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This paper gives a historical review of the theories that have been developed for the analysis
of multilayered structures. Attention has been restricted to the so-called Zig-Zag theories,

which describe a piecewise continuous displacement field in the plate thickness direction and
fulfill interlaminar continuityof transverse stresses at each layer interface. Basically, plate and
shell geometries are addressed, even though beams are also considered in some cases. Models
in which the number of displacement variables is kept independent of the number of constitu-
tive layers are discussed to the greatest extent. Attention has been restricted to those plate and
shell theories which are based on the so-called method of hypotheses or axiomatic approach in
which assumptions are introduced for displacements and/or transverse stresses. Mostly, the
work published in the English language is reviewed. However, an account of a few articles
originally written in Russian is also given. The historical review conducted has led to the fol-
lowing main conclusions.)1Lekhnitskii (1935 was the first to propose a Zig-Zag theory,

which was obtained by solving an elasticity problem involving a layered beafw@ other

different and independent Zig-Zag theories have been singled out. One was developed by Am-
bartsumian(1958, who extended the well-known Reissner-Mindlin theory to layered, aniso-
tropic plates and shells; the other approach was introduced by Re{4€8#, who proposed

a variational theorem that permits both displacements and transverse stress assumpfans. 3
the basis of historical considerations, which are detailed in the paper, it is proposed to refer to
these three theories by using the following three names: Lekhnitskii Multilayered Theory,
(LMT), Ambartsumian Multilayered TheofAMT ), and Reissner Multilayered Theory

(RMT). As far as subsequent contributions to these three theories are concerned, it can be re-
marked that: #LMT although very promising, has almost been ignored in the open literature.

5) Dozens of papers have instead been presented which consist of direct applications or par-
ticular cases of the original AMT. The contents of the original works have very often been
ignored, not recognized, or not mentioned in the large number of articles that were published

in journals written in the English language. Such historical unfairness is detailed in Section

3.2. 6 RMT seems to be the most natural and powerful method to analyze multilayered struc-
tures. Compared to other theories, the RMT approach has allowed from the beginning devel-
opment of models which retain the fundamental effect related to transverse normal stresses
and strains. This review article cites 138 referen¢®I: 10.1115/1.1557614

1 INTRODUCTION able to reproduce piecewise continuous displacement and

Two-dimensional2D) modeling of multilayered plates andtransverse stress fields in the thickness direction, which are
shells requires appropriate theories. The discontinuity 8xPerienced by multilayered structure. In [9], these two
physical/mechanical properties in the thickness directigffects have been summarized by the acronydj-
makes inadequate those theories which were originally d@dquirements; that is, displacements and transverse stresses
veloped for one-layered structures, eg, the Cauchy-Poissomist beC®-continuous functions in thethickness direction.
Kirchhoff-Love thin plate/shell theory[1-4], or the A qualitative comparison of displacement and stress fields in
Reissner-Mindlin theoryReissner{5] and Mindlin [6]), as a single-layered and a multi-layered structure is shown in
well as higher order models such as the one by Hildebrarfdg. 1. This picture clearly shows that theories designed for
Reissner, and Thomdg]. These theories are, in fact, notsingle-layered structures are not suitable to analyze multilay-
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ered ones. The piecewise form of transverse stress and @is-How many different and independent ESL zig-zag theo-
placement fields are often described in the open literature asries have been proposed in the open literature?
Zig-Zag(ZZ) andInterlaminar Continuity(IC), respectively. 3) Who first proposed the theories in question 2?

The theories which describe these two effects are referredaio Are the original works recognized and mentioned cor-
asZig-Zag theoriedn the present study. rectly in the subsequent articles?

A number of refinements of classical models, as well & \What are the main differences among the available zig-

theories developed for multilayered structures, have beenzag approaches to multilayered structures?
proposed in the literature over the last four decades. Axio%—

atic and asymptotic approaches, along with other continuu response to these five points would be extremely useful to

based ones, have been used to build 2D theories in b analysts of layered structures. It will give an insight into

cases of equivalent single lay&ESL) and layer-wise(LW) the early and, at the same time, very _interesting ideas and
variable description. Following Reddyl0], it is intended methods, such as'those by Lekhnitskde], that could be ,
that the number of displacement variables is kept indepe%_tendeol gnd gpplled to further pro‘?'ems- Furthgrmore, as it
dent of the number of constitutive layers in the ESL model$ in @ny historical note, the author aims to establish a sort of
while the same variables are independent in each layer fgptorical justice, permitting to “give to Caesar what belongs
LW models. Koiter in[11] states, “A refinement of Love’s {0 Caesar and to God what belongs to God.”

first approximation theory is indeed meaningless, in general, The already mentioned work42-39 show that a large
unless the effects of transverse shear and normal stressed'dfaber of different techniques, methods, and ideas have
taken into account at the same time.” Koiter's Recommef€en applied to analyze multilayered structures. The atten-

dation(KR) should be taken into account in the developmedion of the present article has been focused on those zig-zag
of Zig-Zag theories. theories which fall into the two following categories:

For a complete review of several approaches, compuig- The method of hypotheses is referred to and distribu-
tional techniques and numerical assessment, readers are re-tions of displacement and stress fields in the thickness

beams, plates, and shells. Among these, recommended re- 4tic sense.
views are the articles by Ambartsumigh2,13, Grigolyuk |y \wjith the exception of the approaches proposed by Re-
and Kogan[14], Librescu and Reddyf15], Leissa[16], issner(Section 4 only those ZZ theories that have been

Grigolyuk and Kulikov[17], Kapania and Racifi18], Kapa- developed in the framework of ESLM are discussed in
nia [19], Noor and Burton20,21], Jemlelita[22], Vasiliev this review.

and Lur’e[23], Reddy and Robbing24], Noor, Burton, and . )

Bert [25], Lur’e and Shumové26], Grigorenko[27], Grig- Those analyses, such as the very interesting pdp@rs44g
orenko and Vasilenk$28], Altenbach[29], Carrera[30], as which are based on an asymptotic approach have not been
well as the books by Lekhnitskfid1], Ambartsumiar{32— discussed in the present paper. A few examples of other ap-
34], Librescu[35], and Reddy10]. proaches not discussed herein follows. Savin and Khoma

Although these review works are excellent, in the authort47] obtained multilayered shell equations by averaging 3D

opinion there still exists a need for a historical review witgguations over the thickness coordinate. The concept of a
the aim of giving clear answers to the following questionsuniform stress-strain state has been used by Khorotgin

. . ) Full mixed methods were applied j49-53. Of certain rel-
1) Who first presented a zig-zag theory for a mUItlll"‘yeretglvance are the many developments made in the framework
structure?

of LWM. Among these, the articleb4—61] are mentioned
herein. For a complete and detailed review of the several
displacements transverse stresses topics and contributions, readers are referred to the over-
3,2 3,z views given in[10,12-3§.
This paper, therefore, gives a historical review of avail-
N ' o1x 0 | S X able Zig-Zagtheories in the context of questions 1-5, taking
T o (y) T 71 % (2Y)  into account the limitations mentioned in pointsnd! .
‘ " ' ‘ The answer to question 1 is provided in Section 2, which

isotropic-monocoque shows that Lekhnitski[36] was the first to propose a Zig-

(@ interfaces) Zag theory that described tf@‘z)—requirements.

As far as questions 2 and 3 are concerned, the author has
1 ! i | recognized that apart from the method by Lekhnit$Rib],
| ! X T ! I 1X two other independent and different theories have been pro-
' ?7\._?4: T 2y) 0T (2y) posed in the literature in the second half of last century. The
\‘ | ' ‘; \. L) L_B ’4 first of these was given by Ambartsumian in the articles
[62,63 while the technique of building a second type of
theory was traced later to Reissng#4]. The three ap-

Fig. 1 C%-requirements. Comparison of transverse stress field geroaches are discussed in Sections 2—-4, along with a few
tween a single-layered structure and a three-layered structure details and literature. Based on historical reasons, which are

~

multilayered (three-layers)
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detailed in the respective sections, it has been proposed toThe author believes it is relevant and of interest to quote
refer to these three different and independent contributiotiee original derivations made by Lekhnitskii. It can, in fact,
by the following names: prove to be difficult to obtain the original article by Lekh-
« Lekhnitskii Multilayered TheoryLMT) nitskii which has not been translatet_ll in_t_o_ Englis_h. Further-
. : more, the theory proposed by Lekhnitskii is very interesting,
e Ambartsumian Multilayered TheorfAMT) ) .
. Reissner Multilayered TheorRMT) and the method used could reprgsent a s_tartmg p_omfc for _fu—
ture developments. The following detailed derivation is

Concerning question 4, it will be pointed out that théherefore taken directly from the original paper by Lekh-
original contribution by Lekhnitskii has been almost totallyitskii, written in Russian. Few changes of notations were
ignored in the subsequent literatutexception has to be made. A more brief treatment can be found in the English
made for the work by Ref65,66]; see next section The translation of the book by Lekhnitskji31] (Section 18 of
plate/shell theory developed by Ambartsumian has receivEthapter Ill, p 74.
differing attentions in the West and in the East. The Russian Let us consider a cantilever beam bent by a fdPcand a
literature has recognized the Ambartsumian theory and imomentM and made up o, isotropic layergsee Fig. 3, x
proved it for its application to other problems, including theand z are the longitudinal and thickness directions, respec-
treatment of KR. On the other hand, the Western literaturively. | and H are the length and thickness of the beam,
with the exception made in a few works that appeared in thespectively.c is the beam width ang is the related coor-
early 1970s, has not properly recognized Ambartsumiardinate. Subscripk is used to denote variables and param-
works. This story has been detailed in Section 3.2. It appeaters related to thk-th layer. The layers are counted starting
that contributions made by Lekhnitskii and Ambartsumiaftom the bottoms, is the layer thickness an, is the dis-
have not received proper recognition. Probably becausetafice of a layer interface from theaxis.oX,, o%,, %, u¥,
World War Il and the subsequent Cold War, these works hasad v* are the stress and displacement components of the
had little impact outside the Soviet Union. k-th layer.EX, v¥, and G* are the Young’s modulus, Pois-

As far as question 5 is concerned, discussion of the threen’s ratio, and shear modulus of tkeh layer, respectively.
approaches is given in Section 5. Among the three ap- The problem considered is an-z plane stress problem.
proaches discussed, the RMT theory has proved to be bitban therefore be formulated in terms of a stress funatibn
the most versatile to describe completely th@- defined in thek-th layer on the domaim,z. Stresses can be
requirements and the most suitable for computationelculated usinge® according to the following well-known
studies. relations:

Concerning notation, the author has tried as much as pos-
sible to use those symbols that were quoted in the original O =
articles. Such a choice would permit the readers to compare Jz
the formulas reported herein directly with those originall
given. In any case, due to the large amounts of algebra al
with the significant numbers of described theories, symbols
used in a certain section refer only to that section. In those
cases in which a given symbol is not defined in a given
section, its definition has been provided on a earlier section. === =< - """]}
The present paper refers to beam, plate, and shell structures. \\
Formulas related to the discussed theories do not consider ~
both flat and curved geometries. For the sake of brevity, flat '(”2\ 1

. : : \
geometry is referred to in some cases, while doubly curved ﬂeﬂék’ \
geometry has been considered in others.

(92(,0 (92@ (92@

T2z~ 520 Txa™ 7 a7 (1)

bompatibility of strains can be written in terms the stress
ction according to the following compatibility equation:

2 LEKHNITSKII MULTILAYERED THEORY

To the best of the author’s knowledge, Lekhnitskii should be
considered the first contributor to the theory of multilayered ,/7’5’(/'/7.wa'/?:.‘;.éL oré 7/
structures. 1M 36], in fact, Lekhnitskii proposed a splendid . — _T
method able to describe the Zig-Zag efféfcir both in-plane / try
and through the thickness displacemerdad interlaminar .
continuous transverse stresses. To prove this point, Fig. 2,  _ Cmans = _T_ \_i
which is taken from the pioneering work of Lekhnitsks6], _f
shows an interlaminar continuous transverse shear stress

field (r! and 7'2 are shear stresses in layers 1 and 2, resp@gy » c9form of a transverse shear stress in a two-layered struc-
tively) with discontinuous derivatives at the layer interfacqyre. The interface and neutral axis are shown. The upper and lower
In other words C2-requirements of Fig. 1 were entirely acHayers are made of low and high stiffness materials, respectively.
counted for by Lekhnitskif36]. This graph was taken from the original wdrg6].

- —— — >
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ax* o oaxPar T ot

At this stage, the fundamentakiomaticassumption of the
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guk awk 1

_+_=
0z oax Gk

II) Compatibility conditions for displacements at the inter-

Lekhnitskii’s theory is made, ie, a form for the stress func-  faces areZig-Zag effects

tion is assumed:

uk~i=uk,  wkl=wk k=2N, (8)
k _aksbkz Ak s Bk, L
¢(X2)= T+ X T+ 5+ Cyz (3) 1) Homogeneous conditiorat the bottom/top surface for
the transverse stresses,
A different choice for the stress function would lead to dif- oéyzgs‘;/:o, U>l<y= :‘)‘/=O at z=0H (9)

ferent results. According to E¢l) the chosen form is able to

describe:

 Longitudinal stresses,,, which are linear in the thick-
nessz direction as well as in the longitudinal direction x,

of =az+b+x(2Az+B)) (4)
* Thickness stresses,,, which are zero in eack,z posi-

tions

75=0 (5)

e Transverse shear stresg,, which is parabolic inz and
independent of the longitudinal coordinate

o=~ AZ—Bz—C (6)
The 5X N, unknown-constants, b, ,A.,By, and C, must

be determined according to the relations given in itémyg
which follow:

I)  Displacements are related to stresses by means of

Interlaminar equilibriumfor the transverse stresses

ok =gk o'!ﬁ;l:o'iy, k=2N, (20)

V) Equivalence or equilibrium conditions between applied
loads M,P) and stresses

CE o,Adz=0,
1 Jhes
N[ M —Px
» oyxzdz= ,
1 Jhea H
N hy P
CE oy dz=—— 11)
1 Jhes H

the

strain-stress relations written for the constitutive equ#irst Eqgs.(7) are integrated in the& and z directions. The

tion of the k-th layer (eg, Hooke's Law written in
terms of compliances

auk 1 K vk K
v pFkOxxT FkOzz
ox E E>

following expressions for the displacements and wk are
obtained:

uk= Akx22+ B X2+ (ay+b )i
EX 2EX WO E,

awk AN R L (A, By,
Tz T B B @ ErelEe A
zZ P ZA
N SN; o
k
Iy
hZ: hif 21 SSZI
L.y —— ! Lo >y
% X ! L
! L
| | |
' L
! | |
I

y o

i

Fig. 3 Geometry and notations of Lekhnitskii's cantilever, multilayered beam
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k Ac 5 & K 5 Egs.(11) are used to determine the remaining bottom-layer
W= — @x — ERX +| - ER(Akz +By2) constants,
ok 6PE; 6PE;
Ck 2 1= S , 1= — S ’
— okt akX T gkl 52 +bez |+ ¥ c c
ay, Bk, andy, are the three integration constants. By using g, = — %Sl. b,=— GMEls2 (20)
II-1V, and after some lengthy algebraic manipulations, the Sc Sc
following relations are obtained, where
a  ak-1  Ac Axg N s L3 M _
EfK BT R EKT S:4i=§:l(hi_hifl)EliZ:l(hi_hifl)El_g
T T s (13) > 2 el
B k-1t SER k-1 = EEr k-1 SErmT k-1 X ;Nl(hi_hifl)E
(21)
aghy—1+by  ay_ihg_1+by_y Ny . Ny A
=X ER-T $=2 (WW-hlpE, =23 (h-hZ E
_ 2 —
C1=0, AN|hN|+BN|hN|+CN|_O It is noted thath,=0 andhy =H.

A2+ B 1+ Co=A_1h2 1 +By 1P 1+ Cs The final expressions for the stresses are:

(14) . BEX
To=gg (PX+M)(28,2-5,), k=12.N,

K 3 2
v 1\ [Achi-1 Bihiy
(Ekl_ le)( 3 T2 — a1+ By

o¥,=0, k=1,2,.N,

z

vk71 1 Akflh:ktl kalhifl 6P o
= _6F> | s atfs—c{sl L_l <h§—h§1>ES+<zZ—hﬁl>EkH
+Bi1 (19) ey
e Cy Bk 321 (hs—hs_)ES+(Z2—h_)E¥|{,
ER(AkhE—1+ Bkhk—l)_ EIZJ’- ag
k=2,3N,—1 (22)
_Vkil A h2 +B h Cr—1 6PE1
_Ek_—l( k—1hi— 1+ Br—1hk-1) Gk 1 oL=- Sc 2($2—Sp)
Vk Ay
V&, 6PEM
+ay_q E‘Z( > hk_1+bkhk—1) + % U)“(‘;:_ sc (hn,—2)[S;— (hy, +2)S1]
Kl ; i i
_r h2 - +b, <h, )+ - (16) The corresponding expression for the displacements could be
1| Y H
Ek-1 17 Pkl T Tkl obtained directly from Eqg12). It is noted that the amount

The following recursive relations are obtained from E4$) qf algebraic manipulations is quite ir'npressive.. At the present
time, the use of software for symbolic calculation could be of

A _AE" B _ B4EX a _ayE* _b;EX 17y Some help to derive the above formulas or to apply the Le-
=gr B A BEEr () niskii method to a different stress function assumption.
hile f Eas.(15) it is found This section closes by making a few remarks on the

while from Eqs.(15) it is found, theory proposed by Lekhnitskii.
B . 5 < . 1) Lekhnitskii's theory described Zig-Zag form of both
Ck—E Ag 3241 (hs—hs B> —hyk—4E longitudinal and through the thickness displacements; in
1 particular:
B h.—h. )ES—h, .EK a) The longitudinal displacement& show a cubic or-
! szl( s~ Ns-1) Kt } ] der in thez-thickness direction
b) The through thickness displacemenlt varies ac-
k=2,3N—-1 (18) cording to a parabolic equation in
§ transverse stresses, and o, EQs.(22)
E 3) Stresses obtained by Lekhnitskii fulfill the 3D indefinite
_ _ 2
C1=0, Cn=gz(Adhy +Bihn) (19) equilibrium equationgthis fundamental property is in
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trinsic in the used stress function formulation orthotropic and anisotropic plates. Further applications to vi-
4) Stresses and displacements have been obtained by enation and buckling were made in a third paper written in
ploying: collaboration with Ower67]. These three papers are the

a) Compatibility conditions for stress functions only contributions known to the author that have been made
b) Strain-displacement relations in the framework of Lekhnitskii 's theory. As these three

) compatibility conditions for displacements at thé®@P€rs have been published in journals that are easily and

interfaces worldwide available, the full description of the Ren exten-
sion to plates of LMT has, therefore, been omitted. Never-

uk=I=uk, wkl=wk k=2N (23) it i i '

, , N theless, it is of interest to make a few remarks on Ren’s

d) Homogeneous conditions at the bottom and top sorks in order to quote explicitly the stress and displacement
face for the transverse stresses fields that were introduced by Ren to analyze the response of

L N L N _ anisotropic plates. For the sake of simplicity, reference is

0;7~0,,=0, 0y,=0,=0 inz=0h (24) made to the derivation made by Rern[#5], where cross-ply

e Interlaminar equilibrium for the transverse stresse[%ates were considered. The extension to generally laminated
plates can be found if65,67.

ok t=ok,, ol t=ak, k=2N, (25) On the basis of the form of%, obtained by Lekhnitskii,
5 No post-processing was used to recover transverse: Eq.(22), I "?‘ppe?red reasonable to_ Renz 5@&] _to as-
stresses sumein an axiomatic sensehe following distribution of

6) Thickness normal stress,, has been neglected. Never_transverse shear stresses in a laminated plate, composed by

theless, the Poisson effects on thickness displacemgh orthotropic layers, X, s an(_jz are the coordinates of the
WX have been fully retained. reference system shown in Fig) 4

7) Full retainment of Koiter's recommendation would re- _k _ k k
Xl !Z - Xl a(z)+ X, c(z
quire a different assumption for the stress functi@hse Tl %y:2) = X y)atz) + mdxy)ez)
Z:Jr;hcc:irolg not aware of any work that was made in this al;z(x,y,z)=§y(x,y)bk(z)+ ny(x’y)gk(z)

(26)

Four independent functions ofy have been introduced to
2.1 Developments of LMT describe transverse shear stresses. The layer constants are

Although Lekhnitskii's theory was published in the middid?arabolic functions of the thickness coordinataccording
thirties of the last century and reported in a short paragraphEds:(22), and in view of this Ren adopted the following
of the English edition of his book31], it has been system- €XPressions
atically forgotten in the recent literature. An exception K—1
shpuld be made for the work by Ren which is documented in ak(Z)Zslx{ E (h2—h2 Q! (22— hzl)Qlil}
this paragraph. i=1
To the best of the author's knowledge, Ren is the only k-1
scientist who has used Lekhnitskii 's work. In the two papers _ hi—h i (7 h k
[65,66 Ren has, in fact, extended Lekhnitskii 's theory to SZX[ ;1 ( -1 Q2= he-1)Qu

hy Fig. 4 Multilayered plate
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k—1 i k K(x,y.2)= V) =W (Xy) + £ (Xy)AK
Ck(z>=Sly{2 (h?—hfl)g.l—%zz—hﬁl)g&—l} U(X.Y,2) = Up(x.y) W,k(xw £(Y)AX(2)
- hz V12 + 7%,y)CX(2)

k—1 i ) ) k
) Q Q X,V,2)=vo(X,¥) —W (X,¥) + &,(X,Y)BX(2)
—Szy{zl(h'—hi_l)vll—:(z—hk_l)_‘f_l V(X,Y,2) =0o(X,Y) — W,y (X,y) + &y(X,Y) BY(

Vlj (27) + ny(X,y)Gk(z) (30)

bk( ) S kil (hz h2 )QI ( 2 h2 )Qk W(nyyz):WO(ny)
I T k-1l whereAX(z), B(2), BX(z) andGX(z) are obtained by inte-
1 grating the correspondingX(z), b%(z), cX(z), and g%(2).

_ hi—h O\ (z—he .)OX Thus EQgs.(30) represent a piecewise Zig-Zag continuous

Szy{ izl ( i-1) Q22 1)Q22} displacement field in the thickness directiowhich is cubic

1 _ in each layer.

Kg)—S i 2o 2 Q% 2_p2 Q%, The displacement model given by Eq80) can be used

9 (2)=8y, ~ (h; i—l);Z(Z k—l);g in the framework of known variational statements to formu-

late the governing equations of anisotropic plates in both

S Qb Q5, strong end weak form. Strong forms and related closed form

—S 21 (h'—hi,l)T(z—hk,l)T solutions have been discussed in the already mentioned
2 2 works [65—67. No weak form solutions, such as finite ele-

in which ment applications, nor attempts to include KR as well as an

N N extension to shell geometry of LMT are known to the author.
| |

Sp= 2 (Me=hie QM1 = 20 (Me—hy-1) QY

3 AMBARTSUMIAN MULTILAYERED THEORY
Ni ) Ni ) This section has been devoted to those Zig-Zag multilayered
51y=K§_:1 (he=hy-1)Q2,, Szy=K§_:l (he=hy-1)Q2, theories that have been mostly originated by attempts to ex-
B B (28) tend the classical Reissner-Mindlin theotReissner[5],

N, o) N, o) Mindlin [6]) for homogeneous, isotropic plates, to include
S,=> (he—he )2, Sp= 2> (he—he_y) the_Cg-require_ments. For convenience, these attempts are de-
K=1 Vi2 K=1 V12 scribed here in the following points.
Qlil ng 1) To describe plates/shells made of a single-layer of an an-
x =k isotropic materials
Via Va1

2) To extend the single-layer case to the multilayered case

EX EX, v are Young’s modulus of thie-th layer in thex and by including Zig-Zag effects and satisfying interlaminar
y directions and Poisson’s ratio, respectivély.denotes the  continuity for the transverse shear stresses
z-value of thek-th interface measured from the referencé To include what was referred to as Koiter’s recommenda-

surface Q. Q:(j layer-stifinesses are those that appear in tion in the introduction; that is, to include transverse nor-

Hooke’s law, hereby written in the reduced forh0] for mal stress/strainr,,, €,, effects, which are discarded by
orthotropic layers, Reissner-Mindlin type theories
_ 0 0 0 The classical Reissner-Mindlin theory in the case of a plate

Ty Qu Qu €xx or shell assumei an axiomatic sens¢he following dis-

Tyy Qxn Qxp O 0 O €yy placement field,

owr= 0 0O 0 o0 2 w, u

w Qss Yol B9 e p2)=u04 24, (:“0+Z nz—_’__>
Oxz 0 0 0 Q55 O Yxz A Ra
%) | 0 0 0 0 QM

w u
u(a,B,2)=v+z¢, (=v°+z( yﬁz—F‘B—R—) )
Egs. (26) represent an interlaminar continuous transverse B
shear stress field that is parabolic in each layer. As in Lekh- (31)
nitskii [36], displacement fields are obtained by integrating
strain-displacement relations after substituting into HookeReissner-Mindlin theory includes transverse shear deforma-
law, Eqg. (29). In contrast to the work by Lekhnitskii, it is tion, it has five degrees of freedolfthree displacement
emphasized that transverse strais have been discardedu®(«a,B), v°(«a,B), W°(a,B) on the reference surface plus
by Ren. Itis noted that such an assumption contrasts with theo rotations ¢,(a,8),$g(a,B8) or two transverse shear
already mentioned Koiter's recommendation. Layer comstrains y,,(a,B8),v..(@,8). Figure 5 shows the notation
stants arising from the integration are determined by impassed for a doubly curved shell. A curvilinear reference sys-
ing compatibility conditions for the displacements at the inem «, 8, z has been considered;and g are the curvilinear

terface. The displacement field assumes the following forrapordinates defined on a shell reference surfac&?, ,Rg

w(a,B,2)=w°
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are the shell radii of principal curvatureA.andB are the a) The line elements of the plate/shell, normal to the
Lame shell parametergsee [68] for detaily. For conve- middle surface, do not change their length after de-
nience, the Reissner-Mindlin model has been written in two  formation

ways; the second onighe one in parenthesesxpresses the 1))  The normal stresses,, are small as compared to the
rotation in terms of transverse displacement variations and ;
P in-plane onesr,,, opg, Tap

shear strains. Usual approximations have been introduced.as . .
pp dcja The transverse shear stressgs, oz, vary in the di-
far as curvature terms of typ#R, ,z/R;, see[68,69. The . . X
' X . rection of the thicknesgof the entire shell or layer
shear stress field related to an isotropic monocoque plate/ . .
according to the law of the quadratic parabola

shell with shear modulu& has a constant distribution in the

thickness directions: Single-layer caseQrthotropic plates and shells composed of
oo, B,2)=G(d,+wW.,) a single layer were addressed[62] and[63], respectively.
“ “e (32) The shell case is hereby considered. According to assump-
o a,8,2)=GC(dgtWp) tion o), the transverse shear field was assumed of the follow-

Ambartsumian has been the first one to work on pointsing type[63],
and 2. For that reason we refer to this type of Zig-Zag theo-
ries as Ambartsumian Multilayered Thed&MT ). Ambart-
sumian has, in fact, considered in a series of papers 1 7
[62,63,70,71, and in the two book§32,33, refinements of  o,,(a,8,2)= E(O’ZZ— o)+ H(alﬁ oB)
Reissner-Mindlin theory directly to make it suitable for the

application to anisotropic layered plates and shells. For this 2
purpose, the classical hypotheses of Reissner-Mindlin theory + E(Zz— Z) do(a,B)
were reformulated by Ambartsumian as follows, (33)

K+1)-bottom
K-top}
: hy

K‘bc&ltom

k-th-layer k-th-interface

Fig. 5 Geometry and notations used for multilayered shells
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. 1 . s Z 1 g z\ , 2 zh? z\
TO’BZ(“!E!Z)ZE(Uﬁz_aﬁz)—'—ﬁ(‘fﬁz—'—o—ﬁz) v(a,B,2)= 1+R—B Ug— A_]_W”B_? 1+R_B P
+-| 2 2 +23(1+ Py Z)*
ks dp(a,B) 5 4_RB z Z_R,B €5,
The applied values of transverse shear at theTtgmd bot- z2 .
tom B shell surfaces are considered in the previous trans- + 2h 1+ 3R, €82
verse shear model as: p
H H wW(a,B,2) =Wo(a,B) (36)
glzzgaz(a,lg,— , ob= g'az(a,ﬂ’— —), The important fact is noted that in view of Eq81) the
2 2 AMT gives in-plane displacement components which depend

h h) on both¢, and ¢, .

T B
Op=0 a,,B,—), Op, =0 (a,,B,—— .
Pz BZ( 2 peTpe 2 Multilayer case. The case of two layers was addressed by

bo(a,B) and ¢4(a,B) are the two functions of Reissner_Ambarts_umian in the two papefg0,71] and_ further dqcu-
Mindlin theory. It is noted that Eq$32) and(33) introduce a mented |r{32_,33. It is noted _that the extension to multilayer
transverse shear stress field that is parabolic in the thickn8&{€s was given by Osternik and BgitP] who first wrote
direction; in addition Egs(33) include non-homogeneoustransverse shear stresses in the form of E2J8. Herein, it is

conditions on top/bottom surfaces. The related transvefdgferred to present the Ambartsumian theory for the plate
shear strains are geometries as it has been given[88], where due credit is

given to the work done by Osternik and Bdi#]. Assump-

tions g and b are kept for the multilayered case while as-
sumption ¢ for transverse shear stresses is now made for
each layer. The transverse shear stresses are, in fact, written
) ® 4o, B) in the following layer-form,

7%y, 2)=[Gl; F(2)+Addb(xY)
. Ty (%.Y,2)=[G55 f(2)+Byly(x.y)
EZZ=§[555( 0= 5, + Sy U;z_ 022)], which consists of an interlaminar continuous transverse shear

stress field.¢, and ¢, are unknown functions that have the
same meaning a&, and ¢, introduced in the shell case.

Lz, 1 h2
eaz(a,ﬁ,z)26a2+ﬁeaz+§ Z_Z D, (a,8) (34)

Lz, 1 h?2
GBZ(CZ,B,Z)ZG'BZ-F HGBZ+§ z 7

where 37)

€5~ %[544( Try— 0o+ Sus( 0~ 0p,)] These unknown functions are not affectedkbguperscripts

as is the case for any Equivalent Single Layer Theor{38j
€= Sss(T Zz+ 052)+545( U;# ng), attention was restricted to the case in whigl) is a sym-

metric function ofz (f(z) is zero at top/bottom external plate
€5,=Sud 00T 00, + Sus( 0, T 0, (35) surfacey and to a symmetrically bent platai{=v°=0).

GX; and Gk, are the shear modulusth layer.A, andBy are
©o=Ssstat Sustp,  Pp=Sssbat Susbp layer constants to be determined by imposing IC and ZZ

in which the following compliances have been introduced With respect to each layer interface. A complete list of
‘ ‘ ‘ boundary conditions on transverse stresses and displace-
ok _Q55 Sk Qss Sk _Q44 ments is rewritten,
44— Dk 45— pk 44— Dk
Ny, Ty 1,_ By_
0,,(=0y,)=0,0%=0y,)=0,

k_ Ak Ak k \2
b= Q44Q55 (Q45) 0';:‘;( = U;z) = an-iz( = 0-52) =0
Upon integration with respect of the strain/displacement el Kk kel
relations by taking into account the assumptions and by in- 9xz = 9xz2:9yz = 9yz k=2N, (38)
troducing some of the usual approximations concerning the yk-1=yk  pk=1=yk k=2N,
terms of the typez/R,,z/Rz, Ambartsumian obtained the

following displacement field, which lead to the following layer constants:

AleN|=O7 Bl=BN|=O

z z
U(Q,B,Z): 1+ — UO__W -1+ = (I)a N,
R, ¢ A; ¢ 8 R, _ _
1 A=, H(h)(GH1-Gl5Y,
2 4 z i=k
+€ 1+ 4Ra)q) +z 1+2_Ra €.z N, . .
Bk:z f(hi)(Go3™—Ga37),
22 i=k
+ ﬁ( 1+ 3Ra) €z k:(N|+1)/2,. .. ,N| (39)
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A=Ay +1-k=0, By =By +1-k=0, by Andreev and Nemirovskii if77] are briefly recounted
here. These authors gave an extension of the AMT in Eqgs.
k=1,...(N;+1)/2 (37—40 to include nonsymmetrical multilayered plates and

. ) . . . nonzero top and bottom surface transverse shear stress con-
Integration of strains gives the following Zig-Zag form of theyjtions. The displacement fields were written in the follow-
displacement field, ing form,

A k Kk _ k
U(X,Y,2)= =20+ Jo(2) et Z g b WO6Y2) = Rk Uo= 2t 170
13 vk(x,y,z)=)\§+vo—zwy+ﬂk¢y (42)
+RYp,  sign(z)
W(X,Y,Z) =W,

A
vk(x,y,2)= —ZWy+Jo(2) Py + zak'— by where
23
k-1
+RS¢y  sign(z) (40) xt(x,w:{ 2, (=St (2= he1)Shy |07
w(X,Y,Z) =W, 1
where + 2 (hj—h;_1)Shs+ (z—hy-1)Sis |0,
R1:A(N|+1)/2: 0, R2:A(N,+1)/2:0 K1
K1 A A +i E (h'z_h'zfl)sim
i-=fne |Gz Gi3
‘ k=1 B; Bii1 +(Zz_ hﬁ—l)sfm (U;(rz_ UE’Z)
Ro= hil =1~ =1/, K=(N}+3)/2,... N,
i=(\Fne | Gp” Gy =
41 i
k N|+l*k k N|+l*k ( ) +% jgl (hjz_hjz_l)SLS
R{=R]'"" =0, R§=R)'""“=0,
k=1, (N+1)12 (2= Sl | (o3 oB)
Further details, along with governing equations and discus-
sion, can be found if33]. k-1 _
The displacements given in Eqe0) are affected by the ~ A(x,y)= j§=:1 (hj=hj_)Sy+ (z—h_1)S, |o%,

k-superscripts. This can be formally avoided by using the

Heaviside step function. These two ways of writing a Zig- k-1 .
Zag displacement field have been detailed in the Appendix + 2 (hj—hj_1)Shs+(z— hy_1)Sks }of}z
for a simple 1D case. =1
Among the Zig-Zag theories discussed in the present ar- 1 [ Kt _
ticle, the AMT is without doubt the theory that has mostly + o 21 (hf—h?_))S),
=

influenced the development of multilayered plate and shell
theories. This is probably due to the fact that AMT uses the
findings of a well-known theory such as the Reissner- +(zz—hﬁ_1)sﬁ4
Mindlin one. The manners in which Ambartsumian s work

has been used, referenced, and extended in the Western and

Eastern scientific communities are discussed in the two fol- T
lowing subsections. 2h

T B
(sz_ sz)

k—1
;1 (h?=h?_})S)s

3.1 Developments of Ambartsumian theory in the East +(22=hi_)Sks | (0),— %) (43)
Many extensions of Ambartsumian’s works have appeared in
journals published in the Russian language. These works . .
have been directed to extend AMT to generally laminated MX(X,Y)?Zl [(f(h)—f(hj-1)]Sy,
configurations, to geometrically nonlinear problems, as well =

as for the inclusion of KR. Refinements and applications of +[f(z)—f(he_1) ]Skl ok,
Ambartsumian Multilayered Theory to single-layer plates/
shells were given if73,74], while applications to multilay-
ered plates and shells can be found76—78. Applications

to geometrically nonlinear problems have been given by Pru-
sakov[79,80. As an example, the developments presented +[f(2)—f(hy_1) 1Skl oy,

k—1

k—1
+ 2 [(f(hy) = f(hy 1)1k

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 01/21/2016 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



Appl Mech Rev vol 56, no 3, May 2003 Carrera: Historical review of Zig-Zag theories 297

; k-1 . Transverse normal strains were taken as
= N—f(h. ]
My(X,Y) le [(f(hj) f(hlfl)]SS4 6zz:f3'zz(z)¢*(xyy) (50)
+[f(z)—f(hk_1)]S'§4]aEZ The m'ethod used t.o compute thg functiqah(?(,y) can be
found in[83]. The displacements field was given in the fol-
kil CCFh)—f(h )]S,% lowing form
+ —f(h,_
SR UK(X,Y,2) = U= ZW,+ F(2) b Ta(2) 07
+[f(2)—f(hy_1)1Sksl oy, v (X,y,2) =Wo—zW,+fy(2) dy+ T3(2) oy (51)

The functionf(z) has the following properties W(X,Y,2)=Wo+ f5(2) ;"

f(0)=f,(h)=0 (44)  The mechanical properties of the layers were considered as

The form of this function was taken as genera| in the the@j.eceWise functions af. The introduced functions are given
retical developments while it was taken as a cubic functicif

in the examples given if77]. Related transverse shear z 2
stresses were give as, fu(z)= fo[Glglf ) A(2)(z— 6,)dz|dz
-
k B z T B
X,Y,Z) =0yt — - +f ,(z A
TS T Ot o e LA (D)= | |Go | Axl2)(z—6,)dz|dz
(45) o 7% ) _n, v
(X Y.2)= 0Bt (0T, a8+ D) & )
g, (X,Y,Z)=0 —(o,,— O Z z z
yA XY yz' p\tyz yz z y fs(Z):f f 27(2)dz )dZ
Inclusion of o, and €,, Many efforts have been made di- °
rectly for the inclusion of Koiter’'s recommendation in AMT. f*(z)=(z+h;)(z+h,)
Rybov[81,87 first made progress in this direction. He pro-
! : I where
posed a refined theory, taking the variation of transverse nor-
mal displacements according to the following form: 1
. . A11:§Q11[1_V12(Z)]+Glz(2),
WA(X,Y,2) =Wo(X,Y) + fi(2) d(X,y) (46)
Only one unknown functionp(x,y) was used to express A :l 1— +G
both transverse shear stresses, 2 2Q22[ va(2)]+GiA2)
P}y =CHE@ DGy gy L rd D D] DL rd 2]
* 2 1- z z
ok (,y,2) = GELTi(2)+ 1%, (2)]AS (x.y) vid2)va2)
wheref[(z) andf*, are two assigned functions of the thick- 4 _JAn(z)zdz _IAx(2)zdz

ness coordinate in the k-th layer. T JAu(2)dzT Y [Ay(z)dz

The most relevant contribution for the inclusion @f, Fyrther developments on the inclusion of transverse com-

ande;, in the AMT has been made by Rasskazov and coaession have been made by Grikoliuk and Vasilefg@90]
thors. In fact, Rasskazov and coauthors proposed the incliyy vasilenkd91].

sion of botho,, and €,, in a series of paper83—-89 for
both plate and shell geometries, linear and nonlinear prad2 Developments of Ambartsumian theory in the West

lems, and for analytical solution methods as well as cOmMpy-te,y articles have appeared in journals written in English in
tational techniques such as the finite element method. Sojpg early 1970's, in which developments of AMT have been
details of the Rasskazov refinement of AMT theory follows;gpsigered, and which made direct reference to the original

the complete derivations can be found in the above mef ks by Ambartsumian. These are discussed below.
tioned papers by Rasskazov which are published in journals,

English translations of which are available worldwide. Th&/hitney’s contribution. Whitney[92] first applied and ex-
transverse shear stress field was taken similar to that by Atanded AMT to generally anisotropic and symmetrical and
bartsumian, nonsymmetrical plates. It was clearly stated by Whitney that
his own work was based on that by Ambartsumiag]. For
k _rk
T3 %,¥,2) = G121 22) hu(X.Y) (48) the sake of simplicity, the case of symmetrically laminated

U;‘/Z(X’y,z):Gga(z)fzyz(z) by(X,y) platgs is hergby outlined. Details can be foundldg]. Inter-
i ) ) ) i laminar continuous transverse shear stresses were assumed
An interlaminar piecewise continuous transverse normak foliows
stress was introduced in the following form, . . .
h +7 h 7 O-Xz(xiyaz):[QSSf(Z)+a55]¢X(va)
_ 711 B 2 * *
O A WAL (49) +[Qlef (2)+aligl gy (x,y) (54)
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oy A%,Y,2) =[ Qisf (2) + ass] pu(x.y) K z)—(1+i RN
P.Z)= a L 2
+[Qlf (2)+ iyl by (x.y) T AT LR
Equationg(37) can be obtained by settir@'s=ak:=0. f(2) ~ 3|t GY| z+ ;— +df 1+ Ri) b
is a function of the thickness coordinate, the form of which @ a @
should be assumed differently as far as symmetrical and un- . , 22 /3
symmetrical laminated cases. A parabolic form fz) has v a,B,2)=| 1+ =—|v°,— —w g2t 5 —452
mostly been considerd@xplicit formulas for unsymmetrical Rg/ Az Rg 3h
cases were also given by WhitneyThe layer constants 2 72 7
ak,,aks a5 are determined by imposing the continuity con- ~ 3RS +GE| z+ = +d'§,( 1+ = g
ditions of transverse shear stresses at the interfaces, while B B B

top-bottom stress-free conditions are used to determine the (58)
form of f(z). Explicit forms of layer constants were omitted
by Whitney. Transverse shear strains related to the assumed¥(a./3:2)=Wo(a,B)

ransver hear str fiel r . .
transverse shear stress fields are whereG¥, d¥, G, df are layer constants directly derived

VXY, Z) =[ F(2) + Sisals+ Skgaks] de(X,Y) from those which were assumed for the transverse shear
stress Eqs(54).

+[SSsalst Shsalsal dy(X.Y)
Sseas T Sueaal by (55)  Other contributions which make direct reference to Am-

Yy A%.y,2) =[ Sialst Sisaksl bu(x.y) +[(2) bartsumian 's works. Further to the two papers by Whitney
C C [92] and Rath and D®93], a third article coauthored by Sun
+ 8448441 SysBss] dy(X,Y) and Whitney[94] compared Whitney's Zig-Zag theory to

implified ones which discard interlaminar continuity and/or
. Ig-Zag effects. Further contributions by Hsu and Wang
ig_95,96] employed the original AMT at layer level as it was
given in[63]. A layer-wise theory was thereby developed for
the cylindrical shell geometry.

By assuming the transverse displacement constant in
thickness direction, ieg,,=0, and integrating the sheal
strains, the following Zig-Zag displacement fields were o
tained:

k _ k
u“(X,y,2) = —zW4+[J(2) + g1(2) Jdx(X,Y) Other contributions which do not make direct reference

+9%(2) by(x,y) to Ambartsumian 's works. With the exception of the five
paperd92-94, the author is not aware of any furtheirect
v (%,y,2) = —2zw,+[I(2) + g5(2) 1 by(X,Y) applications of the AMT. Dozens of papers have instead been
. presented over the last decades that deal with Zig-Zag effects
+04(2) dx(X,Y) (56) and interlaminar continuous transverse shear stresses, and

which mostly ignore the original work by Ambartsumian, as

well as those by Whitney, and Rath and Das. In the author’s

where opinion, most of these articles should be considered as sim-
plified cases of the Ambartsumian Multilayered Theory as

W(X,y,X) :WO(X’yvz)

well as of the developments i92,93. Unfortunately, the
‘](Z):f f(z)dz original works and authors are not mentionéat barely
cited in the reference lists of this large amount of articles. In
0¥(z) =[ Sksaks+ Sieaks]z+dX order to try to explain such historical unfairness, a recon-
. C . . struction of what happened has been attempted here.
02(2) =[ SssBsst Sysayslz+d3 (57) A pioneering article by YUy97] should first be mentioned
« K K C K ‘ in which a Zig-Zag theory was presented. Because of the
03(2) =[ Sssas5+ S4584512+ d3 short time between Ambartsumian’s works and Yu’s article,

together with the Cold War, it could be surely assumed that
the works of Ambartsumian were unknown to Yu. A 1D
wheredX ,dg,dg,dﬁ are calculated by imposing compatibilitysf"‘”dWiCh plate made of an isotropic core and faces was con-
of in-plane displacement at each interface. sidered in[97]. The three sllopes of.the d|_splacement field in
the three layers were derived by imposing transverse shear
Rath and Das’s contribution. A second relevant work on continuity at the two interfaces. The in-plane displacement
the application of AMT was given by Rath and O&8] who fields were assumed linear in each layer. Yu did not start his
extended the work done by Whitney to doubly curved sheltkerivation by a direct assumption of transverse stress field as
and dynamic problems. The transverse shear stress fieldsvas done by Ambartsumian; Yu, in fact, preferred to start
each layer was taken the same as those by Whitney. Intedram a Reissner-Mindlin type displacement model and com-
tion in z of related shear strains led to the following displacesute the faces and core slopes by imposing transverse shear
ment fields[93], stress continuity at the interfaces. It was also mentioned in

05(2) =[ Stcats+ Siealsslz+ d
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[97] that the method could easily be extended to displacBeldatos and Timardil08], Timarci and Soldatogl09] Lee
ment fields which are taken as cubic functionszoDetails and Waas[110], Lee, Waas and Karnopjplll], Iblidi,
of this last development were not given by Yu. Karama, and Touratief112], Aitharaju and Averill[113],

Almost 15 years later, Chou and Carled®8] presented Cho and Averill[114], and Polit and Touratigf115]. Some

a Zig-Zag theory of anisotropic plates. As in feven though (but not extremely relevahtdifferences can be found in
the original work by Yu was not mentioned: piecewise these various articles. The Heaviside step function was used

linear displacement field in each layer was considered and% CN0 and Parmert¢i.02], whose displacement fields for a
enerally laminated plate were written in the form shown

Zig-Zagtheory was proposed. It seems that Chou and Car%—
one were not aware of the works by Yu and Ambartsumian,
as well as those by Whitney. Chou and Carleone as well as B
Yu's analyses, in fact, consist of a particular case of the AMT u(x,y,2)=uo+ go Sz~ zJH(z=2)
theory in which only those terms &t,,a%,a& of Egs.(54)

N,—1

which are independent af are retained. N

Disciuva and coauthor§99-101] employed Yu's and * ,Z‘O Tu(z= GIH(=2+ 4
Chou and Carleone’s Zig-Zag displacement field, which was
linear in each layer, by employing the Heaviside step func- 22 (Nt N,
tion, and gave finite element applications. It should be " 2h kZO Sct =, Tx
pointed out, once again, that Yu, Chou and Carleone, and
Disciuva and co-authors, namely the YCCD analyses, deal z 1Mt K et K
with a particular case of what is herein called the AMT Tapz|Wat | & St ,ZO T
theory. As previously mentioned, the linear piecewise con- Ny—1

tinuous displacement field used in the YCCD cases can in _ E
fact be obtained from the AMT by simply neglecting the v(X,y,2)=vot = Sy(z=z)H(z= 2
higher order termgwhich multiply zZ andz%) in Egs. (58).

By doing this, the resulting YCCD models: Nt

+ 2 Ty(z= LoH(—2+4)
i) are not able to fulfill homogeneous conditions for trans- =0 7 “ “

verse shear stresses at the top/bottom plate/shell sur- N1 No—1
Z2 u s
) faces; ' . ' __( Sxk+ 2 Tl;
i) are not suitable for unsymmetrically laminated struc- 2h\ =o k=0
tures. 3 Ny—1 Ng—1
Most the the subsequent works on Zig-Zag theories did — W[W'Xﬁ- > IZO Sy"+ Zo T';)] (59)

not refer to the work by Ambartsumian, nor to those by
Whitney and Rath and Das. In the same manner, the develw(x,y,x)=wq(x,y)
opments which appeared in journals in the Russian language, dN h ber of | i th dl
as well as those reviewed in the previous subsection W%élfar:es Se itr'eel € gl;? ?arr:thzyter?) Itr;l'clfngss(?:gspd'ngggr
mostly ignored. Subsequent works were instead very muipi%l ' pectivelyz ¢ wo th :

. ..~ for the upper and lower half, respectivel; and ¢, are the
influenced by Yu, Chou and Carleone, and Disciuva’s ar- : . . .
. i . L carresponding interface values. The mid-plane rotations
ticles; that isreference has been made to simplified analysée &, atz" (z* andz~ are the top and bottom layer inter-
while the most complete and exhaustive AMT has not b a)@esy respectivelyare P y
recognized, nor mentioneds a matter of fact, most of the » Tesp ya

subsequent 15 years of literature were devoted to introducing au o v

the improvements)iand ij) in the YCCD studies. The result Px="77 . So dyT .
of this unuseful workwas that, almost ten years later, the =0 jz=0
original AMT was re-obtained by Cho and Parmefi¢2] and

who gavethe bestrefinements of YCCD studies. A few de-
tails of the story behind this are given below.

First Bhaskar and Varaddi03] and then Savithri and
Varadan104] and Leeet al[105] introduced the top-bottom
zero stress conditions mentioned in paintThis was done
by extending, in a YCCD type theory, the Vlasfd06] third Th=ck. (W% +¢ )+diw’,
order in-plane displacement fieldgvhich were frequently
applied to laminated structures by Reddp7]). The result-
ing model, which did not have the quadratic terms in thehereay, b, ,ck ,d¥ ay. bk, .cs. d. are layer stiffnesses
expressions for displacement fields, was still not suitable f(gee[102] for further detail.
unsymmetrical laminated plates. A finlést versionwhich  The previous displacement field, even though written in a
includes what is mentioned in pointsandii, was proposed more tedious form, coincides exactly with that of E¢&1).
by Cho and Parmertdrl02], and then(among othernsby The use of the Heaviside step function is not essential. Its

Sxk: aiT(W’OT_’_ ¢,T) + b)lirw,or '
Si=al (w’+ ¢ )+blw,,
k=0,1,..N,—1, 7m=xy

T

Th=cl Wl +¢ )+diw’, k=01..Ny—1, 7=xy
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use is, in fact, preferred by some authors and omitted Bgrain from geometrical relation@ubscript G. SL, is the

others. The author’s opinion is that the use of the Heavisid&tual variation of the work done by the external layer-force

function, although it has some formal advantages, is not uge-SubscriptM indicates that transverse stresses are those of

ful as far as calculations and/or computer implementatiottse assumed model.

are concerned. RMVT leads to a set of both equilibrium and constitutive
More exhaustive discussions on the developments of Zigguations which are variationally consistent with the as-

Zag theory in the West can be found in most of the prevsumptions made on displacements and transverse stresses.

ously mentioned review articldd2-34 and in the papers

[108-113. Those developments that were directed to ifMurakami’s contribution to RMT.  The first application of
clude transverse normal strain effects in the AMT are moRRMVT was made by Murakanil17,118, who developed a

of an interest. Among these, the contributions by Savithri afigfinement of Reissner-Mindlin type theories. First, a Zig-
Varadan[104] and Cho and Averil[114] should be men- Zag form of displacement field was introduced by means of
tioned. two Zig-Zag functions (the Murakami’s Zig-Zag functions

gk(_ l)kDX 1§k(_ 1)kDy)1

4 MULTILAYERED THEORY BASED ON UK(X,Y,2) = Ug(X,Y) + Zhy(X,Y) + &(— 1)KDy(X,Y)
REISSNER MIXED VARIATIONAL THEOREM . .
v (X,Y,2)=v0o(X,y) +Zdy(X,y) + E(—1)Dy(X,y) (63)

A third approach to laminated structures was originated by
two papers by Reissnd64,116 in which a mixed varia-  w(x,y,z) =wy(X,y)

tional equation, namely Reissner’s Mixed Variational Theo- . . . .

rem (RMVT) was proposed. For this reason we denote subly~ 22/ is a nondimensioned layer coordinaig {s the

an approach as Reissner Multilayered Theory. This third & Eysical coorsinhate of trrl:x-lgyer \;vr;]ose.thickness iE,'k)' h
proach is the only one developed in the West. e exponenk changes the sign of the Zig-Zag term in eaci
layer. Such a trick permits one to reproduce the discontinuity

Reissner Mixed Variational Theorem.RMVT permits one of the first derivative of the displacement variables in the
to satisfy, completely and priori, the C2-requirements by z-direction. The geometrical meaning of the Zig-Zag func-
assuming two independent fields for displacements tion is explained in Figs. 6 and 7.
={u,v,w}, and transverse stresses,={oy;,0y;,0,4, Transverse shear stress fields were assumed parabolic by
(bold letters denote arraysBriefly, RMVT expresses 3D Murakami[117] in each layer, and interlaminar continuous
indefinite equilibrium equationgand related equilibrium according to the following formula,
conditions at the boundary surfaces which are, for the sake of |  kt K
brevity, not written here and compatibility equations for  “x2*¥>2) = 0xalX.Y)Fo(Zi) + Fa(Z)R(x.y)
transverse strains in a \_/ariational form. The 3D equilibrium +0k(x,y)F(zy) 64
equations in the dynamic case are, ) ) ) (64)
t
Uij,i_p ui:pi |,j:1,2,3 (60) Uyz(X,y,Z) Uyz(x1y)FO(Zk) Fl(zk)Ry(Xay)
kb

p is the mass density and double dots denote accelerations, +oy(XY)Fa(2)
while (p1,p2,p3)=p are body forces. The compatibility
conditions for transverse stresses can be written by evaluat-
ing transverse strains in two ways: by Hooke’s lay,
={€xz, €z, €224 and by geometrical relationse,g
={€xzy €yzg €22,4; the subscriptn denotes transverse/

normal components. They satisfy the equation
€nH_€nG=0 (61)
RMVT therefore states.

z A

JV( 5€p1(;0'pH+ 5En-(20'nM+ 50’n1|\—/|(€n(3_ €n))dV

= prauUdVJr SLe (62)

The superscripT signifies an array transpose aviddenotes

the 3D multilayered body volume, while the subscriptie-
notes in-plane components, respectively. Therefosg,
={0yx:0yy, 0%y} aNd €,=1{€xy, €y, €y} The subscriptH
indicates that stresses are computed via Hooke’s law. The
variation of the internal work has been split into in-plane anglg. 6 Geometrical meaning of Murakami's Zig-Zag function—
out-of-plane parts and involves stress from Hooke’s law afiidear case
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where aXi(x,y), o)",tz(x,y), a*o(x,y), a‘;?(x,y) are the top Po+P; Po—P;
and bottom values of transverse shear stresses, whileFt= 2 Fo= >
Ri(x,y), RY(x,y) are layer stress resultants. The introduced
layer thickness coordinate polynomials are given by Fi=P,—P,_5, r=23,..N (66)
Fo=—1/4+ &+ 382 in which P;=P;(&,) is the Legendre polynomial of the
' j-order defined in the&,-domain: —1<¢,<1. For instance,
3_1255 the first five Legendre Polynomials are
toon Po=1, Pi=&, P=(3§-1)/2,
Fo=—1/4-§+3¢; 5& 34 356 156, 3
22 T8 4 '8

Homogeneous and nhonhomogeneous boundary conditions at
the top/bottom plate surfaces can be linked to the introduc&te chosen functions have the following values:

stress field. . . _n. _
Toledano and MurakanjiLl19] introduced transverse nor- — L F=li Fe=00 F=0 (67)
mal strain and stress effects by using a third-order displace- —-1: F=0; Fp=1; F,=0,

ment field for both in-plane and out-of-plane componenighe top and bottom values have been used as unknown vari-
and a fourth-order transverse stress field for both shear ajifles. Such a choice makes the model particularly suitable in
normals components. Koiter's recommendation is retained\fey of the fulfilment of theC%-requirements. The inter-

9 :
[119]. laminar transverse shear and normal stress continuity can

Carrera’s contribution to RMT. A generalization of RMvT therefore be linked by simply writing:

to develop ESL and LW plate/shell theories, as well as finite Ukm: agkbﬂ), k=1N,—1 (68)
element applications, has been give by Carf8;a20-130.

Displacement and transverse stress components were
sumed as follows

Inthose cases in which the top/bottom plate/shell stress val-
ues are prescribetzero or imposed valugsthe following
additional equilibrium conditions must be satisfied for:

k_ k k k__ k _
u“=F.u;+Fpus+F.u=F_u, =t,b,r _
t Yt bYb rr ™7 T o (69)

_ = Ny _
O'%b_a'nbv .=

r=2.3,.N (65)  where the over-bar denotes the imposed values on the plate
boundary surfaces.
oK y=Fi0* + oo+ FL ok =F .05, k=12..N, y

. he Weak Form of Hooke’s Law. Full use of Reissner’s
The subscriptd andb denote values related to the top an . : . .
. 1eorem requires solving a problem in terms of both dis-
bottom layer surface, respectively. These two terms cons I . .
. . : . placement and transverse stress variables. This can be com-
tute the linear part of the expansion. The thickness funct|op

S - ;
; tationally expensive. In order to preserve th vant
F (&) have now been defined at thketh layer level, utationally expensive order to preserve the advantages

of a classical displacement formulation,Vdeak Form of
Hooke's Law(WFHL) was proposed if9]. The WFHL,
which was completely inspired by RMVT, permits one to
2 express, in a weak sense, transverse stress variables in terms
of the displacement ones.

As shown in[9], the truncated Legendre expansion for
displacement and transverse stress variables can be ex-
, , pressed in a weighted residual form in the thickness direc-
I N tion,

o NV JFS(é;G—é(nH)dz:O, s=t,b,2,3,.N (70)
Pl \\\ //E Ak

Y o As in the RMVT, Eqgs.(70) impose compatibility of trans-
- verse strains. The difference is that the integral is now intro-
duced only in thez-direction.

On substitution of given displacement and the transverse
stress models, as well as a given Hooke'’s law and strain
displacement relation, and by integrating alanghe set of
Egs.(70) leads to a relation between stress and displacement
variables that can be formally written in the following array

form:
Fig. 7 Geometrical meaning of Murakami’'s Zig-Zag function— Kook K
higher degree case Hg u*=H§ o*=0 (71)
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WhereH‘; is a square symmetric nonsingular matrix, while LMT-0. Lekhnitskii gave thefirst theory which accounts
HE is rectangular, singular and nonsymmetric. Examples offor the Cg—requirements.
these matrices are given [i,120 Under certain conditions, ¢« LMT-1. Such a Zig-Zag theory was obtained by solving an
see[9], Eqg. (71 can be explicitly written as, elasticity problem related to a layered beam.

o= K—1 gk ok * LMT-2. Even though Lekhnitskii restricted his analysis to

=—H, " Hj u (72) ; . .
a cantilever, multilayer beam, he presented explicit formu-

which gives the sought relation between stresses and didas for transverse stresses and displacement figds.
placement variables. (12-22), which are valid at any point of the considered

. beam. This could result in being extremely useful to assess
Other available works based on the RMVT.Examples of newly developed analytical/numerical models.

application of RMVT to laminated plates in the frame of ag | MT:3. The work by Lekhnitskii shows a manner in which
Equivalent Single-Layers Model were presented in the pre~iiiayered structure problems can be handled. For in-
viously mentioned articles of Murakamil17,118 and  gance. the inclusion of transverse normal stress would re-
Toledano and MurakanjiLl19]. The results obtained for cy- quire a different choice of stress function in Eg).

lindrical bending of cross-ply, symmetrically laminateq | \j1.4. The use of a stress function formulation leads to
plates showed improvement in the description of the i”'pla”%-plane and transverse stress fields which satisfylefi-
response with respect to first order shear deformation theory,ition the 3D equilibrium equations. Stresses have been
[118] and applications to unsymmetrically laminated plates cajcylated by Lekhnitskii by solving a boundary value
were presented ifil19]. Shell applications of the results in - ohjem related to the compatibility equations which were
[118] were developed by Bhaskar and Varadd®l] and  \yitten in terms of a stress function. In particular, the

Jing and Tzeng132]. Bhaskar and Varadgd31] underlined o\ a1ation of transverse stresses does not require any post-
the severe limitation of transverse shear stresses which ar;

Tk >t ﬁrocessing procedure, such as the use of Hooke’s law or
evaluatedh priori by the assumed model. Finite element ap- integration of 3D equilibrium equations.

plications of this model have also been developed. Linean yit.5. Although transverse normal stresses are neglected,
analysis of thick plates were discussed by Rao and Meyegne transverse displacement varies in the thickness direc-

[133]. Linear and geometrically nonlinear static and dynamic jo according to a piecewise parabolic distribution given
analyses were considered by Carrera and coaufi®8— i, £q (12). An attempt for the inclusion of the transverse

122]. Systematic application of RMVT to develop plate ele- ,omg stress effect would require an appropriate choice of
ments has been provided in a recent work by Carrera angyq stress function in Eq3).

Demasi[134]. Partial implementation to shell elements was .
proposed by Bhaskar and Varadgt85]. Full shell imple- As far as the extensions made by Ren to the plate geometry
mentation has been given by Brank and Carfas]. of LMT are concerned, the following remarks can be made:

The limitations of Equivalent Single-Layer analyses were LMT-6. Transverse shear stresses are continuous at the in-

known to Toledano and Murakanil37], who applied the terfaces, and parabolic in each layer. Furthermore, stress-
RMVT to Layer-Wise models. A Iinea’r in-plane displace- free conditions are fulfilled at top and bottom plate sur-

ment expansion was expressed in terms of the interface vall2ces: _ _ _
kMT-7. Four independent functions defined on a reference

ues in each layer, while transverse shear stresses were’a i
sumed parabolic. It was shown that the accuracy of thesurface are used to express transverse shear stresses which

resulting theories was layout independent. Transverse normdi'® @ssumed parabolic in each layer.

stress and related effects were discarded and the analysidVT-8- The form of transverse shear stresses has been

showed severe limitations to analyze thick plates. A more9ivena priori by Ren in terms of the above mentioned four
comprehensive evaluation of Layer-Wise theories for thelNdependent functions and layer constants which are para-

case of linear and parabolic expansions was considered b§oliC in z. The relation between the layer constants and the
the author in123] where applications to the static analysis Mechanical and geometrical properties of the layers was
of plates were presented. Subsequent works extended tHexplicitly written by Ren. In other words, their calculation

analysis to dynamics and shell geométtg4—130. A more does not require any imposition of transverse shear stress
comprehensive review on works based on Reissner’s TheofONntinuity at each interface, as will be the case for AMT

rem has been recently provided|i80]. and RMT. _ _ _
* LMT-9. In-plane displacements are continuous at each in-

terface and are cubic in each layer.
e LMT-10. Seven independent variables, which are defined

S5 REMARKS ON LEKHNITSKII, in the region(), have been used to describe displacement
AMBARTSUMIAN, AND REISSNER and stress fields in the laminated plates. Four were used for
MULTILAYERED THEORIES the transverse shear stresses, plus three corresponding to

From a historical point of view, Lekhnitsk[i36] has prob-  the three values of displacements were given correspond-
ably made the first remarkable contribution to multilayered ing to the reference surface.

structure modeling: his work was the first to show the impo#- LMT-11. In agreement with Lekhnitskii, Ren neglects
tance of satisfying thé:(z)-requirements. transverse normal stresses,. In contrast to Lekhnitskii,

A list of the main features of LMT follows. transverse normal strains, are discarded by Ren.
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e LMT-12. Transverse shear stresses are calculated by Restresses/strains can be easily described by the RMT theory.
directly by Eqs(26). That is, Hooke’s Law is not used, nor KR was, in fact, already included in the early develop-
is integration of the 3D equilibrium equations required.  ments of RMT.

As far as the AMT theory is concerned, it could be remarked RMT-7. Much better evaluations of transverse stresses are

as follows: obtained via integration of the 3D equilibrium equations,

« AMT-0. It is a natural extension of Reissner-Mindlin as compared to the use of assumed forms, eg, EB4s.
theory which was originally developed for isotropice RMT-8. The extension to shell does not require any
monocoque structures to multilayered, anisotropic plateschanges in displacement and stress fields.

and shells. « RMT-9. Among the Zig-Zag theories examined, RMT is
« AMT-1. As LMT-6, nonzero conditions on top/bottom sur- probably the most suitable from a computational point of
faces could also be fulfilled. view.

¢ AMT-2. Two independent functions defined 6hare used

. Which of the three theories is the best one? Certainly an
to express transverse shear stresses, as in(bdjs.two

. answer to such a question would be of great use to every
less than those used in LMT. N .
. scientist who works on 2D modelings of layered structures.
« AMT-3. Layer constants, parabolic in each layer, must L . .
. : .. The present historical note, as stated in the Introduction, was
computed by imposing transverse shear stress continuity a% : - .
) . . not aimed at giving an answer to such a question. The au-
each interface, while the form of thi€z) function could , R . .
thor’s opinion is that an unequivocal answer to such a point

be found by imposing top-bottom stress-free conditions. . . .
« AMT-4. As LMT-9. does not exist. None of the introduced developments provide

« AMT-5. Five independent variables, which are defined oA exact solution. These are altiomatic theoriesand, as a

), are used to describe displacement and stress fieldsSfSeauence, they will all violate, in same way or another,

the laminated plate/shells, two less than the LMT case. the fundamental equations of 3D elasticifpr instance, if
e« AMT-6. As LMT-11. one takes the 3D equilibrium equations as valid and neglects

« AMT-7. Literature has shown that much better evaluatiofE2nsverse normal stress/strain, it follows that-parabolic
for transverse shear stresses can be obtained via integratigRsverse shear stress field requirenearity for the in-
of the 3D equilibrium equations, as compared to the use piane stresses, egslinear displacement field; this is not the

Egs. (54). case for LMT, AMT, or RMT which usez-cubic displace-
« AMT-8. Extension to a shell requires a reformulation ofent fields. In this respect, the RMT has the advantage that
displacement models and related layer-constants. transverse stresses and displacements are assumed indepen-

« AMT-9. Additional unknown functions are required to in-dent of each other and that these assumptions are made ac-
clude transverse normal stress/strain effects related to KgRrding to a desired accuracy.

. . Exhaustive benchmark problems that compare the three
As far as the RMT is concerned, the following remarks can .
be made: approaches are not available. Some attempts have been made

« RMT-0. It is the only Zig-Zag approach entirely develope [127-129,13% Available results have ghown that, in the
in the West. It is based on a variational theorem that p famework of ESL theory, the LMT analysis leads to a better

mits both displacements and transverse stress assumptigﬁé.cr'pt'on than t_he_ AMT one, and that the RMT could Iea_d
« RMT-1. As LMT6. In this case, zero as well as nonzer8 to better description than LMT and AMT. In any case, it

conditions for transverse shear and normal stresses carl Bt De taken into account that a general conclusion related
included at the top and/or bottom of the plate. to any_ESL theory is the following: avallgble numerlca_l

« RMT-2. At least N,+1 independent variables must pvaluations show that although ESL theories can describe
used for each transverse shear and normal stress Con{&nsverse shear and normal strains, including transverse
nent. Additional constitutive equations are therefore olfarPing of cross section, the approactkisematically ho-
tained by applying RMVT. However, these variables cafiogeneous the sense that the kinematics are insensitive to
be expressed in terms of the displacement ones by usiniygividual layers. If detailed response of individual layers is
weak form of Hooke’s Law Eqg70). required and if significant variations in displacement gradi-

« RMT-3. In-plane displacements are continuous at each @Pts between layers exist, as it is the case for the description
terface and can be chosen linear or of higher order in ea@hthe local phenomena, this approach will necessitate the
layer. ESL applications require the introduction Miu- USe of especially higher order theories in each of the consti-
rakami Zig-Zag functions tutive layers along with a correspondent increase in the num-

« RMT-4 Layer constants do not appear in the expressionshﬂl’ of unknowns in the solution process, as well as in the
displacements and transverse stresses. In practice, IC eg@plexity of the analyses. That is, LW analysis is required
variationally imposed by writing the constitutive equationdn such cases.
between transverse stresses and displacement variables. Finally, we mention that Gurtovoi and Piskun¢38]

« RMT-5. The number of independent variables can be arthiave recently proposed a method to compare the accuracy of
trarily chosen as explained in RMT-3. two different plate theories. The hypotheses employed in

e RMT-6. Interlaminar continuous transverse normall38] make the method of Gurtovoi and Piskunov not appli-
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cable for comparing the three approaches considered in thisAs a final rematrk, it is clearly stated that the author is
work. However, attempts in this direction should be tried iaware that this historical review could not be complete. The
the future. author is aware that other, significant articles and papers
could exist on this subject that might have escaped the
present work. In particular, there are many articles published
6 CONCLUSIONS in the Russian language whose English translations are not

The historical review documented in this paper has shovyailable, and they might report relevant information not
that, within axiomatic framework, three independent ways §Pnsidered here. However, what has been quoted in this ar-
introducing Zig-Zag theories have been proposed for th&cle could at least be of some help for assigning the right
analysis of multilayered plates and shells. In particular, it h&&edentials as far as contributions and contributors to multi-
been established that: layered theory are concerned.
« Lekhnitskii[36] was the first to propose a theory for mul-

tilayered structures which describe the Zig-Zag behavior @lckNOWLEDGMENTS

a displacement field in the thickness direction and int he author has aporeciated verv much the manner in which
laminar equilibrium of transverse stresses. Lekhnitskii’ uthor has appreciated very muc rin wh
ssociate Editor Sarp Adali has conducted the review pro-

work was originally presented as an elasticity solution f . . . . .

| g yp y cess for this article. Professor Adali has, in fact, considered

ayered, cantilever beams. ) . o
himself, referees, and author as one team with the objective

e Apart from the method by Lekhnitskii, which was ex- hina th ¢ lete historical note. | ficul
tended to plate structures by Ren, the other two approacﬁ%geac Ing the most complete historical note. in particuar,

were proposed by Ambartsumidwho extended the well- the author acknowledges the suggestions given by the refer-

known Reissner-Mindlin theory to anisotropic layered<> 23 far as the developments of AMT in the East is con-

plates and shellsand by Reissner who proposed a Varia(_:erned. Such developments were missing in the early version
f the manuscript. However, what is written above does not

tional theorem that permits both displacement and tran%émove from the author the responsibility of any omission or
verse stress assumptions. p y y

« Based on the author’s historical considerations, which afgérbgetfulness. The author finally acknowledges Professor

documented in this paper, it has been suggested to refe ifrin, who provided the original article in Russig#6] and
these three approaches a’S' Carrera who made the Italian translation of the same ar-

ticle.
1) Lekhnitskii Multilayered Theory
2) Ambartsumian Multilayered Theory
3) Reissner Multilayered Theory APPENDIX: TWO DIFFERENT WAYS
¢ A point-by-point comparison of the three approaches has WRITING THE AMT

been discussed extensively in Section 5. This appendix shows two different manners in which the

Future developments could be directed to extend LMdisplacement fields related to the AMT type theories can be
theory to make it suitable for the inclusion of KR. A morederived. The same analysis could also be extended to LRT.
extensive comparison of the three approaches and of thegr the sake of simplicity, a 1D flat case is considered. Ex-

numerical performances vs elasticity solutions would be weknsion to the 2D case and shell geometry should be obvious.
comed. Benchmark problems could be set out for this purhe origin of the thickness coordinates, for the sake of sim-

pose. Other theories which are not based on axiomatic meghieity, is placed in the bottom layer; attention has been re-

ods (such as asymptotic theories, full mixed formulationstricted to a piecewise continuous, linear displacement field.
eto) should be conveniently included in such a comparison. The displacement field in each layer can be first written

by using displacement values at the interfatsse Fig. &

ut(z)=ul+zy,, =z<h;

u
“;-S—A- W(2)=u'(hy) +(z=hy)yp, hi=z<h,
HE S W L
T (73)
c4 “{/ v, hy uk(2)=u*"t(h_ )+ (z—he_ D, he1<z<h,
h 53 -“"2-'\9 Y3 ' h3 -
ul
P2 qL?// Y hy UN'(Z):UN'il(hN|—1)+(Z_th—l)'ﬂN'y
- v, h, hNI,lszs th
v T Y where
P w0 u is the value of the displacementwith corresponding

to the bottom surface.
Fig. 8 Geometry and notations employed in the Appendix uk(hy), k=1N; are the interface values of
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Y, k=1N, are the values which identify the rotations in N—-1
the layers. u(z)=u+ > (z—z1) ¥ H(z—2) (79)
Moreover k=1
ut(hy) =u’+hyy, or
u?(hp)=u'(hy)+(h—hy) ¢, N-1
— u(Z)=u’+ 2 (2= 2z agiH(z-2) (80)
= (74 _ . _ .
Judging from the available literature, the use of the Heavi-
uk(h) =u*"(h_ )+ (he—hye_ 1) ¥ side function could be considered questionable. It has been
used in early work$99,102, and abandoned in some of the
= more recent papersl09,112. The Heaviside function has
the formal advantage of permitting one to writén a form
UM (2)=uM"2(hy, o)+ (hy—1—hy -2 ¥n -1 which is not affected by index. Nevertheless, such an ad-
o ) ) vantage could be ineffective in the calculation and related
The generic interface values is then re-written, computer implementations.
N -1 It appears clear that a linear, piecewise formiddeads to
uk(h)=u’+ > (hy—he ), k=1N, (75) layer continuity stiffnessea* which are independent at In
k=1

fact, top-bottom homogeneous transverse shear stress condi-

Itis noted thah,=0. It follows that the displacement field infiONS cannot be imposed in this case. This was kknown to
each layer can be written in the following unified form, Ambartsumiar{33] and Whitney[92] who assumea” as a
cubic function ofz. In fact, the two additional functions

related to quadratic and cubic termszare determined by
the two homogeneous conditions of transverse shear stresses
with corresponding to top and bottom plate/shell surfaces.

2

N —
uk(z)=u’+ kg (h—r=h ) 1+ (2= 1) i,

1

k=1N, (76)

The N, rotationsyy, can be expressed in terms of one of them
(for instance the rotation in the bottom laydsy imposing LIST OF ACRONYMS
the N,— 1 interlaminar continuity conditions for transverséAcronyms that are used frequently in this article are listed

shear stresses, below.
_ ik _ AMT - Ambartsumian Multilayered Theory
=a“yy, k=2N/—-1 ) X
h=a'dn : ESLM - Equivalent Single Layer Models

whereaX are layer constants defined by interlaminar tran$C -

verse stresses. To be more precigeappears as a combina-KR
tion of an in-plane derivative of transverse displacenvgnt LMT
and a transverse shear straify. The previous relation could LWM

be written as RM
‘ RMT
P=—Wyxtatyy, RMVT

as it is in Eqs(33,36. For the sake of simplicity we take theWFHL

Interlaminar Continuity

Koiter's Recommendation

Lekhnitskii Multilayered Theory
Layer-Wise Models

Reissner-Mindlin

Reissner Multilayered Theory
Reissner’s Mixed Variational Theorem
Weak Form of Hooke’s Law

first of these as valid: as a consequence the displaceamisnt ZZz

2

N|7
uX(2)=u’+ g (he_1—he_p)a“ 1y

1
§ [1]
+(z—hy_p)a"y, 2]

Equations(76) give the displacement field in each layer. S
Such a displacement field can be written in a form which is[

applicable to the whole multilayer by using the Heaviside[4]
step function. Such a function is defined as follows (5]

0 zsz 6
H(z—z)= 1 (78) (6]

k=1N, 77)

=7

By means o, the displacement can be written in a form 7]

which is formally not affected b¥,

- Zig-Zag
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