132 lines
4.4 KiB
Python
132 lines
4.4 KiB
Python
|
import warnings
|
||
|
from transformers import AutoTokenizer, AutoModel
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import requests
|
||
|
import progressbar
|
||
|
|
||
|
|
||
|
# Me
|
||
|
#subject = "Experiments, numerical models and optimization of carbon-epoxy plates damped by a frequency-dependent interleaved viscoelastic layer"
|
||
|
#query = "composite viscoelastic damping"
|
||
|
|
||
|
# Anne
|
||
|
#subject = "State of the art on the identification of wood structure natural frequencies. Influence of the mechanical properties and interest in sensitivity analysis as prospects for reverse identification method of wood elastic properties."
|
||
|
#query = "wood frequency analysis mechanical properties"
|
||
|
|
||
|
# Axel
|
||
|
#subject = "Characterization of SiC MOSFET using double pulse test method."
|
||
|
#query = "SiC MOSFET double pulse test"
|
||
|
|
||
|
# Paul
|
||
|
#subject = "Thermo-Mechanical Impact of temperature oscillations on bonding and metallization for SiC MOSFETs soldered on ceramic substrate"
|
||
|
#query = "thermo mechanical model discrete bonding SiC MOSFET"
|
||
|
|
||
|
# Jam
|
||
|
subject = "tig welding of inconel 625 and influences on micro structures"
|
||
|
query = "tig welding inconel 625"
|
||
|
|
||
|
widgets = [' [',
|
||
|
progressbar.Timer(format= 'elapsed time: %(elapsed)s'),
|
||
|
'] ',
|
||
|
progressbar.Bar('*'),' (',
|
||
|
progressbar.ETA(), ') ',
|
||
|
]
|
||
|
|
||
|
# Suppress FutureWarnings and other warnings
|
||
|
warnings.simplefilter(action='ignore', category=FutureWarning)
|
||
|
|
||
|
print("\n### Fetching Data ###\n")
|
||
|
|
||
|
# Load the tokenizer and the model
|
||
|
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
|
||
|
|
||
|
print("* Got tokenizer")
|
||
|
|
||
|
model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
|
||
|
|
||
|
print("* Got model")
|
||
|
|
||
|
# Function to compute sentence embeddings by pooling token embeddings (CLS token)
|
||
|
def get_sentence_embedding(text):
|
||
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
||
|
with torch.no_grad():
|
||
|
outputs = model(**inputs)
|
||
|
|
||
|
# Pooling strategy: Use the hidden state of the [CLS] token as the sentence embedding
|
||
|
cls_embedding = outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
||
|
return cls_embedding
|
||
|
|
||
|
# Function to compute cosine similarity
|
||
|
def compute_similarity(embedding1, embedding2):
|
||
|
similarity = F.cosine_similarity(embedding1, embedding2)
|
||
|
return similarity.item()
|
||
|
|
||
|
# Define the SearxNG instance URL and search query
|
||
|
searxng_url = "https://search.penwing.org/search" # Replace with your instance URL
|
||
|
params = {
|
||
|
"q": query, # Your search query
|
||
|
"format": "json", # Requesting JSON format
|
||
|
"categories": "science", # You can specify categories (optional)
|
||
|
}
|
||
|
|
||
|
# Send the request to SearxNG API
|
||
|
response = requests.get(searxng_url, params=params)
|
||
|
|
||
|
# Check if the request was successful
|
||
|
if response.status_code == 200:
|
||
|
print("* Got search results")
|
||
|
# Parse the JSON response
|
||
|
data = response.json()
|
||
|
|
||
|
subject_embedding = get_sentence_embedding(subject)
|
||
|
|
||
|
print("* Tokenized subject")
|
||
|
|
||
|
print("\n### Starting result processing ###\n")
|
||
|
# List to store results with similarity scores
|
||
|
scored_results = []
|
||
|
|
||
|
results = data.get("results", [])
|
||
|
progress = 0
|
||
|
|
||
|
bar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), progressbar.Bar()],
|
||
|
maxval=len(results)).start()
|
||
|
|
||
|
# Process each result
|
||
|
for result in results :
|
||
|
title = result['title']
|
||
|
url = result['url']
|
||
|
snippet = result['content']
|
||
|
|
||
|
# Get embedding for the snippet (abstract)
|
||
|
snippet_embedding = get_sentence_embedding(snippet)
|
||
|
|
||
|
# Compute similarity between subject and snippet
|
||
|
similarity = compute_similarity(subject_embedding, snippet_embedding)
|
||
|
|
||
|
# Store the result with its similarity score
|
||
|
scored_results.append({
|
||
|
'title': title,
|
||
|
'url': url,
|
||
|
'snippet': snippet,
|
||
|
'similarity': similarity
|
||
|
})
|
||
|
|
||
|
progress += 1
|
||
|
bar.update(progress)
|
||
|
|
||
|
# Sort the results by similarity (highest first)
|
||
|
top_results = sorted(scored_results, key=lambda x: x['similarity'], reverse=True)[:10]
|
||
|
|
||
|
print("\n### Done ###\n")
|
||
|
# Print the top 10 results
|
||
|
for idx, result in enumerate(top_results, 1):
|
||
|
print(f"Rank {idx} ({result['similarity']:.4f}):")
|
||
|
print(f"Title: {result['title']}")
|
||
|
print(f"URL: {result['url']}")
|
||
|
print(f"Snippet: {result['snippet']}")
|
||
|
print("-" * 40)
|
||
|
else:
|
||
|
print(f"Error: {response.status_code}")
|