211
Bk

2Ek hk215
Ak21

Ek21 hk211
Bk21

2Ek21 hk21 (13)

akhk211bk

Ek 5
ak21hk211bk21

Ek21

C150, ANl
hNl

2 1BNl
hNl

1CNl
50

Akhk21
2 1Bkhk211Ck5Ak21hk21

2 1Bk21hk211Ck21
(14)

S nk

Ek21 2
1

Gk21D S Akhk21
3

3
1

Bkhk21
2

2 D 2akhk211bk

5S nk21

Ek 2
1

GkD S Ak21hk21
3

3
1

Bk21hk21
2

2 D 2ak21hk21

1bk21 (15)

nk

Ek ~Akhk21
2 1Bkhk21!2

ck

Gk 1ak

5
nk21

Ek21 ~Ak21hk21
2 1Bk21hk21!2

ck21

Gk21

1ak212
nk

Ek S ak

2
hk21

2 1bkhk21D1gk

52
nk21

Ek21 S ak21

2
hk21

2 1bk21hk21D1gk21 (16)

The following recursive relations are obtained from Eqs.~13!

Ak5
A1Ek

E1 , Bk5
B1Ek

E1 , ak5
a1Ek

E1 , bk5
b1Ek

E1 (17)

while from Eqs.~15! it is found,

Ck5
1

E1 H A1 F (
s51

k21

~hs
22hs21

2 !Es2hk21EkG
1B1F (

s51

k21

~hs2hs21!Es2hk21EkG J
k52,3,Nl21 (18)

Top and bottom layer values are:

C150, CNl
5

Ek

E1 ~A1hNl

2 1B1hNl
! (19)
: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2
ng
he

Eqs. ~11! are used to determine the remaining bottom-la
constants,

A15
6PE1

Sc
, B152

6PE1

Sc
S2 ,

a152
12ME1

Sc
S1 , b152

6ME1

Sc
S2 (20)

where

S54(
i 51

Nl

~hi
32hi 21

3 !Ei(
i 51

Nl

~hi2hi 21!Ei23

3F(
i 51

Nl~hi
22hi 21

2 !Ei G2

(21)

S15(
i 51

Nl

~hi
32hi 21

3 !Ei , S15(
i 51

Nl

~hi
22hi 21

2 !Ei

It is noted thath050 andhNl
5H.

The final expressions for the stresses are:

sxx
k 5

6Ek

Sc
~Px1M !~2S1z2S2!, k51,2,..Nl

szz
k 50, k51,2,..Nl

sxz
k 5

6P

Sc H S1 F (
s51

k21

~hs
22hs21

2 !Es1~z22hk21
2 !EkG J

2H S2F (
s51

k21

~hs2hs21!Es1~z22hk21!EkG J ,

k52,3,Nl21 (22)

sxz
1 52

6PE1

Sc
z~S1z2S2!

sxz
Nl52

6PENl

Sc
~hNl

2z!@S22~hNl
1z!S1#

The corresponding expression for the displacements coul
obtained directly from Eqs.~12!. It is noted that the amoun
of algebraic manipulations is quite impressive. At the pres
time, the use of software for symbolic calculation could be
some help to derive the above formulas or to apply the
khnitskii method to a different stress function assumption

This section closes by making a few remarks on
theory proposed by Lekhnitskii.

1! Lekhnitskii’s theory described Zig-Zag form of bot
longitudinal and through the thickness displacements
particular:

a! The longitudinal displacementsuk show a cubic or-
der in thez-thickness direction

b! The through thickness displacementwk varies ac-
cording to a parabolic equation inz

2! Lekhnitskii’s theory furnishes interlaminar continuou
transverse stressesszz andsxz Eqs.~22!

3! Stresses obtained by Lekhnitskii fulfill the 3D indefini
equilibrium equations~this fundamental property is in
016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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trinsic in the used stress function formulation!
4! Stresses and displacements have been obtained by

ploying:

a! Compatibility conditions for stress functions
b! Strain-displacement relations
c! compatibility conditions for displacements at th

interfaces

uk215uk, wk215wk, k52,Nl (23)

d! Homogeneous conditions at the bottom and top s
face for the transverse stresses

szz
1 5szz

Nl50, sxz
1 5sxz

Nl50 inz50,h (24)

e! Interlaminar equilibrium for the transverse stress

szz
k215szz

k , sxz
k215sxz

k , k52,Nl (25)

5! No post-processing was used to recover transve
stresses

6! Thickness normal stressszz has been neglected. Neve
theless, the Poisson effects on thickness displacem
wk have been fully retained.

7! Full retainment of Koiter’s recommendation would r
quire a different assumption for the stress functions~the
author is not aware of any work that was made in t
direction!

2.1 Developments of LMT

Although Lekhnitskii’s theory was published in the midd
thirties of the last century and reported in a short paragr
of the English edition of his book@31#, it has been system
atically forgotten in the recent literature. An exceptio
should be made for the work by Ren which is documented
this paragraph.

To the best of the author’s knowledge, Ren is the o
scientist who has used Lekhnitskii ’s work. In the two pap
@65,66# Ren has, in fact, extended Lekhnitskii ’s theory
em-
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orthotropic and anisotropic plates. Further applications to
bration and buckling were made in a third paper written
collaboration with Owen@67#. These three papers are th
only contributions known to the author that have been m
in the framework of Lekhnitskii ’s theory. As these thre
papers have been published in journals that are easily
worldwide available, the full description of the Ren exte
sion to plates of LMT has, therefore, been omitted. Nev
theless, it is of interest to make a few remarks on Re
works in order to quote explicitly the stress and displacem
fields that were introduced by Ren to analyze the respons
anisotropic plates. For the sake of simplicity, reference
made to the derivation made by Ren in@65#, where cross-ply
plates were considered. The extension to generally lamin
plates can be found in@65,67#.

On the basis of the form oftxz
k obtained by Lekhnitskii,

see Eq.~22!, it appeared reasonable to Ren, see@65#, to as-
sume in an axiomatic sensethe following distribution of
transverse shear stresses in a laminated plate, compose
Nl orthotropic layers, (x, y, andz are the coordinates of th
reference system shown in Fig. 4!:

sxz
k ~x,y,z!5jx~x,y!ak~z!1hx~x,y!ck~z!

(26)

syz
k ~x,y,z!5jy~x,y!bk~z!1hy~x,y!gk~z!

Four independent functions ofx,y have been introduced to
describe transverse shear stresses. The layer constan
parabolic functions of the thickness coordinatez according
to Eqs.~22!, and in view of this Ren adopted the followin
expressions

ak~z!5S1xF (
i 51

k21

~hi
22hi 21

2 !Q11
i ~z22hk21

2 !Q11
k G

2S2xF (
i 51

k21

~hi2hi 21!Q11
i ~z2hk21!Q11

k G

Fig. 4 Multilayered plate
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ck~z!5S1nF (
i 51

k21

~hi
22hi 21

2 !
Q11

i

n12
i ~z22hk21

2 !
Q11

k

n12
k G

2S2nF (
i 51

k21

~hi2hi 21!
Q11

i

n12
i ~z2hk21!

Q11
k

n12
k G

(27)

bk~z!5S1yF (
i 51

k21

~hi
22hi 21

2 !Q22
i ~z22hk21

2 !Q22
k G

2S2yF (
i 51

k21

~hi2hi 21!Q22
i ~z2hk21!Q22

k G
gk~z!5S1nF (

i 51

k21

~hi
22hi 21

2 !
Q22

i

n21
i ~z22hk21

2 !
Q22

k

n21
k G

2S2nF (
i 51

k21

~hi2hi 21!
Q22

i

n21
i ~z2hk21!

Q22
k

n21
k G

in which

S1x5 (
K51

Nl

~hk2hk21!Q11
k , S2x5 (

K51

Nl

~hk2hk21!Q11
k

S1y5 (
K51

Nl

~hk2hk21!Q22
k , S2y5 (

K51

Nl

~hk2hk21!Q22
k

(28)

S1n5 (
K51

Nl

~hk2hk21!
Q22

k

n12
k , S2n5 (

K51

Nl

~hk2hk21!
Q22

k

n12
k

Q11
k

n12
k 5

Q22
k

n21
k

E1
k ,E2

k ,nk are Young’s modulus of thek-th layer in thex and
y directions and Poisson’s ratio, respectively.hk denotes the
z-value of thek-th interface measured from the referen
surface V. Qi j

k layer-stiffnesses are those that appear
Hooke’s law, hereby written in the reduced form@10# for
orthotropic layers,

5
sxx

syy

sxy

sxz

syz

6 5F Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44

G 5 exx

eyy

gxy

gxz

gyz

6 (29)

Eqs. ~26! represent an interlaminar continuous transve
shear stress field that is parabolic in each layer. As in Le
nitskii @36#, displacement fields are obtained by integrati
strain-displacement relations after substituting into Hook
law, Eq. ~29!. In contrast to the work by Lekhnitskii, it is
emphasized that transverse strainsezz have been discarde
by Ren. It is noted that such an assumption contrasts with
already mentioned Koiter’s recommendation. Layer co
stants arising from the integration are determined by imp
ing compatibility conditions for the displacements at the
terface. The displacement field assumes the following fo
: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2
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uk~x,y,z!5u0~x,y!2w,x~x,y!1jx~x,y!Ak~z!

1hx~x,y!Ck~z!

vk~x,y,z!5v0~x,y!2w,y~x,y!1jy~x,y!Bk~z!

1hy~x,y!Gk~z! (30)

w~x,y,z!5w0~x,y!

whereAz
k(z), Bz

k(z), Bz
k(z) andGz

k(z) are obtained by inte-
grating the correspondingaz

k(z), bz
k(z), cz

k(z), and gz
k(z).

Thus Eqs.~30! represent a piecewise Zig-Zag continuo
displacement field in the thickness directionz which is cubic
in each layer.

The displacement model given by Eqs.~30! can be used
in the framework of known variational statements to form
late the governing equations of anisotropic plates in b
strong end weak form. Strong forms and related closed fo
solutions have been discussed in the already mentio
works @65–67#. No weak form solutions, such as finite el
ment applications, nor attempts to include KR as well as
extension to shell geometry of LMT are known to the auth

3 AMBARTSUMIAN MULTILAYERED THEORY

This section has been devoted to those Zig-Zag multilaye
theories that have been mostly originated by attempts to
tend the classical Reissner-Mindlin theory~Reissner@5#,
Mindlin @6#! for homogeneous, isotropic plates, to inclu
theCz

0-requirements. For convenience, these attempts are
scribed here in the following points.

1! To describe plates/shells made of a single-layer of an
isotropic materials

2! To extend the single-layer case to the multilayered c
by including Zig-Zag effects and satisfying interlamin
continuity for the transverse shear stresses

3! To include what was referred to as Koiter’s recommen
tion in the introduction; that is, to include transverse n
mal stress/strainszz,ezz effects, which are discarded b
Reissner-Mindlin type theories

The classical Reissner-Mindlin theory in the case of a pl
or shell assumesin an axiomatic sensethe following dis-
placement field,

u~a,b,z!5u01zfa S 5u01zS gaz2
w,a

A
2

u0

Ra D D
u~a,b,z!5v01zfb S 5v01zS gbz2

w,b

B
2

u0

Rb D D
(31)

w~a,b,z!5w0

Reissner-Mindlin theory includes transverse shear defor
tion, it has five degrees of freedom~three displacemen
u0(a,b), v0(a,b), w0(a,b) on the reference surface plu
two rotations fa(a,b),fb(a,b) or two transverse shea
strains gaz(a,b),gaz(a,b). Figure 5 shows the notation
used for a doubly curved shell. A curvilinear reference s
tema, b, z has been considered;a andb are the curvilinear
coordinates defined on a shell reference surfaceV. Ra ,Rb
016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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are the shell radii of principal curvatures.A and B are the
Lamé shell parameters~see @68# for details!. For conve-
nience, the Reissner-Mindlin model has been written in t
ways; the second one~the one in parentheses! expresses the
rotation in terms of transverse displacement variations
shear strains. Usual approximations have been introduce
far as curvature terms of typez/Ra ,z/Rb , see@68,69#. The
shear stress field related to an isotropic monocoque p
shell with shear modulusG has a constant distribution in th
thickness directions:

saz~a,b,z!5G~fa1w,a!
(32)

saz~a,b,z!5G~fb1w,b!

Ambartsumian has been the first one to work on point
and 2. For that reason we refer to this type of Zig-Zag th
ries as Ambartsumian Multilayered Theory~AMT !. Ambart-
sumian has, in fact, considered in a series of pap
@62,63,70,71#, and in the two books@32,33#, refinements of
Reissner-Mindlin theory directly to make it suitable for th
application to anisotropic layered plates and shells. For
purpose, the classical hypotheses of Reissner-Mindlin the
were reformulated by Ambartsumian as follows,
wo

and
d as

late/
e

s 1
eo-

ers

e
this
ory

a) The line elements of the plate/shell, normal to t
middle surfaceV, do not change their length after de
formation

b! The normal stressesszz are small as compared to th
in-plane onessaa , sbb , sab

c! The transverse shear stressessaz , sbz vary in the di-
rection of the thickness~of the entire shell or layer!
according to the law of the quadratic parabola

Single-layer case.Orthotropic plates and shells composed
a single layer were addressed in@62# and @63#, respectively.
The shell case is hereby considered. According to assu
tion c!, the transverse shear field was assumed of the foll
ing type @63#,

saz~a,b,z!5
1

2
~saz

T 2saz
B !1

z

h
~saz

T 1saz
B !

1
1

2 S z22
h2

4 D fa~a,b!

(33)

Fig. 5 Geometry and notations used for multilayered shells
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4sbz~a,b,z!5
1

2
~sbz

T 2sbz
B !1

z

h
~sbz

T 1sbz
B !

1
1

2 S z22
h2

4 D fb~a,b!

The applied values of transverse shear at the topT and bot-
tom B shell surfaces are considered in the previous tra
verse shear model as:

saz
T 5sazS a,b,

h

2D , saz
B 5sazS a,b,2

h

2D ,

sbz
T 5sbzS a,b,

h

2D , sbz
B 5sbzS a,b,2

h

2D
fa(a,b) and fb(a,b) are the two functions of Reissne
Mindlin theory. It is noted that Eqs.~32! and~33! introduce a
transverse shear stress field that is parabolic in the thick
direction; in addition Eqs.~33! include non-homogeneou
conditions on top/bottom surfaces. The related transve
shear strains are,

eaz~a,b,z!5eaz
! 1

z

h
eaz* 1

1

2 S z22
h2

4 D Fa~a,b! (34)

ebz~a,b,z!5ebz
! 1

z

h
ebz* 1

1

2 S z22
h2

4 D Fb~a,b!

where

eaz
! 5

1

2
@S55~saz

T 2saz
B !1S45~sbz

T 2sbz
B !#,

ebz
! 5

1

2
@S44~saz

T 2saz
B !1S45~sbz

T 2sbz
B !#

eaz* 5S55~saz
T 1saz

B !1S45~sbz
T 1sbz

B !,

ebz* 5S44~saz
T 1saz

B !1S45~sbz
T 1sbz

B ! (35)

Fa5S55fa1S45fb , Fb5S55fa1S45fb

in which the following compliances have been introduced

S44
k 5

Q55
k

Dk , S45
k 52

Q45
k

Dk , S44
k 5

Q44
k

Dk ,

Dk5Q44
k Q55

k 2~Q45
k !2

Upon integration with respect toz of the strain/displacemen
relations by taking into account the assumptions and by
troducing some of the usual approximations concerning
terms of the typez/Ra ,z/Rb , Ambartsumian obtained th
following displacement field,

u~a,b,z!5S 11
z

Ra
Du,a

0 2
z

A1
w,a2

zh2

8 S 11
z

Ra
DFa

1
z3

6 S 11
z

4Ra
DFa1zS 11

z

2Ra
D eaz

!

1
z2

2h S 11
z

3Ra
D eaz

!
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v~a,b,z!5S 11
z

Rb
Du,b

0 2
z

A1
w,b2

zh2

8 S 11
z

Rb
DFb

1
z3

6 S 11
z

4Rb
DFb1zS 11

z

2Rb
D ebz

!

1
z2

2h S 11
z

3Rb
D ebz

!

w~a,b,z!5w0~a,b! (36)

The important fact is noted that in view of Eqs.~31! the
AMT gives in-plane displacement components which depe
on bothfa andfb .

Multilayer case. The case of two layers was addressed
Ambartsumian in the two papers@70,71# and further docu-
mented in@32,33#. It is noted that the extension to multilaye
plates was given by Osternik and Barg@72# who first wrote
transverse shear stresses in the form of Eqs.~37!. Herein, it is
preferred to present the Ambartsumian theory for the p
geometries as it has been given in@33#, where due credit is
given to the work done by Osternik and Barg@72#. Assump-
tions a! and b! are kept for the multilayered case while a
sumption c! for transverse shear stresses is now made
each layer. The transverse shear stresses are, in fact, w
in the following layer-form,

sxz
k ~x,y,z!5@G13

k f ~z!1Ak#fx~x,y!
(37)

syz
k ~x,y,z!5@G23

k f ~z!1Bk#fy~x,y!

which consists of an interlaminar continuous transverse sh
stress field.fx andfy are unknown functions that have th
same meaning asfa and fa introduced in the shell case
These unknown functions are not affected byk-superscripts
as is the case for any Equivalent Single Layer Theory. In@33#
attention was restricted to the case in whichf (z) is a sym-
metric function ofz ( f (z) is zero at top/bottom external plat
surfaces! and to a symmetrically bent plate (u05v050).
G13

k andG23
k are the shear modulusk-th layer.Ak andBk are

layer constants to be determined by imposing IC and
with respect to each layer interface. A complete list
boundary conditions on transverse stresses and disp
ments is rewritten,

sxz
Nl~5sxz

T !50,sxz
1 ~5sxz

B !50,

syz
Nl~5syz

T !50,syz
1 ~5syz

B !50

sxz
k215sxz

k ,syz
k215syz

k , k52,Nl (38)

uk215uk, vk215vk, k52,Nl

which lead to the following layer constants:

A15ANl
50, B15BNl

50

Ak5(
i 5k

Nl

f ~hi !~G13
i 112G13

i 11!,

Bk5(
i 5k

Nl

f ~hi !~G23
i 112G23

i 11!,

k5~Nl11!/2, . . . ,Nl (39)
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Ak5ANl112k50, Bk5BNl112k50,

k51, . . .~Nl11!/2

Integration of strains gives the following Zig-Zag form of th
displacement field,

uk~x,y,z!52zw,x1J0~z!fx1z
Ai

G13
k fx

1R1
kfx sign~z!

vk~x,y,z!52zw,x1J0~z!fy1z
Ai

G23
k fy

1R2
kfy sign~z! (40)

w~x,y,z!5w0

where

R15A(Nl11)/250, R25A(Nl11)/250

R1
k5 (

i 5(Nl11)/2

k21

hi S Ai

G13
i 11 2

Ai 11

G13
i 11D ,

R2
k5 (

i 5(Nl11)/2

k21

hi S Bi

G23
i 11 2

Bi 11

G23
i 11D , k5~Nl13!/2, . . . ,Nl

(41)

R1
k5R1

Nl112k
50, R2

k5R2
Nl112k

50,

k51, . . .~Nl11!/2

Further details, along with governing equations and disc
sion, can be found in@33#.

The displacements given in Eqs.~40! are affected by the
k-superscripts. This can be formally avoided by using
Heaviside step function. These two ways of writing a Z
Zag displacement field have been detailed in the Appen
for a simple 1D case.

Among the Zig-Zag theories discussed in the present
ticle, the AMT is without doubt the theory that has mos
influenced the development of multilayered plate and s
theories. This is probably due to the fact that AMT uses
findings of a well-known theory such as the Reissn
Mindlin one. The manners in which Ambartsumian ’s wo
has been used, referenced, and extended in the Wester
Eastern scientific communities are discussed in the two
lowing subsections.

3.1 Developments of Ambartsumian theory in the East

Many extensions of Ambartsumian’s works have appeare
journals published in the Russian language. These wo
have been directed to extend AMT to generally lamina
configurations, to geometrically nonlinear problems, as w
as for the inclusion of KR. Refinements and applications
Ambartsumian Multilayered Theory to single-layer plate
shells were given in@73,74#, while applications to multilay-
ered plates and shells can be found in@75–78#. Applications
to geometrically nonlinear problems have been given by P
sakov @79,80#. As an example, the developments presen
oaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org
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by Andreev and Nemirovskii in@77# are briefly recounted
here. These authors gave an extension of the AMT in E
~37–40! to include nonsymmetrical multilayered plates a
nonzero top and bottom surface transverse shear stress
ditions. The displacement fields were written in the follow
ing form,

uk~x,y,z!5lx
k1u02zw,x1mkfx

vk~x,y,z!5ly
k1v02zw,y1mkfy (42)

w~x,y,z!5w0

where

lx
k~x,y!5F (

j 51

k21

~hj2hj 21!S44
j 1~z2hk21!S44

k Gsxz
B

1F (
j 51

k21

~hj2hj 21!S45
j 1~z2hk21!S45

k Gsyz
B

1
1

2h F (
j 51

k21

~hj
22hj 21

2 !S44
j

1~z22hk21
2 !S44

k G ~sxz
T 2sxz

B !

1
1

2h F (
j 51

k21

~hj
22hj 21

2 !S45
j

1~z22hk21
2 !S45

k G ~syz
T 2syz

B !

ly
k~x,y!5F (

j 51

k21

~hj2hj 21!S44
j 1 ~z2hk21!S44

k Gsxz
B

1F (
j 51

k21

~hj2hj 21!S45
j 1~z2hk21!S45

k Gsyz
B

1
1

2h F (
j 51

k21

~hj
22hj 21

2 !S44
j

1~z22hk21
2 !S44

k G ~sxz
T 2sxz

B !

1
1

2h F (
j 51

k21

~hj
22hj 21

2 !S45
j

1~z22hk21
2 !S45

k G ~syz
T 2syz

B ! (43)

mx
k~x,y!5 (

j 51

k21

@~ f ~hj !2 f ~hj 21!#S44
j

1@ f ~z!2 f ~hk21!#S44
k #sxz

B

1 (
j 51

k21

@~ f ~hj !2 f ~hj 21!#S45
j

1@ f ~z!2 f ~hk21!#S45
k #syz

B
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my
k~x,y!5 (

j 51

k21

@~ f ~hj !2 f ~hj 21!#S54
j

1@ f ~z!2 f ~hk21!#S54
k #sxz

B

1 (
j 51

k21

@~ f ~hj !2 f ~hj 21!#S55
j

1@ f ~z!2 f ~hk21!#S55
k #syz

B

The functionf (z) has the following properties

f ,z~0!5 f ,z~h!50 (44)

The form of this function was taken as general in the th
retical developments while it was taken as a cubic funct
in the examples given in@77#. Related transverse she
stresses were give as,

sxz
k ~x,y,z!5sxz

B 1
z

h
~sxz

T 2sxz
B !1 f ,z~z! fx

(45)

syz
k ~x,y,z!5syz

B 1
z

h
~syz

T 2syz
B !1 f ,z~z! fy

Inclusion of szz and ezz. Many efforts have been made d
rectly for the inclusion of Koiter’s recommendation in AMT
Rybov @81,82# first made progress in this direction. He pr
posed a refined theory, taking the variation of transverse
mal displacements according to the following form:

wk~x,y,z!5w0~x,y!1 f k
!~z!f~x,y! (46)

Only one unknown functionf(x,y) was used to expres
both transverse shear stresses,

sxz
k ~x,y,z!5G13

k @ f k
!~z!1 f * k,z~z!#Ax

kf ,x~x,y!
(47)

syz
k ~x,y,z!5G23

k @ f k
!~z!1 f * k,z~z!#Ay

kf ,y~x,y!

wheref k
!(z) and f * k are two assigned functions of the thic

ness coordinatez in the k-th layer.
The most relevant contribution for the inclusion ofszz

andezz in the AMT has been made by Rasskazov and co
thors. In fact, Rasskazov and coauthors proposed the in
sion of bothszz and ezz in a series of papers@83–88# for
both plate and shell geometries, linear and nonlinear pr
lems, and for analytical solution methods as well as com
tational techniques such as the finite element method. S
details of the Rasskazov refinement of AMT theory follow
the complete derivations can be found in the above m
tioned papers by Rasskazov which are published in journ
English translations of which are available worldwide. T
transverse shear stress field was taken similar to that by
bartsumian,

sxz
k ~x,y,z!5G13

k ~z! f 1,z~z!fx~x,y!
(48)

syz
k ~x,y,z!5G23

k ~z! f 2,z~z!fy~x,y!

An interlaminar piecewise continuous transverse norm
stress was introduced in the following form,

szz5szz
T h11z

h
1szz

B h22z

h
1 f !~z!w!~x,y! (49)
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Transverse normal strains were taken as

ezz5 f 3,zz~z!c!~x,y! (50)

The method used to compute the functionw!(x,y) can be
found in @83#. The displacements field was given in the fo
lowing form

uk~x,y,z!5u02zw,x1 f x~z!fx1 f 3~z! c ,x
!

vk~x,y,z!5w02zw,y1 f y~z!fy1 f 3~z! c ,y
! (51)

w~x,y,z!5w01 f 3~z! ,zc
!

The mechanical properties of the layers were considere
piecewise functions ofz. The introduced functions are give
as

f x~z!5E
0

zFG13
21E

2h1

z

A11~z!~z2dx!dzGdz

f x~z!5E
0

zFG23
21E

2h1

z

A22~z!~z2dy!dzGdz

(52)

f 3~z!5E
0

zS E
0

z

zh~z!dz D dz

f !~z!5~z1h1!~z1h2!

where

A115
1

2
Q11@12n12~z!#1G12~z!,

A225
1

2
Q22@12n21~z!#1G12~z!

h~z!5
1

2

n13~z!@11n21~z!#1n23~z!@11n12~z!#

12n12~z!n21~z!
(53)

dx5
*A11~z!zdz

*A11~z!dz
, dy5

*A22~z!zdz

*A22~z!dz

Further developments on the inclusion of transverse co
pression have been made by Grikoliuk and Vasilenko@89,90#
and Vasilenko@91#.

3.2 Developments of Ambartsumian theory in the West

A few articles have appeared in journals written in English
the early 1970’s, in which developments of AMT have be
considered, and which made direct reference to the orig
works by Ambartsumian. These are discussed below.

Whitney’s contribution. Whitney @92# first applied and ex-
tended AMT to generally anisotropic and symmetrical a
nonsymmetrical plates. It was clearly stated by Whitney t
his own work was based on that by Ambartsumian@33#. For
the sake of simplicity, the case of symmetrically laminat
plates is hereby outlined. Details can be found in@92#. Inter-
laminar continuous transverse shear stresses were ass
as follows,

sxz
k ~x,y,z!5@Q55

k f ~z!1a55
k #fx~x,y!

1@Q45
k f ~z!1a45

k #fy~x,y! (54)
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syz
k ~x,y,z!5@Q45

k f ~z!1a55
k #fx~x,y!

1@Q44
k f ~z!1a44

k #fy~x,y!

Equations~37! can be obtained by settingQ45
k 5a45

k 50. f (z)
is a function of the thickness coordinate, the form of whi
should be assumed differently as far as symmetrical and
symmetrical laminated cases. A parabolic form forf (z) has
mostly been considered~explicit formulas for unsymmetrica
cases were also given by Whitney!. The layer constants
a44

k ,a45
k ,a55

k are determined by imposing the continuity co
ditions of transverse shear stresses at the interfaces, w
top-bottom stress-free conditions are used to determine
form of f (z). Explicit forms of layer constants were omitte
by Whitney. Transverse shear strains related to the assu
transverse shear stress fields are

gxz
k ~x,y,z!5@ f ~z!1S55

k a55
k 1S45

k a45
k #fx~x,y!

1@S55
k a45

k 1S45
k a44

k #fy~x,y!
(55)

gyz
k ~x,y,z!5@S44

k a44
k 1S45

k a45
k #fx~x,y!1@ f ~z!

1S44
k a44

k 1S45
k a55

k #fy~x,y!

By assuming the transverse displacement constant in
thickness direction, ie,ezz50, and integrating the shea
strains, the following Zig-Zag displacement fields were o
tained:

uk~x,y,z!52zw,x1@J~z!1g1
k~z!#fx~x,y!

1g2
k~z!fy~x,y!

vk~x,y,z!52zw,y1@J~z!1g3
k~z!#fy~x,y!

1g4
k~z!fx~x,y! (56)

w~x,y,x!5w0~x,y,z!

where

J~z!5E f ~z!dz

g1
k~z!5@S55

k a55
k 1S45

k a45
k #z1d1

k

g2
k~z!5@S55

k a55
k 1S45

k a45
k #z1d2

k (57)

g3
k~z!5@S55

k a55
k 1S45

k a45
k #z1d3

k

g4
k~z!5@S55

k a55
k 1S45

k a45
k #z1d4

k

whered1
k ,d2

k ,d3
k ,d4

k are calculated by imposing compatibilit
of in-plane displacement at each interface.

Rath and Das’s contribution. A second relevant work on
the application of AMT was given by Rath and Das@93# who
extended the work done by Whitney to doubly curved sh
and dynamic problems. The transverse shear stress fiel
each layer was taken the same as those by Whitney. Inte
tion in z of related shear strains led to the following displac
ment fields@93#,
oaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org
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uk~a,b,z!5S 11
z

Ra
Du,a

0 2
z

A1
w,a1Fz1

z2

Ra
24

z3

3h2

2
z4

3h2Ra
D1G1

kS z1
z2

Ra
D1d1

kS 11
z

Ra
Dfa

vk~a,b,z!5S 11
z

Rb
D v ,a

0 2
z

A2
w,b1Fz1

z2

Rb
24

z3

3h2

2
z4

3h2Rb
D1G3

kS z1
z2

Rb
D1d3

kS 11
z

Rb
Dfb

(58)

w~a,b,z!5w0~a,b!

whereG1
k , d1

k , G3
k , d3

k are layer constants directly derive
from those which were assumed for the transverse sh
stress Eqs.~54!.

Other contributions which make direct reference to Am-
bartsumian ’s works. Further to the two papers by Whitne
@92# and Rath and Das@93#, a third article coauthored by Su
and Whitney@94# compared Whitney’s Zig-Zag theory t
simplified ones which discard interlaminar continuity and
Zig-Zag effects. Further contributions by Hsu and Wa
@95,96# employed the original AMT at layer level as it wa
given in @63#. A layer-wise theory was thereby developed f
the cylindrical shell geometry.

Other contributions which do not make direct reference
to Ambartsumian ’s works. With the exception of the five
papers@92–96#, the author is not aware of any furtherdirect
applications of the AMT. Dozens of papers have instead b
presented over the last decades that deal with Zig-Zag eff
and interlaminar continuous transverse shear stresses,
which mostly ignore the original work by Ambartsumian,
well as those by Whitney, and Rath and Das. In the auth
opinion, most of these articles should be considered as s
plified cases of the Ambartsumian Multilayered Theory
well as of the developments in@92,93#. Unfortunately, the
original works and authors are not mentioned~or barely
cited! in the reference lists of this large amount of articles.
order to try to explain such historical unfairness, a reco
struction of what happened has been attempted here.

A pioneering article by Yu@97# should first be mentioned
in which a Zig-Zag theory was presented. Because of
short time between Ambartsumian’s works and Yu’s artic
together with the Cold War, it could be surely assumed t
the works of Ambartsumian were unknown to Yu. A 1
sandwich plate made of an isotropic core and faces was
sidered in@97#. The three slopes of the displacement field
the three layers were derived by imposing transverse s
continuity at the two interfaces. The in-plane displacem
fields were assumed linear in each layer. Yu did not start
derivation by a direct assumption of transverse stress fiel
was done by Ambartsumian; Yu, in fact, preferred to st
from a Reissner-Mindlin type displacement model and co
pute the faces and core slopes by imposing transverse s
stress continuity at the interfaces. It was also mentioned
/ on 01/21/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



a
l

n

a

o

b

a

s

c
l

sed
a
n

er
s

ns
r-

a

Its

Appl Mech Rev vol 56, no 3, May 2003 Carrera: Historical review of Zig-Zag theories 299

Downloaded From
@97# that the method could easily be extended to displa
ment fields which are taken as cubic functions ofz. Details
of this last development were not given by Yu.

Almost 15 years later, Chou and Carleone@98# presented
a Zig-Zag theory of anisotropic plates. As in Yu~even though
the original work by Yu was not mentioned! a piecewise
linear displacement field in each layer was considered an
Zig-Zagtheory was proposed. It seems that Chou and Ca
one were not aware of the works by Yu and Ambartsumi
as well as those by Whitney. Chou and Carleone as we
Yu’s analyses, in fact, consist of a particular case of the AM
theory in which only those terms ina44

k ,a45
k ,a55

k of Eqs.~54!
which are independent ofz are retained.

Disciuva and coauthors@99–101# employed Yu’s and
Chou and Carleone’s Zig-Zag displacement field, which w
linear in each layer, by employing the Heaviside step fu
tion, and gave finite element applications. It should
pointed out, once again, that Yu, Chou and Carleone,
Disciuva and co-authors, namely the YCCD analyses, d
with a particular case of what is herein called the AM
theory. As previously mentioned, the linear piecewise c
tinuous displacement field used in the YCCD cases can
fact be obtained from the AMT by simply neglecting th
higher order terms~which multiply z2 andz3) in Eqs.~58!.
By doing this, the resulting YCCD models:

i ! are not able to fulfill homogeneous conditions for tran
verse shear stresses at the top/bottom plate/shell
faces;

ii ! are not suitable for unsymmetrically laminated stru
tures.

Most the the subsequent works on Zig-Zag theories
not refer to the work by Ambartsumian, nor to those
Whitney and Rath and Das. In the same manner, the de
opments which appeared in journals in the Russian langu
as well as those reviewed in the previous subsection w
mostly ignored. Subsequent works were instead very m
influenced by Yu, Chou and Carleone, and Disciuva’s
ticles; that is,reference has been made to simplified analy
while the most complete and exhaustive AMT has not b
recognized, nor mentioned!As a matter of fact, most of the
subsequent 15 years of literature were devoted to introdu
the improvements i! and ii! in the YCCD studies. The resu
of this unuseful workwas that, almost ten years later, th
original AMT was re-obtained by Cho and Parmerter@102#
who gavethe bestrefinements of YCCD studies. A few de
tails of the story behind this are given below.

First Bhaskar and Varadan@103# and then Savithri and
Varadan@104# and Leeet al @105# introduced the top-bottom
zero stress conditions mentioned in pointi . This was done
by extending, in a YCCD type theory, the Vlasov@106# third
order in-plane displacement fields~which were frequently
applied to laminated structures by Reddy@107#!. The result-
ing model, which did not have the quadratic terms in t
expressions for displacement fields, was still not suitable
unsymmetrical laminated plates. A finalbest version, which
includes what is mentioned in pointsi and i i , was proposed
by Cho and Parmerter@102#, and then~among others! by
: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2
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Soldatos and Timarci@108#, Timarci and Soldatos@109# Lee
and Waas@110#, Lee, Waas and Karnopp@111#, Iblidi,
Karama, and Touratier@112#, Aitharaju and Averill @113#,
Cho and Averill@114#, and Polit and Touratier@115#. Some
~but not extremely relevant! differences can be found in
these various articles. The Heaviside step function was u
by Cho and Parmerter@102#, whose displacement fields for
generally laminated plate were written in the form show
below,

u~x,y,z!5u01 (
k50

Nu21

Sx~z2zk!H~z2zk!

1 (
k50

Ns21

Tx~z2zk!H~2z1zk!

2
z2

2h S (
k50

Nu21

Sx
k1 (

k50

Ns21

Tx
kD

2
z3

3h2 H w,x1
1

2 S (
k50

Nu21

Sx
k1 (

k50

Ns21

Tx
kD J

v~x,y,z!5v01 (
k50

Nu21

Sy~z2zk!H~z2zk!

1 (
k50

Ns21

Ty~z2zk!H~2z1zk!

2
z2

2h S (
k50

Nu21

Sx
k1 (

k50

Ns21

Ty
kD

2
z3

3h2 H w,x1
1

2 S (
k50

Nu21

Sy
k1 (

k50

Ns21

Ty
kD J (59)

w~x,y,x!5w0~x,y!

Nu andNs are the number of layers in the upper and low
half, respectively.z andz are the two thickness coordinate
for the upper and lower half, respectively;zk andzk are the
corresponding interface values. The mid-plane rotatio
fx ,fy at z1 (z1 andz2 are the top and bottom layer inte
faces, respectively! are

fx5
]u

]zuz501

5Sx
0 , fy5

]v
]zuz501

5Sy
0

and

Sx
k5axt

k ~w,t
0 1f ,t!1bxt

k w,t
0 ,

Sy
k5ayt

k ~w,t
0 1f ,t!1byt

k w,t
0 ,

k50,1,..,Nu21, t5x,y

Tx
k5cxt

k ~w,t
0 1f ,t!1dxt

k w,t
0 ,

Ty
k5cyt

k ~w,t
0 1f ,t!1dyt

k w,t
0 , k50,1,..,Ns21, t5x,y

whereaxt
k ,bxt

k ,cxt
k ,dxt

k ayt
k ,byt

k ,cyt
k ,dyt

k are layer stiffnesses
~see@102# for further details!.
The previous displacement field, even though written in
more tedious form, coincides exactly with that of Eqs.~31!.
The use of the Heaviside step function is not essential.
016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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use is, in fact, preferred by some authors and omitted
others. The author’s opinion is that the use of the Heavis
function, although it has some formal advantages, is not u
ful as far as calculations and/or computer implementati
are concerned.

More exhaustive discussions on the developments of Z
Zag theory in the West can be found in most of the pre
ously mentioned review articles@12–34# and in the papers
@108–115#. Those developments that were directed to
clude transverse normal strain effects in the AMT are m
of an interest. Among these, the contributions by Savithri a
Varadan@104# and Cho and Averill@114# should be men-
tioned.

4 MULTILAYERED THEORY BASED ON
REISSNER MIXED VARIATIONAL THEOREM

A third approach to laminated structures was originated
two papers by Reissner@64,116# in which a mixed varia-
tional equation, namely Reissner’s Mixed Variational The
rem ~RMVT! was proposed. For this reason we denote s
an approach as Reissner Multilayered Theory. This third
proach is the only one developed in the West.

Reissner Mixed Variational Theorem.RMVT permits one
to satisfy, completely anda priori, the Cz

0-requirements by
assuming two independent fields for displacementsu
5$u,v,w%, and transverse stressessn5$sxz ,syz ,szz%,
~bold letters denote arrays!. Briefly, RMVT expresses 3D
indefinite equilibrium equations~and related equilibrium
conditions at the boundary surfaces which are, for the sak
brevity, not written here! and compatibility equations fo
transverse strains in a variational form. The 3D equilibriu
equations in the dynamic case are,

s i j ,i2r üi5pi i , j 51,2,3 (60)

r is the mass density and double dots denote accelerat
while (p1 ,p2 ,p3)5p are body forces. The compatibilit
conditions for transverse stresses can be written by eva
ing transverse strains in two ways: by Hooke’s lawenH

5$exzH
,eyzH

,ezzH
% and by geometrical relationsenG

5$exzG
,eyzG

,ezzG
%; the subscript n denotes transverse

normal components. They satisfy the equation

enH2enG50 (61)

RMVT therefore states.

E
V
~depG

T spH1denG
T snM1dsnM

T ~enG2enH!!dV

5E
V
rd uüdV1dLe (62)

The superscriptT signifies an array transpose andV denotes
the 3D multilayered body volume, while the subscriptp de-
notes in-plane components, respectively. Therefore,sp

5$sxx ,syy ,sxy% and ep5$exx ,eyy ,exy%. The subscriptH
indicates that stresses are computed via Hooke’s law.
variation of the internal work has been split into in-plane a
out-of-plane parts and involves stress from Hooke’s law a
oaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org
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strain from geometrical relations~subscript G!. dLe is the
virtual variation of the work done by the external layer-for
p. SubscriptM indicates that transverse stresses are thos
the assumed model.

RMVT leads to a set of both equilibrium and constitutiv
equations which are variationally consistent with the
sumptions made on displacements and transverse stress

Murakami’s contribution to RMT. The first application of
RMVT was made by Murakami@117,118#, who developed a
refinement of Reissner-Mindlin type theories. First, a Z
Zag form of displacement field was introduced by means
two Zig-Zag functions ~the Murakami’s Zig-Zag functions
jk(21)kDx ,jk(21)kDy),

uk~x,y,z!5u0~x,y!1zfx~x,y!1jk~21!kDx~x,y!

vk~x,y,z!5v0~x,y!1zfy~x,y!1jk~21!kDy~x,y! (63)

w~x,y,z!5w0~x,y!

jk52zk /hk is a nondimensioned layer coordinate (zk is the
physical coordinate of thek-layer whose thickness ishk).
The exponentk changes the sign of the Zig-Zag term in ea
layer. Such a trick permits one to reproduce the discontinu
of the first derivative of the displacement variables in t
z-direction. The geometrical meaning of the Zig-Zag fun
tion is explained in Figs. 6 and 7.

Transverse shear stress fields were assumed parabol
Murakami @117# in each layer, and interlaminar continuou
according to the following formula,

sxz
k ~x,y,z!5sxz

kt~x,y!F0~zk!1F1~zk!Rx
k~x,y!

1sxz
kb~x,y!F2~zk! (64)

syz
k ~x,y,z!5syz

kt ~x,y!F0~zk!1F1~zk!Ry
k~x,y!

1syz
kb~x,y!F2~zk!

Fig. 6 Geometrical meaning of Murakami’s Zig-Zag function—
linear case
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wheresxz
kt(x,y), syz

kt (x,y), sxz
kb(x,y), syz

kb(x,y) are the top
and bottom values of transverse shear stresses, w
Rx

k(x,y), Ry
k(x,y) are layer stress resultants. The introduc

layer thickness coordinate polynomials are given by

F0521/41jk13jk
2 ,

F15
3212jk

2

2hk
,

F2521/42jk13jk
2

Homogeneous and nonhomogeneous boundary conditio
the top/bottom plate surfaces can be linked to the introdu
stress field.

Toledano and Murakami@119# introduced transverse nor
mal strain and stress effects by using a third-order displa
ment field for both in-plane and out-of-plane compone
and a fourth-order transverse stress field for both shear
normals components. Koiter’s recommendation is retaine
@119#.

Carrera’s contribution to RMT. A generalization of RMVT
to develop ESL and LW plate/shell theories, as well as fin
element applications, has been give by Carrera@9,120–130#.
Displacement and transverse stress components were
sumed as follows

uk5Ft ut
k1Fbub

k1Frur
k5Ftut

k, t5t,b,r

r 52,3,..,N (65)

snM
k 5Ftsnt

k 1Fbsnb
k 1Frsnr

k 5Ftsnt
k , k51,2,..,Nl

The subscriptst and b denote values related to the top a
bottom layer surface, respectively. These two terms con
tute the linear part of the expansion. The thickness functi
Ft(jk) have now been defined at thek-th layer level,
to
terms
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Ft5
P01P1

2
, Fb5

P02P1

2
,

Fr5Pr2Pr 22 , r 52,3,..,N (66)

in which Pj5Pj (jk) is the Legendre polynomial of the
j -order defined in thejk-domain:21<jk<1. For instance,
the first five Legendre Polynomials are

P051, P15jk , P25~3jk
221!/2 ,

P35
5jk

3

2
2

3jk

2
, P45

35jk
4

8
2

15jk
2

4
1

3

8

The chosen functions have the following values:

jk5H 1: Ft51; Fb50; Fr50

21: Ft50; Fb51; Fr50,
(67)

The top and bottom values have been used as unknown
ables. Such a choice makes the model particularly suitabl
view of the fulfillment of theCz

0-requirements. The inter
laminar transverse shear and normal stress continuity
therefore be linked by simply writing:

snt
k 5snb

(k11) , k51,Nl21 (68)

In those cases in which the top/bottom plate/shell stress
ues are prescribed~zero or imposed values!, the following
additional equilibrium conditions must be satisfied for:

snb
1 5s̄nb , snt

Nl5s̄nt (69)

where the over-bar denotes the imposed values on the p
boundary surfaces.

The Weak Form of Hooke’s Law. Full use of Reissner’s
theorem requires solving a problem in terms of both d
placement and transverse stress variables. This can be
putationally expensive. In order to preserve the advanta
of a classical displacement formulation, aWeak Form of
Hooke’s Law ~WFHL! was proposed in@9#. The WFHL,
which was completely inspired by RMVT, permits one
express, in a weak sense, transverse stress variables in
of the displacement ones.

As shown in @9#, the truncated Legendre expansion f
displacement and transverse stress variables can be
pressed in a weighted residual form in the thickness dir
tion,

E
Ak

Fs~enG
k 2enH

k !dz50, s5t,b,2,3,..,N (70)

As in the RMVT, Eqs.~70! impose compatibility of trans-
verse strains. The difference is that the integral is now int
duced only in thez-direction.

On substitution of given displacement and the transve
stress models, as well as a given Hooke’s law and st
displacement relation, and by integrating alongz, the set of
Eqs.~70! leads to a relation between stress and displacem
variables that can be formally written in the following arra
form:

Hu
k uk2Hs

k sk50 (71)

Fig. 7 Geometrical meaning of Murakami’s Zig-Zag function—
higher degree case
016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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whereHs
k is a square symmetric nonsingular matrix, wh

Hu
k is rectangular, singular and nonsymmetric. Examples

these matrices are given in@9,120# Under certain conditions
see@9#, Eq. ~71! can be explicitly written as,

sk52Hs
k 21 Hu

k uk (72)

which gives the sought relation between stresses and
placement variables.

Other available works based on the RMVT.Examples of
application of RMVT to laminated plates in the frame of
Equivalent Single-Layers Model were presented in the p
viously mentioned articles of Murakami@117,118# and
Toledano and Murakami@119#. The results obtained for cy
lindrical bending of cross-ply, symmetrically laminate
plates showed improvement in the description of the in-pl
response with respect to first order shear deformation the
@118# and applications to unsymmetrically laminated pla
were presented in@119#. Shell applications of the results i
@118# were developed by Bhaskar and Varadan@131# and
Jing and Tzeng@132#. Bhaskar and Varadan@131# underlined
the severe limitation of transverse shear stresses which
evaluateda priori by the assumed model. Finite element a
plications of this model have also been developed. Lin
analysis of thick plates were discussed by Rao and Me
@133#. Linear and geometrically nonlinear static and dynam
analyses were considered by Carrera and coauthors@120–
122#. Systematic application of RMVT to develop plate el
ments has been provided in a recent work by Carrera
Demasi@134#. Partial implementation to shell elements w
proposed by Bhaskar and Varadan@135#. Full shell imple-
mentation has been given by Brank and Carrera@136#.

The limitations of Equivalent Single-Layer analyses we
known to Toledano and Murakami@137#, who applied the
RMVT to Layer-Wise models. A linear in-plane displac
ment expansion was expressed in terms of the interface
ues in each layer, while transverse shear stresses wer
sumed parabolic. It was shown that the accuracy of
resulting theories was layout independent. Transverse no
stress and related effects were discarded and the ana
showed severe limitations to analyze thick plates. A m
comprehensive evaluation of Layer-Wise theories for
case of linear and parabolic expansions was considere
the author in@123# where applications to the static analys
of plates were presented. Subsequent works extended
analysis to dynamics and shell geometry@124–130#. A more
comprehensive review on works based on Reissner’s Th
rem has been recently provided in@30#.

5 REMARKS ON LEKHNITSKII,
AMBARTSUMIAN, AND REISSNER
MULTILAYERED THEORIES

From a historical point of view, Lekhnitskii@36# has prob-
ably made the first remarkable contribution to multilayer
structure modeling: his work was the first to show the imp
tance of satisfying theCz

0-requirements.
A list of the main features of LMT follows.
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• LMT-0. Lekhnitskii gave thefirst theory which accounts
for the Cz

0-requirements.
• LMT-1. Such a Zig-Zag theory was obtained by solving

elasticity problem related to a layered beam.
• LMT-2. Even though Lekhnitskii restricted his analysis

a cantilever, multilayer beam, he presented explicit form
las for transverse stresses and displacement fields~Eqs.
~12–22!!, which are valid at any point of the considere
beam. This could result in being extremely useful to ass
newly developed analytical/numerical models.

• LMT-3. The work by Lekhnitskii shows a manner in whic
multilayered structure problems can be handled. For
stance, the inclusion of transverse normal stress would
quire a different choice of stress function in Eq.~3!.

• LMT-4. The use of a stress function formulation leads
in-plane and transverse stress fields which satisfyby defi-
nition the 3D equilibrium equations. Stresses have be
calculated by Lekhnitskii by solving a boundary valu
problem related to the compatibility equations which we
written in terms of a stress function. In particular, th
evaluation of transverse stresses does not require any
processing procedure, such as the use of Hooke’s law
integration of 3D equilibrium equations.

• LMT-5. Although transverse normal stresses are neglec
the transverse displacement varies in the thickness di
tion according to a piecewise parabolic distribution giv
in Eq. ~12!. An attempt for the inclusion of the transvers
normal stress effect would require an appropriate choice
the stress function in Eq.~3!.

As far as the extensions made by Ren to the plate geom
of LMT are concerned, the following remarks can be ma
• LMT-6. Transverse shear stresses are continuous at th

terfaces, and parabolic in each layer. Furthermore, str
free conditions are fulfilled at top and bottom plate su
faces.

• LMT-7. Four independent functions defined on a referen
surface are used to express transverse shear stresses
are assumed parabolic in each layer.

• LMT-8. The form of transverse shear stresses has b
givena priori by Ren in terms of the above mentioned fo
independent functions and layer constants which are p
bolic in z. The relation between the layer constants and
mechanical and geometrical properties of the layers w
explicitly written by Ren. In other words, their calculatio
does not require any imposition of transverse shear st
continuity at each interface, as will be the case for AM
and RMT.

• LMT-9. In-plane displacements are continuous at each
terface and are cubic in each layer.

• LMT-10. Seven independent variables, which are defin
in the regionV, have been used to describe displacem
and stress fields in the laminated plates. Four were used
the transverse shear stresses, plus three correspondi
the three values of displacements were given correspo
ing to the reference surface.

• LMT-11. In agreement with Lekhnitskii, Ren neglec
transverse normal stressesszz. In contrast to Lekhnitskii,
transverse normal strainsezz are discarded by Ren.
/ on 01/21/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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• LMT-12. Transverse shear stresses are calculated by
directly by Eqs.~26!. That is, Hooke’s Law is not used, no
is integration of the 3D equilibrium equations required.

As far as the AMT theory is concerned, it could be remark
as follows:
• AMT-0. It is a natural extension of Reissner-Mindli

theory which was originally developed for isotropi
monocoque structures to multilayered, anisotropic pla
and shells.

• AMT-1. As LMT-6, nonzero conditions on top/bottom su
faces could also be fulfilled.

• AMT-2. Two independent functions defined onV are used
to express transverse shear stresses, as in Eqs.~54!, two
less than those used in LMT.

• AMT-3. Layer constants, parabolic in each layer, must
computed by imposing transverse shear stress continui
each interface, while the form of thef (z) function could
be found by imposing top-bottom stress-free conditions

• AMT-4. As LMT-9.
• AMT-5. Five independent variables, which are defined

V, are used to describe displacement and stress field
the laminated plate/shells, two less than the LMT case

• AMT-6. As LMT-11.
• AMT-7. Literature has shown that much better evaluatio

for transverse shear stresses can be obtained via integr
of the 3D equilibrium equations, as compared to the use
Eqs.~54!.

• AMT-8. Extension to a shell requires a reformulation
displacement models and related layer-constants.

• AMT-9. Additional unknown functions are required to in
clude transverse normal stress/strain effects related to

As far as the RMT is concerned, the following remarks c
be made:
• RMT-0. It is the only Zig-Zag approach entirely develop

in the West. It is based on a variational theorem that p
mits both displacements and transverse stress assump

• RMT-1. As LMT-6. In this case, zero as well as nonze
conditions for transverse shear and normal stresses ca
included at the top and/or bottom of the plate.

• RMT-2. At least 2Nl11 independent variables must b
used for each transverse shear and normal stress co
nent. Additional constitutive equations are therefore o
tained by applying RMVT. However, these variables c
be expressed in terms of the displacement ones by usi
weak form of Hooke’s Law Eqs.~70!.

• RMT-3. In-plane displacements are continuous at each
terface and can be chosen linear or of higher order in e
layer. ESL applications require the introduction ofMu-
rakami Zig-Zag functions.

• RMT-4 Layer constants do not appear in the expression
displacements and transverse stresses. In practice, IC
variationally imposed by writing the constitutive equation
between transverse stresses and displacement variabl

• RMT-5. The number of independent variables can be a
trarily chosen as explained in RMT-3.

• RMT-6. Interlaminar continuous transverse norm
: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2
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stresses/strains can be easily described by the RMT the
KR was, in fact, already included in the early develo
ments of RMT.

• RMT-7. Much better evaluations of transverse stresses
obtained via integration of the 3D equilibrium equation
as compared to the use of assumed forms, eg, Eqs.~64!.

• RMT-8. The extension to shell does not require a
changes in displacement and stress fields.

• RMT-9. Among the Zig-Zag theories examined, RMT
probably the most suitable from a computational point
view.

Which of the three theories is the best one? Certainly
answer to such a question would be of great use to ev
scientist who works on 2D modelings of layered structur
The present historical note, as stated in the Introduction,
not aimed at giving an answer to such a question. The
thor’s opinion is that an unequivocal answer to such a po
does not exist. None of the introduced developments prov
an exact solution. These are allaxiomatic theoriesand, as a
consequence, they will all violate, in same way or anoth
the fundamental equations of 3D elasticity~for instance, if
one takes the 3D equilibrium equations as valid and negl
transverse normal stress/strain, it follows that az-parabolic
transverse shear stress field requiresz-linearity for the in-
plane stresses, eg,z-linear displacement field; this is not th
case for LMT, AMT, or RMT which usez-cubic displace-
ment fields!. In this respect, the RMT has the advantage t
transverse stresses and displacements are assumed ind
dent of each other and that these assumptions are mad
cording to a desired accuracy.

Exhaustive benchmark problems that compare the th
approaches are not available. Some attempts have been
in @127–129,134#. Available results have shown that, in th
framework of ESL theory, the LMT analysis leads to a bet
description than the AMT one, and that the RMT could le
a to better description than LMT and AMT. In any case,
must be taken into account that a general conclusion rel
to any ESL theory is the following: available numeric
evaluations show that although ESL theories can desc
transverse shear and normal strains, including transv
warping of cross section, the approach iskinematically ho-
mogeneousin the sense that the kinematics are insensitive
individual layers. If detailed response of individual layers
required and if significant variations in displacement gra
ents between layers exist, as it is the case for the descrip
of the local phenomena, this approach will necessitate
use of especially higher order theories in each of the con
tutive layers along with a correspondent increase in the n
ber of unknowns in the solution process, as well as in
complexity of the analyses. That is, LW analysis is requir
in such cases.

Finally, we mention that Gurtovoi and Piskunov@138#
have recently proposed a method to compare the accurac
two different plate theories. The hypotheses employed
@138# make the method of Gurtovoi and Piskunov not app
016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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cable for comparing the three approaches considered in
work. However, attempts in this direction should be tried
the future.

6 CONCLUSIONS

The historical review documented in this paper has sho
that, within axiomatic framework, three independent ways
introducing Zig-Zag theories have been proposed for t
analysis of multilayered plates and shells. In particular, it
been established that:
• Lekhnitskii @36# was the first to propose a theory for mu

tilayered structures which describe the Zig-Zag behavio
a displacement field in the thickness direction and int
laminar equilibrium of transverse stresses. Lekhnitsk
work was originally presented as an elasticity solution
layered, cantilever beams.

• Apart from the method by Lekhnitskii, which was ex
tended to plate structures by Ren, the other two approa
were proposed by Ambartsumian~who extended the well-
known Reissner-Mindlin theory to anisotropic layer
plates and shells!; and by Reissner who proposed a var
tional theorem that permits both displacement and tra
verse stress assumptions.

• Based on the author’s historical considerations, which
documented in this paper, it has been suggested to ref
these three approaches as:

1! Lekhnitskii Multilayered Theory
2! Ambartsumian Multilayered Theory
3! Reissner Multilayered Theory

• A point-by-point comparison of the three approaches
been discussed extensively in Section 5.

Future developments could be directed to extend LM
theory to make it suitable for the inclusion of KR. A mo
extensive comparison of the three approaches and of
numerical performances vs elasticity solutions would be w
comed. Benchmark problems could be set out for this p
pose. Other theories which are not based on axiomatic m
ods ~such as asymptotic theories, full mixed formulation
etc! should be conveniently included in such a compariso
oaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org
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As a final remark, it is clearly stated that the author
aware that this historical review could not be complete. T
author is aware that other, significant articles and pap
could exist on this subject that might have escaped
present work. In particular, there are many articles publis
in the Russian language whose English translations are
available, and they might report relevant information n
considered here. However, what has been quoted in this
ticle could at least be of some help for assigning the ri
credentials as far as contributions and contributors to mu
layered theory are concerned.
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APPENDIX: TWO DIFFERENT WAYS
OF WRITING THE AMT

This appendix shows two different manners in which t
displacement fields related to the AMT type theories can
derived. The same analysis could also be extended to L
For the sake of simplicity, a 1D flat case is considered. E
tension to the 2D case and shell geometry should be obvi
The origin of the thickness coordinates, for the sake of s
plicity, is placed in the bottom layer; attention has been
stricted to a piecewise continuous, linear displacement fi

The displacement fieldu in each layer can be first written
by using displacement values at the interfaces~see Fig. 8!:

u1~z!5u01zc1 , <z<h1

u2~z!5u1~h1!1~z2h1!c2 , h1<z<h2

• • • • • • •

(73)
uk~z!5uk21~hk21!1~z2hk21!ck, hk21<z<hk

• • • • • • •

uNl~z!5uNl21~hNl21!1~z2hNl21!cNl
,

hNl21<z<hNl

where
u0 is the value of the displacementu with corresponding

to the bottom surface.
uk(hk), k51,Nl are the interface values ofu.
Fig. 8 Geometry and notations employed in the Appendix
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ck , k51,Nl are the values which identify the rotations
the layers.
Moreover

u1~h1!5u01h1c1

u2~h2!5u1~h1!1~h22h1!c2

••5 • • •

• • • •5 • • • (74)

uk~hk!5uk21~hk21!1~hk2hk21!ck

• • • ••5••

uNl21~z!5uNl22~hNl22!1~hNl212hNl22!cNl21

The generic interface values is then re-written,

uk~hk!5u01 (
k51

Nl21

~hk2hk21!ck , k51,Nl (75)

It is noted thath050. It follows that the displacement field i
each layer can be written in the following unified form,

uk~z!5u01 (
k51

Nl22

~hk212hk22!ck211~z2hk21!ck ,

k51,Nl (76)

TheNl rotationsck can be expressed in terms of one of the
~for instance the rotation in the bottom layer! by imposing
the Nl21 interlaminar continuity conditions for transvers
shear stresses,

ck5akc1 , k52,Nl21

whereak are layer constants defined by interlaminar tra
verse stresses. To be more precise,c1 appears as a combina
tion of an in-plane derivative of transverse displacementwx ,
and a transverse shear straingxz . The previous relation could
be written as

ck52wx1akgxz

as it is in Eqs.~33,36!. For the sake of simplicity we take th
first of these as valid: as a consequence the displacemenu is

uk~z!5u01 (
k51

Nl22

~hk212hk22!ak21c1

1~z2hk21!akc1 , k51,Nl (77)

Equations~76! give the displacement field in each laye
Such a displacement field can be written in a form which
applicable to the whole multilayer by using the Heavisi
step function. Such a function is defined as follows

H~z2zk!5H 0 z<zk

1 z>zk
(78)

By means ofH, the displacementu can be written in a form
which is formally not affected byk,
: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 01/21/2
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u~z!5u01 (
k51

Nl21

~z2zk21!ckH~z2zk! (79)

or

u~z!5u01 (
k51

Nl21

~z2zk21!akc1H~z2zk! (80)

Judging from the available literature, the use of the Hea
side function could be considered questionable. It has b
used in early works@99,102#, and abandoned in some of th
more recent papers@109,112#. The Heaviside function has
the formal advantage of permitting one to writeu in a form
which is not affected byk index. Nevertheless, such an a
vantage could be ineffective in the calculation and rela
computer implementations.

It appears clear that a linear, piecewise form foru leads to
layer continuity stiffnessesak which are independent ofz. In
fact, top-bottom homogeneous transverse shear stress c
tions cannot be imposed in this case. This was known
Ambartsumian@33# and Whitney@92# who assumedak as a
cubic function of z. In fact, the two additional functions
related to quadratic and cubic terms ofz are determined by
the two homogeneous conditions of transverse shear stre
with corresponding to top and bottom plate/shell surface

LIST OF ACRONYMS

Acronyms that are used frequently in this article are lis
below.

AMT - Ambartsumian Multilayered Theory
ESLM - Equivalent Single Layer Models
IC - Interlaminar Continuity
KR - Koiter’s Recommendation
LMT - Lekhnitskii Multilayered Theory
LWM - Layer-Wise Models
RM - Reissner-Mindlin
RMT - Reissner Multilayered Theory
RMVT - Reissner’s Mixed Variational Theorem
WFHL - Weak Form of Hooke’s Law
ZZ - Zig-Zag
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