120 lines
2.7 KiB
Markdown
120 lines
2.7 KiB
Markdown
To [[Composite laminate models|model a composite laminate]] there are a few options, the most important are the [[Equivalent Single Layer Theories|equivalent single layer]] and the layerwise.
|
|
|
|
Those theories describe kinetically each layer. They can be used for very thick laminate, and useful to compute delamination. They predicts correct inter-laminar stresses and there is no need of shear correction factor.
|
|
|
|
## Stiffness
|
|
|
|
[course](https://www.youtube.com/watch?v=j3rvtgqrGsQ) *(1h30)*
|
|
|
|
When pulling on the material, strain is the same for every ply, but stress is not.
|
|
|
|
You need to average it along the whole thickness
|
|
$$
|
|
|
|
\left[\begin{array}{c}
|
|
\overline{\sigma_{xx}} \\
|
|
\overline{\sigma_{yy}} \\
|
|
\overline{\tau_{xy}} \\
|
|
\end{array}\right]
|
|
|
|
= \frac{1}{h}\int_{-h/2}^{h/2} \left[\begin{array}{c}
|
|
\sigma_{xx} \\
|
|
\sigma_{yy} \\
|
|
\tau_{xy} \\
|
|
\end{array}\right] dz \tag{1}$$
|
|
|
|
$Q$ is the stiffness matrix :
|
|
$$ \left[\begin{array}{c}
|
|
\sigma_{xx} \\
|
|
\sigma_{yy} \\
|
|
\tau_{xy}
|
|
\end{array}\right]
|
|
=
|
|
\left[\begin{array}{c}
|
|
Q_{11} & Q_{12} & Q_{13} \\
|
|
Q_{21} & Q_{22} & Q_{23} \\
|
|
Q_{31} & Q_{32} & Q_{33} \\
|
|
\end{array}\right]
|
|
\left[\begin{array}{c}
|
|
\varepsilon_{xx} \\
|
|
\varepsilon_{yy} \\
|
|
\gamma_{xy}
|
|
\end{array}\right] \tag{2}$$
|
|
|
|
Since the strain is the same for every ply, (1) & (2) gives us :
|
|
$$
|
|
|
|
\left[\begin{array}{c}
|
|
\overline{\sigma_{xx}} \\
|
|
\overline{\sigma_{yy}} \\
|
|
\overline{\tau_{xy}} \\
|
|
\end{array}\right]
|
|
|
|
= \frac{1}{h}\int_{-h/2}^{h/2}
|
|
\left[\begin{array}{c}
|
|
Q_{11} & Q_{12} & Q_{13} \\
|
|
Q_{21} & Q_{22} & Q_{23} \\
|
|
Q_{31} & Q_{32} & Q_{33} \\
|
|
\end{array}\right]dz
|
|
|
|
\left[\begin{array}{c}
|
|
\varepsilon_{xx} \\
|
|
\varepsilon_{yy} \\
|
|
\gamma_{xy}
|
|
\end{array}\right]
|
|
|
|
\tag{3}$$
|
|
|
|
and we can give a name to the mean matrix of the stiffness :
|
|
$$
|
|
\left[\begin{array}{c}
|
|
A \\
|
|
\end{array}\right]
|
|
|
|
= \frac{1}{h}\int_{-h/2}^{h/2}
|
|
\left[\begin{array}{c}
|
|
Q_{11} & Q_{12} & Q_{13} \\
|
|
Q_{21} & Q_{22} & Q_{23} \\
|
|
Q_{31} & Q_{32} & Q_{33} \\
|
|
\end{array}\right]dz
|
|
|
|
\tag{4}$$
|
|
|
|
or when the ply are continuous :
|
|
$$
|
|
\left[\begin{array}{c}
|
|
A \\
|
|
\end{array}\right]
|
|
|
|
= \frac{1}{h}\sum_{1}^{n\_ply}
|
|
\left[\begin{array}{c}
|
|
Q
|
|
\end{array}\right]_i *h_i
|
|
|
|
\tag{5}$$
|
|
|
|
to rotate the stiffness matrix :
|
|
$$[\overline{Q}]_\theta
|
|
|
|
= [C]_{|\theta}^T
|
|
\left[\begin{array}{c}
|
|
Q_{11} & Q_{12} & 0 \\
|
|
Q_{21} & Q_{22} & 0 \\
|
|
0 & 0 & Q_{33} \\
|
|
\end{array}\right]
|
|
[C]_{|\theta}
|
|
|
|
\tag{4}$$
|
|
|
|
where $[C]$ is the transformation matrix :
|
|
$$[C]_{|\theta} = \left[\begin{array}{c}
|
|
c^2 & s^2 & cs \\
|
|
s^2 & c^2 & -cs \\
|
|
-2sc & 2sc & (c^2-s^2)
|
|
\end{array}\right]$$
|
|
|
|
## Tsai-Hill criterion
|
|
|
|
$$
|
|
F.O.S = \frac{T_x}{\sqrt{\sigma_{xx}^2 - \sigma_{xx}\sigma_{yy} + \frac{T_x^2\sigma_{yy}^2}{T_y^2} + \frac{T_x^2\tau_{xy}^2}{S_{xy}^2}}}$$
|