20 lines
714 B
Python
20 lines
714 B
Python
|
from transformers import AutoTokenizer, AutoModel
|
||
|
import torch
|
||
|
|
||
|
# Load the tokenizer and the model
|
||
|
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
|
||
|
model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
|
||
|
|
||
|
# Prepare a test input sentence (e.g., "Hello, world!")
|
||
|
input_text = "Hello, world!"
|
||
|
|
||
|
# Tokenize the input text and convert it to input IDs
|
||
|
inputs = tokenizer(input_text, return_tensors="pt") # Return tensors in PyTorch format
|
||
|
|
||
|
# Forward pass through the model
|
||
|
with torch.no_grad(): # Disable gradient calculation since we are only doing inference
|
||
|
outputs = model(**inputs)
|
||
|
|
||
|
# Output model's hidden states (for the last layer)
|
||
|
print(outputs.last_hidden_state)
|