from keybert import KeyBERT from transformers import AutoTokenizer, AutoModel # Load the SciBERT model and tokenizer tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased') print("* Tokenizer") model = AutoModel.from_pretrained('allenai/scibert_scivocab_uncased') print("* Scibert model") # Define a KeyBERT model using SciBERT embeddings kw_model = KeyBERT(model=model) print("* Keybert model") # Define the subject from which to extract keywords subject = "tig welding of inconel 625 and influences on micro structures" # Extract keywords from the subject keywords = kw_model.extract_keywords(subject, keyphrase_ngram_range=(1, 2), stop_words='english', use_maxsum=True) # Print extracted keywords for keyword, score in keywords: print(f"Keyword: {keyword}, Score: {score:.4f}")