keyword extraction

This commit is contained in:
WanderingPenwing 2024-09-27 12:11:59 +02:00
parent 5a815643a7
commit 2539b919c2
7 changed files with 215 additions and 9 deletions

View file

@ -9,6 +9,11 @@ torch = "*"
requests = "*"
keybert = "*"
progressbar = "*"
rake-nltk = "*"
nltk = "*"
spacy = "*"
numpy = "*"
gensim = "*"
[dev-packages]

163
key-scrub-evaluate.py Normal file
View file

@ -0,0 +1,163 @@
import warnings
from transformers import AutoTokenizer, AutoModel
from keybert import KeyBERT
import torch
import torch.nn.functional as F
import requests
import progressbar
from itertools import combinations
# Me
#subject = "Experiments, numerical models and optimization of carbon-epoxy plates damped by a frequency-dependent interleaved viscoelastic layer"
#query = "composite viscoelastic damping"
# Anne
#subject = "State of the art on the identification of wood structure natural frequencies. Influence of the mechanical properties and interest in sensitivity analysis as prospects for reverse identification method of wood elastic properties."
#query = "wood frequency analysis mechanical properties"
# Axel
#subject = "Characterization of SiC MOSFET using double pulse test method."
#query = "SiC MOSFET double pulse test"
# Paul
#subject = "Thermo-Mechanical Impact of temperature oscillations on bonding and metallization for SiC MOSFETs soldered on ceramic substrate"
#query = "thermo mechanical model discrete bonding SiC MOSFET"
# Jam
#subject = "tig welding of inconel 625 and influences on micro structures"
#query = "tig welding inconel 625"
subject = "artificial inetlligence for satellite detection"
widgets = [' [',
progressbar.Timer(format= 'elapsed time: %(elapsed)s'),
'] ',
progressbar.Bar('*'),' (',
progressbar.ETA(), ') ',
]
# Suppress FutureWarnings and other warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
print("\n### Fetching Data ###\n")
# Load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
print("* Got tokenizer")
model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
print("* Got model")
kw_model = KeyBERT()
print("* Got Keybert")
# Function to compute sentence embeddings by pooling token embeddings (CLS token)
def get_sentence_embedding(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
# Pooling strategy: Use the hidden state of the [CLS] token as the sentence embedding
cls_embedding = outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
return cls_embedding
# Function to compute cosine similarity
def compute_similarity(embedding1, embedding2):
similarity = F.cosine_similarity(embedding1, embedding2)
return similarity.item()
print("\n### Getting Keywords ###\n")
keywords = kw_model.extract_keywords(subject, keyphrase_ngram_range=(1, 2), stop_words='english', use_mmr=True, diversity=0.7)
print("* keywords extracted")
sorted_keywords = sorted(keywords, key=lambda x: -x[1])
text_keywords = [x[0] for x in sorted_keywords]
queries = []
for r in range(1, len(text_keywords) + 1):
comb = combinations(text_keywords, r)
queries.extend(comb)
final_query = [" OR ".join(query) for query in queries]
final_query.append(subject)
print("* query generated")
print("\n### Fetching Web data ###\n")
# Define the SearxNG instance URL and search query
searxng_url = "https://search.penwing.org/search" # Replace with your instance URL
params = {
"q": final_query, # Your search query
"format": "json", # Requesting JSON format
"categories": "science", # You can specify categories (optional)
}
# Send the request to SearxNG API
response = requests.get(searxng_url, params=params)
# Check if the request was successful
if response.status_code == 200:
print("* Got response")
# Parse the JSON response
data = response.json()
subject_embedding = get_sentence_embedding(subject)
print("* Tokenized subject")
# List to store results with similarity scores
scored_results = []
results = data.get("results", [])
progress = 0
print("\n### Starting result processing (",len(results),") ###\n")
bar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), progressbar.Bar()],
maxval=len(results)).start()
# Process each result
for result in results :
title = result['title']
url = result['url']
snippet = result['content']
# Get embedding for the snippet (abstract)
snippet_embedding = get_sentence_embedding(snippet)
# Compute similarity between subject and snippet
similarity = compute_similarity(subject_embedding, snippet_embedding)
# Store the result with its similarity score
scored_results.append({
'title': title,
'url': url,
'snippet': snippet,
'similarity': similarity
})
progress += 1
bar.update(progress)
# Sort the results by similarity (highest first)
top_results = sorted(scored_results, key=lambda x: x['similarity'], reverse=True)[:10]
print("\n\n### Done ###\n")
# Print the top 10 results
for idx, result in enumerate(top_results, 1):
print(f"Rank {idx} ({result['similarity']:.4f}):")
print(f"Title: {result['title']}")
print(f"URL: {result['url']}")
print(f"Snippet: {result['snippet']}")
print("-" * 40)
else:
print(f"Error: {response.status_code}")

36
key.py
View file

@ -1,25 +1,43 @@
from keybert import KeyBERT
from transformers import AutoTokenizer, AutoModel
from itertools import combinations
# Load the SciBERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
#tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
#print("* Tokenizer")
print("* Tokenizer")
model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
print("* Scibert model")
#model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased')
#print("* Scibert model")
# Define a KeyBERT model using SciBERT embeddings
kw_model = KeyBERT(model=model)
#kw_model = KeyBERT(model=model)
kw_model = KeyBERT()
print("* Keybert model")
# Define the subject from which to extract keywords
subject = "tig welding of inconel 625 and influences on micro structures"
subject = "Thermo-Mechanical Impact of temperature oscillations on bonding and metallization for SiC MOSFETs soldered on ceramic substrate"
# Extract keywords from the subject
keywords = kw_model.extract_keywords(subject, keyphrase_ngram_range=(1, 2), stop_words='english', use_maxsum=True)
keywords = kw_model.extract_keywords(subject, keyphrase_ngram_range=(1, 2), stop_words='english', use_mmr=True, diversity=0.7)
# Print extracted keywords
for keyword, score in keywords:
print(f"Keyword: {keyword}, Score: {score:.4f}")
print("-"*40)
sorted_keywords = sorted(keywords, key=lambda x: -x[1])
text_keywords = [x[0] for x in sorted_keywords]
queries = []
for r in range(1, len(text_keywords) + 1): # r is the length of combinations
comb = combinations(text_keywords, r)
queries.extend(comb)
#print([" OR ".join(query) for query in queries])
text_queries = [" OR ".join(query) for query in queries]
text_queries.append(subject)
print(text_queries)

8
key2.py Normal file
View file

@ -0,0 +1,8 @@
from rake_nltk import Rake
import nltk
rake_nltk_var = Rake()
text = "Characterization of SiC MOSFET using double pulse test method."
rake_nltk_var.extract_keywords_from_text(text)
keyword_extracted = rake_nltk_var.get_ranked_phrases()
print(keyword_extracted)

5
key3.py Normal file
View file

@ -0,0 +1,5 @@
import spacy
nlp = spacy.load("en_core_sci_lg")
text = "Characterization of SiC MOSFET using double pulse test method"
doc = nlp(text)
print(doc.ents)

5
key4.py Normal file
View file

@ -0,0 +1,5 @@
from gensim.summarization import keywords
text_en = ('Characterization of SiC MOSFET using double pulse test method.')
print(keywords(text_en,words = 5,scores = True, lemmatize = True))

View file

@ -6,9 +6,11 @@ mkShell {
pipenv
python3
stdenv.cc.cc.lib
zlib
];
shellHook = ''
export LD_LIBRARY_PATH="${pkgs.stdenv.cc.cc.lib}/lib";
export LD_LIBRARY_PATH="${pkgs.zlib}/lib:$LD_LIBRARY_PATH";
'';
}